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Abstract: Climate change is exacerbating urban heatwave, posing critical public health risks that are 

amplified by accelerating urbanization trends. The multilevel spatiotemporal interactions among 

environmental factors, heatwave characteristics, and public sentiment re-main unclear, especially in 

urban agglomerations. This study introduces an innovative analytical framework combining 

Geographical Convergent Cross Mapping (GCCM) for bidirectional causal inference with Bayesian 

Generalized Linear Mixed Models (GLMMs) for multilevel effect quantification. By systematically 

integrating a decade (2014-2023) of multi-source remote sensing data, environmental indicators, and 

3.2 million heat-perception social media posts across five major Chinese urban agglomerations, this 

study explore dynamic spatiotemporal relationships between environment, heatwaves, and 

emotions. Results reveal pronounced asymmetric causality, with environmental im-pacts on 

heatwaves significantly exceeding heatwave feedback to environments. Intensity indicators (HWA, 

HWM) show strongest responses to environmental factors, frequency indicators (HWF, HWday) 

demonstrate moderate-to-strong responses, while duration indicators (HWD) exhibit slightly lower 

causality. Standardized effect sizes rank environ-mental factors as: Albedo (0.87), FVC (0.79), NDTI 

(0.75), water bodies (0.57), NTL (0.62) and Elevation (0.35), confirming the dominant influence of 

surface properties over hydro-logical and topographic factors. Heatwaves and public emotional 

responses show significant nonlinear relationships with regional variations. As heatwave intensity 

in-creases, all five emotional dimensions rise with distinct patterns: heat perception responds most 

directly, health concerns accelerate during moderate-to-high intensity events, outdoor activity 

preferences decrease significantly during moderate events, and energy consumption concerns peak 

during high-intensity heatwaves. Each urban agglomeration exhibits unique emotional response 

patterns due to spatial and geographical differences. These findings provide critical insights into 

urban thermal environment mechanisms and their societal impacts, highlighting the necessity of 

region-specific strategies for urban planning and climate adaptation. 

Keywords: Urban Heatwave; Urban Agglomerations; Public Sentiment; Causality 

 

1. Introduction 

Since the early 21st century, the combined impacts of global warming and rapid urbanization 

have significantly increased frequency, intensity, and spatial extent of extreme high-temperature 

events in urban areas, rendering heatwaves one of the most critical environmental challenges globally 

[1,2]. The World Health Organization (WHO) has recognized high temperatures as among the most 

severe environmental health threats of the 21st century, emphasizing that prolonged heat exposure 

can cause systemic physiological damage, including immunosuppression and metabolic disorders 
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[3,4]. The combined effects of elevated temperatures and urbanization have intensified the duration, 

spatial reach, and extremity of heatwaves [5], posing significant risks to human habitats and public 

health [6]. The rapid advancement of urbanization has made urban agglomerations the "hotspots" of 

heatwave events by altering land cover, increasing heat emissions and intensifying the urban heat 

island effect [7–9]. The complex thermal environments and vulnerable socioeconomic structures 

within these densely populated urban agglomerations further amplify the health risks associated 

with heatwaves [10,11]. Therefore, investigating the interactions between heatwaves and the urban 

agglomeration environment, as well as their multidimensional impacts on human health, is of critical 

importance for developing effective strategies to mitigate the adverse effects of heatwaves. 

A substantial body of research has explored the complex interplay between heatwaves and 

urban environmental factors. These studies encompass both natural environmental variables—such 

as urban heat island effects, land use change, vegetation cover, hydrological conditions, and 

topography [7,12,13], and socioeconomic factors, including population density, economic 

development, and infrastructure distribution [8,14]. The spatial distribution and intensity of 

heatwaves are shaped by the joint influence of multiple natural and anthropogenic factors across 

varying spatiotemporal scales, resulting in pronounced spatiotemporal variability [5,15]. Remote 

sensing technologies, with their extensive spatial coverage, long time series, and high spatiotemporal 

resolution, have become essential for monitoring, assessing, and elucidating the spatiotemporal 

dynamics of heatwaves [16,17]. For instance, land surface temperature (LST) data derived from 

remote sensing imagery are widely used to quantify the spatiotemporal characteristics of heatwaves 

and to reveal the specific impacts of urbanization on heatwave intensification[18,19]. Vegetation 

indices (e.g., Fractional Vegetation Cover [FVC], Normalized Difference Vegetation Index [NDVI]) 

and land use/land cover (LULC) data further facilitate analyses of the relationships among vegetation 

degradation, land use change, and heatwave exposure [20,21]. 

However, most existing studies are constrained to a single spatiotemporal section and lack 

systematic time series analyses, limiting the ability to comprehensively capture the dynamic 

evolution of heatwaves [11,22]. Research on the mechanisms by which environmental factors 

influence heatwaves often overlooks issues of multicollinearity and has limited capacity to 

disentangle multilevel, cross-scale drivers, thereby constraining explanations of the complex origins 

of heatwave exposure [9,14,23,24]. Geographical Convergent Cross Mapping (GCCM) model, 

grounded in causal inference theory, quantifies dynamic information flows among variables and 

effectively detects causal effects in multivariate systems, overcoming the confounding effects of 

multicollinearity [25]. This enables robust elucidation of the dynamic causality between 

environmental factors and heatwave evolution. The Bayesian Generalized Linear Mixed Model 

(Bayesian GLMMs) offers a flexible hierarchical structure to integrate cross-scale and multilevel data 

[26,27], allowing for multidimensional analysis of the drivers of heatwave exposure risk. The 

integration of these two methods provides a scientifically rigorous analytical framework for 

investigating the spatiotemporal dynamics of relationships between heatwave and environment.  

In the domain of heatwave impacts on human health, prior research has primarily focused on 

physiological health outcomes, resulting in a relatively mature theoretical framework [28]. In 

contrast, studies on the psychological health impacts of heatwaves, particularly on emotional 

responses, remain limited. Due to the challenges of acquiring large-scale mental health data, most 

existing studies rely on small-sample surveys or clinical experiments, restricting effective research 

samples to narrow spatiotemporal scopes and hindering continuous population-level monitoring 

[29,30]. Moreover, conventional health indicators are inadequate for capturing the temporal 

dynamics of emotional fluctuations [31]. Consequently, the cross-scale interactive effects between 

mental health and environmental climate events—especially the temporal lag effects of emotional 

responses to heatwaves—remain insufficiently explored [32,33], and their underlying mechanisms 

are not fully understood [11].  

Emotional responses constitute a critical dimension of individual and societal adaptation to 

heatwaves. During heatwave periods, the public may experience heightened negative emotions such 
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as anxiety and depression [30,34,35], which not only affect individual psychological states but can 

also alter social behaviors and, in turn, influence societal resilience [23,36]. The proliferation of 

internet and social media platforms has created new avenues for individuals to express opinions and 

emotions [37]. Social media big data, with its extensive temporal coverage and broad spatial reach, 

has become an important resource for studying public emotional dynamics in response to both social 

and environmental stimuli [38]. Leveraging social media big data to investigate emotional responses 

to heatwave events can effectively address limitations of small sample sizes, short observation 

periods, and restricted spatial scales in traditional emotion research, providing a promising approach 

for examining the emotional impacts of heatwaves. 

As one of the world’s most populous countries, China faces particularly acute challenges in 

coping with extreme climate events due to the rapid development and high population density of its 

urban agglomerations [14]. Understanding the spatiotemporal mechanisms linking heatwaves, urban 

environmental variables, and emotional responses in Chinese urban agglomerations is essential for 

optimizing urban spatial structure and developing effective urban management strategies to mitigate 

the impacts of heatwaves. This study focuses on China’s five major urban agglomerations, aiming to 

quantify the spatiotemporal heterogeneity of heatwave exposure, analyze dynamic spatiotemporal 

patterns of public emotional responses using social media data, and elucidate the underlying 

mechanisms. The main research objectives are: (i) to construct heatwave exposure indicators and 

environmental factors for urban agglomerations from 2014 to 2023 using remote sensing data, and to 

employ GCCM to analyze the causality between heatwaves and environmental factors, identifying 

key environmental drivers; (ii) to apply Bayesian GLMMs to elucidate the driving mechanisms of 

heatwave exposure risk; and (iii) to construct a dynamic sentiment index based on geotagged Weibo 

data, and, in combination with modeling, to reveal the association patterns between heatwave events 

and public emotional fluctuations. This research aims to address gaps in the emotional dimension of 

heatwave studies, provide new perspectives on the multilevel impacts of extreme heat events, and 

offer scientific evidence for public health planning and climate adaptation strategies. 

