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Abstract 

Background/Objectives: The composition of the thrombus is not taken into account in the etiology 
defemination of patients with acute ischemic stroke (AIS), however, it varies depending on the origin 
of the thrombus, as atherothrombotic thrombi contain more red blood cells and cardioembolic 
thrombi contain more fibrin and platelets. Radiomics has the potential to provide quantitative 
imaging data that may vary depending on the composition of thrombi. The aim of this study is to 
predict cardioembolic and atherothrombotic thrombi using radiomic features (RF) from non-contrast 
computed tomography (NCCT) brain scans. Methods: A total of 845 RF were extracted from each of 
the 41 patients included in the study. A predictive model was used to classify patients as either 
cardioembolic or atherothrombotic, and the results were compared with the TOAST criteria-based 
classification. Results: Ten RF was found to demonstrate a statistically significant correlation with 
cardioembolic or atherothrombotic origins. The clinical features included in the study did not show 
a statistically significant correlation with thrombus etiology. The predictive radiomics model 
achieved an area under the curve (AUC) of 0.842 and an accuracy of 0.902 (p=0.000) in classifying 
stroke etiology. Conclusions: Radiomics based on NCCT can help to determine the etiology of AIS. 

Keywords: acute ischemic stroke; AIS; stroke etiology; clot; thrombus composition; radiomics; 
machine learning, artificial intelligence 
 

1. Introduction 

Every year, 15 million people worldwide suffer a stroke, resulting in 5 million deaths and 5 
million individuals with significant disabilities for the remainder of their lives [1]. In 2021, it was 
estimated that 795,000 people in the United States would experience a stroke, with 85% of cases being 
ischemic [2]. The underlying causes of acute ischemic stroke (AIS) are not always easily identified. 
Nevertheless, the identification of its etiology is crucial for the management of patients, given that it 
is a leading cause of morbidity and mortality on a global scale. The etiology of AIS is diagnosed based 
on a combination of analytical and clinical parameters, cardiological testing, and parameters derived 
from qualitative analysis of radiological images. The TOAST (Trial of Org 10172 in Acute Stroke 
Treatment) criteria were developed to determine the origin of thrombi causing AIS and divides their 
probable etiology into five different groups: cardioembolic, atherothrombotic, lacunar infarct, 
unusual origin, and indetermined origin [3]. Whilst the diagnosis of a lacunar or unusual stroke is 
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relatively straightforward, the classification of an AIS as either a cardioembolic or atherothrombotic 
event is not always straightforward and is of significant clinical importance. In the context of 
secondary prevention management, patients with an atheromatous etiology will typically be 
administered antiplatelet therapy, whereas those with a cardioembolic origin will generally be 
provided with anticoagulant therapy. In many cases, patients may exhibit features associated with 
both etiological groups, resulting in an unknown etiology, or an 'indetermined' classification 
according to the TOAST criteria. This hinders the formulation of effective secondary prevention 
strategies for these patients.  

Furthermore, the molecular composition of a thrombus varies depending on the underlying 
cause [5]. Thrombi of atherothrombotic origin contain a greater proportion of red blood cells in 
comparison to those resulting from other etiologies classified within the TOAST system. In contrast, 
thrombi of cardiogenic origin exhibit a higher proportion of fibrin and platelets compared to those 
caused by other factors [6–8]. This difference in molecular composition may therefore be a reason for 
a potentially different radiological behavior of these two types of thrombi. There have been reports 
of radiological differences between cardioembolic and atherothrombotic thrombi. The thrombi of 
cardioembolic origin have been shown to exhibit greater density and attenuation on Non-Contrast 
Computed Tomography. (NCCT) [9,10]. This finding indicates that the radiological manifestation of 
the thrombus is contingent on its molecular composition, and consequently, its origin. Nevertheless, 
despite the molecular and radiological differences observed, no molecular or radiological criterion 
related to clots is utilized in the classification of the etiology of acute AIS. 

