Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Remiero

Dermatological problems of brachycephalic dogs

Stefan Hobi 1,*, Vanessa R. Barrs 1,2 and Paweł M. Bęczkowski 1

- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China; stefhobi@cityu.edu.hk.
- ² Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China; vanessa.barrs@cityu.edu.hk.
- * Correspondence: stefhobi@cityu.edu.hk

Simple Summary: Brachycephalic dogs are affected by respiratory disorders related to abnormal anatomic conformation that can significantly affect their general health and quality of life. In this review, we address dermatological disorders in these breeds, which are less recognized, but can also considerably impact welfare.

Abstract: Brachycephalic dogs are not only affected by brachycephalic obstructive airway syndrome (BOAS), but also comprise up to 30% of canine patients seen by veterinary dermatologists, with English Bulldogs and Pugs particularly overrepresented. Some skin diseases are associated with the abnormal anatomic conformation of brachycephalic dogs, while for others there is a underlying genetic basis or a general predisposition. Anatomic alterations associated with brachycephaly, leading to fold formation of the skin and stenosis of the ear canal, together with primary immunodeficiencies described in some breeds, favor the development of pyoderma, *Malassezia* dermatitis and otitis externa/media. Frequently neglected but often lifelong dermatological problems of brachycephalic dogs are an important consideration when discussing genetic and medical conditions affecting the welfare of those dogs. Here we review the current state of knowledge concerning dermatological problems of brachycephalic dogs, and combine it with clinical experience in the management of these challenging disorders.

Keywords: Canine; BOAS; brachycephaly; congenital; skin folds; allergy; infectious diseases; immunologic disorders; otitis externa; ethical

1. Introduction

Brachycephalic dogs are very popular due to cultural and social influences, as well as their "babyface" appearance and personality traits that favor bonding and companionship with their owners [1,2]. Owners may be unaware of how seriously the welfare of these breeds can be compromised by abnormalities in anatomic conformation [3,4]. Extreme brachycephaly, i.e. foreshortening of the cranium is associated with brachycephalic obstructive airway syndrome (BOAS) leading to stridor, stertor, dyspnoea, cyanosis, exercise intolerance, regurgitation, hyperthermia and syncope. Non-respiratory problems including spinal, dental, gastrointestinal, ophthalmological, dermatological and cardiovascular disorders as well as birthing difficulties, have also been recognized [4,5]. To mitigate these problems, several countries including the Netherlands and Norway, have instigated legal breeding restrictions, while many professional veterinary organizations such as the British Veterinary Association, the Australian Veterinary Association, the American Veterinary Medical Association and the Federation of European Companion Animal Veterinary Association, have launched public education awareness initiatives and campaigns [3-5].

The prevalence of dermatological abnormalities in brachycephalic dogs ranges from 10% to almost 30%, depending on breed and geographic origin [6,7]. Genetic, autoimmune

and parasitic diseases, immune deficiencies, vasculitis, allergies, secondary infections, otitis externa and media, claw and anal sac diseases, skin folding, alopecia and pruritus, have all been recognized as problems in brachycephalic dog breeds [8-10]. Genetic aspects, skull conformation, pressure changes between the middle ear and nasopharynx, skin folding, environmental factors and the microbiome composition may all contribute to the aetiopathogenesis of dermatological diseases in brachycephalic dogs [5,11].

Many of these skin conditions, may become chronic and difficult to treat as well as causing pain and pruritus, leading to abnormal behaviour and thus negatively impacting quality of life [5,12].

Here we review dermatological diseases encountered in brachycephalic breeds of dogs, including; (i) disorders directly associated with brachycephaly that are likely to be improved if measures to prevent extreme brachycephaly are implemented, as well as (ii) disorders, that are not directly linked to brachycephalic conformation.

There is no definitive list of brachycephalic breeds, because no uniform measure is used. Some authors use cephalic index (CI), the ratio of the width of the skull compared with its length, while others use craniofacial ratio or craniofacial angle [5]. In addition, the phenotypic variation within an individual breed can be very large, such that individual dogs within a "brachycephalic breed" may not be brachycephalic, while others in non-brachycephalic breeds may indeed be brachycephalic. Table 1 lists the most commonly described brachycephalic breeds of dogs [6,13], while Table 2 lists dermatological disorders reported in brachycephalic breeds.

Table 1. The most common brachycephalic UK [6,13]. Breeds particularly associated with extreme brachycephaly are bolded.

Affenpinscher
Bulldog Breeds:
Alapaha Blue Blood Bulldog; American Bulldog; British Bulldog; Bulldog; Dorset Olde
Tyme Bulldogge; French Bulldog;
Victorian Bulldog
Boxer; Bull Boxer; German Boxer
Brasileiro
Brussels Griffon; Griffon
Boston Terrier
Cavalier King Charles Spaniel
Chihuahua; Long-haired Chihuahua; short-Haired Chihuahua; Teacup Chihuahua
Chow Chow
Dogue de Bordeaux
English Toy Spaniel
Japanese Chin
Lhasa Apso
Mastiff Breeds:
American Bandogge Mastiff; Bullmastiff; Cane Corso (Italian Mastiff); English Mastiff;
Neapolitan Mastiff; Tibetan Mastiff
Pekingese
Pug
Shar Pei
Shi Tzu
Staffordshire Bull Terrier

2. Dermatological diseases directly associated with brachycephaly

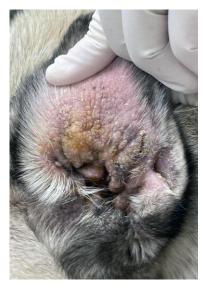
2.1. Skin fold dermatitis

Skin fold dermatitis or intertrigo is a major problem in brachycephalic breeds, especially in British Bulldogs, French Bulldogs, Pugs, Pekingese, Boston Terriers and Shar Peis [3,9,12,14-21]. A "big-data" study that searched the medical records of 905,553 dogs presented to veterinary clinics in the UK in 2016 for skin fold dermatitis, identified 11,375 cases (1.26%). Compared to cross-breed dogs, British Bulldogs (odds ratio [OR] 49.07, 95% CI [37.79-63.70]), French Bulldogs (OR 25.92, 95% CI [19.62-34.26]) and Pugs (OR 16.27, 95% CI [12.20-21.69]) were predisposed [12]. Foreshortening of the skull, results in folding of excessive skin around the muzzle, eyes and ears. The problem is exacerbated in Shar Peis by increased hyaluronic acid synthetase activity, which leads to more ground substance and mucin in the dermis and attracts water [22,23]. In addition, to facial involvement, skin folds can occur in other locations, such as at the tail base in dogs with "corkscrew" such as Pugs and Bulldogs [12,22]. This not only leads to secondary infections, but also spine instability, nerve compression and neurological deficiencies such as pain, ataxia and incontinence [24].

Reduced air circulation and increased temperature, humidity and debris within skin folds, together with intermittent friction and trauma, leads to commensal overgrowth and toxin production, then inflammation, maceration and infection [15,22]. Affected areas exhibit erythema, hypotrichosis to alopecia, erosion/ulceration and crusting, lichenification, pigmentary changes, accumulation of keratosebaceous debris and malodour (**Figure 1**).

Involved areas can be pruritic and painful. Since the changes take place between skin folds, disease may not be noticed by owners [12,15,22]. If corrective surgery is not an option, lifelong treatment may be required, with various topical preparations (e.g., antiseptics, glucocorticoids, antimicrobials, medical honey or silver sulfadiazine. In severe cases where there is deep pyoderma, systemic antimicrobial therapy may be indicated, and used according to culture and susceptibility test results [15,19,22].

Figure 1. French Bulldog with severe skin fold dermatitis secondary to excessive skin folds on the face/muzzle that are a direct consequence of extreme brachycephalic conformation. In addition, this dog has chronic skin fold dermatitis associated with excessive folding on the distal limbs.


2.2. Otitis externa

Otitis externa (OE), inflammation of the ear canal and often outer ear, is more prevalent in brachycephalic dogs, especially British Bulldogs, Pugs and Boxers, than in non-brachycephalic dogs [8,16,17,25]. Otitis externa is associated with predisposing factors (e.g. anatomic conformation, swimming), primary factors (direct induction of inflammation e.g. parasites, food allergy, atopy, foreign body, growths, hormonal), secondary factors (e.g. secondary infection by commensals) and perpetuating factors (chronic changes of the ear canal, ear drum or middle ear). Recently, it was shown that two brachycephalic breeds of dogs, French Bulldogs and Pugs have significantly narrower external ear canals than non-brachycephalic dogs of similar size [26]. The diameter of the horizonal ear canal was measured between its cranial and caudal bony walls on computer tomographic (CT) scan images, and had a median value of 2.5mm, 2.6mm and 5.0mm in French Bulldogs,

Pugs and non-brachycephalic control dogs, respectively. Also, on otoscopic examination, the tympanic membrane could only be visualized in 3.3% of brachycephalic dogs due to ear canal stenosis. Among the brachycephalic dogs examined in the study no significant association was made between the presence of OE and ear canal diameter. However, their striking differences in ear canal diameter compared to non-brachycephalic dogs, suggests that OE is likely a direct consequence of brachycephalic conformation, at least in some cases. Other predisposing factors to OE including allergic skin diseases are discussed in section 3.4.2.

Clinical signs of OE include abnormal scratching of the pinnae, excoriations, head shaking, otic discharge, malodour, swelling, pain, formation of "hot-spots" (moist dermatitis) and othematoma (**Figure 2**) [15,27]. If left untreated, OE may further progress to involve the middle ear (otitis media), internal ear (otitis interna) and extend into the central nervous system (CNS). Diagnosis is usually by otoscopy and cytology, but advanced investigations (video-otoscopy, CT/MRI) may also be required [27,28].

Treatment of OE typically includes a combination of topical ear drops, ear cleaner and if not contra-indicated an anti-inflammatory dose of oral glucocorticoids to reduce the stenosis, pruritus and pain [15,29]. Flushing of the ear canal under anaesthesia can help to remove debris, toxins, biofilm and exudates but also increases the efficacy of topical medications [15,27,28]. Biofilm can also be disrupted by topical usage of silver nanoparticles, Tris-EDTA and oral n-acetylcysteine or bromhexine [29-31]. Topical ear preparations may be ototoxic (e.g. macrolide, polypeptide and aminoglycoside antibiotics, propylene glycol, ceruminolytics and antiseptics), and must be used cautiously. Ototoxicity can lead to hearing loss, imbalance or nausea by direct effect on the hair cells, stria vascularis or cochlear nerve of the internal ear or via the formation of reactive oxygen species [32,33].

Figure 2. Chronic otitis externa in a Pug showing erythema, lichenification, crusting and accumulation of keratosebaceous debris.

2.3. Caudal occipital malformation syndrome/Chiari-like malformation/Primary secretory otitis media

This congenital and multifactorial inherited abnormality was first recognized and reported in Cavalier King Charles Spaniels (CKCS) with up to 95% of individuals being affected [34-37]. It is also recognized in other brachycephalic small breed dogs [38-41]. The caudal occiput is too small relative to the cerebellum, which may prolapse through the foramen magnum, leading to an abnormal flow of cerebrospinal fluid and the formation of a fluid filled cyst (syrinx) within the spinal cord (syringomyelia). In chronic cases, spinal cord degeneration including ventral horn cell or white matter damage, may complicate

the situation [42,43]. Neuropathic pain results in "air-guitar" scratching, "pseudo-fly catching", spontaneous vocalization and hopping, repeated body shaking and severe rubbing of the face on the floor [43,44]. In more severely affected dogs, other signs may be present including ataxia, head tilt, head tremor, facial nerve deficits, nystagmus, seizures, and scoliosis [41,43].

Primary secretory otitis media, a sterile effusion of the middle ear, is another complication, especially observed in CKCS with Chiari-like malformation [45]. Auditory tube dysfunction associated with the craniofacial abnormalities, is implicated in disease pathogenesis [46,47]. Magnetic resonance imaging (MRI) is the best diagnostic tool to assess primary anatomic conformational abnormalities and the severity of their neurological consequences [41,43].