2. Data 

2.1. Study Area 

This study focuses on the five major urban agglomerations in China: the Beijing–Tianjin–Hebei 

Urban Agglomeration (BTHUA), Chengdu–Chongqing Urban Agglomeration (CCUA), Triangle of 

Central China (TCC), Yangtze River Delta Urban Agglomerations (YRDUA), and Pearl River Delta 

Urban Agglomeration (PRDUA). These regions represent the most densely populated and 

economically developed urban clusters in China, occupying a central role in the country’s 

urbanization strategy [39]. Their geographic diversity and distribution across China’s north-south 

and east-west axes provide a comprehensive perspective for investigating the spatiotemporal 

evolution of heatwaves and associated emotional responses. 

2.2. Data Sources 

The primary datasets used in this study include temperature data, remote sensing data, 

population data, and social media data, as detailed in Table 1. 
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Table 1. Datasets used in this study. 

Datasets Environmental factors 
Time 

span 
Source 

ERA5-Land Temperature 
2014-

2023 
https://cds.climate.copernicus.eu 

Administrative 

region 
 

2014-

2023 
https://www.mnr.gov.cn/sj/sjfw/ 

LandScan Population 
2014-

2023 
https://landscan.ornl.gov 

MODIS Albedo Albedo 
2014-

2023 
https://lpdaac.usgs.gov/products/mcd43a3v061/ 

Landsat 8 

Collection 2 

Tier 1 Raw 

Scenes 

Modified Normalized Difference 

Water Index  (MNDWI) [46] 2014-

2023 

https://www.usgs.gov/land-

resources/nli/landsat/landsat-8-data-users-handbook Normalized Difference Thermal 

Index (NDTI) [47] 

Copernicus 

DEM 
Elevation 2015 

https://dataspace.copernicus.eu/collections/copernicus-

digital-elevation-model 

MOD13Q1 V6.1 Fractional Vegetation Cover (FVC) 
2014-

2023 
https://lpdaac.usgs.gov/products/mod13q1v061/ 

VNL V2 Nighttime lights (NTL) 
2014-

2023 
https://eogdata.mines.edu/products/vnl/ 

2.2.1. Temperature Data 

This Research utilized the temperature_2m band from the ERA5-Land dataset provided by the 

European Centre for Medium-Range Weather Forecasts (ECMWF) [40] to extract heatwave-related 

indicators. ERA5-Land, derived from the ERA5 reanalysis, offers a globally consistent climate dataset 

with high spatial resolution (0.1°), providing an accurate representation of temperature variability 

across China. 

2.2.2. Remote Sensing Data 

Remote sensing data from MODIS [41], Landsat 8 [42], Copernicus DEM [43], and VNL V2 [44], 

along with their derived products (Table 1), were used to generate a suite of natural environmental 

factors, including surface Albedo, Modified Normalized Difference Water Index (MNDWI), 

Normalized Difference Thermal Index (NDTI), Elevation, Fractional Vegetation Cover (FVC), and 

Nighttime Light data (NTL). All data processing was conducted on the Google Earth Engine 

platform. 

2.2.3. Population and Administrative Boundary Data 

Population distribution data were obtained from the LandScan dataset [45], which provides 

high-resolution (30 arc-second) global population grids. Figure 1 (a) presents the estimated 

population distribution of China in 2023 in the LandScan dataset. Administrative boundary data 

were sourced from the Ministry of Natural Resources of the People’s Republic of China to delineate 

the spatial extents of the five urban agglomerations. 
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Figure 1. (a) 2023 Estimates of population distribution in China, (b) Major urban agglomerations in China.  

2.2.4. Social Media Data 

Using a Python 3.8-based web crawler, we collected climate change–related posts from core 

cities within the five urban agglomerations on Sina Weibo (one of China’s most active social media 

platforms) between 2019 and 2023. After filtering out irrelevant or insufficiently detailed posts, 

approximately 3.2 million original Weibo entries were retained for sentiment analysis. 

3. Methods 

3.1. Methodological Framework 

The methodological framework comprises three main steps (Figure 2):  

(i) Multi-source remote sensing, meteorological, demographic, and topographic data were 

processed through the GEE platform to generate environmental factors including FVC and NDTI, as 

well as heatwave indicators such as intensity, frequency, and duration. Simultaneously, social media 

data were acquired using Python web crawling techniques, and sentiment indices were constructed 

based on Baidu's open-source NLP Senta model to quantify public emotional responses to heatwave 

events. 

(ii) Geographic Convergent Cross Mapping (GCCM) was applied to quantitatively assess the 

bidirectional causality strength between heatwave indicators and environmental factors and their 

spatiotemporal variation characteristics, thereby identifying causality between environmental factors 

and heatwave indicators. 

(iii) Bayesian Generalized Linear Mixed Model (Bayesian GLMMs) was constructed to integrate 

heatwave indicators, selected environmental factors, and sentiment indices into a unified analytical 

framework, exploring the complex interactions and potential moderating effects between heatwaves 

and environment as well as sentiment, revealing the multilevel spatiotemporal response mechanisms 

of public sentiment to heatwaves, and providing scientific support for urban thermal environment 

management and public health protection. 

3.2. Heatwave Indicators 

3.2.1. Excess Heat Factor (EHF) Calculation 
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Bulleted lists look like this: The Excess Heat Factor (EHF) [1] was adopted as the primary metric 

for heatwave events, with several derived indicators to characterize heatwave features. EHF is 

calculated as follows: 

𝐸𝐻𝐹𝑠𝑖𝑔 =
𝑇𝑖 + 𝑇𝑖−1 + 𝑇𝑖+1

3
− 𝑇95 (1) 

𝐸𝐻𝐹𝑎𝑐𝑐𝑙 =
𝑇𝑖 + 𝑇𝑖−1 + 𝑇𝑖+1

3
−

𝑇𝑖−2+, . . . , +𝑇𝑖−29

30
(2) 

𝐸𝐻𝐹 = 𝐸𝐻𝐹𝑠𝑖𝑔 × 𝑚𝑎𝑥(1, 𝐸𝐻𝐹𝑎𝑐𝑐𝑙) (3) 

Where 𝑇  is the daily mean temperature (average of daily maximum and minimum) ；
𝑇𝑖+𝑇𝑖−1+𝑇𝑖+1

3
 is the average temperature of three consecutive days；𝑖 represents the i-th day of each 

year，𝑇95 is the 95th percentile value of the daily temperature distribution at a certain location from 

1981 to 2010, which is considered as the threshold for extreme high temperatures in this area；
𝑇𝑖−2+,...,+𝑇𝑖−29

30
 is the average temperature of the past 30 days. 

 

Figure 2. Workflow of this study. 

3.2.2. Heatwave Event Definition 

In this study, a high temperature weather event is defined as an occurrence where 𝐸𝐻𝐹 > 0 , 

and a heatwave event is identified when 𝐸𝐻𝐹 > 0 persists for at least three consecutive days [48]. 

To more comprehensively reflect the severity of heatwave events, multiple heatwave indicators 

recommended by the WMO Commission for Climatology [49] are adopted. These indicators are 

widely used to describe the frequency, duration, and intensity of heatwave events. 

Furthermore, to further distinguish the severity levels of high-temperature events, 𝐸𝐻𝐹85  is 

introduced, representing the 85th percentile of all EHF values greater than zero at a given location 

during 2014–2023, arranged in ascending order, and used as the threshold for moderate heat events. 