Radiomics is a field of radiology that focuses on the extraction and analysis of a large number of 
quantitative data from radiological images that correlate with the underlying pathophysiology [11]. 
Numerous studies have been conducted on this tool, with a particular focus on oncological 
pathology. These studies have demonstrated a correlation between radiomic data and various 
molecular patterns, genetic mutations, and other biological phenomena. However, recent studies 
using this technique outside oncological settings, particularly for neurologic diseases, have become 
increasingly common [12]. Given the established differences in the molecular composition and 
radiological appearance of thrombi between etiologies of AIS, radiomics may provide further insight 
into these differences by analyzing quantitative data from images of thrombi. There are already a few 
recently published articles showing that radiomic data can provide important information to 
determine the different origin of thrombi in patients with AIS [13,14].  

The hypothesis of this study is that the different molecular composition of thrombi of 
atherothrombotic and cardioembolic origin will result in a disparate radiomic pattern of thrombi 
from these two etiology groups on brain NCCT. This may provide valuable information in 
determining the etiology of AIS. Therefore, the objective of this article is to employ a machine learning 
model based on radiomic data obtained from thrombi in NCCT scans of patients with AIS, for the 
purpose of classifying them as cardioembolic or atherothrombotic etiology. 

2. Materials and Methods 

2.1. Study Design 

This prospective case-control study was conducted in accordance with the Declaration of 
Helsinki of the World Medical Association (2008) and approved by the local Ethics Committee of 
Santiago-Lugo (code 2023/299). The patients were selected from the database of patients with 
suspected AIS who were treated at University Hospital of Santiago de Compostela, a public third 
level hospital, between January 1, 2021, and December 31, 2021 (with a total of 882 patients). Informed 
consent was obtained from each patient after a full explanation of the procedures. All patients 
received treatment from expert neurologists and neuroradiologists from the Clinical Hospital of 
Santiago de Compostela (Spain) in accordance with national and international guidelines. 
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2.2. Patients 

The study's inclusion criteria were limited to: (1) patients with AIS caused by thrombi in the 
internal carotid artery (ICA) and middle cerebral artery (MCA) (M1 and proximal M2 segments); (2) 
patients with NCCT performed using a slice thickness of less than 1 mm; (3) patients with visible clot 
on NCCT; and (4) follow-up visits three months after a stroke in living patients. The study's exclusion 
criteria were as follows: (1) AIS patients who had undergone NCCT and computed tomography 
angiography (CTA) in a different hospital; (2) patients with AIS resulting from other procedures, such 
as aneurysmal or tumor embolization; (3) patients with more than one occluded intracranial vessel 
or tandem occlusion; (4) patients with etiology other than cardioembolic or atherothrombotic 
according to TOAST criteria; and (5) patients with dual cardioembolic and atherothrombotic etiology 
according to TOAST criteria; (6) patients suspected of having cardioembolic or atherothrombotic 
etiology but do not meet the main criteria defined by the TOAST system for each group; and (7) 
patients with occlusion of the distal middle cerebral artery (M3 or M4 segments). 

2.3. Image Adquisition 

All patients enrolled in the study underwent a NCCT at our hospital using two different CT 
scanners (16 rows of detectors, 120 kV) of the same make and model (Phillips Ingenuity; Amsterdam, 
Netherlands) during the diagnosis process of AIS. Patients were randomly assigned to each scanner. 
The images obtained had a slice thickness of 0.625 mm. Although reconstructions with a thickness of 
1 mm were available, they were not used for analysis. The window width and center were set at 80 
and 40 Hounsfield units, respectively (Figure 1). 

 

Figure 1. Brain NCCT of a patient with AIS and the hyperdense MCA sign. This is one of the radiological signs 
of AIS in NCCT. (a) Axial NCCT scan of a patient with a hyperdense left MCA sign. (b) Sagittal NCCT scan of 
the same patient. 

