Pre prints.org

Article Not peer-reviewed version

Camouflaged Object Detection using 3
Yolo

Vinay K Awasthi . , Max Mayberg, Yin-Li Liu
Posted Date: 24 June 2024
doi: 10.20944/preprints202406.1559.v1

Keywords: Fourier convolution, CNN, Yolo, Scatter2d

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3641080
https://sciprofiles.com/profile/3645017

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1559.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Improving Camouflage Object Detection

Vinay Awasthi 1'*, Yin-Li Liu 2 and Max Meyberg 3

SCPD Stanford University Baltimore, MD

Department of Electrical Engineering Stanford, CA; liuyinli@stanford.edu
Department of Computer Science University Stanford, CA; mmeyberg@stanford.edu
Correspondence: v365747@stanford.edu

¥ W N =

Abstract: This paper outlines an approach to identifying camouflaged objects of different shapes in complete
harmony with their surrounding. The YOLOVS algorithm operates by extracting features and applying non-
maximum suppression to detect overlapping bounding boxes. On the COD10K dataset, YOLOVS8 achieved a mean
average precision (mAP) of 18.2% in our training dataset. The CAMO dataset, converted to YOLO1.1 format using
CVAT.AJ, also showed poor training performance with a mean precision (mAP50) of 3.89%, which we believe is
due to issues with identifying the center in our bounding boxes for ground truth. We are working on addressing
this issue. Using these two datasets, we explored different approaches to improve performance, including edge
detection with Fourier transform, wavelet transforms, shape separation, and transfer learning. We achieved over
50% mAP50 by continuing to train the entire YOLOv8 small model with the COD10K and CAMO-COCO datasets,
and over 40% mAP50 by performing transfer learning on the YOLOv8 nano model.

Keywords: Fourier convolution; CNN; Yolo; Scatter2d

1. Introduction
1.1. Introduction

In order to detect camouflaged objects, it is necessary to separate these objects from their sur-
roundings through edge detection. For example, camouflaged objects behind tree stems, under grass,
or underwater require separating shape contours to identify specific shapes. Currently, we have
narrowed our data augmentation choices to processing images using CVNN [1], with frequency
filters such as high-pass filters and wavelet transforms. This approach will make our neural network
more complex by transitioning from real numbers to complex-valued numbers, as a result creating
4x the total parameters. PyTorch (version 1.7) has added support for complex-valued designs by
allowing torch.complex64, and TensorFlow also supports many libraries that facilitate designs with
complex-valued numbers.

We expect that complex-valued transformations in the form of upstream CNN layers will help
suppress the backgrounds of images sufficiently for YOLOVS to properly detect the structural charac-
teristics of camouflaged objects, even when they match the texture and color of their surroundings.

We are approaching camouflaged object detection as a problem of edge detection and shape
separation. The YOLOVS architecture weakens edge features as information passes through various
layers, so we need to augment data to address this issue. Shape identification by detecting contours
of camouflaged objects, by working in the CVNN domain (Complex Value Neural Nets), can further
assist us in identifying occluded structures.

1.2. Weaknesses of Other Research

One of the biggest challenges faced in detecting camouflaged objects is in regards for practical
applications for image section techniques, specifically for object detection tasks focused on camouflaged
objects. The issue arises in the fact that since true labels for camouflage objects use bounding boxes,
this results in an excessive amount of redundant background information which acts as “noise”. As a
result, researchers have faced challenges in further improving camouflage detection by utilizing YOLO
v8.

An additional challenge includes the loss of texture information when reducing image dimensions.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202406.1559.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1559.v1

20f14

1.3. Related Work

YOLOVS8 with augmented CNN s is currently detecting about 70 percent of the objects in COD10K
dataset [2]. Anabranch[3] network for camouflaged object detection [3], reported 66 percent correct
identification (segmentation only) as these objects are large, and at time cover, more that 70 percent of
picture (Stingray submerged under sandy ocean, large coiled python over dried leaves etc..), YOLOvS8
in general, will find these dataset challenging, due to its limitation of not carrying edge features deep
into its neural net layers.

2. Dataset
2.1. Data Pre-Processing

We used CVAT.ai and scripts to convert data from existing format to YOLO 1.1 format carrying
class, center co-ordinates along with width and height values. We ran into an issue of not identifying
center of the bounding box carrying camouflaged object using script so our training accuracy is lower
than expected. We are working on correcting this issue.

