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Abstract:  The  histological  evaluation  remains  the  cornerstone  of  diagnosing  highly  malignant 

osteosarcoma, having demonstrated its efficacy and reliability over several decades. However, even 

in recent times misdiagnoses with severe consequences, including inadequate surgical procedures, 

have persisted. Consequently, there  is a considerable need to enhance diagnostic security  further. 

Adjunct  immunohistochemical  approaches  have  proven  highly  effective  in  cancer  diagnostics 

generally but have been  limited  in  their utility  for differentiating highly malignant osteosarcoma. 

Molecular  genetic  findings  have  significantly  improved  the  diagnosis  of  Ewing’s  sarcoma  by 

identifying specific  translocations and chondrosarcoma by detecting specific  IDH‐gene mutations. 

However, molecular genetic alterations in highly malignant osteosarcoma exhibit a very high degree 

of complexity, limiting their diagnostic utility. Given that only 1‐2% of the human genome consists 

of  protein‐coding  sequences,  the  increasing  number  of  non‐coding  regulatory RNAs, which  are 

increasingly  being  described,  has  garnered  significant  attention  in  the  field  of  clinical  cancer 

diagnostics. Over the past several years, patterns of altered non‐coding RNA expression have been 

identified that facilitate the distinction between benign and malignant tumors in various organs. In 

the  field  of  bone  tumors,  the  experience with  this  approach  has  been  limited  so  far. Divergent 

expression  of  microRNAs  has  demonstrated  utility  for  differentiating  osteosarcoma  from 

osteoblastoma and discriminating osteosarcoma from giant cell tumor of bone and fibrous dysplasia. 

However, the application of non‐coding(nc)RNA expression patterns for the differential diagnosis of 

osteosarcoma is still in its nascent stages. This review provides an overview of the current status of 

ncRNAs  in osteosarcoma diagnostics,  in conjunction with histological evaluation. The potential of 

this approach is discussed in detail. 
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1. Introduction 

High‐grade  central  osteosarcoma  is  the most  common malignant  bone  tumor  and  the most 

common entity of osteosarcomas. It has histologically thoroughly to be distinguished from the other 

types of osteosarcomas [1]. It is predominantly observed during the second decade of life, though 

there  is  a  secondary peak  in  individuals over  the  age of  40  [2].  In older patients,  the  efficacy of 

chemotherapy  is  reduced  [3]. Males are more  commonly affected. The preferred  sites within  the 

skeleton are the distal femur, proximal tibia, and proximal humerus, although other locations in long 

bones can also occur. Osteosarcomas of the jaw are rare and have to be assessed differently [4].   

The primary symptom is usually pain in the affected region. The interval between the onset of 

the first clinical symptoms and the diagnosis ranges from weeks to several months, with prolonged 

courses being uncommon. The prognosis of high‐grade osteosarcoma has  significantly  improved 

since  the  1970s  through  the  use  of  combined  neoadjuvant  chemotherapy  with  methotrexate, 

doxorubicin, cisplatin, and under certain conditions ifosfamide [5]. With surgical treatment alone, the 

5‐year survival rate, according to all major statistics, was 10–20%. However, with the introduction of 

neoadjuvant chemotherapy,  this rate has  increased  to 65–70%  [6,7]. But  this  improvement applies 

only  to  patients  with  localized  tumors.  The  5‐year  survival  rate  remains  consistently  poor  at 
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approximately 30% for patients with metastatic osteosarcoma even with combined chemotherapy [7]. 

The therapeutic effect of preoperative chemotherapy can be well assessed histologically on the tumor 

resection specimen  (Chapter 9)[8]. However, a correlation between  the  therapeutic effect and  the 

histological  subtype has  remained questionable  [9]. From an oncological perspective,  it  is highly 

unsatisfactory that a plateau phase in the treatment of osteosarcoma patients has been reached with 

conventional chemotherapy for approximately 40 years. Evidently, no further advancements can be 

expected from conventional chemotherapy approaches. Similarly, no fundamental developments in 

the  understanding  of  high‐grade  osteosarcoma  can  be  anticipated  based  on  histology  and 

immunohistology alone [10]. Recent comprehensive reviews of osteoblastic bone tumors increasingly 

include molecular genetical and molecular pathological aspects [11,12].   

Radiologically,  the  tumor  originates  centrally,  rapidly  destroying  the  cortex  and  invading 

adjacent  soft  tissues.  If  the  tumor  forms abundant mature bone,  the  radiographic  image appears 

sclerotic.  If  unmineralized  tissue  predominates,  the  tumor  presents  as  an  osteolytic  type. 

Macroscopically highly malignant osteosarcoma  involves the metaphyseal region, often extending 

into soft tissues. Epiphyseal involvement is rare, occurring in less than 5% [13]. Some progress has 

been made over the last several years in primary diagnostics of highly malignant osteosarcoma in the 

field of radiology and to a lesser extent in the field of histopathology [1]. Molecular genetic studies 

of  osteosarcoma  have  revealed  a  tumor  of  high molecular  complexity,  yet  they  lack  specificity, 

rendering them of limited utility for primary diagnostics [14]. In light of this unsatifactory situation, 

ncRNAs emerged as a promising  focus  for differential diagnostic  challenges  in highly malignant 

osteosarcoma. Consequently,  this review  focuses on  the potential of ncRNAs as an adjunct  to  the 

histological primary diagnosis, which has been therapy leading until now [15]. 

2. Histologic Characteristics 

Various subtypes can be distinguished. In osteoblastic osteosarcoma, tumor cells predominantly 

produce  osteoid  (Figure  1A).  The  chondroblastic  variant  is  characterized  by  neoplastic  cartilage 

(Figure 1B), while  the  fibroblastic  type consists of highly malignant spindle‐shaped mesenchymal 

tumor cells (Figure 1C). Tumor cells consistently exhibit severe nuclear atypia and increased mitotic 

activity. Rare subtypes  include the giant cell‐rich variant (Figure 1D). Telangiectatic osteosarcoma 

can  appear  similar  to  aneurysmal  bone  cysts. However,  higher magnification  reveals  increased 

mitotic activity and atypical mitoses. The diagnosis of osteosarcoma always requires the detection of 

at  least  some osteoid‐producing  tumor  cells. The ability of mesenchymal  tumor  cells  to produce 

osteoid is considered fundamental to their biological and oncological behavior [16]. The diagnosis of 

osteosarcoma cannot be made  if no  tumor osteoid  is  identified  in a malignant bone  tumor. Since 

multifold tissue differentiations can often be found within the same osteosarcoma, the histological 

appearance  of  high‐grade  intramedullary  osteosarcoma  is  extremely  heterogeneous.  This 

heterogeneity  has  raised  questions  about whether  different  histological  types  indicate  different 

prognoses. However, studies so  far have not definitively shown  that osteoblastic, chondroblastic, 

fibroblastic,  telangiectatic,  or  giant  cell‐rich  osteosarcomas  have distinct  prognoses  [17]. A more 

recent study suggests that a histological scoring system may have some prognostic relevance [18]. 