Medical treatment with non-steroidal inflammatory inhibitors, glucocorticoids, opioids and anticonvulsants (gabapentin, pregabalin) help to relieve pain, whilst omeprazole, acetazolamide, methazolamide may be prescribed to reduce formation of cerebrospinal fluid [48,49]. Alternative pain management options such as acupuncture and laser therapy are becoming more popular, and may help as well, but progressive disease is common and surgical intervention may be required, in severe disease [44,50]. For severe cases or dogs not responding to medical treatment, there is up to an 80% chance of clinical improvement following foramen magnum decompression and durotomy [41,51]. Duraplasty or craniotomy/cranioplasty in combination with tissue grafting/titanium prosthesis/titanium mesh/polymethylmethacrylate plate, further improve the success rate [52,53]. However, despite surgical intervention, residual scratching is often reported [53,54].

3. Other skin diseases in brachycephalic breeds

3.1. Genetic skin diseases

3.1.1. Ichthyosis

Ichthyosis is a rare genetic disease affecting various breeds including CKCS and American Bulldogs [55-59]. In the latter, a mutation in NIPAL-4 (Nipa-Like Domain-Containing 4, ICHTHYIN) is implicated in abnormal lipid metabolism in the epidermis [56]. In a multicentric study, approximately 35% of tested dogs were heterozygote carriers and 5.4% were clinically affected. Disease was associated with an autosomal recessive insertion mutation 5781 bp upstream of NIPAL-4 [56]. Fine scaling throughout a rough hair coat, prominent erythematous to brown scales on the axillae and abdomen, together with wrinkling of the skin are typical features described in affected American Bulldogs. Secondary *Malassezia* dermatitis/overgrowth, pododermatitis and otitis externa are common sequela [56,60].

In CKCS the condition is caused by a mutation in FAM83H (family with sequence similarity 83, member H), which is yet to be further characterized [60]. In CKCS a roughened, scaly and curly haircoat together with a hyperpigmented abdomen, footpad hyperkeratosis and nail abnormalities (nail dystrophy, onychomadesis) become apparent. Affected dogs also have keratoconjunctivitis sicca and may become blind if this is undetected [55].

In both breeds, the first clinical signs occur directly after birth [60]. A definitive diagnosis can be obtained via histopathology or genetic blood testing in case of ichthyosis in American Bulldogs [56,60]. Since ichthyosis is a congenital disease, only symptomatic treatment including treatment of secondary infections, regular combing, mild shampoo treatment, systemic and topical fatty acids as well as systemic retinoids (isotretinoin, etretinate) can be employed [15,60]. Affected dogs should not be used for breeding.

3.1.2. Tyrosinase deficiency

This genetic abnormality is rarely be seen in Chow Chow puppies [15,61]. Affected dogs have a pink (instead of black) tongue, depigmentation of the buccal mucosa and whitening of the haircoat. They are otherwise healthy [15,61]. Since tyrosinase is necessary

to produce melanin, supplementation of tyrosinase to histopathologic preparations, and melanin measurement after tissue staining, can help with the diagnosis [15,61]. There is no specific treatment but due to a spontaneous reappearance of melanin, improvement is seen within 2 to 4 months [15,61].

3.1.3. Congenital alopecia

Congenital alopecia is a rarely observed problem of various brachycephalic and other canine breeds including French Bulldog, Lhasa Apso and Chihuahua [15,62-64]. It typically occurs within weeks to months after birth, associated with an x-linked, autosomal dominant or autosomal recessive trait [15,62,65]. Disease phenotype ranges from hypotrichosis to alopecia, which may be localized or generalized [15,62]. Hair loss is typically well-demarcated, occurring on the head, ears and ventrum [15,62]. Some residual hair, symmetrically arranged, can be observed on the dorsal head, distal limbs, tail, umbilical area and around mucocutaneous sites [62]. In more chronic cases, scaling and hyperpigmentation may occur [15]. This needs to be differentiated from ectodermal dysplasia, where other structures such as sweat glands, sebaceous glands, respiratory glands, lacrimal glands, claws and teeth are involved as well [66]. A definitive diagnosis of congenital alopecia is made through collection of multiple skin biopsies from different skin sites which exhibit complete absence or a decreased number of hair follicles [15,62]. There is no specific treatment. Prevention can be effectively achieved by avoiding breeding of affected individuals [15].

3.1.4. Colour dilution alopecia (CDA)/black hair follicular dysplasia/follicular dysplasia

These dermatopathies are reported in both brachycephalic and non-brachycephalic dog breeds including Chihuahuas, Yorkshire Terriers, Shih Tzus, Boxers, Boston Terriers, Cavalier King Charles Spaniel and blue Chow Chows [15,67-72]. Disease is inherited by an autosomal-recessive trait, with singular or multiple mutations within or near the melanophilin gene [73,74]. Melanin precursors with cytotoxic effects and abnormal pigment clumps in the epidermis, hair shaft, hair follicle and hair matrix lead to bulging and fracture of the hair cuticle and therefore alopecia [75]. Progressive hypotrichosis to alopecia and scaling develop at affected areas. In Colour dilution alopecia (CDA), there is also folliculitis and furunculosis. The full extent of disease is usually recognized around 2 to 3 years of age, or earlier in case of follicular dysplasia [15,67,75].

An increased risk for cancer development has been described for CDA [76]. Trichograms, showing numerous macromelanosomes within the hair shaft leading to irregularities and distortion and skin biopsies with histopathology exhibiting dilated hair follicles filled with keratin, hair shafts, free melanin and abnormal melanin clumps in the epidermis and hair follicles, are important diagnostic tools. Commercially available DNA tests, targeting the Ras-related protein Rab-27 (RAB27) or melanophilin (MLPH) are now also available [15,67,73,75]. There is no specific treatment and trauma as well as intense UV-light exposure should be avoided [15,67,75]. Oral retinoic acid may be beneficial [15].

3.1.5. Canine flank alopecia/seasonal flank alopecia

This localized, cyclic, likely polygenetic follicular dysplasia has a high prevalence in middle-aged Boxers and Affenpinschers, but is also reported in other breeds including English Bulldogs, Chihuahua and Staffordshire bull terrier [77-80]. The aetiology is not known, but reduced light exposure and an association with melatonin are considered likely [15,81]. Well-circumscribed, non-pruritic, hyperpigmented, mostly symmetric alopecia, forming a geographic map appearance, develops over the flanks typically during winter time (**Figure 3**). Spontaneous hair regrowth, which may be associated with colour change, occurs within 1 to 14 months. Occasionally, alopecia becomes permanent [15,77,82]. Around 20% of individuals only have one episode, whereas most dogs have recurrent alopecic episodes in the following years [77,82]. Affected individuals are

otherwise healthy. The breed, history, clinical signs and exclusion of endocrinopathies make a diagnosis very likely, but in atypical cases histopathology may be warranted. Since this is a cosmetic problem, observation without treatment is an option, but affected individuals should not be used for breeding. Treatment success can be achieved with melatonin (oral, implants) and increased contact to the sun/artificial light [15,77,81,82].

Figure 3. English Bulldog with seasonal flank alopecia.

3.1.6. Pattern baldness

Canine pattern baldness is an uncommon disease occurring in both brachycephalic and non-brachycephalic breeds [15,83]. Four different syndromes have been described, in Dachshunds, another in American Water Spaniels, third in Greyhounds and a fourth syndrome in various breeds including English Bulldogs, Boston Terriers, Boxers and Chihuahuas [15,83].

Disease often starts around 6 to 9 months of age and progresses over months to years [15,83]. The cause is not known and an association with an androgen receptor dysfunction as has been described in humans, could not be shown [83]. The fourth syndrome is most common, especially in female dogs and affects periauricular skin, the ventrum, perineal region and the caudomedial thighs [15,83]. Affected areas do not show complete hair loss but rather miniaturized hair [15,83]. In chronic cases, hyperpigmentation and scaling may occur [15]. A trichogram can help to confirm a diagnosis if the patient has normal hair in non-affected areas and miniaturized hair in affected areas. Histopathologically, hair follicles and hairs shafts are smaller and thinner than normal [83]. Due to the cosmetic nature of this disease, treatment is not necessary, but oral melatonin may be beneficial [84]. If successful, improvement is typically seen within around 6 weeks [84].

3.1.7. Cutaneous asthenia

This rare genetic disease occurs in various canine breeds, among which Boxers are more frequently affected [15,85]. Both, autosomal-recessive and dominant genetic mutations are reported [15,85]. The skin is thin, hyperextensible, can be easily torn, leaving "fish-mouth" ulcerated wounds, which have minimal to no bleeding and heal quickly to leave characteristic "cigarette-paper" like scars. Rarely, other manifestations such as widening of the bridge of the nose, inguinal and umbilical hernia, increased joint laxity, hygroma formation and ocular changes can occur [15]. Cutaneous asthenia is associated with in increased skin fragility index, i.e. the distance between occiput and the base of the tail divided by the length of a stretched skin fold from base to top (>14.5%) [86]. Histopathology classically shows abnormally arranged, irregular collagen fibers with atypical staining properties (Masson trichrome stain). These changes are not always visible and clear [87,88].

Since vitamin C is involved in the collagen synthesis, oral supplementation, may be beneficial [15]. Lifestyle and housing adjustments are needed to reduce the chance of trauma and wound formation. Such measures include: soft bedding, removal of sharp corners and rough surfaces, and reduced interactions with other animals [15]. One of the authors (SH) has successfully used special protective body suits. Affected animals should not be used for breeding [15].

3.2. Infectious skin diseases

3.2.1. Canine demodicosis

Canine demodicosis is a common parasitic disease, which can occur at young age or later on in life [10,89]. Adult-onset demodicosis is typically associated with an underlying disease (hormonal, neoplasia, immunosuppression) [10,89]. Juvenile disease is the result of a mostly temporary immune alteration, leading to an overgrowth of these commensal mites [10,89,90]. Other predisposing factors include inadequate nutrition, severe stress, parturition and post-partum oestrus and endoparasites [91,92]. Many brachycephalic breeds including Pugs, Boxer, English Bulldog, French Bulldog, Shih Tzu, Chow Chow, Boston Terrier, Staffordshire Bull Terrier, Shar Pei and Chihuahua are predisposed [10,93-102].

Various degrees of multifocal hypotrichosis to alopecia, erythema, crusts, scales, follicular casts, papules, pustules, nodules, hyperpigmentation, lichenification and comedones occur on the head, trunk, limbs and paws [10,89]. Secondary infections, especially with bacteria, are common and may lead to a mild degree of pruritus [89,94]. Ceruminous otitis externa can also be seen [103]. In severe cases, especially if immunosuppressed and left untreated, deep bacterial infections can lead to sepsis and unspecific systemic signs like fever, anorexia, lethargy and peripheral lymphadenopathy [94].

Different stages of demodex mites (larvae, adults, eggs) can be identified via deep skin scrape, trichogram or acetate tape squeezing technique [89]. Depending on the severity of the presentation, the general condition of the patient and the form of demodicosis, active surveillance is sufficient whilst medical treatment may be initiated in selected cases [89,94]. For the juvenile form, even with generalized disease, spontaneous remission is reported [89]. Also, since there is a genetic predisposition for juvenile onset disease, breeding of affected individuals is not recommended [89,104]. Desexing of affected intact female dogs is recommended, due to flare ups during oestrus [105]. In adult onset disease, correction of the underlying cause is indicated [106]. Amitraz, macrocyclic lactones and isoxazolines are efficacious, but potential adverse effects and drug legislation should be considered when selecting these drugs [89,93,106].

3.2.2. Malassezia dermatitis

A nationwide insurance analysis in the US recognized an increased risk in brachyce-phalic dogs for fungal skin diseases [107]. *Malassezia* spp. are yeasts and are skin and mucosal commensals [108]. This fungal organism is commonly associated with dermatitis including intertrigo, otitis externa, paronychia and rarely keratomycosis [108]. Brachyce-phalic breeds predisposed to *Malassezia* dermatitis include, Shih Tzu, English Bulldog, Boxer, Cavalier King Charles Spaniel and Lhasa Apso [15,109,110].