2.4. Segmentation, Preprocessing and Feature Extraction 

Two interventional neuroradiologists and a radiology resident who had undergone specialized 
training performed semi-automated segmentation of each thrombus. The segmentation was 
conducted using the open-access software 3D Slicer (version 5.2.2, Massachusetts, USA) [17]. The 
software includes a segmentation tool (Level Tracing tool) that enables semi-automatic segmentation 
based on automatic edge detection. The region of interest segmented was the clot visible on NCCT in 
patients with AIS (Figure 2). Segmentation was performed in all three spatial planes (Figure 3). The 
window width and center were set to 100 and 50 HU, respectively. 

(a)           (b) 
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Figure 2. Brain NCCT of the same patient as in Figure 1, with the thrombus segmented. The segmentation was 
performed using the “Level Tracing” tool of 3D Slicer. (a) Axial NCCT with thrombus segmented. (b) Sagittal 
NCCT of the same patient with the thrombus segmented. 

 
Figure 3. 3D reconstruction of the segmented thrombus of the same patient as in Figure 1 and Figure 2. 
Segmentation is performed in all 3 spatial planes with 3D Slicer. (a) Oblique coronal view of the segmented 
thrombus. (b) Segmented thrombus seen in oblique caudal view. 

Radiomic features were obtained using the Slicer Radiomics tool, which is also available in 3D-
Slicer [18]. This application uses the computational classes implemented in the Pyradiomics library. 
During the feature extraction process, 3D-Slicer allows image voxel resampling and kernel size 
modification. These parameters were not modified. Conversely, the images were normalized by 
smoothing with a Gaussian filter and a fixed value of 25 for the grey bin width, and wavelet-based 
features were also extracted. The complete set of features available in 3D Slicer was extracted, 
encompassing the following: first order, GLCM, GLDM, GLRLM, GLSZM, NGTDM, and shape-
based features. A total of 32,110 RF were obtained, with 845 RF for each patient included in the study. 

The radiomics quality score (RQS) was developed to measure the quality of radiomic studies 
[15]. Our study received a score of 19 out of 36 (52.78%) (Appendix A). Furthermore, the preparation 
of this article adheres to the CheckList for EvaluAtion of Radiomics research (CLEAR) guidelines [16] 
(see supplemental materials). 

The segmentation, extraction of RF, and analysis of the results were performed using a system 
with an Intel CORE i7 processor (Santa Clara, California, USA), 16 GB RAM, 1 TB hard disk, and 
Microsoft Windows 11 operating system (Redmond, Washington, USA). 
  

    (a)         (b) 

    (a)         (b) 
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2.5. Clinical Data 

The study also recorded the median Hounsfield units (HU) of the clot for each etiological group. 
Other clinical data were also recorded, including age, gender, the presence of hypertension, diabetes 
mellitus, dyslipidaemia, alcohol and drug use, and smoking. In addition to these data, information is 
available on the tPA administration, the laterality of the thrombus, the ASPECTS score and the degree 
of collaterality following the ASITN/SIR collateral grading scale [19]. The patient's condition is 
measured before and after treatment using the modified Ranking Scale (mRS) and NIHSS scale. 

2.6. Stadistical Analysis 

The RF selection and the analysis of RF and clinical variables was conducted using Statistical 
Package for the Social Sciences Statistics (SPSS) (version 21., IBM. Armonk, New York, EEUU) [20]. 
Firstly, a multivariate analysis was conducted, employing a logistic regression model to ascertain the 
variables associated with the two etiologies of AIS, with a 95% confidence interval. The multivariate 
analysis incorporated 845 RFs and 9 clinical variables (age; gender; arterial hypertension; drug, 
alcohol or smoke consumption; diabetes; dyslipidemia and Hounsfield units). In order to select 
significant variables, the p-value must fall below 0.05. With regard to the remaining clinical data, the 
administration of tPA was not considered due to its occurrence subsequent to the NCCT procedure, 
thereby rendering the radiomic data antecedent to this administration. The ASPECTS score and the 
patient's functional status were not considered in the analysis due to the fact that the focus of the 
segmentation is exclusively on the thrombus, excluding the brain parenchyma. 