This  scoring  system,  however,  focuses  less  on  histological  subtypes  and more  on  characteristics 

indicative of malignancy, such as the number of mitoses and vascular invasion. 
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Figure 1. A. Typical osteoblastic osteosarcoma with ample osteoid  formation  (H&E x200). B. Chondroblastic 

osteosarcoma (H&E x200) C. Fibroblastic osteosarcoma with typical fibroblast‐like spindle cells (H&E x200). D. 

Giant cell rich osteosarcoma containing abundant osteoclast like giant cells (H&E x200). 

3. Molecular Genetic Characteristics 

Alterations in the p53 gene have already been extensively described in osteosarcoma beginning 

1987 [19]. Changes  in the RB gene were also  identified early [20]. The fundamental  importance of 

molecular genetic changes for the pathogenesis of high‐grade osteosarcoma has become apparent in 

its  full  complexity  only  after  the  application  of  next‐generation  sequencing  (NGS).  A  first 

comprehensive study in this area was conducted by Chen et al. [21], followed by additional studies 
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Behjati et al. [22]; Bousquet et al. [23]; Chiappetta et al. [24], Kovac et al. [25], and Perry et al. [26]. In 

contrast to the majority of malignant tumors in which single nucleotide variations (SNVs) constitute 

the  bulk  of  genetic  alterations,  in  osteosarcoma  structural  variations  (SVs)  and  copy  number 

variations (CNVs) are predominant [12]. Comparative molecular genetic studies of other malignant 

pediatric  tumors  have  shown  that  juvenile  highly malignant  osteosarcomas  exhibit  the  highest 

frequency of structural variations among all pediatric tumors [27]. A specific mechanism of dramatic 

chromosomal  alterations  is chromothripsis (from  the  Greek words  chromos for  chromosome 

and thripsis for shattering). This genetic phenomenon was first described by Stephens et al. 2011[28]. 

In  contrast  to  the  gradual model  of  the  adenoma‐carcinoma  sequence,  chromothripsis  generates 

hundreds of genetic alterations in a single cellular crisis involving one or more chromosomes. This 

phenomenon  is  observed  in  only  2‐3%  of  all  malignant  tumors  but  in  up  to  30%  of  juvenile 

osteosarcomas [23]. Another genetic alteration phenomenon is kataegis (Greek for ʺthunderstormʺ). 

It  involves hypermutated  regions with  characteristic  features on  chromosomes,  first described  in 

breast cancer ([29,30]. Kataegis is also found in osteosarcoma [22].   

Genomic  alterations  and  allelic  imbalances have been  suggested  as prognostic predictors  in 

highly malignant osteosarcoma [31]. Generally, molecular genetic alterations in this tumor exhibit a 

high degree of complexity, rendering their diagnostic utility limited thus far [14]. This is in contrast 

to chondrosarcoma, where IDH mutations have developed as a useful diagnostic tool [32] and specific 

translocations  in Ewing’s  sarcoma  [33]. Genomic  sequencing of osteosarcoma  cases has unveiled 

different  genetic  alterations  that  may  serve  as  the  foundation  for  future  targeted  therapy 

interventions [34].   

4. Challenges in Differential Diagnosis of Highly Malignant Osteosarcoma   

The differential diagnosis of other bone tumors and lesions primarily  includes osteoblastoma 

(Figures  2A  and  2B).  Additionally,  giant  cell  containing  osteosarcoma  (Figure  1D)  must  be 

differentiated  from  giant  cell  tumor  of  bone  and  from  chondroblastoma.  Undifferentiated 

pleomorphic  sarcoma‐like  osteosarcoma  can  be  barely  distinguishable  from  undifferentiated 

pleomorphic  sarcoma  when  osteoid  is  lacking  in  the  former.  Another  sometimes  challenging 

differential diagnosis is discriminating aneurysmal bone cyst from telangiectatic osteosarcoma. Low 

grade central osteosarcoma is also included in the differential diagnostic spectrum (Figure 2C). Even 

the reactive lesion heterotopic ossification can in its proliferative phase cause differential diagnostic 

problems  (Figure 2D). All  these  lesions require a  therapy completely different  from osteosarcoma 

patients. Another  notable  histodiagnostic  challenge  is  the  prediction  of  chemotherapy  response 

(Figure 3) and, subsequently, the prediction of metastatic risk (Figure 4). Although the histology of 

highly malignant osteosarcoma has been meticulously described over  several decades, histologic 

indicators for prognosis have never been convincingly validated.   

The possibilities of molecular genetics to contribute to the differential diagnostic problems of 

bone tumors generally has been described in several articles before [35–37]. Furthermore, numerous 

articles on ncRNAs and osteosarcoma have been published in the past decade[15,38–40]. The majority 

of  these articles  is more  focused on prognosis and general diagnostic markers  [41] rather  than on 

primary tumor diagnosis in correlation with histological appearance, which remains the essential and 

legally relevant basis for initiating a specific therapy for osteosarcoma patients. Consequently, this 

article will concentrate on those ncRNAs that can be beneficial in enhancing the differential diagnostic 

challenges of highly malignant osteosarcoma. It  is crucial to emphasize that a precise diagnosis  is 

paramount for guiding therapy and ensuring patient survival [1]. 
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Figure 2. A. Aggressive osteoblastoma with atypical cellular nuclei (H&E x200). B. Highly malignant osteoblastic 

osteosarcoma with high nuclear pleomorphism (H&E x200). C. Low grade intramedullary osteosarcoma (H&E 

x200). D. Heterotopic ossification mimicking osteosarcoma (H&E x200). 

5. NcRNAs in Translational Biology 

It became increasingly evident that only 1‐2% of the human genome’s coding sequence encodes 

for  proteins  [42](Figure  3).  In  addition  to  the RNAs with  coding  potential,  there  are  substantial 

quantities of RNA  lacking  coding potential  [43]. The  latest edition of  the human genome  catalog 

posits that the human genome comprises approximately 20,000 protein‐coding genes. This figure has 

been  steadily  declining  since  the  1980s,  when  it  was  estimated  to  be  over  100,000  genes  [44]. 
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Consequently, we now understand  that  coding genes  constitute only a minuscule  fraction of  the 

human  genome  [45].  Remarkably,  this  toolkit  of  protein‐coding  genes  has  remained  essentially 

unchanged since the early stages of metazoan evolution, even in sponges that appeared in evolution 

more than 600 million years ago [46].   