When 0 < 𝐸𝐻𝐹 < 𝐸𝐻𝐹85 , the event is defined as a mild heat event (HWday); when 𝐸𝐻𝐹85 ≤ 𝐸𝐻𝐹 <

2𝐸𝐻𝐹85 , it is defined as a moderate heat event (HWsev); and when 𝐸𝐻𝐹 ≥ 2𝐸𝐻𝐹85 , it is defined as a 

severe heat event (HWex). By accumulating EHF values during heatwave events, the annual total EHF 

(HWa) is obtained to measure the overall intensity of annual heatwave events. 
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All heatwave-related indicators were calculated using the Google Earth Engine platform. Figure 

3. (a) shows the spatial distribution of 𝑇95 across China in this study, while Figure 3. (b)–(j) present 

the distributions of nine heatwave indicators in the five urban agglomerations. 

 

Figure 3. (a) Spatial visualization of the 95th percentile value of the daily temperature distribution at a certain 

location from 1981 to 2010; (b)-(j) are HWN, HWD, HWF, HWa, HWM, HWday, HWsev, HWex, and HWa 

respectively. The five columns from left to right in each sub-graph are BTHUA, CCUA, TCC, YRDUA and 

PRDUA. From top to bottom are for different years from 2023 to 2014. 

3.2.3. Population Exposure 

To assess the impact of heatwaves on emotional responses, we estimated total population 

exposure using a grid-based approach[50]:  

𝑃𝐸 = 𝐻𝑊 × 𝑃𝑂𝑃 (4) 

where 𝐻𝑊 is the heatwave indicator and 𝑃𝑂𝑃 is the total population in a given area, 𝑃𝐸 is the 

total amount of population exposure to heatwaves in this area. 

3.3. Geographical Convergent Cross Mapping 

When exploring the influencing factors of a group of variables, the direction of causality and 

mirroring effect should be considered. To uncover the driving mechanisms of heatwave exposure 

within the five major Chinese city clusters, we employ the Geographical Convergent Cross Mapping 

(GCCM) model[25]. GCCM is a state-space reconstruction technique designed for causal inference 

from spatial cross-sectional data, which is particularly well suited for Earth system analyses where 

time series data may be limited or exhibit only subtle variations. In addition, GCCM performs cross-

mapping prediction based on the spatial section data in the reconstructed state space, which 

overcomes the mirroring effect well and can fully mine the causality of the spatio-temporal section 

data in the Earth system (Figure 4).  
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3.3.1. Spatial Embedding and State-Space Reconstruction 

GCCM builds on the principles of Takens’ embedding theorem and the generalized embedding 

theorem. GCCM uses spatial lags—values observed at a focal spatial unit and its neighbors—to 

construct a “shadow manifold” for each variable. Formally, for a spatial variable 𝑋 observed over 

discrete spatial units, the embedding is defined as: 

𝜓(𝑥, 𝑠) = {ℎ𝑠(𝑥), ℎ𝑠(1)(𝑥), … , ℎ𝑠(𝐿−1)(𝑥)} (5) 

where ℎ𝑠(𝑥) is the observation at the focal unit and ℎs(i) (𝑥) represents the 𝑖th-order spatial lag. 

 

Figure 4. (a) Lorenz system: Nonlinear governing equations and attractor with a butterfly-like structure. 

Relationships between original and shadow attractors are illustrated. (b) Cross-mapping principle: Nearest 

neighbors are mapped to determine causal information. If nearest neighbors remain after mapping, causal 

information exists (top); otherwise, they do not remain nearest (bottom). Mapping direction and causal 

information are inverse. (c) Phase Space Reconstruction (PSR): Reconstructs a diffeomorphic shadow attractor 

using a single time series from the original attractor. Spatial lags: Focal unit and spatial lags of different orders 

in raster data (first-order: yellow, second-order: orange, third-order: red). (d) Causal inference via convergence: 

GCCM results (red line) indicate causality if convergent; non-convergence (blue line) indicates no causality. 

Mutual causality occurs if both lines converge, while unidirectional causality occurs if only one line converges. 

Two non-convergent lines suggest variables belong to separate systems. 

3.3.2. Cross-Mapping Prediction 

Once the state spaces (manifolds) for two spatially distributed variables (e.g., a heatwave 

indicator and a candidate environmental factor) are reconstructed, GCCM employs cross mapping to 

quantify the causality. In this framework, if two variables 𝑋  and 𝑌 are dynamically linked, the 

manifold reconstructed from 𝑋 (denoted 𝑀𝑋) can be used to predict the corresponding states in the 

manifold of 𝑌 (𝑀𝑌). Specifically, for a given spatial unit 𝑠, the value of 𝑌 is estimated as: 

𝑌̂𝑠|𝑀𝑋 = ∑ 𝜔𝑠𝑖

𝐿+1

𝑖=1

𝑌𝑠𝑖
|𝑀𝑋 (6) 
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where the weights 𝜔𝑠𝑖
 are computed based on the distances between the focal state 𝜓(𝑥, 𝑠) and its 

𝐿 + 1 nearest neighbors in 𝑀𝑋 : 

𝜔𝑠𝑖
|𝑀𝑋 =

exp [−
ⅆ𝑖𝑠(𝜓(𝑥, 𝑠𝑖), 𝜓(𝑥, 𝑠))
ⅆ𝑖𝑠(𝜓(𝑥, 𝑠1), 𝜓(𝑥, 𝑠))

]

∑ exp [−
ⅆ𝑖𝑠(𝜓(𝑥, 𝑠𝑖), 𝜓(𝑥, 𝑠))
ⅆ𝑖𝑠(𝜓(𝑥, 𝑠1), 𝜓(𝑥, 𝑠))

]𝐿+1
𝑖=1

(7) 

The distance between two points in the shadow manifold is defined by: 

ⅆ𝑖𝑠(𝜓(𝑥, 𝑠𝑖), 𝜓(𝑥, 𝑠)) =
1

𝐿
(|ℎ𝑠𝑖(𝑥) − ℎ𝑠(𝑥)| + ∑ 𝑎𝑏𝑠[ℎ𝑠𝑖(𝑘)(𝑥), ℎ𝑠(𝑘)(𝑥)]

𝐿−1

𝑘=1

) (8) 

where the term 𝑎𝑏𝑠[ℎ𝑠𝑖(𝑘)(𝑥), ℎ𝑠(𝑘)(𝑥)] represents the absolute difference between the 𝑘 th-order 

spatial lags of the focal unit and its neighbor. In the data based on this paper, the absolute difference 

function is defined as follows: 

𝑎𝑏𝑠[ℎ𝑠𝑖(𝑘)(𝑥), ℎ𝑠(𝑘)(𝑥)] =
1

𝐷
∑|𝑢𝑠𝑖(𝑘,𝑑)(𝑥) − 𝑢𝑠(𝑘,𝑑)(𝑥)|

𝐷

𝑑

(9) 

where 𝑢𝑠(𝑘,𝑑)(𝑥) is the observed value in the ⅆ th direction of the 𝑘th-order lag, and 𝐷 is the total 

number of directions considered. 

3.3.3. Evaluating Prediction Skill and Inferring Causality 

The skill of the cross-mapping prediction is evaluated using the Pearson correlation coefficient 

between the observed and predicted values: 

𝜌 =
𝐶𝑜𝑣(𝑌, 𝑌̂)

√𝑉𝑎𝑟(𝑌)𝑉𝑎𝑟(𝑌̂)
(10) 

By increasing the library size (i.e., the number of spatial units used in the reconstruction), 

convergence of 𝜌  is examined. A statistically significant convergence indicates a robust causal 

association between 𝑋 and 𝑌. In particular, if the cross mapping from 𝑋 to 𝑌 (denoted 𝑋 → 𝑌) 

yields a significantly higher 𝜌 than the inverse mapping (𝑌 → 𝑋), the dominant causal direction is 

inferred as 𝑋 → 𝑌. 

