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Abstract 

Entanglement measures such as concurrence, negativity and REE are well-known tools for 

quantifying non-classical correlations in quantum systems. However, these measures can lead to 

different state orderings for non-maximally entangled states. On the other hand, Quantum Fisher 

Information (QFI), while not an entanglement measure, provides a framework for analyzing a state's 

metrological potential. In this study, we numerically analyze the relationship between these 

entanglement measures and QFI for a large ensemble of random two-qubit states. We specifically 

focus on the maximized QFI (MQFI) obtained through local unitary rotations. Our findings 

demonstrate a strong correlation between entanglement and a state's metrological capacity, 

confirming that entanglement is a valuable resource. We show that while a state's QFI with a fixed 

generator can vary widely for a given entanglement value, local optimization to find the MQFI leads 

to a tighter, more predictable relationship. Our results also reinforce the principle that the 

metrological performance of all mixed states is fundamentally bounded by the theoretical limit of 

pure states. The polynomial fit equations for the upper and lower bounds of our data provide a 

quantitative description of these complex relationships. 

Keywords: qubits; quantum computing; concurrence; negativity; relative entropy of entanglement; 

quantum fisher information 

 

1. Introduction 

Entanglement, a cornerstone of quantum mechanics, is a fundamental resource in quantum 

computing and quantum information science. For bipartite systems, various measures such as 

concurrence [1] and negativity [3,5] have been developed to quantify this unique correlation. These 

measures, by definition, do not increase under Local Operations and Classical Communication 

(LOCC) [4]. A well-known issue is the state ordering problem [10], where different entanglement 

measures can assign different ranks to non-maximally entangled states, suggesting that each measure 

captures a different facet of entanglement [2]. 

In parallel, Quantum Fisher Information (QFI) [6,7] has emerged as a key metric in quantum 

metrology [8,9], as it quantifies the ultimate precision with which a parameter can be estimated. A 

state's QFI, when exceeding a certain threshold, can also serve as a witness for entanglement [9]. 

However, unlike entanglement measures, QFI is not an entanglement monotone and can be changed 

via local unitary operations. This necessitates finding the Maximized QFI (MQFI) over all possible 

local unitary rotations to properly compare a state's metrological potential with its entanglement [11–

17]. 

In this work, we aim to bridge the gap between these two seemingly different concepts. We 

perform a large-scale numerical simulation to generate a large number of random two-qubit states 

and analyze the correlations between their entanglement measures (concurrence and negativity) and 

their QFI [11]. Our primary goal is to examine how MQFI, a measure of a state's optimal metrological 

utility, relates to the standard entanglement measures. 
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2. Methods 

Random State Generation: We generated 20,000 random two-qubit density matrices. The states 

were created by generating random unitary matrices and a set of random positive eigenvalues that 

sum to one. This method ensures that the generated matrices are valid density operators. 

Entanglement Measures: 

• Concurrence: For each density matrix ρ, we computed its concurrence C(ρ) using the well-

established formula based on the eigenvalues of the spin-flipped state [1]. The concurrence value 

ranges from 0 for separable states to 1 for maximally entangled states. 

• Negativity: We calculated the negativity N(ρ) for each state based on the negative eigenvalues 

of its partial transpose [3,5]. This value is also bounded between 0 and 1. We also defined a 

rescaled Negativity, Neg′=2×N(ρ), to better align with the scale of Concurrence for pure states. 

• Relative Entropy of Entanglement: 

The Relative Entropy of Entanglement (REE) for a given state is defined as the minimum value 

of the quantum relative entropy, 

S(ρ∣∣σ)=Tr(ρ logρ−ρ log σ), where the minimum is taken over the set of all separable states, σ. 

The formula for this is given as 

E(ρ)=minρ∈D S(ρ∣∣σ)=S(ρ∣∣σ). This definition essentially means that REE quantifies 

entanglement by measuring the distance between a given state and the closest separable state. 