The human genome also contains hundreds of  thousands of regulatory elements  that do not 

encode proteins. Previously, these elements were dismissed as “junk DNA” [47–50]. In contrast to 

the misconceived hypothesis of “junk DNA” the recognition that ncRNAs perform crucial biological 

functions has been hailed as a major paradigm shift in contemporary molecular biology [51,52]. The 

role  of messenger  RNA  (mRNA),  transfer  RNA  (tRNA),  and  ribosomal  RNA  (rRNA)  in  gene 

expression was  established  in  the 1950s. However,  it was not until  the  end of  the 1990s  that  the 

discovery of microRNAs (miRNAs) and several other small ncRNAs, along with their pivotal roles 

in post‐transcriptional regulation of gene expression, particularly  in eukaryotic organisms, gained 

widespread recognition [53,54]. 

Functions of regulatory ncRNAs in metazoan differentiation 

It had long been observed that the amount of ncRNAs increases with developmental complexity 

assessed in the increasing number of differentiated cell types [55,56]. In addition, ncRNAs also play 

a central role in human development and cognition [57]. In addition to other factors such as distal 

enhancers and transcription factors regulatory ncRNAs have enabled the regulation of temporal and 

spatial gene expression in evolutionary processes, which is the precondition for increasingly complex 

multicellularity in higher metazoan organisms [58]. Alternative splicing was not considered to be a 

sufficient biological strategy for increasing the biodiversity of the metazoan world [59]. This is also 

corroborated by the observation that the number of protein‐coding genes in the genome has remained 

relatively  constant  throughout metazoan evolution,  from  simple organisms  such as C. elegans  to 

homo sapiens [60,61,64](Figure 3). The number of protein coding genes does not directly correlate 

with the organism’s complexity or the number of differentiated cell types. Conversely, the decreasing 

ratio  of protein‐coding  sequence  in percentage  of  the  entire  genomic DNA does  [62]. Given  the 

pivotal  role  of  ncRNAs  in  cellular  differentiation,  it  is  plausible  to  presume  that  they  exhibit  a 

correlation  with  histological  diagnostics,  which  predominantly  concentrate  on  cellular 

differentiation. [72,73]. Among the various classes of ncRNAs, the role of microRNAs has been the 

subject of the most extensive investigation to date [63]. 

 

Figure 3. There is no correlation between the number of protein‐coding genes and the developmental complexity 

of a species. Instead, there is a negative correlation between the percentage of the genome occupied by protein‐

coding sequences and the developmental complexity [64] (Created with Biorender). 
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Figure 4. A Osteoblastic osteosarcoma after preoperative chemotherapy with viable malignant tumor  lacking 

any signs of regression or necrosis (H&E x100). B Completely devitalized necrotic area of former osteoblastic 

osteosarcoma with no viable tumor cells  left after preoperative chemotherapy (H&E x100). Inset: high power 

view of completely devitalized former osteoblastic tumor tissue and remnants of osteoid (H&E x400). 

Classification of ncRNAs, Basic Facts 

Non‐coding RNAs (ncRNAs) are primarily categorized  into two distinct classes based on the 

number of nucleotides. Small non‐coding RNAs (sncRNAs) are defined as molecules with a length 

of  less  than  200  nucleotides, while  long  non‐coding RNAs  (lncRNAs)  exceed  200  nucleotides  in 

length[43].  In  the  context of  tumor diagnostics,  sncRNAs, and  lncRNAs  including  circular RNAs 

(circRNAs) hold most practical  importance. Consequently,  this  review  focuses on  these  types of 
ncRNAs  [65–67]. Within  the  class  of  sncRNAs, microRNAs  (miRNAs)  have  garnered  the most 

extensive  research  attention  in  the  field  of  cancer.  Their  primary  function  is  to  exert  negative 

regulation of gene expression by targeting specific messenger RNAs, leading to their dysfunction and 

degradation [68,69]. The details of miRNA biogenesis are discussed elsewhere [70]. 

6. NcRNAs as Diagnostic Biomarkers in Cancer 

An ongoing debate centers on whether the classification of human tumors based on their tissue 

of  origin  remains  pertinent  in  the  context  of  cancer  genomics  and  precision  oncology  [71]. 

Historically, histologic evaluation of tissue biopsies, augmented by immunohistochemistry, has been 

the cornerstone of definitive cancer diagnosis [72,73]. In the majority of tumor diagnoses, alternative 

diagnostic methods that can be utilized have essentially an adjunctive role. This is the case for image 

radiology  and  other  conventional methods  of  laboratory medicine. Molecular  genetic methods 

centered on whole genome or whole exome NGS have been demonstrated to significantly enhance 

histopathologic  diagnoses  in  approximately  15%  of  all  cancer  diagnoses  [74].  Prior  to  this 

background,  therapeutic approaches  that are agnostic with  regard  to histology are  still  subject  to 

ongoing debate [75]. Until now, the basic principle of histopathologic tumor classifications has been 

the evaluation of tumor tissue  in relation to  its tissue of origin and the degree of similarity to the 

tissue of origin [76]. It can be assumed that the future potential of liquid biopsies is not only powered 
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by  analysis  of  circulating‐free  tumor DNA  (cfDNA)  but  also  by  analysis  of  different  classes  of 

ncRNAs.   

The  extensive  regulatory  RNA  machinery  is  responsible  for  the  evolution  of  metazoan 

complexity with increasingly specialized cell types that are contingent upon the evolutionary stage 

[77].  It  can  be  assumed  that  the  differential  expression  of  non‐regulatory RNAs  corresponds  to 

histopathological  tumor  classification  and  diagnosis  [78–80].  In  the  last  several  years  extensive 

reviews have been published on the central role of ncRNAs in cancer [81–83]. A main advantage of 

ncRNAs as a tool for cancer diagnostics and classification is their detectability in plasma, serum and 

other body  fluids  [84][85]. This  is all  the more  important, because  the  risk of  tumor  cell  seeding 

through biopsies cannot be entirely ruled out [86]. Particularly the exosomes as carriers of different 

ncRNAs  are  considered  as  an  important  diagnostic  tool  [87,88].  Liquid  biopsies  have  also 

demonstrated remarkable success in detecting gene alterations in cancer patients [89,90].   