In our study, causality determination is based on the convergence behavior of the two mapping 

curves as the library size (i.e., the number of spatial units used for state space reconstruction) 

increases. If one mapping curve converges while the other remains low or does not converge, the 

direction corresponding to the convergent curve is considered the dominant causal direction, 

indicating a unidirectional causality. If both mapping curves converge as the library size increases, 

the relationship is interpreted as bidirectional. If neither mapping curve converges or both remain at 

low levels, no causality is inferred. A convergent curve reaching a high correlation coefficient 

indicates strong causality, while convergence within a moderate range suggests weak causality. 

3.4. Senta Model 

he open-source Senta model provided by Baidu NLP National Artificial Intelligence Open 

Innovation Platform is based on deep learning technology, utilizing a pre-trained BERT model as its 

foundation to efficiently and accurately perform sentiment analysis on text. First, unstructured 

Chinese text is preprocessed through tokenization and extraction of key elements (such as target, 

opinion, holder, and time), which are crucial for capturing contextual sentiment. Subsequently, the 

Baidu NLP platform’s API is used to call the Chinese sentiment lexicon, mapping lexical cues to 

sentiment polarity. In typical scenarios involving subjective descriptive text, a high-precision deep 

neural network (DNN) semantic model, integrated with an extensive sentiment lexicon 

(Supplementary S1), is employed to capture the hedonic state of individual emotions in Weibo 
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updates. The DNN model computes rich semantic representations of the input text and outputs a set 

of indicators to facilitate sentiment determination: the probability of the text being classified as 

positive, the probability of being classified as negative, the overall sentiment polarity label, and the 

associated confidence scores for the classification. This multi-output result not only quantifies the 

degree of emotion but also ensures robust handling of emotional cues in the dynamic social media 

environment. 

3.5. Bayesian Generalized Linear Mixed Models 

This study employs Bayesian Generalized Linear Mixed Models (Bayesian GLMMs) to analyze 

the driving mechanisms of heatwave exposure risk. GLMMs can simultaneously handle fixed and 

random effects, and by appropriately selecting the probability distribution and link function for the 

response variable, they can address the challenges of non-normal data. Within the Bayesian 

framework, prior distributions are specified and Markov Chain Monte Carlo (MCMC) methods are 

used to sample from the posterior distribution, providing uncertainty estimates for model parameters 

and a solid basis for subsequent inference. 

3.5.1. Model Structure 

All continuous covariates (heatwave exposure indicators 𝐻𝑖𝑡
∗  , environmental factors 𝐸𝑖𝑡

∗  , and 

sentiment indices 𝑆𝑖𝑡
∗  ) are first centered and standardized by their overall sample standard 

deviation: 

𝑋𝑖𝑡 =
𝑋𝑖𝑡

∗ − 𝑋̅

𝑆𝐷(𝑋)
(11) 

where 𝑋̅ and 𝑆𝐷(𝑋) denote the mean and standard deviation of the variable across all observations, 

respectively. 

Let the response variable 𝑦𝑖 follow an appropriate distribution, with its mean linked to a linear 

combination of covariates and random effects via a link function. The general form of the model is: 

𝑔(𝜇𝑖) = 𝑥𝑖
⊤𝛽 + 𝑧𝑖

⊤𝑖𝑏 (12) 

where 𝜇𝑖 = 𝐸(𝑦𝑖); 𝑔(⋅) is a known link function; 𝑥𝑖 is the vector of fixed-effect covariates for 

the i-th observation, 𝛽  is the corresponding vector of regression coefficients; 𝑧𝑖  is the covariate 

vector associated with random effects, and 𝑏 follows a multivariate normal distribution 𝑏 ∼ 𝒩(0, 𝐺) 

, where 𝐺 is the covariance matrix of the random effects. 

3.5.2. Priors and Posterior Distributions 

Weakly informative priors are assigned to the fixed-effect parameters 𝛽  , such as normal 

distributions  𝛽𝑗 = 𝒩(0, 𝜎𝛽
2)  with large variance to reflect prior uncertainty. For the covariance 

matrix 𝐺 of the random effects, an inverse Wishart prior is used to ensure model flexibility and 

numerical stability. Based on the above priors and the likelihood function, the posterior distribution 

is: 

𝑝(𝛽, 𝑏, 𝐺 ∣ 𝑦) ∝ ∏ 𝑝(𝑦𝑖|𝑥𝑖
⊤𝛽 + 𝑧𝑖

⊤𝑖𝑏)

𝑛

𝑖=1

𝑝(𝛽)𝑝(𝑏|𝐺)𝑝(𝐺) (13) 

where 𝑦𝑖 denotes the response for the i-th observation; 𝑥𝑖 is the fixed-effect covariate vector with 

corresponding parameter 𝛽 ; 𝑏 is the covariate vector for random effects, with random effects 𝑏 ∼

𝒩(0, 𝐺)； 𝐺 is the covariance matrix of the random effects, with its prior 𝑝(𝐺) typically specified as 

an inverse Wishart distribution. 

3.5.3. Model Validation 

Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior. 

Appropriate numbers of iterations, burn-in periods, and thinning intervals are set, and diagnostic 
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metrics (such as R2, effective sample size (MAE), etc.) are used to assess chain convergence and 

mixing. After sampling, model convergence is diagnosed using posterior density plots, trace plots, 

and autocorrelation plots. Additionally, posterior predictive checks are performed by comparing 

simulated and observed heatwave indicators for 2024 to evaluate model fit. For each parameter, the 

95% credible interval is calculated; if the interval does not include zero, the corresponding effect is 

considered statistically significant. 

To facilitate the interpretation and direct comparison of the relative importance of different 

environmental predictors, we report standardized effect sizes for all fixed effects. The standardized 

effect size for each predictor is defined as the estimated regression coefficient (𝛽𝑘) when all predictors 

and the response variable have been standardized to have zero mean and unit variance. This 

approach allows the effect size to be interpreted as the expected change in the response variable (in 

standard deviation units) associated with a one standard deviation increase in the predictor, holding 

other variables constant. 

3.5.4. Integrated Analysis 

The sentiment scores of the five urban agglomerations from 2019 to 2023 were weighted by the 

population distribution of each Urban Agglomeration to generate annual sentiment indices for each 

region. These sentiment indices, together with selected environmental factors, were incorporated into 

the model as interaction terms with heatwave variables. The model is specified as follows: 

𝑔(𝜇𝑖𝑡) = 𝛽0 + 𝛽1𝐻𝑖𝑡 + 𝛽2𝑆𝑖𝑡 + 𝛽3𝐸𝑖𝑡 + 𝛽4(𝐻𝑖𝑡 × 𝑆𝑖𝑡) + 𝛽5(𝐻𝑖𝑡 × 𝐸𝑖𝑡) + 𝛽6(𝐻𝑖𝑡 × 𝐸𝑖𝑡 × 𝑆𝑖𝑡) + 𝑏𝑖 , (14) 

where 𝐻𝑖𝑡 denotes the heatwave exposure indicator for Urban Agglomeration 𝑖 in year 𝑡 , 𝑆𝑖𝑡 is 

the sentiment index calculated and weighted based on geo-tagged Weibo data, 𝐸𝑖𝑡 represents the 

selected key environmental factors, and 𝑔(⋅) is the appropriate link function. The random intercept 

𝑏 ∼ 𝒩(0, 𝜎2) captures the heterogeneity among urban agglomerations. 𝛽0 is the fixed intercept, and 

𝛽1 to 𝛽6 are the regression coefficients for heatwave indicators and environmental factors in the 

equation. This model structure allows for the simultaneous examination of the individual and 

interactive effects among heatwaves, sentiment, and environmental factors, providing a statistical 

basis for elucidating how these factors jointly influence heatwave exposure risk. 