The predictive models were constructed with the open access software Orange: Data Mining 
Toolbox in Python (version 3.33.0, Ljubljana, Slovenia) [21]. A total of three predictive models were 
constructed, namely: (i) a Radiomics model, based on the RF that emerged as the most statistically 
significant according to the multivariate analysis; (ii) a clinical model, comprising solely clinical 
variables; and (iii) a combined model that incorporated both the selected RF and the clinical variables 
(Figure 4). The automatic classifier utilized was Neural Network, a multi-layer perception algorithm 
also available from Orange Data Mining [22,23]. The Orange software suite facilitates the 
modification of parameters associated with Neural Networks classifier. The configuration parameters 
for the classifier are as follows: 100 neurons per hidden layer, the ReLu activation function for the 
hidden layer, a stochastic gradient-based optimizer (Adam) for weight optimization, and 200 
maximal iterations. 

The Orange application employed for the evaluation of the performance of the classification 
model is "Test and Score". Test and Score permits the implementation of diverse sampling 
methodologies. In this instance, the sampling method that was employed was leave-one-out cross-
validation (LOOCV). The LOOCV method selects n-1 patients for the training group, with the 
remaining patient being allocated to the test group. This process is repeated n times, with a different 
patient being assigned to the test group on each occasion. LOOCV method is particularly 
recommended for evaluating the performance of machine learning models, when the number of 
datasets is limited [24]. Test and Score also permits the observation of the classifier performance 
measures. The classification accuracy and area under the curve (AUC) of the predictive models were 
calculated with this application. In addition to the aforementioned functionality, the application 
facilitates the integration of supplementary widgets, including "confusion matrix" widget, which 
serves to provide a visual representation of the confusion matrix of the classifiers, and "box plot" 
widget, which quantifies the concordance between the classifier results and the actual classification 
by employing a chi-square test and a 95% confidence interval.  
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Figure 4. Article workflow. Three prediction models were developed: a radiomics model with the selected RF, a 
combined model with RF and clinical data, and a clinical model with clinical data only. The automatic classifier 
used was Neural Network, available at Orange: Data Mining Toolbox in Python. 

The classifier´s performance in the three models is measured using the Cohen's kappa coefficient 
(K), the AUC, the Accuracy, the sensitivity (Se) and the specificity (Sp), with a 95% confidence 
interval. The Kappa coefficient is a statistical measure of the extent to which the true and predicted 
categories are aligned, excluding the possibility of agreement by chance. Its value is more 
conservative and statistically more valid than the balanced accuracy or AUC. The confusion matrix 
is a graphical representation of the relationship between the predictions made by Neural Networks 
(represented by the columns of the matrix) and the TOAST criteria-based classification (represented 
by the rows of the matrix) (Table 1). The true positive (TP) is defined as the number of 
atherothrombotic AIS patients correctly identified as such. The false positive (FP) is defined as the 
number of atherothrombotic AIS patients incorrectly identified as cardioembolic AIS patients. The 
true negative (TN) is defined as the number of cardioembolic AIS patients correctly identified as such. 
Finally, the false negative (FN) is defined as the number of cardioembolic AIS patients incorrectly 
identified as atherothrombotic AIS patients.  

The Kappa coefficient (in %) is defined for classification problems with two categories, in our 
case Atherothrombotic AIS and Cardioembolic AIS, as 

𝐾 = 100(𝑃𝑎 − 𝑃𝑒)/(1 − 𝑃𝑒) 

were 𝑃𝑎 =  (𝑇𝑃 + 𝑇𝑁) 𝑁⁄  and Pe = (𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)/𝑁ଶ + (𝐹𝑃 + 𝑇𝑁)(𝐹𝑁 + 𝑇𝑁)/𝑁ଶ. The Se is 
defined as the classifier's ability to correctly detect patients with atherothrombotic AIS, while the Sp 
is defined as the classifier's ability to correctly detect patients with cardioembolic AIS. The Se, Sp and 
Accuracy are defined by 

𝑆𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

𝑆𝑝 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 +  𝑇𝑁)(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) 
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Table 1. Representation of a confusion matrix used to visualize the performance of a neural network classifier. 
Columns represent the predicted class. The rows represent the true class according to the TOAST criteria. 