MiRNA as Tools in Cancer Diagnosis 

The biogenesis and mechanism of action of miRNAs have been extensively elucidated  in the 

past several years [91]. The utility of miRNA patterns in the diagnosis of cancer has long been under 

discussion. Their use as a diagnostic tool is evident, because these small molecules show stability in 

the different fluids of the human body [79]. In addition to cancer diagnosis miRNAs have also the 

potential  to predict drug  efficiency  and  the  clinical prognosis  of  the  cancer patients    [92]. They 

showed a general downregulation in tumors. Poorly differentiated tumors could also successfully be 

classified using miRNAs [93,94]. To this day, the correct histopathological diagnosis remains the basis for 

discriminaƟon  between  benign  and  malignant  tumors.  However,  uncountable  cases  of  so  called 

“borderline tumors” also in the field of bone and soft tissue tumors [95] point to the limitations of the 

many decades old histopathologic approach for securing the malignancy of tumors. Recently it could 

be  shown  that  comprehensive miRNA  expression profiles  combined with  a  computational deep 

cancer  classifier were  able  to differentiate between breast  cancer  and  skin  cancer  and  its benign 

histologic counterparts. This might be considered as the beginning of computational classifiers for 

securing the malignant traits of a given tumor [96].   

LncRNAs as Diagnostic Biomarkers in Cancer 

Over  the past  several years,  it has become  increasingly  evident  that big parts of  the human 

genome are transcribed into a multitude of lncRNAs, whose classification and function have been 

extensively described in numerous publications [97,98]. LncRNAs have been shown to have functions 

in many molecular and cellular processes also in development [99]. They have an important role in 

cancer pathogenesis  [100]. Furthermore  they  show a  specificity  for different  tissues and different 

cancer entities [101].   

CircRNAs as diagnostic Biomarkers in cancer 

CircRNAs being shaped in ring structures are characterized by a strong chemical stability and 

due to lacking free ends show a strong resistance to the activities of ribonucleases. With these features 

they have good preconditions acting as diagnostic and prognostic markers of cancer [102]. The first 

endogenous human circRNAs were  identified  in 1991. A comprehensive  time  table depicting  the 

discovery  and  development  of  knowledge  on  circRNAs  in  the  field  of  cancer  is  dealt with  by 

Pisignano et al. [103]. Their considerable value in molecular cancer diagnosis has increasingly been 

emphasized by others [104]. For example, it has been convincingly shown that three specific circular 

RNAs in serum exosomes were successfully applied as diagnostic biomarkers for non‐small‐cell lung 

cancer  in  the Chinese  population  [105],  and  a  specific  exosomal  serum  circRNA  could  serve  as 

diagnostic biomarker for colorectal cancer [106]. However, it is recommended that larger and more 

controlled clinical studies are required before applying circRNAs as secure diagnostic and therapy 

guiding factors in clinical oncological practice [107]. 

Utility ncRNAs in Differentiating Benign and Malignant Tumors 

Table 1 presents examples of the successful application of ncRNAs for discrimination between 

benign and malignant  tumors  in different organs. This approach  is also applicable  to  the skeletal 

system, where miRNAs are useful in distinguishing enchondroma from low‐grade chondrosarcoma 
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[108].  In  other  organs miRNAs  discriminate  between  benign  prostatic  hyperplasia  and  prostatic 

cancer  [109]. MiRNAs,  particularly miRNA‐122  has  been  validated  for  discriminating  between 

thyroid cancer and benign nodules [110]. In breast cancer patients it is possible to discriminate early 

stages  of  breast  cancer  from  benign  diseases  [111].  In  another  study  circulating miRNAs  have 

demonstrated  their  capacity  for detecting breast  cancer  in  comparison  to high‐risk benign breast 

tumors  [112]. A panel of potential  lncRNA biomarkers was detected as useful  for distinguishing 

benign ad malignant liver tumors [113]. In a landmark study Kaczmarek et al. applied a deep cancer 

classifier for discriminating neoplastic tissue from nonneoplastic tissue on the basis of differential 

miRNA expression focusing on nonneoplastic tissue and breast cancer and nonneoplastic tissue and 

skin cancer [96]. Defining different miRNA panels can also be useful discriminating between benign 

and malignant pleura effusions [114]. Distinguishing malignant borderline tumors from malignant 

ovarian cancers solely on histological findings presents a diagnostic challenge. MiRNAs have also 

proven  to be valuable  in  this differential diagnosis  [115]. A notable challenge  in histopathological 

diagnosis  lies  in  the distinction between  adrenocortical adenoma and  carcinoma.  In  this  context, 

miRNA profiles can serve as a valuable supplementary tool for this distinction [116].       

Table 1. Examples of differentially expressed ncRNAs as diagnostic adjuncts  for discriminating benign and 

malignant lesions in several cancer entities. 

Tumor Benign/ 

Malignant   

        ncRNA  Material  Results  Source 

Enchondroma/Chondrosarcoma  miR‐181a  and  ‐

138 

Tumor 

tissue 

FFPE 

Increased  expression  of 

miR‐181a  and  ‐138  in  low 

grade  chondrosarcoma 

compared  with 

enchondroma 

Zhang, L. et al. 

2017 [108] 

Benign Hyperplasia (BPH)/ Prostatic 

Cancer 

 

miR‐27b‐3p, 

miR‐574‐3p, 

miR‐30a‐5p, 

and  miR‐125b‐

5p 

Urine  These  miRNAs  can 

discriminate  between BPH 

and Prostatic Cancer 

Stella et al. [109] 

Benign Nodules/Thyroid Cancer  miRNA‐222  Serum  Discriminating  between 

thyroid  cancer  and benign 

nodules. 

 

 

Bielak et al. [110] 

High  risk  benign  Breast  Tumors/ 

Breast Cancer 

miRNAs,  hsa‐

mir‐128‐3p, hsa‐

mir‐421,  hsa‐

mir‐130b‐5p, 

and hsa‐mir‐28‐

5p, 

Plasma  four miRNAs, hsa‐mir‐128‐

3p,  hsa‐mir‐421,has‐mir‐

130b‐5p,  and  hsa‐mir‐28‐

5p,  were  differentially 

expressed in CA vs. HB and 

had  diagnostic  power  to 

discriminate CA from HB 

Khadka et al. 

[112] 

Benign Breast Disease/ Breast Cancer  miR‐106b‐5p, 

−126‐3p,  −140‐

Plasma  multi‐marker  panel 

consisting of hsa‐ 

Sadeghi  et  al. 

[111] 
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3p,  −193a‐5p, 

and −10b‐5p 

miR‐106b‐5p,  −126‐3p, 

−140‐3p,  −193a‐5p,  and 

−10b‐5p could detect early‐

stages of BC with 0.79 

sensitivity,  0.86  specificity 

and 0.82 accuracy. 

Benign liver tumors/liver cancer  LincRNA‐ 

01093 

lncRNA HELIS 

Serum  LINC01093  and  lncRNA 

HELIS are down‐regulated 

in  all  malignant  liver 

cancers; in benign tumors 

LINC01093  expression  is 

just  twice  decreased  in 

comparison  to  adjacent 

tissue samples. 