Malassezia dermatitis can cause hypotrichosis to alopecia, erythema, scales, crusts, greasiness, lichenification, hyperpigmentation and variable pruritus, especially on the concave pinnae, muzzle, ventral neck, perianal, medial thighs, axillae, inguinal and paws [108]. Typical triggers include hypersensitivities (flea bite hypersensitivity, food allergy, atopic dermatitis), ectoparasites, superficial pyoderma, endocrinopathies, keratinization abnormalities and autoimmune diseases [108]. Diagnosis can easily be achieved via cytological examination of affected areas, showing round to oval to peanut shaped organisms of 3 to 8µm [15]. Besides addressing the underlying cause, topical treatment with chlorhexidine or azole preparations are preferred, and systemic therapy with itraconazole,

terbinafine or fluconazole should be reserved for severe, generalized cases or where topical treatment fails [108,111].

3.2.3. Viral pigmented plaques

This viral skin disease associated with *Chipapillomavirus*, is reported in many brach-ycephalic breeds including the Pug, French Bulldog, Chihuahua and Boston Terrier, as well as in non-brachycephalic breeds [112-115]. The onset of the disease may be related to a genetic immunodeficiency, as reported in Pugs, Vizslas and Chihuahuas, or secondary to immunosuppression [116]. Numerous, small, plaque-like, hyperpigmented lesions with an irregular and scaly surface appear on the ventral neck, thorax, abdomen and ventro-medial, proximal limbs (**Figure 4**). A progression to wart-like lesions is described [116]. Depending on the location and number of lesions, discomfort and pruritus can occur [116]. Lesions further progress, especially at the beginning and rarely transform into squamous cell carcinoma [117]. The clinical appearance together with histopathology often allow a diagnosis, but in early stages of the disease further work up such as PCR may be needed [118]. Several treatment options are described including surgical removal, laser treatment, cryotherapy, systemic azithromycin, interferons and retinoids, but also topical agents such as vitamin A, imiquimod or tigilanol tiglate gel [116,118].

Figure 4. Pug with multiple viral plaques caused by Chipapapillomavirus infection.

3.3. Bacterial skin diseases

3.3.1. Bacterial folliculitis (superficial pyoderma)

Brachycephalic breeds are predisposed to bacterial skin infections, as indicated by an insurance survey in the US as well as an Australian study [3]. The British Bulldog, Pug,

Boxer, Shar Pei and Bullmastiff are predisposed to superficial bacterial folliculitis, which is usually associated with *Staphylococcus pseudintermedius* [15-18]. Clinical signs range from mild (loss of hair gloss, increased shedding, erect hairs or mild scaling) to severe (alopecia, erythema, follicular papules/pustules, epidermal collarettes and crusts. This may lead to secondary pruritus and deep pyoderma [15,119]. Common underlying triggers are allergies, trauma, ectoparasites, dermatophytes, excessive brushing, seborrhoea and systemic diseases [15,120]. Diagnosis can be made by recognition of characteristic lesions, cytology (presence of cocci and inflammation) and culture and susceptibility testing [15,121]. Topical treatment with products containing chlorhexidine, benzoyl peroxide or ethyl lactate is recommended. Systemic antimicrobial therapy is reserved for widespread, deep pyoderma or where topical treatment alone fails [15,120].

3.3.2. Pyotraumatic dermatitis (Hot spot)

This skin condition is characterized by a peracute onset of severe pruritus associated with a well-demarcated area of alopecia, erythema, swelling, papules, pustules and crusts. British Bulldogs, Pugs and Rottweilers are predisposed [14,16-18,122].

3.3.3. Muzzle folliculitis and furunculosis

Muzzle folliculitis and furunculosis, another form of bacterial infection restricted to the skin of the muzzle, presents with pruritus, alopecia, erythema, swelling, papules, pustules, erosion/ulceration, crust formation and haemorrhagic bullae. An increased risk is recognized in the British Bulldog, Boxer, Rottweiler and brachycephalic breeds overall [3,15,123].

3.3.4. Canine leproid granuloma

Boxers are predisposed to this infectious disease, suggesting a genetic predisposition [15,124,125]. Disease, caused by mycobacterial strains of the *Mycobacterium simiae* clade in association with trauma, previous skin lesions and insect bites, is most prevalent in Australia, USA and South America (Brazil) [126]. Affected individuals show multiple, intact to ulcerated, well-demarcated nodules to plaques on the head (especially pinnae) and limbs but are otherwise healthy [126]. Diagnosis is based on clinical, cytological (acid-fast bacilli) and histopathological findings [126]. Although there is a chance for spontaneous remission within one to three months, systemic treatment with azithromycin and rifampicin with or without surgery may be needed, particularly in more severe and refractory cases [126]. Topical formulation may be supportive [127].

3.4. Immunological skin diseases

3.4.1. Primary immune deficiencies

Very rarely dogs are born with specific immune deficiencies, leading to recurrent infections of the skin, respiratory, urogenital and/or gastrointestinal tract. These deficiencies include cyclic haematopoiesis (Pomeranian), T-cell dysfunction (Bull Terrier) IgA/IgG (Chow Chow, Rottweiler) and granulocyte colony stimulating factor (G-CSF) (Rottweiler) abnormalities. Affected individuals are young and the skin might by affected by juvenile demodicosis, recurrent secondary pyoderma and subcutaneous abscesses [15,128-132].

3.4.2. Hypersensitivities

Many brachycephalic breeds show an increased risk for different forms of allergy including flea bite hypersensitivity (FBH; Chow Chow), food allergy (FA; Lhasa Apso, Boxer, Shar Pei), atopic dermatitis (AD; Boxer, American Bulldog, English Bulldog, French Bulldog, Boston Terrier, Lhasa Apso, Shih Tzu, Chow Chow, Pug, Staffordshire Bull Terrier, Shar Pei) [15,133-142]. In addition, Pugs have an increased risk for the development of pruritus in general [143]. The pathogenesis of most of these diseases is complex and still not fully understood, but likely includes a combination of genetic, skin/mucosal

barrier, immunologic and skin/mucosal microbiome abnormalities [144]. All of these conditions are characterized by variable primary pruritus, associated secondary lesions, and are further complicated by secondary bacterial and yeast infections (otitis externa, *Malassezia* dermatitis, pyoderma, pododermatitis/furunculosis).

In many brachycephalic breeds, especially Pugs and French Bulldogs, the nails and footpads do not wear down normally, further contributing and worsening allergic pododermatitis [145,146]. Primary pruritus mainly affects the posterior in FBH, whereas in FA and AD the ears, face, muzzle, ventral neck, distal limbs, paws, axillae, inguinal and perineum are commonly affected (**Figure 5**) [140,147-150]. Atopic dogs and dogs with FA may also present for anal sac impaction, acute moist dermatitis, acral lick dermatitis, seborrhoea, hyperhidrosis, rhinitis, reverse sneezing, gastrointestinal disturbances and sexual cycle abnormalities [151]. Alternatively, dogs with FA may have other presentations such as erythema multiforme, cutaneous vasculitis, urticaria, anaphylaxis, seizures and behavioural changes [15,152].

Diagnosis of the different forms of allergy, can be achieved by a response to flea treatment, a strict elimination diet over 4 to 8 weeks with subsequent provocation, the exclusion of other causes of pruritus and the application of specific established criteria (Favrot's criteria) [144]. Dogs with FBH or FA can be managed with the use of appropriate flea control and/or dietary interventions [15]. A multimodal approach is often required for treatment of AD including addressing the pruritus, secondary infections and skin barrier, especially if allergen-specific immunotherapy is insufficient [15,144].

Figure 5. Atopic French Bulldog with chonic allergic dermatitis including mild to moderate alopecia, erythema, lichenification and accumulation of keratosebaceous debris on the pinnae, muzze, ventral neck, chest, dorsal elbows and paws. Fold formation as a cosequence of brachycephaly as well as abnormal wear of the paw pads negatively influence allergic disease .

3.4.3. Pemphigus foliaceus

Pemphigus foliaceus is the most common canine autoimmune skin disease, that mainly occurs in middle-aged and older animals [15,153]. Multiple breeds can be affected, but Chow Chow's have an increased risk [153-157]. Several factors including genetics, drugs, insects, UV-light and chronic inflammation may trigger an autoimmune response targeting the desmocollin-1 leading to acantholysis and pustule formation [158]. The disease mainly affects the pinnae, dorsal nose and paws, but may progress to involve other sites. The distribution is often symmetrical, and affected dogs show transient papules and pustules, intense crusting, alopecia, epidermal collarettes and fissures on the paw pads. There is variable pruritus and secondary bacterial and *Malassezia* infections. In severe cases, fever, lethargy, anorexia and lymphadenopathy are also present [153,159]. Cytology of intact pustules reveal neutrophils, eosinophils and acantholytic cells, in the absence of

bacteria. Since acantholytic cells can also occur with fungal (*Trichophyton* spp.) and bacterial infections (*Staphylococcus* spp.), these organisms must be excluded [15,153]. Definitive diagnosis is attained via multiple skin biopsies and histopathology [153]. Treatment typically includes topical and systemic antimicrobials as well as immunosuppressive drugs such as glucocorticoids, cyclosporine, azathioprine, chlorambucil, mycophenolate mofetil and recently oclacitinib [15,153,159]. Potential triggers should be eliminated. Cases with vascular involvement may show more serious clinical signs, be more challenging to treat and take longer to achieve remission [159]. Most patients require life-long treatment, and few die or will be euthanized due to treatment failure, drug side effects, complications and/or lack of compliance [153,159].

3.4.4. Uveodermatologic syndrome

This rare immune-mediated disease primarily affects Akitas, but also occurs in other breeds including Chow Chows [15,160,161]. The pathogenesis is complex, including a heritable component (canine leukocyte antigen alleles) and an inflammatory response including Th17, Th1 and Th2 helper cells with the formation of associated cytokines, autoantibodies and infiltration of macrophages, targeting pigmented structures of the eyes, ear, hair, skin and the nervous system [15,162]. The disease occurs in young to middle-aged dogs, presenting for bilateral photophobia, blepharospasm, epiphora and blindness. Skin abnormalities classically occur later on, are bilateral symmetric, and show depigmentation, leukotrichia, leukoderma, alopecia, erythema, scaling, erosion/ulceration, crusting, hyperkeratosis and rarely onychomadesis or swelling of the nose. The nasal planum, periocular skin, lips, oral cavity, genitals and footpads are commonly involved [163,164]. Neurologic and auditory signs are rarely reported, might very subtle and thereby underdiagnosed [163]. A rapid diagnosis is very important to avoid blindness. It includes a complete ophthalmological examination and histopathology in case of skin involvement [163,164]. Ophthalmic glucocorticoids together with oral immunosuppressive doses of glucocorticoids are indicated. Initial treatment can be enhanced by addition of systemic cyclosporine, azathioprine or other steroid-sparing immunosuppressants in refractory cases [15,164].

3.4.5. Sterile granuloma and pyogranuloma syndrome

Boxers, English Bulldogs and French Mastiffs are predisposed to this rare immune-mediated disease [15,165]. Infectious (bacteria, fungi, parasites, protozoa) and foreign bodies must first be ruled out before inflammation can be considered sterile [166]. Usually, there are multiple lesions consisting of non-pruritic, non-painful, erythematous, haired to alopecic, often ulcerated, fistulated and crusted, papules to nodules and plaques, especially occurring on the head and distal limbs. The lesions can spontaneously resolve but also wax and wane [166,167]. Definitive diagnosis requires bacterial and fungal culture, histopathology including a variety of special stains, and ideally also Leishmania and mycobacterial PCR testing [166,167]. Control can be achieved by immunosuppressive drugs, including glucocorticoids, azathioprine and cyclosporine. Oral fatty acids may have beneficial or drug-sparing effects. Tetracycline/doxycycline together with niacinamide may also be beneficial in selected cases, but are not suitable for long term treatment [15,168].