Quantum Fisher Information: 

• QFI and MQFI: For each state, we calculated the QFI with a fixed generator, specifically the two-

qubit Pauli Z-operator, J=σz ⊗σz. We then performed an optimization over local unitary 

rotations to find the maximum possible QFI for that state, which we refer to as MQFI [11]. 

• Normalization: All QFI and MQFI values were normalized by dividing by 4, as this allows for 

a direct comparison with the entanglement measures. 

Data Visualization and Analysis: The generated data points were plotted on scatter graphs in 

Figure 1. Polynomial fits for the upper and lower bounds of the data clouds were calculated to 

provide a quantitative description of the relationships. 

 

Figure 1. Plots of entanglement measures vs MQFI. 

3. Results and Discussions 

The numerical analysis of entanglement measures and their relationship with Maximized 

Quantum Fisher Information (MQFI) for general two-qubit systems revealed several key findings, as 

depicted in Figure 1. This figure presents three distinct subplots, each illustrating the correlation 
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between MQFI/4 and a specific entanglement measure: Concurrence, Negativity, and Relative 

Entropy of Entanglement (REE). The gray data points represent a large ensemble of randomly 

generated two-qubit states, exhibiting a clear and predictable envelope that bounds the relationship 

between entanglement and metrological capacity. 

A critical aspect of our analysis involves delineating the upper and lower bounds of MQFI/4 as 

a function of entanglement. To achieve this, a binning method was employed, grouping data points 

based on their respective entanglement measure values. For each bin, the maximum and minimum 

MQFI/4 values were identified, forming the "Upper Bound Points" (green squares) and "Lower Bound 

Points" (red squares), respectively. These points effectively define the envelope within which all 

observed MQFI/4 values lie for a given entanglement. 

3.1. REE vs. MQFI/4 (Rightmost Subplot): 

This subplot investigates the relationship between REE and MQFI/4. The data clearly shows that 

MQFI/4 generally exceeds REE for low entanglement, with the upper bound approaching the 

theoretical limit (y=x) for higher entanglement. 

The fitted quadratic curves for the bounds are given by: 

• Upper Quadratic Fit: y=−2.48x2+1.67x+0.48 (R2=0.98) 

• Lower Quadratic Fit: y=−1.90x2+2.94x+0.19 (R2=0.91) 

And the logarithmic fits are: 

• Upper Logarithmic Fit: y=0.10ln(x)+0.88 (R2=0.97) 

• Lower Logarithmic Fit: y=0.03ln(x)+0.62 (R2=0.89) 

The positive coefficients for the linear terms in both quadratic and logarithmic fits suggest that 

MQFI/4 generally increases with REE. The negative quadratic term in the upper fit implies a potential 

saturation or even a slight decrease in the rate of increase at higher REE values, indicating that beyond 

a certain point, additional REE provides diminishing returns in enhancing MQFI. The R2 values, 

particularly for the upper quadratic and logarithmic fits (0.98 and 0.97, respectively), demonstrate an 

excellent fit to the boundary data. Physically, these bounds represent the maximum and minimum 

metrological utility for states with a given amount of REE, indicating that while REE quantifies 

entanglement, its direct relationship with MQFI is more complex than a simple linear scaling. 

3.2. Concurrence vs. MQFI/4 (Leftmost Subplot): 

This subplot explores the relationship between Concurrence, another widely used entanglement 

measure, and MQFI/4. 

The fitted curves are: 

• Upper Quadratic Fit: y=−0.41x2+0.77x+0.43 (R2=0.99) 

• Lower Quadratic Fit: y=0.48x2+0.55x+0.18 (R2=0.92) 

And the logarithmic fits are: 

• Upper Logarithmic Fit: y=0.14ln(x)+0.81 (R2=0.98) 

• Lower Logarithmic Fit: y=0.02ln(x)+0.46 (R2=0.89) 

Similar to REE, a strong positive correlation is observed, with higher Concurrence generally 

leading to higher MQFI/4. The quadratic fit for the upper bound (R²=0.99) shows an exceptionally 

strong fit. The negative coefficient of the x2 term in the upper quadratic fit again suggests a potential 

saturation effect. The logarithmic fits provide an alternative perspective, showing a less steep increase 

for the lower bound. This indicates that while entanglement (quantified by Concurrence) is beneficial, 

its metrological enhancement might follow a different functional form depending on the specific state 

and the chosen estimation strategy. For non-entangled states (Concurrence=0), MQFI/4 is non-zero 