Burenina et al.   

[113] 

Nonneoplastic  skin 

diseases/different skin cancers 

miRNA‐Based 

Deep Cancer 

Classifier  miR‐

375  and  miR‐

451 

Serum  miR‐375  and  miR‐451  are 

candidate  biomarkers  of 

neoplastic  and  non 

neoplastic skin lesions 

Kaczmarek et al. 

[96] 

Benign and Malignant Effusions  miR‐141‐3p, 

miR‐203a‐3 

Pleural fluid  abundance  of  three 

miRNAs miR‐141‐3p, miR‐

203a‐3, and 

miR‐200c‐3p  correctly 

classi‐ 

fies  malignant  pleura 

effusions 

Marques et al. 

[114] 

Malignant  borderline 

tumors/ovarian cancer 

miR‐30a‐3p, 

miR‐30c,  miR‐

30d  and  miR‐

30e‐3p 

Tumor 

tissue FFPE 

Four  miRNAs  could 

discriminate   

mucinous  borderline 

tumors and ovarian cancers 

Dolivet et al. 

[115] 

Benign  versus  malignant 

adrenocortical tumors 

miR‐139‐3p, 

miR‐335,  miR‐

675 

  miRNA  profiling  of  miR‐

675,  and  miR‐335,  and 

miRNA‐139‐3p  helps  in 

discriminating ACCs  from 

ACAs  Adreno‐cortical 

adenomas and carcinomas 

Schmitz  et  al. 

[116] 

7. NcRNAs as an Adjunct to Histological Differential Diagnosis of Highly 

Malignant Osteosarcoma 

Highly malignant  osteosarcoma may  even  today  be misdiagnosed  as  another  tumor  entity 

resulting  in  inappropriate  treatment  including wrong surgical procedures  [117]. Osteoblastoma  is 

typically radiologically characterized as a well‐defined, circumscribed lesion that does not present 

diagnostic challenges  in standard clinical scenarios. But sometimes diagnostic problems can arise 
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discriminating between osteoblastoma and osteosarcoma. This is particularly the case for aggressive 

osteoblastoma  and  so  called  epithelioid  osteoblastoma,  when  atypical  nuclei  may  cause  some 

diagnostic confusion [118]. Furthermore, a tumor entity of osteoblastoma like osteosarcoma has been 

established, which can generate differential diagnostic problems  in both directions [119]. Recently 

recurrent  translocations  in FOS and FOSB have been detected  in osteoblastoma and also osteoid 

osteoma and may be of diagnostic value  [120,121]. However, osteosarcomas with FOS expression 

have  rarely been described  [122]. Furthermore, methylation and copy number profiling might be 

useful for differentiating osteoblastoma from malignant tumors [123]. In the study by Riester et al. 

[124]  miRNAs  from  FFPE  tumor  specimens  of  11  osteoblastomas  and  11  osteosarcomas  were 

extracted  and  analyzed by high  throughput miRNA  sequencing. Elevated  expression of hypoxia 

related miRNA‐210 in the osteosarcoma cases in comparison to osteoblastoma cases may be a future 

diagnostic  adjunct  in  discriminating  osteoblastoma  and  osteosarcoma.  Additional  to  this  study 

investigations  of  ncRNAs  of  osteoblastoma  are  very  rare  and  without  mention  of  differential 

diagnostic  or  biomarker  aspects  [125]  .  So  far  there  has  been  only  one  study  published  on  the 

differential diagnosis of giant  cell  tumor of bone and osteosarcoma  [41]. The  few other available 

studies on giant cell tumor of bone refer to lncRNA expression in the recurrence of giant cell tumors 

[126] or general aspects of miRNA expression [125,127]. Araki et al. [41] have found that patients with 

osteosarcoma have an increased serum level of miR‐1261 not only compared to patients with giant 

cell tumors of bone, but also to patients with fibrous dysplasia, osteoblastoma and chondrosarcoma. 

No substantial research studies on ncRNAs in chondroblastomas have been published. Similarly, no 

research studies have been conducted on ncRNAs in aneurysmal bone cysts so far.   

Even  the  reactive  lesion  of  traumatic  heterotopic  ossification  (THO)  can  pose  diagnostic 

challenges in the differential diagnosis of osteosarcoma [1]. A recent study of miRNAs in THO could 

contribute to a better understanding of the underlying mechanisms and offer new possibilities for 

therapeutic  targets  [128].  However,  differential  diagnostic  aspects  are  not  yet  available. 

Mierzejewskiy et al.  [129] could show  that miR‐99b, miR‐146, miR‐204, and LINC00320 were up‐

regulated  in THO, when compared with normal bone and muscle  tissue.  In  future  these ncRNAs 

might  serve  as  useful  biomarkers  for  the  differential  diagnosis  of  THO  to  highly  malignant 

osteosarcoma (Figure 2D).   

In summary, analyses of various ncRNA categories have thus far yielded only limited reliable 

data  to  assist  histological  diagnosis  in  distinguishing  between  highly malignant  osteosarcomas, 

benign tumors, reactive  lesions, and  low malignant osteosarcomas (Table 2). In contrast, there are 

numerous results available for discriminating malignant tumors from benign lesions  in cancers of 

other organs (Table 1). Consequently, there is an urgent need to apply advanced molecular data from 

the field of ncRNAs to enhance these differential diagnoses around osteosarcoma to a more effective 

level.   

Table 2. Examples of differentially expressed ncRNAs as diagnostic adjuncts  in  the differential diagnosis of 

highly malignant osteosarcoma. 

Tumor Benign/ 

Malignant   

        ncRNA  Material  Results  Source 

Osteoblastoma/ 

Osteosarcoma 

miRNA‐210  Tumor 

tissue 

FFPE 

miRNA‐210 

displays  low  levels  of 

expression across all of 

the  osteoblastoma 

specimens  and  high 

expression 

Riester  et  al. 

[124] 
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in  the  majority  of  the 

osteosarcoma 

specimens. 

 

Fibrous dysplasia; giant 

cell  tumor  of  the  bone; 

osteoblastoma; 

chondrosarcoma; 

versus osteosarcoma 

miR‐1261  Serum    patients  with 

osteosarcoma  had 

higher serum 

miR‐1261  levels  than 

those  with  benign  or 

intermediate‐grade 

bone tumors 

Araki Y  et  al. 