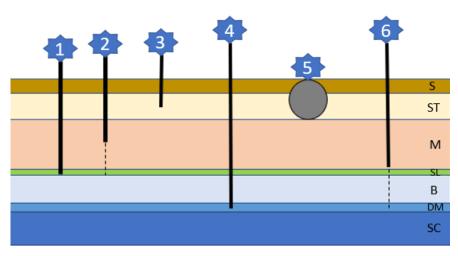
3.4.6. Acute febrile vasculitis

This vascular disease is rare, but is exclusively seen in Shar Peis [169-172]. The cause for it is not known, but vaccines, insect bites and infectious microorganisms are discussed as potential triggers [169]. The disease occurs in young puppies with affected individuals showing acute fever, lethargy, anorexia, lymphadenopathy and dramatic skin changes comprising of severe swelling, well-demarcated ulceration and necrosis as well as haemorrhagic maculae, vesicles and bullae on the head, limbs and trunk [169]. Diascopy is an easy, cheap and fast test to recognize bleeding into the skin, but further work up involving

comprehensive blood tests, imaging and skin biopsies are usually warranted [169]. Described treatment include wound and pain management, immunosuppressive and antimicrobial therapy and surgery. Potential triggers should be eliminated, and avoided. Prognosis is guarded with some affected individuals succumbing to the disease despite treatment [169,172].

3.5. Miscellaneous skin diseases

3.5.1. Anal sac disease


Anal sac disease is common in dogs overall, but is especially common in brachycephalic dogs (up to 2.62 the odds of dolichocephalics), particularly Pugs (up to 2.23 the odds of non-Pugs) [3,6,173-175]. Obesity, soft stools, intestinal disorders, changes in muscle tone and relatively small anal sac ducts are contributing factors to disease [176]. Recurrent anal sac disease is often associated with AD or FA [15,176]. Anal sac impaction may progress to sacculitis and abscess formation. Perianal pruritus, tail chasing, scooting, tenesmus and abscess formation are common reasons for presentation. Clinical signs, digital palpation and perianal evaluation help with diagnosing these problems [15,176]. Anal sacs can be expressed, lavaged, topical antimicrobials instilled or in more severe cases, systemic antibiotics, wound treatment and surgical excision considered. In case of sacculitis, cannulation and flushing of the anal sac with normal saline, 0.025% chlorhexidine or 0.4% povidone-iodine solution can be done via 22 to 24 G catheter. Often a commercially available steroid/antifungal/antibiotic solution/ointment is instilled thereafter [177]. Since topical treatment is often effective, systemic antibiotics should only be used in refractory or severe cases [178]. In addition, underlying problems should be identified and corrected [15,176].

3.5.2. Calcinosis circumscripta

In young dog breeds, including Rottweiler, Boston Terrier, Boxer and Shih Tzu, repeated trauma may cause a localized calcification of the skin, called calcinosis circumscripta. In these cases, the underlying tissue as well as the calcium/phosphor homeostasis appear normal. In brachycephalic breeds, small to large, white to purple, firm, domeshaped, sometimes ulcerated papules to nodules to plaques, filled with a chalky material, often occur at the cheek and base of the ear. Cytology and histopathology are diagnostic options and treatment is usually done by surgical excision [15,179-181].

3.5.3. Dermoid sinus/cyst

This inherited problem is associated with an abnormal separation of the skin and the neural tube, leading to cyst or tube formation of different depth and length (Figure 6) [15,182]. Each type of cyst/tube represents involuted skin with surrounding hair follicles and glands, and a lumen filled with keratin, sebum, debris and hairs [15]. There is an association with an autosomal-dominant mutation, involving fibroblast growth factors (FGF) 3, 4,19 being responsible for the ridge formation, and oral cancer overexpressed 1 factor (ORAOV1) [183]. Although Rhodesian Ridgebacks are most commonly affected, brachycephalic breeds including Boxers, Victorian Bulldogs, English Bull Terrier, French Bulldogs, Shih Tzus and Chow Chows [182,184-193]. There can be singular or multiple sinuses, mostly occurring in the cervical or thoracic region, although the head involvement is described in Rottweiler [187]. Lesions are often not recognized by the owner, since they occur very concealed as tufts of hairs or very small openings. When secondarily infected, fistulous wound may develop. Neurological signs occur if the defect includes the dura mater and the spinal cord, and are associated with a more guarded prognosis [182,185]. Diagnosis can be made via history, clinical signs, palpation, fistulogram, myelogram, CT or MRI. Depending on the type of sinus and possible complications, considerations between observation and conservative treatment or surgical interventions need to be made [182,185].

Figure 6. The six different sinus types of dermoid cysts (refer to text for details); *S:* skin; *ST:* Subcutaneous tissue; *M:* muscle; *SL:* supraspinous ligament; *B:* bone; *DM:* dura mater; *SC:* spinal cord.

3.6. Other skin diseases

Brachycephalic breeds are predisposed to skin cyst formation and nail overgrowth, the latter especially in British Bulldogs and Pugs [6,16,17]. Boxer are predisposed to gingival hyperplasia, solar dermatitis and sternal callus [15], English Bulldogs to idiopathic nasodigital hyperkeratosis [194], Boston Terriers to localized parakeratotic hyperkeratosis [195], French Mastiffs to footpad hyperkeratosis [196] and Chow Chows to post clipping alopecia [197,198].

4. General discussion and ethical considerations

Dermatological disorders are common among brachycephalic breeds. Whilst some are a direct consequence of the anatomic abnormalities that have been selected for over generations of breeding, others are not linked to brachycephaly, but highlight the consequences of small gene pool diversity within dog breeds. As breeding programs are modified to select for less extreme brachycephalic confirmation, the prevalence and expression of unrelated genetic disorders needs to be carefully monitored to prevent their unwitting selection.

Table 2. Dermatological diseases of brachycephalic breeds.

Disease Group	Disease	Breeds	References
<u>-</u>			Miller et al. 2012
Congenital	Congenital	Chihuahua	Ihrke et al. 1993
Skin Diseases	Alopecia	French Bulldog	Marks et al. 1992
		Lhasa Apso	O'Neill et al. 1981
		Blue	
	Color	Chow Chow	1.671
	dilution alopecia	Boston Terrier	Miller et al. 2012 Perego et al. 2009 Kim et al. 2005, 2005
		Boxer	
	Black hair	Cavalier King	
	follicular dysplasia	Charles Spaniel	Rachid et al. 2003
	<i>y</i> 1	Chihuahua	Beco et al. 1996
	Follicular dysplasia	Shih Tzu	Roperto et al. 1995
	I omediai ay opiaota	Jimi 12u	
	Flank alopecia	Affenpinscher	Vandenabeele et al. 2014
		Boxer	Mecklenburg et al.2009

15 of 25

			15 of 25
		Chihuahua English Bulldog Staffordshire Bull	Fontaine et al. 1998 Miller et al. 1993
		Terrier	
		Boston Terrier	
		Boxer	Miller et al. 2012
	Pattern baldness	Chihuahua	Paradis et al. 2009
		English Bulldog	
			Mauldin et al. 2013, 2015
		American Bulldog	Hartley et al. 2012
	Ichthyosis	Cavalier King	Barnett et al. 2006
		Charles Spaniel	Alhaidari et al. 1994
	Cutaneous	-	Miller et al. 2012
	asthenia	Boxer	Bellini et al. 2009
			Miller et al. 2012
	Tyrosinase deficiency	Chow Chow	Engstrom et al. 1966
		Affenpinscher	
		Boston Terrier	Sanchis-Mora et al. 2016
		Brussels Griffon Cavalier	Lewis et al. 2010
	Caudal occipital	King	Cagle et al. 2010
	malformation	Charles Spaniel	Rusbridge et al. 2003, 2004,
	syndrome	Chihuahua French Bulldog	2005, 2009 Dewey et al. 2005
	Chiari-like malformation	Pomeranian	Dewey et al. 2005
	Charl inc manormation	Pug	
		Shih Tzu	
		Boxer	O'Neill et al. 2020
		Boston Terrier	Wright et al. 2014
		Chihuahua	Barrientos et al. 2013
		Chow Chow	Kuznetsova et al. 2012
- A		English Bulldog	Plant et al. 2011
Infectious	Canine	French Bulldog	It et al. 2010
Skin Diseases	demodicosis	Pugs Shih Tzu	Mueller et al. 2009 Holm et al. 2003
		Staffordshire	Lemaire et al. 1996
		Bull Terrier	Day et al. 1997
		Shar Pei	Chen et al. 1995
		Boxer	
		Cavalier King	Daines at al 2017
		Charles Spaniel English Bull-	Bajwa et al. 2017 Miller et al. 2012
Fungal	Malassezia dermatitis	dog	Mauldin et al. 1997
		Lhasa Apso	iviauiuiii et ai. 1777
		Shih Tzu	

16 of 25

			10 01 25
Bacterial	Superficial pyoderma	Boxer British Bulldog Bullmastiff Pug Shar Pei	O'Neill et al. 2016, 2019, 2022 Miller et al. 2012
	Hot spot	British Bulldogs Pugs	O'Neill et al. 2016, 2019, 2022 Holm et al. 2004
	Muzzle folliculitis and furunculosis	Boxer British Bulldog	Fawcett et al. 2018 Pedersen et al. 2016 Miller et al. 2012
	Canine leproid granuloma	Boxer	Miller et al. 2012 Conceição et al. 2011 Malik et al. 1998
Viral	Viral pigmented plaques	Australian Terrier Boston Terrier Chihuahua French Bulldog Pug	Nagata et al. 1995, 2013 Luff et al. 2012 Narama et al. 2005
Mixed	Otitis externa	Boxers British Bulldogs Pugs	O'Neill et al. 2016, 2019, 2021 Sapierzyński et al. 2009
Immunological Diseases	Primary immune deficiencies	Bull Terrier Chow Chow Pomeranian Shar Pei	Ellis et al. 2019 Olsson et al. 2015 Miller et al. 2012 Day et al. 1999 Lanevschi et al. 1999 Rivas et al. 1995
	Hypersensitivities	American Bulldog Boston Terrier Boxer Chow Chow English Bulldog French Bulldog Lhasa Apso Pug Shar Pei Shih Tzu Staffordshire Bullterrier	Outerbridge et al. 2021 Mazrier et al. 2016 Miller et al. 2012 Theerawatanasirikul et al. 2012 Jaeger et al. 2010 Picco et al. 2008 Počta et al. 2007 Nødtvedt et al. 2006 Verlinden et al. 2006 Prélaud et al. 1998 Harvey et al. 1993
	Pemphigus foliaceus	Chow Chow	Goodale et al. 2019 Bizikova et al. 2012 Olivry et al. 2006 Gonsalves-Huber et al. 2005

17 of 25

			Kuhl et al. 1994
	Uveodermatologic syndrome	Chow Chow	Zarfoss et al. 2018 Miller et al. 2012 Blackwood et al. 201
	Acute febrile vasculitis	Shar Pei	Weingart et al. 2022 Innerå et al. 2013 Malik et al. 2002 Tellier et al. 2001
	Sterile granuloma and pyogranuloma syndrome	Boxer English Bulldog French Mastiff	Miller et al. 2012 Panich et al. 1991
Miscellaneous Skin Diseases	Skin fold dermatitis	Boston Terriers British Bulldog Pekingese Pug Shar Pei	O'Neill et al. 2016, 20 2022, 2022, 2022 Packer et al. 2021 Fawcett et al. 2018 Beco et al. 2013 Miller et al. 2012
	Anal sac disease	Pugs	O'Neill et al. 2020, 20 Fawcett et al. 2018 Feng et al. 2017
	Calcinosis circumscripta	Boston Terrier Boxer Shih Tzu	Doerr et al. 2013 Miller et al. 2012 Tafti et al. 2005 Scott et al. 1988
	Dermoid sinus/cyst	Boxers Chow Chow English Bull Terrier French Bulldog Shih Tzu Victorian Bulldog	Barrios et al. 2014 Ployart et at. 2013 Motta et al. 2012 Sturgeon et al. 2007 Colón et al. 2007 Bowens et al. 2005 Burrow et al. 2004 Fatone et al. 1995 Booth et al. 1998 Selcer et al. 1984

5. Conclusions

Brachycephalic dogs are not only adversely affected by their airway problems, chronic hypoxia, hypertension, sleep disorders, ophthalmologic, dental and gastrointestinal problems, but also lifelong dermatological dilemmas, which are often challenging to treat and negatively affecting their quality of life. These are enough arguments that revised breed standards for those dogs are desperately needed.