  Predicted with Neural Network 
  Atherothrombotic Cardioembolic 

TOAST 
Atherothrombotic TP FP 

Cardioembolic FN TN 

3. Results 

3.1. Patient Selection 

Out of 882 patients, only 41 were selected based on the inclusion and exclusion criteria. These 
patients were divided into two groups using the TOAST system: cardioembolic (29 patients) and 
atherothrombotic (12 patients) etiology (Table 2).  

Table 2. After inclusion and exclusion criteria, 41 patients were included. 

41 patients included 
Cardioembolic etiology 29 (70.73%) 

Atherothrombotic etiology 12 (29.26%) 
Female sex 22 (53.66%) 
Age (mean) 72.90 (SD 12.56) 

Arterial hypertension 29 (70.73%) 
Diabetes mellitus 13 (31.71%) 

Dyslipidemia 23 (56.09%) 
Smoking 7 (17.07%) 
Alcohol 6 (14.63%) 

Drug 1 (2.44%) 
Hounsfield Units (mean) 62.73 (SD 11.83) 

Clot on right ICA 4 (9.76%) 
Clot on right MCA 17 (41.46%) 

Clot on left ICA 3 (7.31%) 
Clot on left MCA 17 (41.46%) 
ASPECTS (mean) 8.58 (SD 1.22) 

Collateral score system <2 5 (12.20%) 
mRS previous (mean) 1.08 (SD 1.17) 

mRS at 3 months (mean) 3.18 (SD 1.84) 
NIHSS initial (mean) 15.16 (SD 4.59) 
NIHSS at 24h (mean) 7.87 (SD 6.96) 

3.2. Feature Reduction 

In the multivariate analysis performed with SPSS, of the 845 RFs extracted, only 10 were 
statistically significantly associated with cardioembolic and atherothrombotic etiology of AIS (p-
value < 0.05) (Table 3). The features that were selected for inclusion in the study included one shape 
feature (Sphericity) and 9 texture features: 4 Gray Level Dependence Matrix (GLDM), 2 Gray-Level 
Co-occurrence Matrix (GLCM), 2 Gray-Level Run Length Matrix (GLRLM) and 1 Neighborhood Gray 
Tone Difference Matrix (NGTDM). The shape features describe morphological aspects of the region 
of interest. The GLDM features are responsible for determining the dependency of voxels in a given 
neighborhood on a single center voxel. The GLCM features calculate the frequency with which 
adjacent pixels of each grey level value co-occur. The GRLM features are metrics that quantify the 
number of lines of a specific grey level and length that occur in a given direction. Finally, The 
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NGTDM features are metrics which analyze the difference between the grey value of a pixel and that 
of its immediate vicinity [25]. 

Table 3. RF which showed a statistically significant association with the etiology of AIS in the multivariate 
analysis performed in SPSS, using the logistic regression method. 

Radiomics features Coeff. RF Class OR p-Value 
Sphericity 6.797 Shape 8.952E+5 0.049 
Imc1 (2) 18.526 GLCM 1.11135E+19 0.039 

Cluster Tendency (4) 33.426 GLCM 3.286E+14 0.036 
Large Dependence Low Gray Level Emphasis (4) 0.072 GLDM 1.074 0.015 
Large Dependence Low Gray Level Emphasis (6) 0.060 GLDM 1.062 0.027 

Long Run Low Gray Level Emphasis (6) 2.252 GLRLM 9.508 0.037 
Dependence Variance (7) 0.409 GLDM 1.505 0.017 

Short Run Low Gray Level Emphasis (7) -28.260 GLRLM 6.331E-013 0.041 
Complexity (7) -48.639 NGTDM 1.000E-013 0.045 

Dependence Variance (8) 0.492 GLDM 1.636 0.045 
* Coeff.= Coefficient.     

Of the clinical variables included in the multivariate analysis, none were shown to have a 
statistically significant association with the cardioembolic and atherothrombotic etiology of AIS (p-
value > 0.05) (Table 4).  