4. Results 

4.1. Causality Between Heatwave and Environment 

GCCM analysis revealed that most relationships exhibited asymmetric bidirectional causality: 

environmental factors generally showed strong causality toward heatwave indicators, whereas 

heatwave indicators exhibited weaker or negligible causality toward environmental factors. Intensity 

indicators (HWA, HWM, HWA) showed the strongest response to environmental factors, frequency 

indicators (HWF, HWday) demonstrated moderate to strong responses, and the sensitivity of duration 

indicators (HWD) was slightly lower than that of intensity indicators (Figure 5., Figure 6.). Albedo 

exhibited the strongest overall causality with heatwave indicators (mean ρ ≈ 0.772); FVC and NDTI 

showed lower causality with most heatwave indicators compared to Albedo, but were still relatively 

strong among all factors (mean ρ ≈ 0.673 and ρ ≈ 0.691, respectively). MNDWI and NTL exhibited 

moderate causality (mean ρ ≈ 0.475 and ρ ≈ 0.533, respectively), with a greater impact on intensity 

indicators (HWA, HWM) than on frequency indicators (HWN, HWF, HWday). Elevation showed the 

weakest causality with heatwave indicators (mean ρ ≈ 0.304). 
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Figure 5. Causality between heatwave indicators and environmental factors，The red arrow represents strong 

causality, the purple arrow represents medium causality, the blue arrow represents weak causality, and the gray 

arrow represents feedback under strong coupling relationship. 

Temporally, the mean maximum library prediction skill ρ for the causality between heatwave 

indicators and environmental factors in the five urban agglomerations remained generally stable 

across years, despite some fluctuations. The strength of the causality between the same 

environmental factor and different heatwave indicators exhibited varying trends over time (Figure. 

7). The causality between Albedo and heatwave indicators remained highly stable and strong 

throughout the study period (ρ values for different heatwave indicators in all years were above 0.6). 

Only the HWA indicator showed a steadily increasing and then stabilizing trend with Albedo from 

2014 to 2023 (mean ρ increased from 0.7023 to 0.8500, peaking in 2020), while the causality between 

other heatwave indicators and Albedo did not show regular temporal trends. The causal strength of 

MNDWI, NDTI, Elevation, FVC, and NTL with heatwave indicators remained generally stable over 

time, with only minor interannual differences and no clear temporal trends. 

Spatially, the strength of the causality between environmental factors and heatwave indicators 

varied significantly among urban agglomerations. The causal strength between Albedo and 

heatwave indicators was significantly higher in BTHUA and CCUA (mean ρ values of 0.792 and 

0.790, respectively) than in PRDUA and YRDUA, especially for HWN and HWF, where the mean ρ 

values of Albedo in BTHUA and CCUA both exceeded 0.8. The impact of MNDWI on heatwaves was 

much higher in YRDUA and PRDUA (mean ρ values of 0.6398 and 0.6598, respectively) than in 

BTHUA (mean ρ value 0.4636). NDTI showed a much stronger causality with heatwaves in PRDUA 

and CCUA (mean ρ values of 0.7488 and 0.7203, respectively) than in TCC (0.6288). The effect of 

Elevation on heatwaves was most pronounced in CCUA (mean ρ value 0.4591), much higher than in 

BTHUA (mean ρ value 0.3012), especially for heatwave intensity (HWA), where the prediction skill 

ρ value for Elevation in CCUA reached 0.5865. The causal strength of FVC on heatwaves was 

significantly higher in PRDUA and YRDUA (mean ρ values of 0.7787 and 0.7599, respectively) than 

in BTHUA (mean ρ value 0.6393), particularly for heatwave intensity (HWA) and heatwave days 

(HWday), where the ρ values for FVC in PRDUA and YRDUA both exceeded 0.8. The impact of NTL 

on heatwaves was most significant in BTHUA (mean ρ value 0.6052), higher than in CCUA (0.5051). 
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Figure 6. Causal inference for heatwave indicators and environmental factors (three different causal intensity 

relationships). 

4.2. Bayesian GLMMs Results and Reliability 

4.2.1. Fixed Effects of Environmental Factors 

The results of the Bayesian GLMMs showed that the influence strength of selected 

environmental factors on heatwave indicators was highly consistent with the findings from the 

causality analysis (Figure 8, Figure 9(b)). Strong causality factors—Albedo (Standardized Effect: 0.58–

0.82), FVC (0.55–0.78), and NDTI (0.53–0.76)—exhibited the strongest effects, especially on heatwave 

intensity indicators (HWA, HWM). Moderate causality factors—NTL (0.42–0.58) and MNDWI (0.38–

0.52)—showed moderate effects, with relatively stronger impacts on heatwave frequency indicators 

(HWN, HWF, HWday). Weak causality factor—Elevation (0.20–0.32)—had relatively weak effects on 

all heatwave indicators, with the smallest impact on heatwave severity indicators (HWa, HWsev, 

HWex). 

The effect sizes of different environmental factors on heatwave indicators also varied. The order 

of effect size from strongest to weakest was: intensity indicators > frequency indicators > duration 

indicators > severity indicators (Figure 8). The standardized effect sizes of environmental factors 

exhibited a consistent hierarchical pattern across the five urban agglomerations (Figure 9). Among 

different urban agglomerations, the average effect strength of environmental factors on heatwave 

occurrence ranked as follows: BTHUA, PRDUA, YRDUA, TCC, and CCUA (Figure 9(c)). Notably, 

unlike other urban agglomerations where Albedo was the strongest influencing factor, FVC had the 

strongest effect on heatwaves in CCUA, and Elevation had a higher impact than in other urban 

agglomerations (Figure 9(a)). In PRDUA and YRDUA, NDTI had a stronger effect on heatwaves than 

FVC, second only to Albedo, whereas the opposite was true in other urban agglomerations. The water 

index (MNDWI) had the least impact on urban heatwaves in BTHUA but was significant in TCC, 

while nighttime lights (NTL) had the least impact in CCUA but was significant in BTHUA and 

PRDUA, showing moderate effect sizes. The effect of Elevation was relatively weak (0.359, 95% CI: 

0.250–0.468) and did not reach high significance in any urban agglomeration. 
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Figure 7. Under the premise of convergence, when the largest library size is reached, the prediction skill ρ (keep 

four decimals) of heatwave indicators and environmental factors is obtained. 

 

Figure 8. Fixed effect analysis: The impact of environmental factors on heatwaves; (a) Standardized Effect Size 

of Environmental Factors on Heatwave Indicators, (b) Effect of Environmental Factors on Heatwave Indicators 

The effect sizes of different environmental factors on heatwave indicators also varied. The order 

of effect size from strongest to weakest was: intensity indicators > frequency indicators > duration 

indicators > severity indicators (Figure 8). The standardized effect sizes of environmental factors 

exhibited a consistent hierarchical pattern across the five urban agglomerations (Figure 9). Among 

different urban agglomerations, the average effect strength of environmental factors on heatwave 

occurrence ranked as follows: BTHUA, PRDUA, YRDUA, TCC, and CCUA (Figure 9(c)). Notably, 

unlike other urban agglomerations where Albedo was the strongest influencing factor, FVC had the 

strongest effect on heatwaves in CCUA, and Elevation had a higher impact than in other urban 

agglomerations (Figure 9(a)). In PRDUA and YRDUA, NDTI had a stronger effect on heatwaves than 

FVC, second only to Albedo, whereas the opposite was true in other urban agglomerations. The water 

index (MNDWI) had the least impact on urban heatwaves in BTHUA but was significant in TCC, 

while nighttime lights (NTL) had the least impact in CCUA but was significant in BTHUA and 
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PRDUA, showing moderate effect sizes. The effect of Elevation was relatively weak (0.359, 95% CI: 

0.250–0.468) and did not reach high significance in any urban agglomeration. 

 

Figure 9. Standardized Effect Size of Environmental Factors in Urban Agglomerations, (a) Standardized Effect 

Size of Environmental Factors in Urban Agglomerations, (b) Mean Effect Sizes of Environmental Factors, (c) 

Mean Effect Size by Urban Agglomerations. 