CVAT.AI can process data in many formats, however this process of creating custom dataset that
can be processed using YOLOVS for object detection is a manual process. There are services that can
draw bounding boxes on our 1250 CAMO dataset images but we decided not use them as we need to
also get familiar with data, various shapes, lighting conditions, various occlusions of camouflage in
nature so that we can properly augment our data and deploy correct approach to separate object and
its shape.

We tried roboflow which was unable to tag camouflaged dataset using foundational model
"grounding DINO". It did however tag non camouflaged objects correctly.

We ended up going with https://github.com/SYED-M-HUSSAIN/COD/ data conversion scripts
which use imutils python package to draw bounding box using segmentation mask.

3. Methodology
3.1. Model Selection

Many current state of the art methods (Sparse R-CNN, Anabranch, YOLOVS, Vision Transformers
using mask separable attention etc...) find it challenging to detect occluded camouflaged objects due
to not being able to detect edges as at times these objects are large and windy taking almost entire
image. We want to focus on increasing precision so we need to get to know our dataset well (COD10K
https:/ /dengpingfan.github.io/pages/COD.html, CAMO https:/ /sites.google.com/view /ltnghia/
research/camo).

Full survey of various concealed object detection methods can be found here. https://github.
com/ChunmingHe/awesome-concealed-object-segmentation

3.2. YOLOw8 Baseline

Pre-trained YOLOvV8 model with CAMO dataset, did not perform well, giving only about 3.96%
on mAP(50:95). We attribute this to:
1. Smaller model (YOLOvVS8 nano) not being able to capture occluded, camouflaged edges and shapes
and
2. Training with dataset of 152 images.

3.3. YOLOv8 COCO Data Format Alignment

We ran YOLOVS8x (largest model) as is for 120 epochs with incorrect bounding box centers to get
about 18.2 percentage average precision. We decided to use YOLOvVS8s and train on CAMO-COCO and
COD dataset.

We first used OpenCV collect contour method, to draw bounding boxes, which did not draw
correct bounding boxes for zebra and giraffe etc.. in COD10K dataset as it just picked contours, so
each stripe on zebra became a camouflaged object thus bringing our training accuracy to single digits.

https://github.com/SYED-M-HUSSAIN/COD/
https://dengpingfan.github.io/pages/COD.html
https://sites.google.com/view/ltnghia/research/camo
https://sites.google.com/view/ltnghia/research/camo
https://github.com/ChunmingHe/awesome-concealed-object-segmentation
https://github.com/ChunmingHe/awesome-concealed-object-segmentation
https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1559.v1

3o0f14

OpenCV Contours Vs Masks

PyTorch mask to box

Figure 1. Highlighting failing cases of various bbox scripting based methods.

While debugging low success rates of YOLOv8s on COD10K dataset, we noticed that some label
files, carried lots of bounding boxes, and training so many images with many instances was taking
up to 7.8 GB of GPU memory. We looked at the training dataset for images of patched objects, which
were failing detection (Giraffe, Zebra, Shrimp). We noticed that OpenCV collect contour method,
that worked well for CAMO-COCO dataset as objects were simpler (no stripes etc..), was failing to
recognize entire objects as one. After switching to PyTorch’s torchvision.ops "mask to box" method, we
started seeing correct bounding boxes which were then fed to clean run of YOLO pretrained model to
learn camouflaged objects giving training precision in 50 percentage range (mAP50) and 25 percentage
range for mAP50-95 metric just like CAMO-COCO dataset.

Pytorch correctly drawing bboxes

Figure 2. Correct Bounding boxes on Patchy objects.

We picked YOLOv8s model as base so that we can run many experiments and still provide a
solution of performing single shot object detection in field for rescue missions. We desire to not take

https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1559.v1

40of 14

Table 1. YOLO Models Complexity and Performance

l Models \ Size \ Param. \ Speed (ms) \ mAP(50:95) ‘
YOLOv8n | 640 | 3.2M 0.99 37.3
YOLOv8s | 640 | 11.2M | 1.2 449
YOLOv8m | 640 | 259M | 1.83 50.2
YOLOvSI 640 | 43.7M | 2.39 529
YOLOv8x | 640 | 682M | 3.53 53.9

upt to 40 seconds (R-CNNs) to detect an image with high precision as firefighters and first responders
may use our model, to respond in rescue missions. We need to sacrifice accuracy for faster speed.

3.4. Loss Function

We have chosen to implement our loss function as collection of 3 losses just as it is done in
ViT paper for detecting camouflaged objects[4]: https:/ /ieeexplore.ieee.org/stamp /stamp.jsp?tp=
&arnumber=10207675.