Table 4. Clinical variables included in the multivariate analysis They did not show a statistically significant 
relationship with the etiology of AIS. 

Clinical features Cardioembolic Atherothrombotic Coeff. OR p-Value 
Female sex 16 6 -0.208 0.813 0.763 
Age (mean) 74.55 (SD 13.26) 68.91 (SD 10.07) 0.037 1.037 0.193 

Arterial hypertension 22 7 -0.809 0.445 0.267 
Diabetes mellitus 8 5 0.629 1.875 0.381 

Dyslipidemia 15 8 0.624 1.867 0.384 
Smoking 4 3 0.606 1.833 0.481 
Alcohol 3 3 1.099 3.000 0.229 

Drug 1 0 -20.356 1.444E-009 1.000 
Hounsfield Units (mean) 63.14 (SD 13.15) 61.75 (SD 8.21) 0.010 1.011 0.730 

3.3. Prediction Models 

The radiomic model demonstrated the capacity to differentiate between the two types of thrombi 
and accurately predict the patients' cardioembolic and atherothrombotic etiology of AIS. The 
accuracy, AUC, Se and Sp for predicting stroke etiology were 0.902, 0.842, 0.833 and 0.931 respectively 
(p-value 0.000), with Kappa = 76.43%.  

Table 5. Confusion matrix of the radiomics model (utilizing only RF), with the automatic classifier Neural 
Network. 

  Neural Network (Radiomics Model) ∑ 
  Atherothrombotic Cardioembolic  

TOAST 
Atherothrombotic 10 2 12 

Cardioembolic 2 27 29 
∑  12 29    
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However, when the RF and the clinical variables (combined model) was employed, the accuracy, 
AUC, Se and Sp for predicting stroke etiology decreased to 0.732, 0.655, 0.556 and 0.781 respectively 
(p-value 0.040), with a Kappa = 30.07%.  

Table 6. The following confusion matrix illustrates the performance of the combined model (utilizing RF and 
clinical variables) with the automatic classifier Neural Network. 

  Neural Network (Combined Model) ∑ 
  Atherothrombotic Cardioembolic  

TOAST 
Atherothrombotic 5 7 12 

Cardioembolic 4 25 29 
∑  9 32    

The clinical model showed the worst performance in predicting the etiology of AIS, with 
statistically non-significant results, with an accuracy of 0.561, an AUC of 0.402, a Se of 0.300 and a Sp 
of 0.710 (p-value 0.993), with a Kappa = -6.03%. 

Table 7. Confusion matrix of clinical model (utilizing only clinical variables), also with the automatic classifier 
Neural Network. 

  Predicted with Neural Network ∑ 
  Atherothrombotic Cardioembolic  

TOAST 
Atherothrombotic 3 9 12 

Cardioembolic 9 20 29 
∑  12 29    

 

Figure 5. ROC curves of the three prediction models using Neural Network classifier. (a) ROC curve of 
Radiomics Model. (b) ROC curve of Combined Model. (c) ROC curve of Clinical Model. 

4. Discussion 

The present study has demonstrated the capacity of radiomics to differentiate between 
cardioembolic and atherothrombotic thrombi. The molecular differences between these two types of 
clots also reflect a difference in imaging representation, thus establishing a correlation between the 
RF of NCCT images and the atherothrombotic and cardioembolic etiology of AIS. A total of 845 RFs 
were analyzed; however, only a subset of 10 RFs that were statistically associated with these two 
etiological groups (p<0.05) were selected for further investigation. Multivariate analysis revealed no 
statistically significant association between these two etiologies of AIS and the clinical variables 
investigated, including clot density, arterial hypertension, dyslipidemia, diabetes mellitus, smoking, 
alcoholism, drug use, age and sex (p-value > 0.05). Three predictive models were developed: one 

     (a)       (b)      (c) 
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based on RF alone, one based on clinical variables alone, and a third model based on the combination 
of RF with clinical variables. An automatic classifier based on neural networks (Neural Network) has 
been used. The radiomic model performed very well, with an AUC of 0.842, an accuracy of 0.902, a 
Se of 0.833 and an Sp of 0.931. The model's performance, as measured by Cohen's Kappa index (K = 
76.43%), demonstrated substantial agreement with the TOAST criteria, which are recognized as the 
gold standard for the etiological classification of AIS. However, when clinical variables were 
introduced into the model, its predictive performance was found to deteriorate, with the clinical 
model demonstrating the most unfavorable outcomes. 