Analysis of the average effects of all environmental factors (Figure 8(b)) indicated that surface 

physical properties (Albedo, FVC, NDTI) had a significantly stronger impact on heatwaves than 

hydrological and topographic features (MNDWI, Elevation). This result supports the urban heat 

island theory, highlighting that urban surface material properties and vegetation cover are key factors 

in regulating the urban thermal environment. There were slight differences in the responses of 

different urban agglomerations to environmental factors (Figure 8(c)), with BTHUA and PRDUA 

showing stronger average effect sizes, and TCC showing weaker effects. 

 

Figure 10. Random effect analysis: Spatial and temporal heterogeneity; (a) Random Effects of Urban 

Agglomerations, (b) Temporal Random Effects of Heatwave Risk. 
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4.2.2. Random Effects of Environmental Factors 

There was significant spatial heterogeneity in the environmental effects on heatwave occurrence 

across the five urban agglomerations (Figure 9(a)), indicating that heatwave occurrence in different 

urban agglomerations was significantly influenced by random effects. The estimated random effects 

represent the deviation of each urban agglomeration from the national average. BTHUA (+0.2384) 

and YRDUA (+0.1876) exhibited higher positive random effects, while CCUA (–0.2217) and TCC (–

0.1453) showed stronger negative random effects, and PRDUA (+0.0237) was close to zero. 

Temporal random effects analysis revealed significant temporal heterogeneity in heatwave risk 

from 2014 to 2023 (Figure 9(b)). The estimated random effects for each year represent the deviation 

from the decadal average, reflecting the influence of interannual climate variability and other time-

related factors. Trend analysis showed that heatwave risk generally increased from 2014 to 2023 (β = 

0.0188, p < 0.01), but with notable interannual fluctuations. From 2014 to 2017, the random effect 

values increased from –0.0842 to 0.0224, indicating an overall upward trend in heatwave risk. A brief 

decline occurred in 2018–2019 (random effect values –0.0228 and –0.0157, respectively), followed by 

a sustained increase from 2020 to 2023 (random effect values rising from 0.0238 to 0.1092), indicating 

that heatwave risk in recent years was significantly higher than the decadal average. This pattern is 

generally consistent with global temperature trends, but also reflects the complexity and interannual 

variability of regional climate systems. 

4.2.3. Reliability 

Based on environmental factor and heatwave indicator data for the five urban agglomerations 

from 2014 to 2023, we used the Bayesian GLMMs to predict heatwave indicators for each urban 

agglomeration in 2024. To assess model reliability, we collected actual observed heatwave indicator 

data for the five urban agglomerations in 2024 and compared them with the model predictions 

(Figure 11). The validation results showed that the model’s predictive ability varied across different 

types of heatwave indicators. Overall, the model demonstrated good predictive performance, with 

an average R² of 0.5694 and an average prediction accuracy of 88.90%. This indicates that the model 

can effectively capture future trends in heatwave characteristics based on historical relationships 

between environmental factors and heatwave indicators. In terms of indicator types, the model 

achieved the highest predictive accuracy for heatwave intensity indicators (HWA, HWM), with an 

average R² of 0.9314. The prediction accuracy for heatwave amplitude (HWA) was particularly high 

(R² = 0.9666, RMSE = 0.78°C), while that for heatwave magnitude (HWM) was slightly lower but still 

high (R² = 0.8968, RMSE = 0.88°C). For heatwave frequency indicators (HWN, HWF, HWday), the 

model showed moderate predictive ability (average R² = 0.5375). Among these, the prediction 

accuracy for heatwave days (HWday) was relatively high (R² = 0.8050, RMSE = 1.85 days), while that 

for heatwave frequency (HWF) was lower (R² = 0.4471, RMSE = 1.29 times). The predictive accuracy 

for heatwave duration indicators (HWD) was moderate (R² = 0.3108, RMSE = 1.11 days), while for 

heatwave severity indicators (HWa, HWsev, HWex), the model’s predictive accuracy was relatively 

low. The lowest accuracy was for cumulative heatwave intensity (HWa) (R² = –0.4530, RMSE = 

11.65°C·days), while the accuracy for heatwave severity (HWsev) and heatwave excess index (HWex) 

was slightly higher (R² = 0.9501 and 0.9330, respectively). 
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Figure 11. Bayesian GLMMs Prediction vs. Observation (2024). 

4.3. Relationship Between Heatwave and Emotional Responses 

Through quantitative analysis of the associations between heatwave indicators and five 

sentiment dimensions (Heat Perception, Thermal Discomfort, Health Concern, Outdoor Activity 

Reduction, and Energy Consumption Concern), this study revealed the nonlinear characteristics and 

regional heterogeneity of heatwave–emotional response relationships. 

The results showed that as the intensity of various heatwave indicators increased, the scores for 

all sentiment dimensions also increased, but the patterns of increase differed significantly (Figure 12). 

The Heat Perception dimension exhibited the most direct response, with scores rising significantly 

with increasing heatwave intensity in all urban agglomerations, from 2–4 at low intensity to 7–9 at 

high intensity. The Thermal Discomfort dimension showed a similar but slightly lower trend, 

indicating a high correlation but not complete consistency between the two. The Health Concern 

dimension changed little at low heatwave intensity (0–0.3), but showed an accelerated increase at 

moderate to high intensity (0.3–1.0), especially in BTHUA and CCUA. The Outdoor Activity 

Reduction dimension began to increase significantly at moderate heatwave intensity (around 0.4–

0.6), suggesting that behavioral adjustments occur earlier than other emotional responses. The Energy 

Consumption Concern dimension showed the most pronounced increase at high heatwave intensity 

(0.7–1.0), particularly in YRDUA and PRDUA. 
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Figure 12. Relationship Between Heatwave Intensity and Public Sentiment (2019-2023). 

Significant differences were observed among the five urban agglomerations in the heatwave–

emotional response relationship, each exhibiting a unique curve-fitting pattern (Figure 13). BTHUA: 

"Fast Rise–Slow Plateau" pattern, with sentiment scores rising rapidly in the 0.2–0.5 heatwave index 

range and leveling off in the 0.5–1.0 range. All sentiment dimensions in this urban agglomeration had 

generally higher scores than in others, especially at low to moderate heatwave intensity. CCUA: 

"Slow Rise–Sudden Increase" pattern, with slow growth in sentiment scores in the 0–0.6 range and 

accelerated increase in the 0.6–1.0 range. The Health Concern and Energy Consumption Concern 

dimensions showed particularly pronounced increases at high heatwave intensity. TCC: "Linear 

Growth–Slight Saturation" pattern, with sentiment scores nearly linearly related to heatwave 

intensity and only slight saturation at high intensity (0.8–1.0). Differences among sentiment 

dimensions were relatively small in this urban agglomeration. YRDUA: steady growth pattern, with 

relatively uniform changes in response to increasing heatwave intensity, especially in the Heat 

Perception and Thermal Discomfort dimensions. PRDUA: "Plateau–Surge–Plateau" stepwise pattern, 

with a marked jump in sentiment scores at a specific heatwave intensity threshold (around 0.2), 

forming a step-like change. The Energy Consumption Concern dimension showed the greatest 

variation in this urban agglomeration. 

There were also differences among sentiment dimensions within the same urban agglomeration. 

The Heat Perception and Thermal Discomfort dimensions consistently showed the highest baseline 

scores and relatively stable growth trends across all urban agglomerations. The Health Concern 

dimension had lower scores at low heatwave intensity but increased most significantly at high 

intensity, especially in CCUA and PRDUA. The Outdoor Activity Reduction dimension began to 

increase at moderate heatwave intensity, indicating that this is an early behavioral response of the 

public to heatwaves. The Energy Consumption Concern dimension showed little difference among 

urban agglomerations, suggesting that the relationship between emotional tendencies toward energy 

use and heatwave intensity was relatively consistent across regions. 