2023 

[130] 

8. NcRNAs as General Diagnostic Biomarkers for Highly Malignant Osteosarcoma 

NcRNAs  in  serum  or  plasma  can  be  useful  as  diagnostic  markers  for  early  detection  of 

osteosarcoma as has been extensively discussed by Araki et al. [130]. This feature can also facilitate 

the primary diagnosis of osteosarcomas even before taking biopsies. Other studies also focus on the 

utility of ncRNAs as prognostic markers. Since this review centers on the diagnosis of osteosarcoma, 

Table 3 depicts the most important markers for early primary diagnosis. Studies with prognostic and 

therapeutic aspects are not considered here. 

Table 3. ncRNAs for early clinical diagnosis of osteosarcoma. 

Non coding RNA                           Materials                 Results                                            Source 

miR‐1261                                              Serum  Higher miRNA serum levels 

point  to  a  bone  tumor  of 

high‐grade malignancy.           

Araki A et al. [130] 

miR‐337‐3p, miR‐484, miR‐

582, miR‐3677 

          Serum  These  miRNAs  were 

decreased  in  serum  of 

osteosarcoma patients 

Luo, H et al. [131] 

MiR‐429 and MiR‐143‐3p            Serum    MiR‐429  and  miR‐143‐3p 

expression  were 

significantly  down‐

regulated in the serum from 

OS patients. 

Yang, L et al. [132] 

circRNA hsa_circ_0003074        Serum  hsa_circ_0003074  is  highly 

expressed  and  peripheral 

blood  of  osteosarcoma 

patients. 

. 

Lei, S et al. [133] 

miR‐101          Serum  miR‐101  expression  levels 

were  under‐expressed  in 

serum  samples  from  osteo‐

sarcoma patients  compared 

to controls. 

Yao, ZS et al. [134] 
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miR‐124            Serum  The  level of serum miR‐124 

was  decreased  in 

osteosarcoma patients when 

compared  to  healthy 

controls. 

Cong, C et al. [135] 

miR‐95‐3p            Serum  Compared  to  healthy 

controls,  the  expression 

levels of miR‐95‐3p in serum 

of  osteosarcoma  patients 

was  signifi‐cantly 

decreased.   

 

Niu, J et al. [136] 

miRNA‐223            Serum  The  expression  of miR‐223 

was  significantly  decreased 

in  the  serum  of 

osteosarcoma  patients 

compared  to  healthy 

controls. 

Dong, J et al. [137] 

miR‐195‐5p,  miR‐199a‐3p, 

miR‐320a and miR‐374a‐5p 

          Plasma  Were significantly increased 

in the osteosarcoma patients 

and markedly decreased  in 

the plasma after operation. 

Lian F et al. [138] 

microRNA‐221  Serum; 

Fresh frozen tissue 

The  expression  levels  of 

miR‐221  in  osteosar‐coma 

tissues  and  sera were  both 

upregulated. 

Yang, Z et al. [139] 

9. Possibilities of ncRNAs for Prediction Chemotherapy Response 

Since  the  advent  of  neoadjuvant  chemotherapy  for  osteosarcoma  patients,  histological 

investigations  of  post‐chemotherapy  operation  specimens  have  been  of  considerable  oncological 

interest. These investigations have been employed to assess the extent of regression alterations and 

tumor necrosis associated with the chemotherapy effect [140,141]. The ratio of necrosis in correlation 

to viable tumor tissue with at least 90% necrosis has been considered as a prognostic factor in the 

majority of studies correlating with patient’s outcome [142]. But this general experience has not been 

uncontradicted. A multivariate analysis confirmed the prognostic significance of age and stage, while 

poor necrosis rates did not attain statistical significance [143].   

This implies that the ratio of necrosis in post‐chemotherapy specimens cannot be reliably utilized 

as  a  definitive  factor  for  guiding  therapy. Deep  learning‐based  analysis  of  the  tumor  resection 

specimens  could  enhance  the  accuracy  of  the  histologic  investigation,  but  did  not  enhance  the 

prognostic value  [144]. Whole exome sequencing genomic analysis revealed only slight variations 

between histologic responders and non‐responders among osteosarcoma patients, indicating that this 

methodical  approach  did  not  attain  unequivocal  clinical  significance  so  far  [145].  Advanced 

radiological strategies can provide some indications of the chemotherapy response, but they cannot 

be considered sufficiently reliable for making therapy‐related decisions [146–148]. A comprehensive 

evaluation  of  coding  gene  expression  through  the  analysis  of  mRNA  expression  profiles  in 
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conjunction with lncRNAs appears to hold significant value. Nevertheless, the clinical applicability 

of this approach as a diagnostic tool in oncology remains so far restricted [149]. 

Given the aforementioned background, the role of ncRNAs has been discussed as a novel and 

effective tool for predicting chemotherapy response in osteosarcoma patients for several years. The 

neoadjuvant chemotherapy regimen for osteosarcoma patients has traditionally been based on the 

combination of high‐dose methotrexate (HD‐MTX), Adriamycin (ADR), and Cisplatin (DDP) [150] 

with  the  possible  addition  of  ifosfamide  for  poor  responders  and  patients  with  metastases  at 

presentation  [151].  The  interplay  of  different  classes  of  ncRNAs with  the  pharmacological  and 

cytotoxical  effects of  these drugs and on multidrug  resistance  (MDR)  is  a major  topic  in  current 

osteosarcoma  research  [152].  The  number  of  publications  exploring  the  role  of  ncRNAs  in  the 

chemotherapy effects of osteosarcoma has surged significantly over the past few years. While many 

of these studies are conducted in vitro, utilizing established single‐cell lines, their practical clinical 

relevance may be  limited.  In  contrast,  in vivo  studies on human  tumor  tissue or body  fluids are 

considerably rarer. In the following, a concise overview of cell culture studies is provided, with the 

in vivo studies discussed in greater detail. 

Cell culture studies 

The miRNA‐29 family has a tumor suppressor role in methotrexate resistance and can promote 

cell  apoptosis  [153].  Regarding  the  effects  of  ncRNAs  on  cisplatin,  it  was  discovered  that  a 

knockdown  of  lncRNA  ANRIL  enhances  osteosarcoma  cells’  sensitivity  to  cisplatin‐induced 

cytotoxicity. This  finding has prompted  speculation  regarding ANRIL  as  a potential  therapeutic 

target for osteosarcoma chemotherapy [154]. The lncRNA GAS5 promotes cisplatin chemosensitivity 

via  the  GAS5/miR‐26b‐5p/TP53INP1  axis  pointing  to  lncRNA  GAS5  as  a  possible  indicator  for 

cisplatin‐based  chemotherapy  [155].  Furthermore,  it  has  been  demonstrated  that  circRNA 