The present findings are consistent with those reported in two other articles published on the 
subject of the prediction of the etiology of AIS. Chen et al. obtained an AUC of 0.9018 and an accuracy 
of 0.8929 in differentiating between cardioembolic and atherothrombotic etiology using radiomic 
features based on CTA images [13]. The most notable difference between the two studies is the source 
of the radiomic data. In the present work, the radiomic data are obtained from the NCCT, while in 
the referenced article they are obtained from the CTA. A further distinction between our work and 
the referenced article is that we perform a semi-automatic segmentation, while they employed a 
manual segmentation. The semi-automated segmentation performed is based on automatic edge 
detection, with the radiologist responsible for ensuring that the segmentation includes as much of 
the thrombus area as possible. In patients with arterial clot visible on NCCT, the contrast between 
the region of interest and the rest of the brain parenchyma is sufficiently remarkable to be easily 
detected by the automatic edge detection method, with the radiologist only intervening to accept or 
correct the segmentation performed. This made the segmentation faster and included the entire 
thrombi. Finally, the aforementioned article does not incorporate clinical variables within the 
radiomic analysis, in contrast to the approach employed in the present article. 

Regarding the other published article, Jiang J et al. obtained an AUC of 0.838 in predicting the 
cardioembolic etiology of AIS in a sample of 403 patients, also using manual segmentation. They used 
NCCT-based radiomic features of AIS patients [14]. As far as this article is concerned, the main 
difference lies in the fact that in our case we are trying to predict both etiological atherothrombotic 
and cardioembolic groups, instead of limiting ourselves to predicting only one of them. The 
segmentation process is also manual, as described by Chen et al. Furthermore, this article makes no 
mention of clinical variables in the context of radiomic analysis. On the other hand, the images used 
in this case are also from NCCT, which also gives good results in predicting the cardioembolic group, 
supporting our findings that there is a correlation between the radiomic data obtained from NCCT 
and the etiology of thromboembolic events in patients with AIS. Therefore, this article also concluded 
that radiomics could be helpful in determining the etiology of AIS.  

Regarding the limitations of our study, the first one is that it is a retrospective study. In this 
regard, since there is not much literature available, we believe that the first step to investigate whether 
radiomics can contribute something to the diagnosis of the etiology of AIS is to perform a 
retrospective study, as it is the one that involves the least ethical conflicts, as well as not delaying or 
altering the usual management of these patients. Having shown that the association appears to exist 
with a retrospective study, we believe that the next step is to confirm these findings with a 
prospective study. Another classic limitation of radiomic studies is external validity. In our case, 
images from two different CT scanners of the same make and model were used. In this sense, it is 
necessary to include images from scanners of different manufacturers and from other hospitals to 
increase the external validity of these studies. For this reason, we believe that multicenter studies are 
also needed, because single-center studies seem to show that such an association exists. Finally, 
another limitation of radiomic studies is the difference in methodology between study groups in data 
processing and analysis of radiomic variables. In this case, it is necessary to publish in detail the steps 
carried out in order to increase the available bibliography in this field and to share methodologies 
that can be reproduced by other research groups, with the aim of unifying the analytical processes as 
much as possible. In terms of specific limitations of our study, it is important to note that we had a 
lower number of subjects in comparison to previous studies. In our case, in addition to a significantly 
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shorter recruitment period, the fact that only patients with clot visible on NCCT and pure occlusion 
of the distal ICA or proximal branches of the MCA were selected meant that the N was not higher. 
With this in mind, a sampling method recommended for low N studies was used (LOOCV). Further 
patient recruitment is needed to increase the sample size and to include other patient groups not 
analyzed in the current article. 