 

Figure 13. City-Specific Patterns of Heatwave-Sentiment Relationships. 
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5. Discussion 

5.1. Methodological Innovations 

This study integrates remote sensing big data and its derivatives with social media data, 

combining the geographical causality model (GCCM), social media data analysis methods, and 

Bayesian GLMM from the perspective of urban agglomerations to explore the relationship between 

heatwaves and environmental factors and their spatiotemporal impacts on human emotional 

responses. This approach effectively overcomes the limitations imposed by the scarcity of 

spatiotemporal data in this research field, and the adopted data processing and analytical methods 

provide a valuable reference for similar studies at the regional scale. 

First, a causality inference model was used for environmental variable selection, breaking 

through the traditional correlation-based screening framework. By constructing a spatiotemporal 

causality network between environmental factors and heatwave indicators, key variables directly 

driving heatwave intensity were identified, reducing the risk of spurious associations in traditional 

analyses [51,52]. This causality-based screening mechanism not only enhances model interpretability 

but also provides a more solid scientific foundation for understanding the mechanisms of heatwave 

formation.  

Second, by utilizing geo-tagged, real-time, large-scale, and naturally expressed sentiment data 

from social media platforms such as Weibo, this study captures multidimensional public emotional 

responses during heatwaves, enabling timely monitoring of public sentiment fluctuations at the 

urban agglomeration scale. This approach avoids recall bias and representativeness issues inherent 

in traditional surveys [53] , and captures instantaneous emotional responses that are difficult to 

obtain through questionnaires, thus providing dynamic support for adaptive decision-making 

regarding heatwaves.  

Third, the application of Bayesian GLMM establishes a more robust statistical framework for 

analyzing the relationships among heatwaves, environmental factors, and sentiment. Compared to 

traditional linear or generalized linear models, Bayesian GLMM can simultaneously address 

spatiotemporal dependencies and complex interactions between environmental factors and 

sentiment indices [26]. By incorporating random effects, spatial heterogeneity among urban 

agglomerations and interannual temporal variability are controlled. Parameter uncertainty 

estimation under the Bayesian framework is particularly valuable for risk assessment and 

management in climate change adaptation. 

Finally, this study innovatively adopts the perspective of urban agglomeration populations, 

linking extreme climatic events and human well-being at the scale of population aggregation. By 

using urban agglomerations as analytical units and comprehensively considering intra-regional 

population distribution and environmental heterogeneity, the study reveals the impact of heatwaves 

on regional well-being. The constructed heatwave–emotional response curves for each urban 

agglomeration show significant differences, highlighting the necessity of regionally differentiated 

adaptation strategies. 

5.2. Spatiotemporal Relationships of Environment on Heatwave 

5.2.1. Causality 

GCCM results indicate the existence of asymmetric bidirectional causality between 

environmental factors and heatwave indicators, consistent with the findings of Qiao et al. (2024) [19], 

Yang et al. (2024) [23], and others. The causal effect of environmental variables on heatwave 

indicators is much stronger than the causal feedback from heatwave indicators to the environment. 

This asymmetry reveals the dominant role of environmental factors in the formation of heatwaves 

and reflects the limited feedback capacity of heatwaves on environmental systems. In terms of causal 

strength, Albedo exhibits the strongest causality with heatwave indicators, while Elevation shows 

the weakest. This is consistent with the findings of Kala et al. (2022) [54] regarding the impact of 

urban surface albedo on heatwaves, further confirming the key role of surface radiation balance in 
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heatwave formation. Moreover, different types of heatwave indicators respond differently to 

environmental factors. Heatwave intensity indicators are most sensitive to environmental factors, 

while severity indicators are less responsive. This finding aligns with Wei et al. (2024) [55] and others 

regarding the differential effects of urban environmental factors on various heatwave characteristics, 

indicating that environmental factors selectively influence different features of heatwaves, with the 

most pronounced regulatory effect on heatwave intensity. 

5.2.2. Spatial Heterogeneity 

The influence of environmental factors on heatwaves exhibits significant spatial heterogeneity 

among the five major urban agglomerations, both in terms of overall effect strength and the relative 

importance of specific environmental factors. 

In terms of overall effect strength, the average effect of environmental factors on heatwaves 

decreases in the order: BTHUA, PRDUA, YRDUA, TCC, and CCUA. This spatial pattern partially 

agrees with the findings of Lei et al. (2024) [56] on the spatial distribution of heatwaves in China, but 

our study finds that the effect strength of environmental factors on heatwaves in PRDUA is lower 

than in BTHUA, which differs from conventional understanding. This may be due to the higher 

vegetation cover and water body proportion in PRDUA, which provide a stronger buffering effect 

against heatwave formation [55,57], a hypothesis supported by the higher causal strength of FVC and 

MNDWI in PRDUA in our GCCM model. 

Regarding the relative importance of specific environmental factors, different urban 

agglomerations exhibit unique patterns. Albedo has the most significant impact in BTHUA and 

CCUA, consistent with the findings of Zhang et al. (2022) [58] and Zeng et al. (2024) [59] on the 

influence of surface material properties on the urban heat island effect. MNDWI has a much greater 

impact in YRDUA and PRDUA than in BTHUA, consistent with Xu et al. (2023) [60], who found that 

the water body cooling effect is more pronounced in humid southern regions. This spatial 

heterogeneity indicates that the mechanisms of heatwave formation are regulated by regional climate 

background [61], geographical environment, and urbanization characteristics [5,12], and that 

heatwave prevention and control strategies should consider such regional differences. 

5.2.3. Temporal Heterogeneity 

Temporal random effects analysis further reveals the temporal heterogeneity of heatwave risk 

from 2014 to 2023. Overall, heatwave risk shows an upward trend, but with significant interannual 

fluctuations. Heatwave risk from 2020 to 2023 is significantly higher than the decadal average, 

consistent with the conclusions of the IPCC Sixth Assessment Report regarding the increasing 

frequency and intensity of global extreme high-temperature events [62], and also with global 

temperature trends [2,63], reflecting the complexity and interannual variability of regional climate 

systems. However, a brief decline in heatwave risk was observed in 2018–2019, which may be 

attributed to internal variability of the regional climate system or short-term effects of specific 

circulation patterns, suggesting that both long-term climate change trends and short-term climate 

fluctuations should be considered in heatwave prediction. 

5.2.4. Integrated Mechanisms of Environmental Factors on Heatwaves 

Based on the results of GCCM and Bayesian GLMM, this study identifies the integrated 

mechanisms by which environmental factors influence heatwaves. Surface physical properties 

(Albedo, FVC, NDTI) have a significantly stronger impact on heatwaves than hydrological and 

topographic features (MNDWI, Elevation), supporting the urban heat island theory that urban 

surface material properties and vegetation cover are key regulators of the urban thermal environment 

[58,64–66]. Specifically, Albedo directly affects surface energy balance by regulating the absorption 

and reflection of solar radiation and is an important factor related to heatwaves. FVC reflects the 

effect of surface vegetation in regulating local temperature through transpiration and shading, 
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playing a stabilizing and regulatory role in heatwaves [67]. NDTI reflects spatial differences in surface 

thermal inertia and heat capacity, significantly affecting the duration and intensity of heatwaves. 

MNDWI highlights the greater importance of natural cooling systems in regulating heatwaves in 

humid climates, while Elevation has a more pronounced effect on heatwaves in CCUA. 

There are significant interactive and nonlinear effects of environmental factors on heatwaves. 

For example, the combination of high surface albedo and low vegetation cover produces a synergistic 

effect, significantly increasing heatwave risk [68], while the combination of high water body coverage 

and high vegetation cover produces an antagonistic effect, effectively reducing heatwave risk [57]. 

These complex interactions indicate that heatwave formation results from the joint action of multiple 

environmental factors at different spatiotemporal scales, and changes in a single factor may, through 

internal feedback mechanisms, produce complex cascading effects. 

5.3. Spatiotemporal Relationships Between Heatwaves and Sentiment 

There is a clear positive correlation between heatwaves and emotional responses, but this 

relationship does not follow a simple linear pattern. As heatwave intensity increases, scores for all 

sentiment dimensions rise, but the growth curves exhibit dimension-specific characteristics. The Heat 

Perception dimension responds most directly and sensitively to heatwaves, increasing significantly 

even at low heatwave intensity, consistent with the findings of Thompson et al. (2018), Liu et al. 