Author Contributions: Conceptualization, S.H. and P. B.; methodology, S.H. and P.B.; investigation, S.H.; writing-original draft preparation, S.H.; writing-review and editing, S.H., V.B and P.B.; supervision, V.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the City University of Hong Kong, UGC Fund 9610519.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Dr. Tamara Weitzer, Dr. Alexandra Dehesa, Dr. Nellie Choi and Dr. Ramon Almela for the image contribution.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Packer, R.; Murphy, D.; Farnworth, M. Purchasing popular purebreds: investigating the influence of breed-type on the pre-purchase motivations and behaviour of dog owners. *Animal Wefare* **2017**, *26*, 191-201.
- 2. Kenny, D.D.; Freemantle, R.; Jeffery, A.; Tivers, M.S. Impact of an educational intervention on public perception of brachycephalic obstructive airway syndrome in brachycephalic dogs. *Veterinary Record* **2022**, *190*, no-no.
- 3. Fawcett, A.; Barrs, V.; Awad, M.; Child, G.; Brunel, L.; Mooney, E.; Martinez-Taboada, F.; McDonald, B.; McGreevy, P. Consequences and Management of Canine Brachycephaly in Veterinary Practice: Perspectives from Australian Veterinarians and Veterinary Specialists. *Animals* (*Basel*) 2018, 9, doi:10.3390/ani9010003.
- 4. Mitze, S.; Barrs, V.R.; Beatty, J.A.; Hobi, S.; Bęczkowski, P.M. Brachycephalic Obstructive Airway Syndrome: much more than a surgical problem. *Veterinary Quarterly* **2022**, 1-17.
- 5. Ekenstedt, K.; Crosse, K.; Risselada, M. Canine brachycephaly: anatomy, pathology, genetics and welfare. *Journal of comparative pathology* **2020**, *176*, 109-115.
- 6. O'Neill, D.G.; Pegram, C.; Crocker, P.; Brodbelt, D.C.; Church, D.B.; Packer, R.M.A. Unravelling the health status of brach-ycephalic dogs in the UK using multivariable analysis. *Sci Rep* **2020**, *10*, 17251, doi:10.1038/s41598-020-73088-y.
- 7. Schroers, M.; Meyer-Lindenberg, A. [Assessment of clinical signs of brachycephalic obstructive airway syndrome and other breed-specific diseases in pug dogs an online survey]. *Tierarztl Prax Ausg K Kleintiere Heimtiere* **2022**, *50*, 261-268, doi:10.1055/a-1903-0973.
- 8. O'Neill, D.G.; Volk, A.V.; Soares, T.; Church, D.B.; Brodbelt, D.C.; Pegram, C. Frequency and predisposing factors for canine otitis externa in the UK–a primary veterinary care epidemiological view. *Canine Medicine and Genetics* **2021**, *8*, 1-16.
- 9. O'Neill, D.G.; Skipper, A.; Packer, R.M.A.; Lacey, C.; Brodbelt, D.C.; Church, D.B.; Pegram, C. English Bulldogs in the UK: a VetCompass study of their disorder predispositions and protections. *Canine Medicine and Genetics* **2022**, *9*, 5, doi:10.1186/s40575-022-00118-5.
- 10. O'Neill, D.G.; Turgoose, E.; Church, D.B.; Brodbelt, D.C.; Hendricks, A. Juvenile-onset and adult-onset demodicosis in dogs in the UK: prevalence and breed associations. *J Small Anim Pract* **2020**, *61*, 32-41, doi:10.1111/jsap.13067.
- 11. Nuttall, T.J.; Marsella, R.; Rosenbaum, M.R.; Gonzales, A.J.; Fadok, V.A. Update on pathogenesis, diagnosis, and treatment of atopic dermatitis in dogs. *J Am Vet Med Assoc* **2019**, 254, 1291-1300, doi:10.2460/javma.254.11.1291.
- 12. O'Neill, I.D.; Rowe, D.; Brodbelt, D.C.; Pegram, C.; Hendricks, A. Ironing out the wrinkles and folds in the epidemiology of skin fold dermatitis in dog breeds in the UK. *Sci Rep* **2022**, *12*, 10553, doi:10.1038/s41598-022-14483-5.
- 13. McGreevy, P.D.; Georgevsky, D.; Carrasco, J.; Valenzuela, M.; Duffy, D.L.; Serpell, J.A. Dog behavior co-varies with height, bodyweight and skull shape. *PloS one* **2013**, *8*, e80529.
- 14. O'Neill, D.G.; Sahota, J.; Brodbelt, D.C.; Church, D.B.; Packer, R.; Pegram, C. Health of Pug dogs in the UK: disorder predispositions and protections. *Canine Medicine and Genetics* **2022**, *9*, 1-11.
- 15. Miller, W.H.; Griffin, C.E.; Campbell, K.L. Muller and Kirk's small animal dermatology; Elsevier Health Sciences: 2012.
- 16. O'Neill, D.G.; Darwent, E.C.; Church, D.B.; Brodbelt, D.C. Demography and health of Pugs under primary veterinary care in England. *Canine Genetics and Epidemiology* **2016**, *3*, 1-12.
- 17. O'Neill, D.G.; Skipper, A.M.; Kadhim, J.; Church, D.B.; Brodbelt, D.C.; Packer, R.M. Disorders of Bulldogs under primary veterinary care in the UK in 2013. *PLoS One* **2019**, *14*, e0217928.
- 18. O'Neill, D.G.; Skipper, A.; Packer, R.; Lacey, C.; Brodbelt, D.C.; Church, D.B.; Pegram, C. English Bulldogs in the UK: a VetCompass study of their disorder predispositions and protections. *Canine Medicine and Genetics* **2022**, *9*, 1-14.
- 19. O'NeillI, D.G.; Rowe, D.; Brodbelt, D.C.; Pegram, C.; Hendricks, A. Ironing out the wrinkles and folds in the epidemiology of skin fold dermatitis in dog breeds in the UK. *Scientific Reports* **2022**, *12*, 1-13.
- 20. Packer, R.; O'Neill, D. Health and welfare of brachycephalic (flat-faced) companion animals: a complete guide for veterinary and animal professionals; CRC Press: 2021.

- 21. Beco, L.; Guaguère, E.; Lorente Méndez, C.; Noli, C.; Nuttall, T.; Vroom, M. Suggested guidelines for using systemic antimicrobials in bacterial skin infections (1): diagnosis based on clinical presentation, cytology and culture. *Vet Rec* **2013**, 172, 72-78, doi:10.1136/vr.101069.
- 22. Banovic, F.; Strzok, E. Skin Fold Dermatitis (Intertrigo) in Dogs. Today's Veterinary Practice 2019.
- Zanna, G.; Docampo, M.J.; Fondevila, D.; Bardagí, M.; Bassols, A.; Ferrer, L. Hereditary cutaneous mucinosis in shar pei dogs is associated with increased hyaluronan synthase-2 mRNA transcription by cultured dermal fibroblasts. *Veterinary* dermatology 2009, 20, 377-382.
- 24. Patel, H.A.; Saiyad, S.; Rao, N. Common health issues related to brachycephalic dogs. 2022.
- 25. Sapierzyński, R. Otitis externa in dogs. Medycyna Weterynaryjna 2009, 65, 552-556.
- Töpfer, T.; Köhler, C.; Rösch, S.; Oechtering, G. Brachycephaly in French bulldogs and pugs is associated with narrow ear canals. *Veterinary Dermatology* **2022**, 33, 214-e260.
- 27. Pye, C. Pseudomonas otitis externa in dogs. Can Vet J 2018, 59, 1231-1234.
- 28. Gotthelf, L.N. Diagnosis and treatment of otitis media in dogs and cats. *Veterinary Clinics: Small Animal Practice* **2004**, 34, 469-487.
- 29. Nuttall, T. Successful management of otitis externa. *In Practice* **2016**, *38*, 17-21.
- 30. Chan, W.Y.; Hickey, E.E.; Page, S.W.; Trott, D.J.; Hill, P.B. Biofilm production by pathogens associated with canine otitis externa, and the antibiofilm activity of ionophores and antimicrobial adjuvants. *Journal of veterinary pharmacology and therapeutics* **2019**, 42, 682-692.
- 31. Seo, M.; Oh, T.; Bae, S. Antibiofilm activity of silver nanoparticles against biofilm forming Staphylococcus pseudintermedius isolated from dogs with otitis externa. *Veterinary Medicine and Science* **2021**, *7*, 1551-1557.
- 32. Pickrell, J.; Oehme, F.; Cash, W. Ototoxicity in dogs and cats. In Proceedings of the Seminars in Veterinary Medicine and Surgery (Small Animal), 1993; pp. 42-49.
- 33. Oishi, N.; Talaska, A.E.; Schacht, J. Ototoxicity in dogs and cats. *Veterinary Clinics: Small Animal Practice* **2012**, 42, 1259-1271.
- 34. Rusbridge, C.; Knowler, P.; Rouleau, G.A.; Minassian, B.A.; Rothuizen, J. Inherited occipital hypoplasia/syringomyelia in the cavalier King Charles spaniel: experiences in setting up a worldwide DNA collection. *Journal of Heredity* **2005**, *96*, 745-749.
- 35. Rusbridge, C.; Knowler, S.P. Inheritance of occipital bone hypoplasia (Chiari type I malformation) in Cavalier King Charles Spaniels. *Journal of Veterinary Internal Medicine* **2004**, *18*, 673-678.
- 36. Lewis, T.; Rusbridge, C.; Knowler, P.; Blott, S.; Woolliams, J.A. Heritability of syringomyelia in Cavalier King Charles spaniels. *The Veterinary Journal* **2010**, *183*, 345-347.
- 37. Rusbridge, C.; Knowler, S. Hereditary aspects of occipital bone hypoplasia and syringomyelia (Chiari type I malformation) in cavalier King Charles spaniels. *Veterinary Record* **2003**, *153*, 107-112.
- 38. Cagle, L. Concurrent occipital hypoplasia, occipital dysplasia, syringohydromyelia, and hydrocephalus in a Yorkshire terrier. *The Canadian Veterinary Journal* **2010**, *51*, 904.
- 39. Sanchis-Mora, S.; Pelligand, L.; Thomas, C.; Volk, H.; Abeyesinghe, S.; Brodbelt, D.; Church, D.; Thomson, P.; McGreevy, P.; O'Neill, D. Dogs attending primary-care practice in England with clinical signs suggestive of Chiari-like malformation/syringomyelia. *Veterinary Record* **2016**, *179*, 436-436.
- 40. Rusbridge, C.; Knowler, S.; Pieterse, L.; McFadyen, A. Chiari-like malformation in the Griffon Bruxellois. *Journal of Small Animal Practice* **2009**, *50*, 386-393.
- 41. Dewey, C.W.; Berg, J.M.; Barone, G.; Marino, D.J.; Stefanacci, J.D. Foramen magnum decompression for treatment of caudal occipital malformation syndrome in dogs. *Journal of the American Veterinary Medical Association* **2005**, 227, 1270-1275.
- 42. Cerda-Gonzalez, S.; Olby, N.; Pease, T.; McCullough, S.; Massoud, N.; Broadstone, R. Morphology of the caudal fossa in Cavalier King Charles Spaniels. In Proceedings of the Journal of Veterinary Internal Medicine, 2006; pp. 736-736.
- 43. Lu, D.; Lamb, C.; Pfeiffer, D.; Targett, M. Neurological signs and results of magnetic resonance imaging in 40 cavalier King Charles spaniels with Chiari type 1-like malformations. *Veterinary Record* **2003**, *153*, 260-263.
- 44. Plessas, I.; Rusbridge, C.; Driver, C.; Chandler, K.; Craig, A.; McGonnell, I.; Brodbelt, D.; Volk, H. Long-term outcome of Cavalier King Charles spaniel dogs with clinical signs associated with Chiari-like malformation and syringomyelia. *Veterinary Record* **2012**, *171*, 501-501.
- 45. Cole, L.K. Primary secretory otitis media in Cavalier King Charles spaniels. *Veterinary Clinics: Small Animal Practice* **2012**, 42, 1137-1142.
- 46. Kubba, H.; Pearson, J.; Birchall, J. The aetiology of otitis media with effusion: a review. *Clinical Otolaryngology & Allied Sciences* **2000**, 25, 181-194.
- 47. Hayes, G.; Friend, E.; Jeffery, N. Relationship between pharyngeal conformation and otitis media with effusion in Cavalier King Charles spaniels. *Veterinary Record* **2010**, *167*, 55-58.
- 48. Salazar, V.; Dewey, C.W.; Schwark, W.; Badgley, B.L.; Gleed, R.D.; Horne, W.; Ludders, J.W. Pharmacokinetics of single-dose oral pregabalin administration in normal dogs. *Veterinary Anaesthesia and Analgesia* **2009**, *36*, 574-580.
- 49. Grubb, T. Chronic neuropathic pain in veterinary patients. *Topics in Companion Animal Medicine* **2010**, 25, 45-52.