CircUBAP2 plays a pivotal role in the cisplatin resistance of osteosarcoma cells by modulating the 

expression  of  miR‐506‐3p  [156].  Circ‐RNA  CHI3L  levels  were  increased  in  cisplatin‐resistant 

osteosarcoma cells and circRNA‐CHI3L1.2 knockdown  sensitized cisplatin‐resistant osteosarcoma 

cells to cisplatin through the miR‐340‐5p‐LPAATβ axis [157]. The lncRNA HOTAIR was shown to 

promote  cisplatin  resistance  of  Saos2/DDP, MG‐63/DDP,  and U2OS/DDP  cells  by  affecting  cell 

proliferation,  invasion,  and  apoptosis via miR‐106a‐5p/  STAT3  axis  [158]. Numerous  cell  culture 

studies have underscored the significance of ncRNAs in mediating diverse effects of doxorubicin. For 

instance, miRNA‐150 has the ability to sensitize osteosarcoma cells to chemotherapy treatment with 

Doxorubicin. [159]. The overexpression of miR‐506‐3p could inhibit doxorubicin resistance in drug 

resistant osteosarcoma cells  [160]. The circRNA Hsa_circ_0004674 has been shown  to  increase  the 

doxorubicin resistance of osteosarcoma cells by regulating the miR-342-3p/FBN1 axis [161].   

Clinical studies 

The number of clinical studies  investigating  the possibilities of different  types of ncRNAs as 

predictor of chemotherapy response is considerably lower [162–165]. In a general assessment Chen 

et al. [166] concluded that drug resistance related miRNAs will probably supplement or may even 

partly replace existing biomarkers. In addition to this general assessment there have been published 

studies focusing on specific miRNAs in the last several years. For instance, levels of miRNA‐34a were 

measured  in  the  serum  of  osteosarcoma  patients with  favorable  and  unfavorable  responses  to 

chemotherapy. Patients with histologically unfavorable responses exhibited significantly lower levels 

of  that miRNA  compared  to patients with  favorable  responses  [167]. Results of Diao  et  al.  [168] 

revealed a significantly lower level of miRNA‐22 in a collective of 120 patients with highly malignant 

osteosarcoma. Low levels of miRNA‐22 were significantly correlated with poor tumor response to 

preoperative chemotherapy. In another study [169] it could be confirmed that low serum levels of 

miRNA‐375  were  also  significantly  correlated  with  a  poor  tumor  response  to  preoperative 

chemotherapy in 95 patients with highly malignant osteosarcoma having graded the chemotherapy 

response according to the method of Huvos [170]. MiRNA‐132 can be induced by angiogenic growth 

factors [171] and plays a role in the development of osteoarthritis [172].    Jie Yang et al. [173] have 

analyzed Mi132  expression  in  the  tissue of  166 osteosarcomas  and  corresponding non‐cancerous 
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tissue. MIRNA‐132 expression was decreased in the osteosarcoma specimens with poor response to 

chemotherapy. Yuan  et  al.[174]  have  found  that  high miRNA‐21  levels were  correlated with  an 

advanced  stage  after  classification  according  to  Enneking  and  furthermore  histological  tumor 

response with  increased  serum miRNA‐21  level  in  responders  compared with  poor  responders 

(P<0.001). Another study also showed the usefulness of miRNA‐21 for chemosensitivity prediction of 

osteosarcoma patients with the expression level of patients with osteosarcoma closely related to the 

therapeutic  effects  [175].  In an  early  study  comprising 27 osteosarcoma patients 5 miRNAs were 

identified which can discriminate between good and poor chemotherapy response. MiR‐92a, miR‐

99b, miR‐193a‐5p  and miR‐422a were  overexpressed  in  good  responders whereas miR‐132, was 

downregulated [176]. 

In addition to miRNAs circular RNAs have potential for predicting chemotherapy response in 

osteosarcoma  patients  as  well.  Circular  RNA  LARP4  showed  a  correlation  with  histologically 

assessed  response  rate  in  72  osteosarcoma patients  after preoperative  treatment   with  the MAP 

regimen  (high‐dose methotrexate,  cisplatin,  and doxorubicin). Patients with good  response were 

Circ‐LARP4 high and with low response CircLARP4 low [177]. 

Table 4. ncRNAs from osteosarcoma patient’s serum, plasma or sarcoma tissue, which have been identified as 

indicators of poor response to chemotherapy. 

Non coding RNA     Materials       Results      Source 

     miRNA‐34a      Serum  Negatively  associated  with 

chemotherapy  resistance  of  OS 

patients. 

Lian  H  et  al. 

[167] 

   miRNA‐22      Plasma  Low  plasma  miR‐22  level  were 

corre‐  lated  with  poor  tumor 

response  to  preoperative 

chemotherapy. 

 

Diao  ZB  et  al. 

[168] 

miRNA‐375      Serum  low  serum  miR  375  level  was 

significantly  associated  with  poor 

tumor response to chemotherapy 

Liu W et al. 

[169] 

miRNA‐132      Sarcoma tissue,     

    fresh frozen 

miR‐132  expression was  decreased 

in the osteosarcoma specimens with 

poor response to chemotherapy. 

Yang J et al. [173] 

miRNA‐21      Serum  High  serum  miR‐21  was 

significantly 

correlated with advanced Enneking 

stage  and  chemotherapeutic 

resistance. 

Yuan  J  et  al. 

[174] 

miRNA‐21    Serum  The expression level of serum miR‐

21 in patients with osteosarcoma is 

closely  related  to  the  therapeutic 

effects of osteosarcoma. 

 

Hua Y et al.   

[175] 
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miR‐92a,  miR‐

99b,  miR‐132, 

miR‐193a‐5p 

miR‐422a 

Sarcoma  tissue, 

FFPE 

miRNAs  miR‐92a,  miR‐99b,  miR‐

132,  miR‐193a‐5p  and  miR‐422a 

could  discriminate  good  from  bad 

responders. 

Gougelet A et al. 

[176] 

circRNA LARP4  Sarcoma  tissue, 

fresh frozen 

circ‐LARP4 high 

expression patients showed an increased 

tumor  cell  necrosis  rate  to  adjuvant 

chemo‐therapy  compared  to  circ‐LARP4 

low expression patients 

HU Y et al. [177] 

10. NcRNAs and Prediction of Metastatic Risk 

It  has  been  widely  held  that  the  conventional  histological  subtype  of  highly  malignant 

osteosarcoma does not provide any discernible indicators of the likelihood of hematogenous metastasis 

development (Figure 5) [178]. But the structure of the extra cellular matrix has been shown to contribute 

to metastasis  and  progression  of  osteosarcoma  [179]. MiRNAs  are  deeply  involved  in  regulating 

angiogenesis, a central feature of metastasis, and epithelial–mesenchymal transition. Because of these 

and others features miRNAs have a high potential of being assessed as biomarkers for metastatic risk 

[180]. In a similar way lncRNAs are also deeply involved in the metastatic cascade. They contribute to 

epithelial‐mesenchymal transition mesenchymal transition, invasion and migration and are affiliated 

with  the  nuclear  factor  B,  and TGF pathways. LncRNAs  are useful  indicators  for  assessing  the 

metastatic risk in patients with different cancer entities, mostly carcinomas [181]. However, against this 

biologically promising background clinical oncological studies performed on serum/plasma or tumor 

tissue of osteosarcoma patients have been rather limited so far (Table 5) in comparison to cell culture 

studies, which have been performed abundantly [182]. 