(2021), and Weng et al. (2024) on climate perception [30,34,35], indicating high public sensitivity to 

temperature changes. The Health Concern dimension exhibits a clear threshold effect, with 

significant increases only after heatwave intensity reaches a moderate level, reflecting the threshold 

nature of public health risk perception. 

Furthermore, the five urban agglomerations show significant spatial heterogeneity in the 

heatwave–sentiment relationship, forming five distinct response patterns. This spatial variability is 

reflected not only in the curve shapes but also in sentiment intensity and threshold levels. The "fast 

rise–slow plateau" pattern in BTHUA is related to its history of climate adaptation; residents in this 

region, long exposed to large temperature fluctuations, may have developed strong adaptive 

capacity. In contrast, the "plateau–surge–plateau" stepwise pattern in PRDUA reflects a unique 

response mechanism of residents in subtropical regions to heatwaves, possibly related to the region’s 

persistently hot and humid climate. 

In addition, different sentiment dimensions exhibit temporal sequence differences in response 

to changes in heatwave intensity. The Outdoor Activity Reduction dimension begins to increase 

significantly at moderate heatwave intensity, preceding other sentiment dimensions, indicating that 

behavioral adjustment is an early public response mechanism to heatwaves. This finding is consistent 

with Hansen et al. (2015) regarding public behavioral adaptation strategies during heatwave events 

[69]. The Energy Consumption Concern dimension increases significantly only at high heatwave 

intensity (0.7–1.0), suggesting that emotional responses related to energy use may be a lagged effect 

of heatwave impacts. 

Finally, this study also finds intra-urban agglomeration differences in the heatwave–sentiment 

relationship. Within the same urban agglomeration, different sentiment dimensions exhibit distinct 

response patterns and sensitivities to heatwaves, which may reflect the heterogeneity of 

socioeconomic structure and environmental conditions within urban agglomerations. For example, 

in CCUA, the Health Concern and Energy Consumption Concern dimensions show particularly 

pronounced increases at high heatwave intensity, possibly related to the region’s complex 

topography and relatively low urbanization level. 

5.4. Limitations 

Despite the progress made in exploring the relationships among heatwaves, environmental 

factors, and emotional responses, several limitations remain that may affect the interpretation and 

generalizability of the results. 
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First, although social media data provide a large sample of emotional expressions, there is 

inherent selection bias. The Weibo user base is mainly composed of young people and urban 

residents, which may  inadequately capture the emotional responses of older adults, rural residents, 

and other groups [70]. In addition, emotional expression on the Weibo platform may be influenced 

by social desirability effects and platform algorithms, leading to amplification or suppression of 

certain emotions. Such data source bias may result in the findings not fully reflecting the true 

emotional state of the entire population, especially the emotional responses of more vulnerable 

groups such as the elderly during heatwave events, which may be systematically underestimated 

[71]. 

In terms of methodology, although the GCCM model effectively addresses multicollinearity and 

identifies causality, its handling of spatial autocorrelation remains limited. In highly urbanized areas, 

spatial interactions among environmental factors may be more complex, and relying solely on GCCM 

may not fully capture such complex spatial dependency structures. Meanwhile, although Bayesian 

GLMM can handle multilevel data, the increased model complexity raises uncertainty in parameter 

estimation, especially when the sample size is relatively limited [27]. 

Regarding spatiotemporal scales, although the study period (2014–2023) covers a decade, it is 

still relatively short in the context of long-term climate change, which may limit the ability to capture 

long-term evolution trends in heatwave patterns. Spatially, although the study covers China’s five 

major urban agglomerations, intra-agglomeration heterogeneity (e.g., urban–suburban gradients, 

socioeconomic differences) may be averaged out [72], leading to insufficient identification of special 

patterns in local hotspot areas. 

Regarding the selection of environmental factors, although the six environmental factors chosen 

in this study cover the main natural and anthropogenic environmental characteristics, some 

potentially important factors, such as urban morphology, building density, and the quality of green 

infrastructure, may have been overlooked. Furthermore, although remote sensing data provide large-

scale environmental information, their spatial and temporal resolution limitations may hinder the 

capture of small-scale environmental features, especially in highly heterogeneous urban 

environments. In addition, causality is often nonlinear and multidirectional and may be influenced 

by unobserved variables. Although this study considers the bidirectional relationship between 

environmental factors and heatwaves, it may not fully exclude the influence of other potential 

confounders, such as large-scale climate patterns and urban development policies. 

6. Conclusions 

Through the integration of multi-source data and a multi-level analytical framework, this study 

systematically investigated the complex spatiotemporal relationships among heatwaves, 

environmental factors, and public emotional responses in China’s five major urban agglomerations, 

revealing the environmental driving mechanisms of heatwave formation and their multidimensional 

impacts on public sentiment. The main conclusions are as follows: 

(i) There exists a significant asymmetric bidirectional causality between environmental factors 

and heatwave indicators, with the influence of environmental factors on heatwaves being much 

stronger than the feedback effect of heatwaves on environmental factors. Surface physical properties 

exert a significantly greater impact on heatwaves than hydrological and topographic features, with 

surface albedo exhibiting the strongest causal relationship, while topographic factors have the 

weakest effect. This finding supports the urban heat island theory, namely, that urban surface 

material properties and vegetation cover are key regulators of the urban thermal environment. 

(ii) The influence of environmental factors on heatwaves exhibits marked spatial heterogeneity. 

The mechanisms of heatwave formation differ significantly among urban agglomerations, with the 

overall effect strength of environmental factors decreasing in the order of BTHUA, PRDUA, YRDUA, 

TCC, and CCUA. The relative importance of specific environmental factors also varies by urban 

agglomeration: surface albedo has the most significant impact in BTHUA and CCUA; the water body 

index plays a more prominent role in YRDUA and PRDUA; vegetation cover has a stronger effect in 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2025 doi:10.20944/preprints202505.1273.v3

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1273.v3
http://creativecommons.org/licenses/by/4.0/


 23 of 27 

 

PRDUA and YRDUA; and topographic factors are relatively more important in CCUA. This spatial 

heterogeneity reflects the complex regulation of heatwave formation by regional climate background, 

geographical environment, and urbanization characteristics. 

(iii) Heatwave exposure showed an overall increasing trend from 2014 to 2023, albeit with 

significant interannual fluctuations. Heatwave exposure from 2020 to 2023 was significantly higher 

than the decadal average, indicating an increasing threat from heatwaves in recent years. 

(iv) There is a nonlinear relationship between heatwaves and public emotional responses, with 

pronounced regional differences. As heatwave intensity increases, all five sentiment dimensions 

(heat perception, thermal discomfort, health concern, outdoor activity reduction, and energy 

consumption concern) show an upward trend, but the patterns of increase differ. The heat perception 

dimension exhibits the most direct response; the health concern dimension accelerates in the 

moderate-to-high heatwave intensity range; the outdoor activity reduction dimension begins to 

increase significantly at moderate heatwave intensity, indicating that behavioral adjustment precedes 

other emotional responses; and the energy consumption concern dimension increases most markedly 

at high heatwave intensity. Each urban agglomeration presents a unique heatwave–sentiment 

relationship pattern, reflecting differences in regional sociocultural backgrounds and climate 

adaptation capacities. 

In summary, by combining causality inference and mixed-effects models, this study elucidates 

the complex spatiotemporal relationships among environmental factors, heatwaves, and emotional 

responses, providing new perspectives for understanding the mechanisms of urban thermal 

environment formation and its impacts on public mental health. The findings not only enrich the 

theoretical understanding of urban thermal environments but also provide a scientific basis for 

heatwave early warning, risk assessment, and public health protection based on environmental 

factors, offering important practical implications for guiding urban planning, optimizing spatial 

structure, and formulating climate adaptation strategies. 
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