- 50. Silva, N.; Luna, S.P.L.; Joaquim, J.G.F.; Coutinho, H.D.; Possebon, F.S. Effect of acupuncture on pain and quality of life in canine neurological and musculoskeletal diseases. *Can Vet J* **2017**, *58*, 941-951.
- 51. Rusbridge, C. Chiari-like malformation with syringomyelia in the Cavalier King Charles spaniel: long-term outcome after surgical management. *Veterinary Surgery* **2007**, *36*, 396-405.
- 52. Colverde, A.S.; Nicetto, T.; Falzone, C. Occipital cranioplasty using customized titanium prosthesis yields successful outcome in association with foramen magnum decompression in dogs suffering by Chiari-like malformation. *Am J Vet Res* **2021**, *83*, 275-282, doi:10.2460/ajvr.21.11.0178.
- 53. Loughin, C.A. Chiari-like Malformation. *Vet Clin North Am Small Anim Pract* **2016**, 46, 231-242, doi:10.1016/j.cvsm.2015.10.002.
- Ortinau, N.; Vitale, S.; Akin, E.Y.; Beasley, M.; Shores, A. Foramen magnum decompression surgery in 23 Chiari-like malformation patients 2007-2010: outcomes and owner survey results. *Can Vet J* **2015**, *56*, 288-291.
- 55. Hartley, C.; Donaldson, D.; Smith, K.C.; Henley, W.; Lewis, T.W.; Blott, S.; Mellersh, C.; Barnett, K.C. Congenital kerato-conjunctivitis sicca and ichthyosiform dermatosis in 25 Cavalier King Charles spaniel dogs–part I: clinical signs, histopathology, and inheritance. *Veterinary ophthalmology* **2012**, *15*, 315-326.
- 56. Mauldin, E.; Wang, P.; Evans, E.; Cantner, C.; Ferracone, J.; Credille, K.; Casal, M. Autosomal recessive congenital ichthyosis in American Bulldogs is associated with NIPAL4 (ICHTHYIN) deficiency. *Veterinary pathology* **2015**, *52*, 654-662.
- 57. Mauldin, E.A. Canine ichthyosis and related disorders of cornification. *Veterinary Clinics: Small Animal Practice* **2013**, 43, 89-97
- 58. Barnett, K. Congenital keratoconjunctivitis sicca and ichthyosiform dermatosis in the cavalier King Charles spaniel. *Journal of small animal practice* **2006**, 47, 524-528.
- 59. Alhaidari, Z.; Ortonne, J.P.; Pisani, A. Congenital ichthyosis in two cavalier King Charles spaniel littermates. *Veterinary dermatology* **1994**, *5*, 117-121.
- 60. Mauldin, E.A.; Elias, P.M. Ichthyosis and hereditary cornification disorders in dogs. *Veterinary Dermatology* **2021**, 32, 567-e154.
- 61. Engstrom, D.; Kirk, R. Tyrosinase deficiency in the chow chow. In *Current veterinary therapy small animal practice*; WB Saunders, Philadelphia: 1966; p. 350.
- 62. Ihrke, P.J.; Mueller, R.S.; Stannard, A.A. Generalized congenital hypotrichosis in a female Rottweiler. *Veterinary dermatology* **1993**, *4*, 65-69.
- 63. Marks, A.; van den Broek, A.; Else, R. Congenital hypotrichosis in a French bulldog. *Journal of Small Animal Practice* **1992**, 33, 450-452.
- 64. O'Neill, C. Hereditary skin disease in the dog and the cat. *Compendium on Continuing Education for the Practicing Veterinarian* **1981**, *3*, 791-801.
- 65. Mecklenburg, L. An overview on congenital alopecia in domestic animals. Veterinary dermatology 2006, 17, 393-410.
- 66. Moura, E.; Daltro, S.; Sás, D.; Engracia Filho, J.; Farias, M.; Pimpão, C. Genetic analysis of a possible case of canine X-linked ectodermal dysplasia. *Journal of Small Animal Practice* **2021**, 62, 1127-1130.
- 67. Perego, R.; Proverbio, D.; Roccabianca, P.; Spada, E. Color dilution alopecia in a blue Doberman pinscher crossbreed. *Can Vet J* **2009**, *50*, 511-514.
- 68. Kim, S.-r.; Kim, Y.-i.; Seo, J.-.; Park, J.-w.; Jeong, A.-y.; Lee, K.-w.; Oh, T.-h. Black Hair Follicular Dysplasia in a Shih Tzu. *Journal of Veterinary Clinics* **2005**, 22, 157-159.
- 69. Kim, J.H.; Kang, K.I.; Sohn, H.J.; Woo, G.H.; Jean, Y.H.; Hwang, E.K. Color-dilution alopecia in dogs. *Journal of veterinary science* **2005**, *6*, 259-261.
- 70. Rachid, M.A.; Demaula, C.D.; Scott, D.W.; Miller, W.H.; Senter, D.A.; Myers, S. Concurrent follicular dysplasia and interface dermatitis in Boxer dogs. *Veterinary Dermatology* **2003**, *14*, 159-166.
- 71. Beco, L.; Fontaine, J.; Gross, T.L.; Charlier, G. Colour dilution alopecia in seven Dachshunds. A clinical study and the hereditary, microscopical and ultrastructural aspect of the disease. *Veterinary dermatology* **1996**, *7*, 91-97.
- 72. Roperto, F.; Cerundolo, R.; Restucci, B.; Vincensi, M.R.; Caprariis, D.D.; Vico, G.D.; Maiolino, P. Colour dilution alopecia (CDA) in ten Yorkshire Terriers. *Veterinary dermatology* **1995**, *6*, 171-178.
- 73. Caramalac, S.M.; Caramalac, S.M.; Babo-Terra, V.J.; Ramos, C.A.; Palumbo, M.I. PCR-RFLP molecular confirmation of color dilution alopecia in dogs in Brazil. *Journal of Veterinary Diagnostic Investigation* **2021**, *33*, 984-986.
- 74. Welle, M.; Philipp, U.; Rüfenacht, S.; Roosje, P.; Scharfenstein, M.; Schütz, E.; Brenig, B.; Linek, M.; Mecklenburg, L.; Grest, P. MLPH genotype—melanin phenotype correlation in dilute dogs. *Journal of heredity* **2009**, *100*, S75-S79.
- 75. Von Bomhard, W.; Mauldin, E.A.; Schmutz, S.M.; Leeb, T.; Casal, M.L. Black hair follicular dysplasia in Large Münsterländer dogs: clinical, histological and ultrastructural features. *Veterinary dermatology* **2006**, *17*, 182-188.
- 76. Antunes, M.I.P.P.; Fabris, V.E.; Machado, L.H.d.A. Carcinoma de células escamosas em um cão com alopecia por diluição de cor. *Veterinária e Zootecnia* **2012**, 507-512.
- 77. Mecklenburg, L.; Linek, M.; Tobin, D.J. Hair loss disorders in domestic animals; John Wiley & Sons: 2009.

- 78. Vandenabeele, S.; Declercq, J.; De Cock, H.; Daminet, S. Canine recurrent flank alopecia: a synthesis of theory and practice. *Vlaams Diergeneeskundig Tijdschrift* **2014**, *83*, 275-283.
- 79. Fontaine, J.; Beco, L.; Paradis, M. Alopécie récidivante des flancs: Étude de douze cas chez le griffon Korthals. *Point vétérinaire* **1998**, 29, 445-449.
- 80. Miller, M.; Dunstan, R. Seasonal flank alopecia in boxers and Airedale terriers: 24 cases (1985-1992). *Journal of the American Veterinary Medical Association* **1993**, 203, 1567-1572.
- 81. Verschuuren, M.; Schlotter, Y.M.; van Geijlswijk, I.M.; van der Lugt, J.J.; Gehring, R. The efficacy of subcutaneous slow-release melatonin implants in the prevention of canine flank alopecia recurrence is uncertain: A double-blind, randomized, placebo-controlled study. *Vet Dermatol* **2022**, *33*, 553-558.
- 82. Paradis, M. An approach to symmetrical alopecia in the dog. In *BSAVA Manual of Canine and Feline Dermatology*; BSAVA Library: 2012; pp. 91-102.
- 83. Paradis, M. 3.3. 8 Canine pattern alopecia. Hair Loss Disorders in Domestic Animals 2009, 164.
- 84. Paradis, M. Melatonin in the treatment of canine pattern baldness. 1998.
- 85. Bellini, M.; Caldini, E.; Scapinelli, M.; Simões, M.; Machado, D.; Nürmberg, R. Increased elastic microfibrils and thickening of fibroblastic nuclear lamina in canine cutaneous asthenia. *Veterinary dermatology* **2009**, *20*, 139-143.
- 86. Freeman, L.; Hegreberg, G.; Robinette, J. Ehlers-Danlos syndrome in dogs and cats. In Proceedings of the Seminars in Veterinary Medicine and Surgery (Small Animal), 1987; pp. 221-227.
- 87. Patterson, D.; Minor, R. Hereditary fragility and hyperextensibility of the skin of cats. A defect in collagen fibrillogenesis. *Laboratory investigation; a journal of technical methods and pathology* **1977**, 37, 170-179.
- 88. Fernandez, C.J.; Scott, D.W.; Erb, H.N.; Minor, R.R. Staining abnormalities of dermal collagen in cats with cutaneous asthenia or acquired skin fragility as demonstrated with Masson's trichrome stain. *Veterinary Dermatology* **1998**, *9*, 49-54.
- 89. Mueller, R.S.; Rosenkrantz, W.; Bensignor, E.; Karaś-Tęcza, J.; Paterson, T.; Shipstone, M.A. Diagnosis and treatment of demodicosis in dogs and cats: Clinical consensus guidelines of the World Association for Veterinary Dermatology. *Veterinary dermatology* **2020**, *31*, 4-e2.
- 90. Ferrer, L.; Ravera, I.; Silbermayr, K. Immunology and pathogenesis of canine demodicosis. *Veterinary Dermatology* **2014**, 25, 427-e465.
- 91. Rahman, M.; Bostami, M.B.; Datta, A.; Sabuj, A.A.M.; Rana, E.A.; Mannan, A.; Hossain, M.M.A.; Chowdhury, M.Y.E. Estimation of the prevalence and determination of risk factors associated with demodicosis in dogs. *Journal of advanced veterinary and animal research* **2021**, *8*, 116.
- 92. Gazi, U.; Taylan-Ozkan, A.; Mumcuoglu, K.Y. Immune mechanisms in human and canine demodicosis: A review. *Parasite immunology* **2019**, *41*, e12673.
- 93. Mueller, R.S.; Meyer, D.; Bensignor, E.; Sauter-Louis, C. Treatment of canine generalized demodicosis with a 'spot-on' formulation containing 10% moxidectin and 2.5% imidacloprid (Advocate®, Bayer Healthcare). *Veterinary Dermatology* **2009**, 20, 441-446.
- 94. Kuznetsova, E.; Bettenay, S.; Nikolaeva, L.; Majzoub, M.; Mueller, R. Influence of systemic antibiotics on the treatment of dogs with generalized demodicosis. *Veterinary Parasitology* **2012**, *188*, 148-155.
- 95. Wright, I. Case study: generalised demodicosis in a Chihuahua. Companion Animal 2014, 19, 342-344.
- 96. Barrientos, L.S.; Crespi, J.A.; Peral Garcia, P.; Castellano, M.C.; Giovambattista, G. Prevalence of canine juvenile generalized demodicosis in the Buenos Aires region, Argentina. **2013**.
- 97. It, V.; Barrientos, L.; López Gappa, J.; Posik, D.; Díaz, S.; Golijow, C.; Giovambattista, G. Association of canine juvenile generalized demodicosis with the dog leukocyte antigen system. *Tissue Antigens* **2010**, *76*, 67-70.
- 98. Holm, B.R. Efficacy of milbemycin oxime in the treatment of canine generalized demodicosis: a retrospective study of 99 dogs (1995–2000). *Veterinary Dermatology* **2003**, *14*, 189-195.
- 99. Plant, J.D.; Lund, E.M.; Yang, M. A case–control study of the risk factors for canine juvenile-onset generalized demodicosis in the USA. *Veterinary Dermatology* **2011**, 22, 95-99.
- 100. Lemarie, S.; Hosgood, G.; Foil, C. A retrospective study of juvenile-and adult-onset generalized demodicosis in dogs (1986–91). *Veterinary Dermatology* **1996**, *7*, 3-10.
- 101. Day, M. An immunohistochemical study of the lesions of demodicosis in the dog. *Journal of comparative pathology* **1997**, *116*, 203-216.
- 102. Chen, C. A Short-tailed Demodectic Mite and Demodex canis Infestation in a Chihuahua Dog. *Vet Dermatol* **1995**, *6*, 227-229
- 103. Saridomichelakis, M.N.; Farmaki, R.; Leontides, L.S.; Koutinas, A.F. Aetiology of canine otitis externa: a retrospective study of 100 cases. *Veterinary dermatology* **2007**, *18*, 341-347.
- Bowden, D.G.; Outerbridge, C.A.; Kissel, M.B.; Baron, J.N.; White, S.D. Canine demodicosis: a retrospective study of a veterinary hospital population in California, USA (2000–2016). *Veterinary Dermatology* **2018**, 29, 19-e10.
- 105. Mueller, R.; Hastie, K.; Bettenay, S. Daily oral ivermectin for treatment of generalised demodicosis in 23 dogs. *Australian Veterinary Practitioner* **1999**, 29, 132-+.