1. Classification Loss:
At present, we are classifying objects as camouflaged or not, by using just single class representation.
As we further clean up datasets for YOLOvV8 consumption; we will add fine-grained classification
identifiers representing various object classes.

2. Objectness Loss:
This defines whether our neural net was able to separate out object from the background or not.
This loss tells how far off our detection was from the ground truth bounding box. This single loss
characterizes the quality of our edge detection and shape separation. This value represents quality of
our texture pre-processing, using various CNN layers upfront performing high-pass filters or wavelet
processing to separate-out edges and shape, of camouflaged object from its background.

3. Regression Loss:
This loss represents difference in predicted class vs true class. For single class identification this is
identical to classification loss above. We intend to use this loss for multi-class identification. This loss
will define whether we are correctly identifying whether we have camouflaged bird in picture or an
insect or fish.

L= Lclussification + Lobject + Lregression

3.5. Training Budget

YOLO - A week of training results in 88% accuracy on non camouflaged objects.https:/ /arxiv.
org/pdf/1506.02640
ViT - 30 Days of training
Ours - 2 hrs/dataset (< 250 epochs on A100). This limit allows us to verify our model on 2 datasets,
one with small objects (CAMO-COCO) and other with large more complex objects with occlusion,
blurred edges and multiple instances with varying lighting conditions and reflections..

3.6. Metrics

We intend to add CNN layers to YOLO model and may transform some layers to transformer like
architecture supplying some context about camouflage.

YOLOVS reports F1 scores and mean average precision mAP50 and mAP(50:95), we intend to
keep this metric for our classification.

TP

Flscore =
TP+ L(FP+ FN)

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10207675
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10207675
https://arxiv.org/pdf/1506.02640
https://arxiv.org/pdf/1506.02640
https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1559.v1

50f 14

1 N
mAP = E I(Z::iP(K).AR(K)

In above equations, TP is True positive, FP is false positive, FN is false negative, c represents
object categories, K represents Intersection over Union (IoU) threshold. P(K) is precision and R(K) is
recall.

These metrics are standard in object detection and classification literature.

3.7. Transfer Learning

In addition to training the entire YOLO network, we employed transfer learning by freezing the
weights in certain layers of the YOLO backbone model and updating the remaining layers using the
CAMO dataset. This method offers an alternative approach for fine-tuning the YOLO model to detect
occluded objects without the need for high computing power. We trained the model on a CPU for 50
epochs, which took 17 hours, using the COD10K CAMO dataset and achieved a mAP50 score of 0.411.

We froze 123 out of 184 layers (15 out of 22 in the modules view) in the YOLOv8 nano model,
reducing the computational cost from 3,157,200 parameters to 1,420,880 parameters for gradient
calculation. This made the training process feasible on CPU machines. The performance of the transfer
learning model, as well as the fully-trained model, will be discussed in the results section.

4. Ensemble Learning Using 3 Models

In order to analyze texture information, we wanted to move to complex domain using Fourier
Transforms. We considered scattering transform, which is defined as complex-valued convolutional
neural network with wavelets acting as filters, allowing some signals to travel far in the network, while
limiting others to shorter distances, limiting their influence. We considered this to be a good plan as
there is lot of literature that suggest that texture processing can be done using FFTs. Wavelets CNNs
can be seen as... Source :https:/ /www.di.ens.fr/data/publications/papers/1304.6763v1.pdf

Sz(t, M) = |z x| *¢ I °

[l % b, [% ba, |

Sa(t, A1, da) = |2 o % | 46 |

[l %, [% sz | * ¢as| - OOOOO0COO COOOOO0O0COOCOOO00

Figure 3. Wavelets traversing CNNs, source: https:/ /www.di.ens.fr/data/publications/papers/1304.6763v1.pdf

Pytorch has support for complex valued tensors and YOLOV5 has a port supporting complex
valued CNNSs.

We investigated use of direct cosine transforms for camouflage detection as outlined in https://
openaccess.thecvf.com/content/ CVPR2022 / papers/Zhong_Detecting Camouflaged_Object_in_Frequency_
Domain_CVPR_2022_paper.pdf

These approaches used modified loss function, taking discrete cosine transform (DCT) based
norms, instead of euclidean norms, to detect, whether given image tile, was similar or different, to
other tiles, thus detecting camouflaged object. These modifications also required changes to the way
dot products were implemented, changes to softmax function and necessity to train entire network

https://www.di.ens.fr/data/publications/papers/1304.6763v1.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhong_Detecting_Camouflaged_Object_in_Frequency_Domain_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhong_Detecting_Camouflaged_Object_in_Frequency_Domain_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhong_Detecting_Camouflaged_Object_in_Frequency_Domain_CVPR_2022_paper.pdf
https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1559.v1

6 of 14

again, as pre-trained weights from YOLOv8s model, wouldn’t have been directly applicable. We
did not have 7 days of training budget so we decided to implement best of both worlds, by taking
inspiration from space image data processing, which discarded imaginary part, after taking FFTs, and
just used real part of the complex number, to continue image refinements.