 

Figure 5. A. Typical histological appearance of primary of osteoblastic osteosarcoma, no metastases (H&Ex200). 

B.  Primary  osteoblastic  osteosarcoma  with  lung  metastasis  at  time  of  diagnosis  (H&E  x200).  The  non‐

metastasizing and metastasizing malignant tumors appear histologically indistinguishable. 
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A  recent  study  by  Abedi  et  al.[183]  identified  early  diagnostic  biomarkers  using  miRNA 

expression profiles associated with osteosarcoma metastasis. Based on network analysis and machine 

learning  algorithms  new  diagnostic  tools  have  been  established,  which  enable  a  reliable 

differentiation  between metastatic  osteosarcoma  and  non‐metastatic  samples  based  on  newly 

discovered miRNA signatures. The results showed that miR‐34c‐3p and miR‐154‐3p act as the most 

promising parameters  in  the diagnosis of metastatic osteosarcoma.  In osteosarcoma miRNAs and 

lncRNAs  as  exosomal  biomarkers  are  predictors  for  developing  hematologic  metastases  [184]. 

Another  study  on  exosomal  biomarkers  has  shown  that  different miRNAs  such  as miRNA‐675, 

miRNA‐1307,  and miRNA‐25‐3p  and  lncRNAs RAMP2‐AS1  and CASC15 may  be  diagnostically 

useful for predicting metastatic risk in osteosarcoma and other sarcoma entities [185]. High levels of 

miRNA‐34a  in osteosarcoma patients do not only correlate with chemotherapy response but with 

longer  overall  survival  and  a  decreased  risk  of metastasis  as well  [168]. Another miRNA with 

predictive  potential  for  metastasis  in  osteosarcoma  patients  is  miRNA‐506,  which  revealed  a 

significantly higher serum level in patients with non‐metastatic osteosarcoma compared to patients 

with  lung metastases  [186]. These  authors  also  suggest  that  a miRNA‐mRNA‐network of higher 

complexity might in future serve as predicting factor for hematogenic metastases in osteosarcoma. 

The level of lncRNA BCAR4 is significantly correlated with the occurrence of distant metastases of 

osteosarcoma patients  [187]. A  study by Karras  et al.  (in preparation)  investigating a differential 

miRNA expression between non‐metastasizing primary osteosarcomas, primary osteosarcomas, and 

their  lung  and  bone metastases,  respectively,  revealed  the most  differential  expressed miRNAs 

between the non‐metastatic primary OS and the metastatic primary OS, particularly the metastatic 

primary OS that developed lung metastases. Further analysis is necessary to determine whether this 

result can be utilized as a predictor of metastatic potential in patients with primary osteosarcomas 

who do not have hematogenic metastases at the time of initial diagnosis. 

Table 5. Non coding RNAs with potential as predictors of hematogenic metastasis development of osteosarcoma 

patients. 

Non coding RNA     Materials       Results      Source 

miR‐34c‐3p  and miR‐

154‐3p 

 

Sarcoma  tissue, 

FFPE 

The  combined  values  of 

miR‐34c‐3p  and miR‐154‐

3p  showed  90  % 

diagnostic  power  for 

osteosarcoma  samples 

and  85  %  for  metastatic 

osteosarcoma. 

Abedi, S. et al. [183] 

miR‐675 

miR‐1307   

miR‐25‐3p 

. 

 

Serum  and 

plasma 

Osteosarcoma‐derived 

exosomal  biomarkers, 

including miRNAs, and   

lnc‐RNAs,  reveal 

diagnostic  value  and  the 

potential  of  predicting 

prognosis  for 

osteosarcoma metastasis. 

Tan, L. et al. [185] 

miR‐34a  Serum  Elevated  serum  levels  of 

miR‐34a  were  associated 

with  a  reduced  incidence 

Lian, H. et al. [167] 
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of  metastasis  in  OS 

patients. 

 

miR‐506  Sarcoma  tissue, 

FFPE 

microRNA‐506  was 

differentially  expressed 

between  osteosarcoma 

tissues  with  lung 

metastasis  and  non‐

metastatic tumor tissue. 

Meng, F. et al. [186] 

miR‐98‐3p;  miR‐134‐

3p; 

miR‐378C; miR‐516A‐

5p; 

miR‐548A‐3p;  miR‐

606; 

miR‐650; miR‐802; 

miR‐1233‐3p;  miR‐

1271‐3p; 

miR‐3158‐3p 

Sarcoma  tissue, 

FFPE 

The  most  differential 

expressed  miRNAs 

(highly significantly) were 

observed  between  the 

non‐metastasizing OS and 

the metastasizing primary 

OS 

Karras,  F.  in 

preparation [187] 

11. Concluding Remarks   

Histologic evaluation is still the most reliable and most effective method for diagnosing highly 

malignant osteosarcoma  [1]. Despite  the well‐established histologic diagnostics, highly malignant 

osteosarcoma can be misdiagnosed as another bone tumor, leading to catastrophic consequences such 

as  incorrect  therapy  and misguided  surgical  procedures.  [121]. Highly malignant  osteosarcoma 

serves as a paradigmatic example of a tumor characterized by a high degree of molecular genetic 

complexity. This complexity is likely the primary reason why molecular genetic investigations have 

not  yet  yielded  clinically  significant  diagnostic markers  [14].  Therefore,  additional methods  are 

necessary to enhance the differential diagnosis. Given that over 98% of the human genome is non 

coding,  it  is  logical  to  explore  diagnostic  tools  among  the  various  types  of  ncRNAs  [81;82;83]. 

NcRNAs have demonstrated significant diagnostic potential in tumors of other organs, particularly 

in distinguishing benign from malignant tumors. However, their application as a diagnostic tool in 

bone tumor diagnosis has been limited so far, accounting for the focus of this review. To enhance the 

success of establishing ncRNAs as diagnostic tools in the field of osteosarcoma, more sophisticated 

deep  cancer  classifiers may  be  required  [96].  This  approach  is  anticipated  to  further  reduce  the 

incidence of misdiagnoses based solely on histology, thereby ensuring the most effective treatment 

for bone tumor patients.   
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