- Duangkaew, L.; Larsuprom, L.; Anukkul, P.; Lekcharoensuk, C.; Chen, C. A field trial in Thailand of the efficacy of oral fluralaner for the treatment of dogs with generalized demodicosis. *Veterinary Dermatology* **2018**, 29, 208-e274.
- 107. Feng, T.; McConnell, C.; O'hara, K.; Chai, J.; Spadafori, G. Brachycephalic Breed Disease Prevalence Study. 2017.
- 108. Hobi, S.; Cafarchia, C.; Romano, V.; Barrs, V.R. Malassezia: Zoonotic Implications, Parallels and Differences in Colonization and Disease in Humans and Animals. *Journal of Fungi* **2022**, *8*, 708.
- 109. Bajwa, J. Canine Malassezia dermatitis. Can Vet J 2017, 58, 1119-1121.
- 110. Mauldin, E.A.; Scott, D.W.; Miller, W.H.; Smith, C.A. Malassezia dermatitis in the dog: a retrospective histopathological and immunopathological study of 86 cases (1990–95). *Veterinary Dermatology* **1997**, *8*, 191-202.
- 111. Bond, R.; Morris, D.O.; Guillot, J.; Bensignor, E.J.; Robson, D.; Mason, K.V.; Kano, R.; Hill, P.B. Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. *Vet Dermatol* **2020**, *31*, 28-74.
- 112. Nagata, M.; Rosenkrantz, W. Cutaneous viral dermatoses in dogs and cats. Compendium (Yardley, PA) 2013, 35, E1-E1.
- 113. Luff, J.A.; Affolter, V.K.; Yeargan, B.; Moore, P.F. Detection of six novel papillomavirus sequences within canine pigmented plaques. *Journal of Veterinary Diagnostic Investigation* **2012**, 24, 576-580.
- 114. Nagata, M.; Nanko, H.; Moriyama, A.; Washizu, T.; Ishida, T. Pigmented plaques associated with papillomavirus infection in dogs: is this epidermodysplasia verruciformis? *Veterinary Dermatology* **1995**, *6*, 179-186.
- 115. Narama, I.; Kobayashi, Y.; Yamagami, T.; Ozaki, K.; Ueda, Y. Pigmented cutaneous papillomatosis (pigmented epidermal nevus) in three pug dogs; histopathology, electron microscopy and analysis of viral DNA by the polymerase chain reaction. *J Comp Pathol* **2005**, *132*, 132-138.
- 116. Munday, J.S.; Lam, A.T.; Sakai, M. Extensive progressive pigmented viral plaques in a Chihuahua dog. *Veterinary Dermatology* **2022**, *33*, 252-254.
- 117. Luff, J.; Rowland, P.; Mader, M.; Orr, C.; Yuan, H. Two canine papillomaviruses associated with metastatic squamous cell carcinoma in two related Basenji dogs. *Veterinary pathology* **2016**, *53*, 1160-1163.
- Hansen, N.; Nicholas, N.; Pack, G.; Mackie, J.T.; Shipstone, M.; Munday, J.S.; Reddell, P.; Orbell, G.; Malik, R. Progressive cutaneous viral pigmented plaques in three Hungarian Vizslas and the response of lesions to topical tigilanol tiglate gel. *Veterinary Medicine and Science* **2018**, *4*, 53-62.
- 119. Banovic, F.; Linder, K.; Olivry, T. Clinical, microscopic and microbial characterization of exfoliative superficial pyodermaassociated epidermal collarettes in dogs. *Veterinary Dermatology* **2017**, *28*, 107-e123.
- 120. Bajwa, J. Canine superficial pyoderma and therapeutic considerations. *The Canadian veterinary journal* **2016**, *57*, 204.
- Hillier, A.; Lloyd, D.H.; Weese, J.S.; Blondeau, J.M.; Boothe, D.; Breitschwerdt, E.; Guardabassi, L.; Papich, M.G.; Rankin, S.; Turnidge, J.D. Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (A ntimicrobial G uidelines W orking G roup of the I nternational S ociety for C ompanion A nimal I nfectious D iseases). *Veterinary dermatology* **2014**, *25*, 163-e143.
- 122. Holm, B.R.; Rest, J.R.; Seewald, W. A prospective study of the clinical findings, treatment and histopathology of 44 cases of pyotraumatic dermatitis. *Veterinary Dermatology* **2004**, *15*, 369-376.
- 123. Pedersen, N.C.; Pooch, A.S.; Liu, H. A genetic assessment of the English bulldog. Canine Genet Epidemiol 2016, 3, 6.
- 124. Conceição, L.G.; Acha, L.M.R.; Borges, A.S.; Assis, F.G.; Loures, F.H.; e Silva, F.F. Epidemiology, clinical signs, histopathology and molecular characterization of canine leproid granuloma: a retrospective study of cases from Brazil. *Veterinary dermatology* **2011**, 22, 249-256.
- 125. Malik, R.; Love, D.; Wigney, D.; Martin, P. Mycobacterial nodular granulomas affecting the subcutis and skin of dogs (canine leproid granuloma syndrome). *Australian veterinary journal* **1998**, *76*, 403-407.
- 126. Biezus, G.; de Cristo, T.G.; Ikuta, C.Y.; Carniel, F.; Volpato, J.; de Souza Teixeira, M.B.; Neto, J.S.F.; Casagrande, R.A. Canine leproid granuloma (CLG) caused by mycobacterial species closely related to members of Mycobacterium simiae complex in a dog in Brazil. *Topics in Companion Animal Medicine* **2022**, *50*, 100672.
- 127. Malik, R.; Martin, P.; Wigney, D.; Swan, D.; Sattler, P.; Cibilic, D.; Allen, J.; Mitchell, D.; Chen, S.; Hughes, M. Treatment of canine leproid granuloma syndrome: preliminary findings in seven dogs. *Australian Veterinary Journal* **2001**, *79*, 30-36.
- 128. Ellis, J.A. Canine IgA and IgA deficiency: Implications for immunization against respiratory pathogens. *The Canadian Veterinary Journal* **2019**, *60*, 1305.
- Olsson, M.; Tengvall, K.; Frankowiack, M.; Kierczak, M.; Bergvall, K.; Axelsson, E.; Tintle, L.; Marti, E.; Roosje, P.; Leeb, T. Genome-wide analyses suggest mechanisms involving early B-cell development in canine IgA deficiency. *PloS one* **2015**, *10*, e0133844.
- 130. Day, M. Possible immunodeficiency in related rottweiler dogs. *Journal of small animal practice* **1999**, 40, 561-568.
- 131. Lanevschi, A.; Daminet, S.; Niemeyer, G.P.; Lothrop Jr, C.D. Granulocyte Colony-Stimulating Factor Deficiency in a Rott-weiler with Chronic Idiopathic Neutropenia. *Journal of Veterinary Internal Medicine* **1999**, 13, 72-75.
- 132. Rivas, A.L.; Tintle, L.; Argentieri, D.; Kimball, E.S.; Goodman, M.G.; Anderson, D.W.; Capetola, R.J.; Quimby, F.W. A primary immunodeficiency syndrome in Shar-Pei dogs. *Clinical immunology and immunopathology* **1995**, 74, 243-251.