These approaches used modified loss functions, incorporating discrete cosine transform (DCT)
based norms instead of Euclidean norms, to determine whether a given image tile was similar to or
different from other tiles, thereby detecting camouflaged objects. These modifications also need to
change the implementation from dot products to softmax function, which required retraining the
entire network, as the pre-trained weights from the YOLOv8s model would not have been directly
applicable.

Given our limited training budget of seven days, we decided to implement the best of both worlds
by taking inspiration from space image data processing. Specifically, we discarded the imaginary part
after taking FFTs and continued image refinements using only the real part of the complex numbers.

We created 3 YOLOv8s models so that we can perform ensemble learning by combining direct,
edge enhanced and shape enhanced (texture processed) detection while keeping processing require-
ments low so that real time detection could still take place. One model ran in base mode, using dataset
as is. We also passed background images without any labels so that model can generalize better in
aquatic scenes to detect submerged turtles.

One model, specializing in edge detection, used high pass filter and other specializing in shape
detection, by separating out high and low spatial frequencies, in Fourier domain, as it is done in
processing data from space telescopes https://arxiv.org/pdf/1504.00647[5]. We were intending to
use these filters as convolutions, in complex domain, and run entire YOLO architecture, in complex
domain, however we noticed, that by just processing real part of numbers, was enough, to increase
mAP50 and mAP(50:95) scores, by 10 percentage points, in shape related wavelet transforms using
tuned hyper-parameters. We used YOLOv8s and YOLOv8n models which are limited in their power
to express complex features.

Figure 4. High Pass filter transform, extracting edges, Original image is on left, extracted edges are on
the right.

Third model tried 2 approaches. We first tried Kymatio wavelet scattering net https://www.
kymat.io/, which is differentiable so these layers can be added to general pipeline of YOLO. This
generated 2 sets of Scattering?D coefficients to detect object’s shape better (see Table 2. above).
We realized that these wavelet transforms were very expensive to run on CPU, taking 20 to 30
seconds/image on a 56 cores machine. We also tried to run it on GPU, but CuPy package needed for
processing on GPU destabilized the system, twice, triggering complete data-loss, as CUDA versions
did not align between 11.8 and 12.2 of PyTorch, CuPy. We then abandoned this approach for wavelet
Scattering?D. We want camouflaged object detection to happen in real time to allow for firefighters etc
to have this setup in head up display, so that they can find people quickly in case of smoke/under-water
or in other visually difficult situations.

https://arxiv.org/pdf/1504.00647
https://www.kymat.io/
https://www.kymat.io/
https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 do0i:10.20944/preprints202406.1559.v1

7 of 14

Figure 5. Scatter2D wavelet differentiable transforms. Original heron image (L), Scatter2D transform
with scatter scattering coefficient=1 (M), Scatter2D transform with scatter scattering coefficient=2 (R)

We then embarked on extracting shape information using foreground /background processing, us-
ing Ftbg algorithm https://ui.adsabs.harvard.edu/abs/2017ascl.soft11003W /abstract. We converted
the package to handle images in .jpg and .png format as it only handled images in FITS format as most
of the data from space telescopes comes in, in this format or processed in this format.

Figure 6. Fourier Transforms isolating foreground (structure), by separating high spatial signals from
low ones. First row shows background and foreground, 2nd row is showing original image

We produced predictions in all 3 models separately and then looked at failing cases in base
models, to check whether FFT/wavelet processing could have helped in further detection, from other
two models. We found out that in some cases, shape detection produced camouflaged object detection,
where other two methods have failed.

We also found that edge detection triggered camouflaged object detection with low IOU (i.e.
bounding box was away from the object).

https://ui.adsabs.harvard.edu/abs/2017ascl.soft11003W/abstract
https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1559.v1

8 of 14

Figure 7. Edge enhanced CAMO object detection, (2nd row) shape based detection is failing.