Determining the etiology of AIS is crucial for effective therapeutic management and early 
implementation of appropriate secondary prevention measures [26]. The classification of a stroke as 
lacunar or of infrequent etiology using the TOAST (Trial of Org 10172 in Acute Stroke Treatment) 
criteria is well protocolized. However, in cases of cardioembolic and atherothrombotic etiology, the 
boundaries may be less clearly defined, resulting in a significant number of patients being labelled 
as having an 'undetermined etiology'. In other cases, the information for etiology determination is 
only available after the acute onset of stroke, leading to delayed identification of the cause of AIS. 
The intention of this study to utilize radiomics in order to provide additional information which will 
assist in the classification of patients who meet the criteria for both etiological groups, or whose 
etiology has been incompletely studied (classified as “indetermined” according to the TOAST 
criteria). However, thrombi of atherothrombotic and cardioembolic origin exhibit divergent 
molecular compositions [5–8], yet this specific molecular data remains inaccessible in the acute care 
setting for these patients. Conversely, radiomic data derived from NCCT is obtainable early in the 
management of AIS patients. The present study makes a significant contribution to the extant 
literature by demonstrating that radiomics also has the capacity to differentiate thrombi of 
atherothrombotic origin from those of cardioembolic origin. These findings may assist in the timely 
and accurate diagnosis of the etiology of stroke in such patients. 

In summary, the present article confirms the hypothesis that molecular differences between 
thrombi of cardioembolic and atherothrombotic origin also translate into radiomic differences 
between these two etiology groups. This provides significant data that may facilitate the classification 
of the etiology of AIS. 

5. Conclusions 

Radiomic features can help classify patients with AIS into cardioembolic or atherothrombotic 
etiology, with consequent benefit in patient management. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AIS Acute Ischemic Stroke 
AUC Area Under Curve 

ASITN/SIR 
American Society of Interventional and Therapeutic Neuroradiology/Society of 
Interventional Radiology 

ASPECTS Alberta Stroke Programme Early CT Score 
CT Computed Tomography 
CTA Computed Tomography Angiography 
FN False Negative 
FP False Positive 
GLCM Gray-Level Cooccurrence Matrix 
GLDM Gray-Level Dependence Matrix 
GLRLM Gray-Level Run Length Matrix 
GLSZM Gray-Level Size Zone Matrix 
HU Hounsfield Units 
ICA Interna Cerebral Artery 
K Cohen´s Kappa index 
LOOCV Leave-One-Out Cross-Validation 
MCA Middle Cerebral Artery 
mRS modified Ranking Scale 
NCCT Non-Contrast Computed Tomography 
NGTDM Neighborhood Gray Tone Difference Matrix 
NIHSS National Institute of Health Stroke Scale 
ReLU Rectified Linear Unit 
RF Radiomics Features 
RQS Radiomics Quality Score 
Se Sensitivity 
Spe Specificity 
TOAST Trial of Org 10172 in Acute Stroke Treatment 
TN True Negative 
TP True Positive 
tPA tissue Plasminogen Activator 

Appendix A 

Appendix A.1. Radiomics Quality Score (RQS) 

Table A1. Please find below the RQS questionnaire and total score. For full details of the questionnaire, please 
refer to https://www.radiomics.world/rqs. 

Questions Answers 
Image protocol quality Protocols well documented and public 
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Multiple segmentations Yes 
Phantom study No 
Imaging at multiple time points No 
Feature reduction Either measure is implemented 
Multivariable analysis with non-RFs Yes 
Detect and discuss biological correlates Yes 
Cut-off analyses No 
Discrimination statistics Discrimination statistic and its significance 

Resampling method applied 
Calibration statistics Calibration statistic and its significance 

Resampling method applied 
Prospective study No 
Validation  Validation on dataset of same institute 
Comparison to “gold standard” Yes 
Potential clinical utility Yes 
Cost-effectiveness analysis No 
Open science and data The code is open sourced 
Total Score 19 (52.78%) 
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