- 133. Outerbridge, C.A.; Jordan, T.J.M. Current Knowledge on Canine Atopic Dermatitis: Pathogenesis and Treatment. *Adv Small Anim Care* **2021**, *2*, 101-115.
- 134. Mazrier, H.; Vogelnest, L.J.; Thomson, P.C.; Taylor, R.M.; Williamson, P. Canine atopic dermatitis: breed risk in Australia and evidence for a susceptible clade. *Veterinary Dermatology* **2016**, 27, 167-e142.
- 135. Theerawatanasirikul, S.; Sailasuta, A.; Thanawongnuwech, R.; Suriyaphol, G. Alterations of keratins, involucrin and filaggrin gene expression in canine atopic dermatitis. *Research in veterinary science* **2012**, *93*, 1287-1292.
- 136. Jaeger, K.; Linek, M.; Power, H.; Bettenay, S.; Zabel, S.; Rosychuk, R.; Mueller, R.S. Breed and site predispositions of dogs with atopic dermatitis: a comparison of five locations in three continents. *Veterinary dermatology* **2010**, *21*, 119-123.
- 137. Picco, F.; Zini, E.; Nett, C.; Naegeli, C.; Bigler, B.; Rüfenacht, S.; Roosje, P.; Gutzwiller, M.E.; Wilhelm, S.; Pfister, J.; et al. A prospective study on canine atopic dermatitis and food-induced allergic dermatitis in Switzerland. *Vet Dermatol* **2008**, *19*, 150-155.
- 138. Počta, S.; Svoboda, M. Approach to the diagnostics of atopic dermatitis in dogs in conditions of clinical practice. *Acta Veterinaria Brno* **2007**, *76*, 461-468.
- 139. Nødtvedt, A.; Egenvall, A.; Bergval, K.; Hedhammar, Å. Incidence of and risk factors for atopic dermatitis in a Swedish population of insured dogs. *Veterinary Record* **2006**, *159*, 241-246.
- 140. Verlinden, A.; Hesta, M.; Millet, S.; Janssens, G. Food allergy in dogs and cats: a review. *Critical reviews in food science and nutrition* **2006**, *46*, 259-273.
- 141. Prélaud, P.; Guaguere, E.; Alhaidari, Z.; Faivre, N.; Heripret, D.; Gayerie, A. Reevaluation of diagnostic criteria of canine atopic dermatitis. *Revue de Medecine Veterinaire* (*France*). **1998**.
- 142. Harvey, R. Food allergy and dietary intolerance in dogs: a report of 25 cases. *Journal of Small Animal Practice* **1993**, 34, 175-179.
- 143. O'Neill, D.G.; Darwent, E.C.; Church, D.B.; Brodbelt, D.C. Demography and health of Pugs under primary veterinary care in England. *Canine Genetics and Epidemiology* **2016**, *3*, 1-12.
- 144. Nuttall, T.J.; Marsella, R.; Rosenbaum, M.R.; Gonzales, A.J.; Fadok, V.A. Update on pathogenesis, diagnosis, and treatment of atopic dermatitis in dogs. *Journal of the American Veterinary Medical Association* **2019**, 254, 1291-1300.
- 145. Jeandel, A.; Garosi, L. Gait abnormalities in brachycephalic breeds: should we be more concerned? *The Veterinary Record* **2018**, *182*, 164.
- 146. Nuttall, T. Chronic pododermatitis and interdigital furunculosis in dogs. Companion animal 2019, 24, 194-200.
- 147. Laffort-Dassot, C. Flea allergy in dogs: clinical signs and diagnosis. *European Journal of Companion Animal Practice* **2009**, *19*, 242-248.
- 2ur, G.; Ihrke, P.J.; White, S.D.; Kass, P.H. Canine atopic dermatitis: a retrospective study of 266 cases examined at the University of California, Davis, 1992–1998. Part I. Clinical features and allergy testing results. *Veterinary dermatology* **2002**, 13, 89-102.
- 149. Griffin, C.; DeBoer, D. The ACVD task force on canine atopic dermatitis (XIV): clinical manifestations of canine atopic dermatitis. *Veterinary immunology and immunopathology* **2001**, *8*1, 255-269.
- 150. Favrot, C. Clinical signs and diagnosis of canine atopic dermatitis. **2015**.
- 151. Corbee, R.J.; Woldring, H.H.; van den Eijnde, L.M.; Wouters, E.G.H. A Cross-Sectional Study on Canine and Feline Anal Sac Disease. *Animals (Basel)* **2021**, *12*.
- 152. Mueller, R.S.; Olivry, T. Critically appraised topic on adverse food reactions of companion animals (6): prevalence of non-cutaneous manifestations of adverse food reactions in dogs and cats. *BMC Vet Res* **2018**, *14*, 341.
- 153. Goodale, E. Pemphigus foliaceous. *Can Vet J* **2019**, *60*, 311-313.
- Bizikova, P.; Dean, G.A.; Hashimoto, T.; Olivry, T. Cloning and establishment of canine desmocollin-1 as a major autoantigen in canine pemphigus foliaceus. *Veterinary immunology and immunopathology* **2012**, 149, 197-207.
- Olivry, T. A review of autoimmune skin diseases in domestic animals: I–superficial pemphigus. *Veterinary Dermatology* **2006**, *17*, 291-305.
- 156. Gonsalves-Hubers, T. Pemphigus erythematosus in a chow chow. The Canadian Veterinary Journal 2005, 46, 925.
- 157. Kuhl, K.; Shofer, F.; Goldschmidt, M. Comparative histopathology of pemphigus foliaceus and superficial folliculitis in the dog. *Veterinary pathology* **1994**, 31, 19-27.
- White, A.; Hicks, K.; Bizikova, P.; Bailey, J.; Linder, K. Probable drug-triggered pemphigus foliaceus in a dog following administration of afoxolaner (NexGard). *Veterinary Record Case Reports* **2019**, *7*, e000735.
- 159. Zhou, Z.; Corner, S.; Petersen, A.; Rosser, E.; Noland, E.L. Clinical presentation, treatment and outcome in dogs with pemphigus foliaceus with and without vasculopathic lesions: an evaluation of 41 cases. *Veterinary Dermatology* **2021**, 32, 503-e139.
- Zarfoss, M.K.; Tusler, C.A.; Kass, P.H.; Montgomery, K.; Lim, C.C.; Mowat, F.; Thomasy, S.M. Clinical findings and outcomes for dogs with uveodermatologic syndrome. *J Am Vet Med Assoc* **2018**, 252, 1263-1271.
- Blackwood, S.E.; Barrie, K.P.; Plummer, C.E.; Taylor, D.; Nunnery, C.M.; Seltzer, J.D.; Ben-Shlomo, G.; Brooks, D.E. Uve-odermatologic syndrome in a rat terrier. *Journal of the American Animal Hospital Association* **2011**, *47*, e56-e63.

- 162. Egbeto, I.A.; Garelli, C.J.; Piedra-Mora, C.; Wong, N.B.; David, C.N.; Robinson, N.A.; Richmond, J.M. Case Series: Gene Expression Analysis in Canine Vogt-Koyanagi-Harada/Uveodermatologic Syndrome and Vitiligo Reveals Conserved Immunopathogenesis Pathways Between Dog and Human Autoimmune Pigmentary Disorders. *Front Immunol* 2020, 11, 590558
- 163. Tham, H.L.; Linder, K.E.; Olivry, T. Autoimmune diseases affecting skin melanocytes in dogs, cats and horses: vitiligo and the uveodermatological syndrome: a comprehensive review. *BMC veterinary research* **2019**, *15*, 1-17.
- Oliveira, A.T.C.; de Oliveira, A.R.F.; Santiago, I.L.T.; de Lima, Y.B.S.; Ferreira, T.C. Clinical, diagnostic and therapeutic approach of uveodermatologic syndrome in dogs: a review. *Revista Brasileira de Higiene e Sanidade Animal* **2020**, *14*, 248-261.
- Panich, R.; Scott, D.; Miller Jr, W. Canine cutaneous sterile pyogranuloma/granuloma syndrome: a retrospective analysis of 29 cases (1976 to 1988). *The Journal of the American Animal Hospital Association (USA)* **1991**.
- 166. Santoro, D.; Prisco, M.; Ciaramella, P. Cutaneous sterile granulomas/pyogranulomas, leishmaniasis and mycobacterial infections. *Journal of Small Animal Practice* **2008**, 49, 552-561.
- 167. Diaz, S. Canine Sterile Papular and Nodular Skin Diseases. Clinical Small Animal Internal Medicine 2020, 1441-1448.
- 168. Moosavian, H.; Mashayekhi-Goyonlo, V.; Rajayee Mousavi, S.A. Long-term successful management of an idiopathic interstitial pyogranulomatous/granulomatous dermatitis and folliculitis by omega 3 fatty acid in a dog. *Comparative Clinical Pathology* **2021**, *30*, 335-339.
- 169. Weingart, C.; Kershaw, O.; Kohn, B.; Rohwedder, T. Life-threatening acute neutrophilic vasculitis in a Shar-Pei puppy. *Tierarztliche Praxis. Ausgabe K, Kleintiere/heimtiere* **2022**, *50*, *57-63*.
- 170. Malik, R.; Foster, S.; Martin, P.; Canfield, P.; Mason, K.; Bosward, K.; Gough, A.; Rippon, G. Acute febrile neutrophilic vasculitis of the skin of young Shar-Pei dogs. *Australian veterinary journal* **2002**, *80*, 200-206.
- 171. Tellier, L.A. Immune-mediated vasculitis in a shar-pei with swollen hock syndrome. Can Vet J 2001, 42, 137-139.
- 172. Innerå, M. Cutaneous vasculitis in small animals. Vet Clin North Am Small Anim Pract 2013, 43, 113-134.
- 173. O'Neill, D.G.; Sahota, J.; Brodbelt, D.C.; Church, D.B.; Packer, R.M.A.; Pegram, C. Health of Pug dogs in the UK: disorder predispositions and protections. *Canine Med Genet* **2022**, *9*, 4.
- 174. O'Neill, D.G.; Hendricks, A.; Phillips, J.A.; Brodbelt, D.C.; Church, D.B.; Loeffler, A. Non-neoplastic anal sac disorders in UK dogs: Epidemiology and management aspects of a research-neglected syndrome. *Vet Rec* **2021**, *189*, e203.
- 175. Feng, T.; McConnell, C.; O'Hara, K.; Chai, J.; Spadafori, G. Nationwide's brachycephalic breed disease prevalence study. March 2017. **2017**.
- 176. Corbee, R.J.; Woldring, H.H.; van den Eijnde, L.M.; Wouters, E.G. A Cross-Sectional Study on Canine and Feline Anal Sac Disease. *Animals* **2022**, 12, 95.
- 177. Rutherford, L.; Lee, K. Anal sac disease in dogs. *In Practice* **2015**, 37, 435-444.
- 178. Lundberg, A.; Koch, S.N.; Torres, S.M.F. Local treatment for canine anal sacculitis: A retrospective study of 33 dogs. *Vet Dermatol* **2022**, 33, 426-434.
- 179. Doerr, K.A.; Outerbridge, C.A.; White, S.D.; Kass, P.H.; Shiraki, R.; Lam, A.T.; Affolter, V.K. Calcinosis cutis in dogs: histopathological and clinical analysis of 46 cases. *Veterinary Dermatology* **2013**, 24, 355-e379.
- 180. Tafti, A.; Hanna, P.; Bourque, A.C. Calcinosis circumscripta in the dog: a retrospective pathological study. *Journal of Veterinary Medicine Series A* **2005**, 52, 13-17.
- 181. Scott, D.; Buerger, R. Idiopathic calcinosis circumscripta in the dog: a retrospective analysis of 130 cases. *The Journal of the American Animal Hospital Association (USA)* **1988**.
- Barrios, N.; Gómez, M.; Mieres, M.; Vera, F.; Alvial, G. Spinal dermoid sinus in a Dachshund with vertebral and thoracic limb malformations. *BMC Vet Res* **2014**, *10*, 54.
- 183. Salmon Hillbertz, N.H.; Isaksson, M.; Karlsson, E.K.; Hellmén, E.; Pielberg, G.R.; Savolainen, P.; Wade, C.M.; Von Euler, H.; Gustafson, U.; Hedhammar, Å. Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in Ridgeback dogs. *Nature genetics* **2007**, *39*, 1318-1320.
- 184. Motta, L.; Skerritt, G.; Denk, D.; Leeming, G.; Saulnier, F. Dermoid sinus type IV associated with spina bifida in a young Victorian bulldog. *Veterinary Record-English Edition* **2012**, *170*, 127.
- 185. Ployart, S.; Doran, I.; Bomassi, E.; Bille, C.; Libermann, S. Myelomeningocoele and a dermoid sinus-like lesion in a French bulldog. *Can Vet J* **2013**, *54*, 1133-1136.
- 186. Sturgeon, C. Nasal dermoid sinus cyst in a shih tzu. The Veterinary Record 2008, 163, 219.
- 187. Bornard, N.; Pin, D.; Carozzo, C. Bilateral parieto-occipital dermoid sinuses in a Rottweiler. *Journal of Small Animal Practice* **2007**, *48*, 107-110.
- 188. Colón, J.A.; Maritato, K.C.; Mauterer, J.V. Dermoid sinus and bone defects of the fifth thoracic vertebrae in a shih-tzu. *Journal of Small Animal Practice* **2007**, *48*, 180-180.
- 189. Bowens, A.L.; Ducoté, J.M.; Early, P.J. What is your neurologic diagnosis? *Journal of the American Veterinary Medical Association* **2005**, 227, 713-715.
- 190. Burrow, R. A nasal dermoid sinus in an English bull terrier. Journal of small animal practice 2004, 45, 572-574.

- 191. Fatone, G.; Brunetti, A.; Lamagna, F.; Potena, A. Dermoid sinus and spinal malformations in a Yorkshire terrier: Diagnosis and follow-up. *Journal of Small Animal Practice* **1995**, *36*, 178-180.
- 192. Booth, M. Atypical dermoid sinus in a chow chow dog: case report. *Journal of the South African Veterinary Association* **1998**, 69, 102-104.
- 193. Selcer, E. Dermoid sinus in a shih tzu and a boxer. J Am An Hosp Assoc 1984, 20, 634-636.
- 194. Scott, D.; Miller Jr, W.H. Idiopathic nasodigital hyperkeratosis in dogs: a retrospective analysis of 35 cases (1988–1998). *Jpn J Vet Dermatol* **2012**, *18*, 169-170.
- 195. Lee, F.F.; Bradley, C.W.; Cain, C.L.; White, S.D.; Outerbridge, C.A.; Murphy, L.A.; Mauldin, E.A. Localized parakeratotic hyperkeratosis in sixteen Boston terrier dogs. *Veterinary dermatology* **2016**, *27*, 384-e396.
- 196. Lachaume, P.; Hitte, C.; Jouquand, S.; Priat, C.; Galibert, F. Identification and analysis of the dog keratin 9 (KRT9) gene. *Animal genetics* **1998**, 29, 173-177.
- 197. Scott, D.W.; Miller, W.H. Retrospective record review of canine postclipping hair follicle arrest. *Vet Dermatol* **2012**, 23, 248-249.
- 198. Diamond, J.C.; Schick, R.O.; Savage, M.Y.; Fadok, V.A. A small scale study to evaluate the efficacy of microneedling in the presence or absence of platelet-rich plasma in the treatment of post-clipping alopecia in dogs. *Vet Dermatol* **2020**, *31*, 214-e245