We also noticed that shape based detection, increase our mAP50 to 0.56 and mAP(50:95) to 0.30
from earlier mAP50 of 0.5 and mAP(50:95) of 0.25.

We intend to combine all the models to create one final prediction as we noticed that each model
has its own strengths in isolating camouflaged objects where other two might have failed.

camo 0.25§

Figure 8. Ensemble Model detecting camouflaged object, Model that did not use fourier transforms
failed to detect camouflage object, other two models (Edge enhanced, Shape enhanced) were able to
detect. Edge enhanced did best

https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1559.v1

9of 14

5. A Comparison of YOLO Architectures

YOLOV1 - Single CNN to perform real time object detection, by dividing image into GRID,
making multiple predictions about existence of an object and then picking one with highest probability
after removing overlapping boxes.

YOLOV2 - Darknet-19 backbone, used anchor boxes idea from Faster R-CNN and batch norm in
all its convolution layers, increasing prediction accuracy.

YOLOVS3 - Darknet 53 backbone, utilizing residual connections, up-sampling and logistic classi-
fiers achieving 3x speed with comparable accuracy to RetinaNet.

YOLOWV4 - This YOLO deployed spatial attention.

YOLOR - Added 2 pipelines to provide explicit knowledge and implicit knowledge to Discrimi-
nator thus adding capability to handle multiple tasks.

YOLOX - Deployed Anchor Free, CIOU loss giving moderate increase in precision. CIOU loss
not only penalizes incorrect bounding box co-ordinates but also considers the aspect ratio and center
distance of the box.

YOLOV6 - Deployed DIOU loss. Distance IOU loss incorporates normalized distance between the
predicted box and the target box which converges much faster than generalized IOU (GIOU) loss.

YOLOV?7 - Added Leaky ReLU activation and CSPDartnet-Z Backbone. CSPNet partitions the
feature map of base layer into two parts and then merges them through a cross stage hierarchy. Use of
split and merge allows for more gradient to flow through the network, giving 1% increase in mAP.

YOLOVS - This adds Exponential Linear Unit (ELU) for activation, multi-scale object detection
and new backbone architecture called CSPDarkNet + C2F module which combines high level features
with contextual information. ELU is added to address vanishing gradient problem using CIOU and
DFL (Binary cross entropy for classification loss) loss (over Generalized Intersection over Union loss
https://giou.stanford.edu/) addressing how close shapes are to each other (i.e if no intersection, so
intersection over union (IOU) is not helpful), central point difference between predicted box and
ground truth and aspect ratio difference in predicted box to ground truth box. https://encord.com/
blog/yolo-object-detection-guide/, https:/ /arxiv.org/html/2304.00501v6.

6. Hyper Parameter Tuning

We used Ray-Tune and Weights and Biases to fine tune our model. Ray-tune performed a grid
search, on 30 or so available YOLO hyper parameters, resulting in most optimal set after running for
100 epochs. These runs are very costly as they run for typically 6-8 hours on NVIDIA Dual A100 GPUs.

We then used these best hyper-parameters to further train/tune our shape and base models.

Hyper-parameter Tuning

Figure 9. Ray-tune and Weights and Bias based hyper parameter tuning for 100 epochs

7. Results/Evaluation

We trained YOLOVSs (pretrained) using CAMO dataset for 289 epochs and then used this trained
model on COD10K dataset for 500 epochs.

https://giou.stanford.edu/
https://encord.com/blog/yolo-object-detection-guide/
https://encord.com/blog/yolo-object-detection-guide/
https://arxiv.org/html/2304.00501v6
https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 do0i:10.20944/preprints202406.1559.v1

10 of 14

Table 2. CAMO-COCO and COD10K Dataset Validation-Set Results

Dataset Images | Box(P | R mAP50 | mAP(50-95)
Val

CAMO 250 0.58 0.468 | 0.473 0.211

COD10K | 2026 0.655 | 0.481 | 0.52 0.255

Figure 10. base line model prediction example after training for 500 epochs

We have been experimenting with various features on model performance to fine-tune the best
approach.

We achieved 50 % accuracy (mAP50) on both of these datasets.

We trained on CAMO-COCO dataset for 289 epochs and then trained it on COD10K for 500
epochs. This got our validation set accuracy mAP50 to 50 %and mAP(50-95) to 25 %. We are getting
almost identical results on both datasets even if YOLO model does not work well with large objects, as
bounding box covers entire image.