(y-intercept of the fits), highlighting that even separable states can possess quantum information 

useful for metrology. 
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3.3. Negativity vs. MQFI/4 (Middle Subplot): 

The middle subplot illustrates the relationship between Negativity and MQFI/4. Negativity, 

being an entanglement monotone, also exhibits a clear bounding behavior with MQFI/4. 

The fitted curves are: 

• Upper Quadratic Fit: y=−0.53x2+0.84x+0.43 (R2=0.98) 

• Lower Quadratic Fit: y=0.38x2+1.19x+0.18 (R2=0.92) 

And the logarithmic fits are: 

• Upper Logarithmic Fit: y=0.14ln(x)+0.81 (R2=0.98) 

• Lower Logarithmic Fit: y=0.03ln(x)+0.55 (R2=0.88) 

The trends observed for Negativity are highly consistent with those for Concurrence and REE. 

The quadratic and logarithmic fits for both upper and lower bounds show high R2 values (mostly 

above 0.90), signifying a robust description of the observed behavior. The similar functional forms 

and coefficients across different entanglement measures suggest a general underlying relationship 

between the degree of entanglement and the quantum metrological capabilities of two-qubit systems. 

The non-zero intercepts for zero Negativity again confirm the metrological utility of separable states. 

3.4. Overall Discussion: 

The consistent behavior across all three entanglement measures underscores the fundamental 

connection between entanglement and quantum metrology. The upper bounds, described by the 

quadratic and logarithmic fits, effectively represent the "optimal" states in terms of metrological 

performance for a given entanglement. The negative quadratic terms in the upper bound fits for all 

measures hint at a practical limit to the metrological gain from increasing entanglement, suggesting 

that beyond a certain point, the sensitivity might not increase as rapidly. Conversely, the lower 

bounds illustrate the minimum metrological capability, which is still entanglement-dependent. 

The fact that MQFI/4 is non-zero even for separable states (where entanglement measures are 

zero) is physically significant. It indicates that quantum advantage in metrology is not solely 

predicated on entanglement, though entanglement undeniably enhances it. However, the distinct 

upward trend of both upper and lower bounds with increasing entanglement measures clearly 

demonstrates that highly entangled states generally offer superior metrological precision. The 

differences in the shapes and coefficients of the fit curves across the three entanglement measures 

suggest subtle distinctions in how each measure correlates with metrological capacity, reflecting their 

unique mathematical definitions and physical interpretations of entanglement. These findings 

provide valuable insights for designing and optimizing quantum metrology protocols by leveraging 

specific entanglement resources. 

4. Discussion and Conclusion 

Our results confirm the strong relationship between entanglement and metrological utility. 

Concurrence [1], Negativity [3] and REE when plotted against QFI, show a general trend of increasing 

QFI with increasing entanglement. 

The gray data points (MQFI), which represent the metrological performance after local 

optimization, form a much tighter and more predictable band [11]. This demonstrates the critical role 

of local unitary operations in unlocking a state's full metrological potential. By choosing the optimal 

basis for measurement, a state can achieve its maximum possible QFI. 

As expected, all of our data points, representing mixed states, fall below y=x, confirming that 

mixed states cannot surpass the metrological performance of pure states with the same level of 

entanglement. The upper bound fit for the MQFI points shows that, at higher entanglement, local 

optimization can bring the performance of mixed states very close to this theoretical pure-state limit. 

Our findings also touch upon the state ordering problem [10–17]. While both Concurrence, 

Negativity and REE are entanglement monotones, they can rank states differently. Our plots show 
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that the relationship between these measures and MQFI is not a simple one-to-one mapping. This 

implies that MQFI, while strongly correlated with entanglement, is another distinct measure of a 

state's quantum properties, related to its metrological capacity. 
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