Ensemble Learning by Feature Fusion
We are combining weights from various models before making prediction by giving equal say, to each
set of weights. YOLO allows for this integration by exposing APIs to feature fusion from various
models. https://github.com /ultralytics/yolov5/issues/7905.

https://github.com/ultralytics/yolov5/issues/7905
https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1559.v1

11 0f 14

Hyper tuned model’s Prediction

camo 0.7,

camo 03

Figure 11. Ensemble Model for Feature fusion based prediction

Transfer Learning
For the transfer learning model, we trained on the COD10K dataset for 50 epochs using a pretrained
YOLO nano model, achieving a mean precision of 41% (mAP50) on the validation set. Although this
is slightly lower than the model trained on all layers, it significantly improves the performance of
the original pretrained model. Considering computational cost, model size, training data size, and
training time, the results demonstrate that performing transfer learning on a pretrained YOLO model
is a viable approach under the constraints of limited devices, data, and time.

https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1559.v1

12 of 14

Table 3. Performance on different models, CAMO and COD10K datasets

| Model | mAP50 | mAP(50:95) | #p(M) |
Pretrained YOLOv8s 0.0396 | 0.076 11.2
Finetuned YOLOv8s 0.520 0.655 11.2
Transfer learning 0.411 0.180 3.2
Edge-enhanced 0.441 0.232 11.2
Shape-enhanced-Hyper | 0.556 0.309 11.2
Combined 0.9

7.1. Feature Visualization

To gain a deeper understanding of how object detection works for camouflaged objects, we
implemented feature map visualization on the convolution layers in YOLO models.

The backbone network of the YOLOvS8 nano and small models consists of 22 convolution layers.
We sampled feature maps from the output of several layers to compare the differences between the
models.

Figure 12. Test image of hidden heron and prediction

Layer YOLOv8n Fine-tuned Transfer

L0k 3. Ping 60 Heron 3903 19 Layr 0 Chanet 3

18

Figure 13. Feature Map Visualization

https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 do0i:10.20944/preprints202406.1559.v1

13 of 14

8. Failing Cases

YOLO does not do well when multiple objects are clustered together. This issue can only be
fixed by applying multiple dense layers at the start of neural net to extract relevant features as reported
by SINethttps:/ /github.com/DengPingFan/SINet?tab=readme-ov-file.

Figure 14. YOLO fails to detect multiple objects.

9. Conclusions

We think that we have an easy to implement solution for head-up display that can detect oc-
cluded, camouflaged objects by performing various cost effective transformations, that can scale from
environment to environment for various rescue missions. We noticed that wavelet transforms, used in
cleaning out space telescope images of milky-way, can directly be applied to identifying, camouflaged
objects, without incurring a lot of computational overhead involved in Scatter2D wavelet transforms.

10. Future Direction

We want to incorporate wavelet transforms to YOLO framework and directly perform object
detection by combining long-chain wavelet transforms and short chain convolutions. FFT transforms
can provide textural information and information about how similar various image patches are to each
other and normal convolutional network can continue to use same GIOU based loss function to detect
camouflaged objects.

References

1. Joshua Bassey, X.L. A survey of Complex Valued Neural Networks. ARXIV https://arxiv.org/pdf/2101.12249
2021, 2101, 234-778.

2. Han, T. Improving the Detection and Position of Camouflaged Objects in YOLOv8. MDPI Electronics 2023,
12,234-778.

3. Le, TN. Anabranch network for camouflaged object segmentation. Computer Vision and Image Understanding
2019, 184, 45-56.

4. Rohan Putatunda, M.A K. Vision Transformer-based Real-Time Camouflaged Object Detection System at
Edge. 2023 IEEE International Conference on Smart Computing 2023, 1, 234-778.

https://github.com/DengPingFan/SINet?tab=readme-ov-file
https://doi.org/10.20944/preprints202406.1559.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1559.v1

14 of 14

5. Ke, W. Large-scale filaments associated with Milky Way spiral arms. https://ui.adsabs.harvard.edu/abs
/2015MNRAS.450.4043W / abstract 2015, 1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202406.1559.v1

	Introduction
	Introduction
	Weaknesses of Other Research
	Related Work

	Dataset
	Data Pre-Processing

	Methodology
	Model Selection
	YOLOv8 Baseline
	YOLOv8 COCO Data Format Alignment
	Loss Function
	Training Budget
	Metrics
	Transfer Learning

	Ensemble Learning Using 3 Models
	A Comparison of YOLO Architectures
	Hyper Parameter Tuning
	Results/Evaluation
	Feature Visualization

	Failing Cases
	Conclusions
	Future Direction
	References

