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Featured Application: The application of this work is in radiomics for medical imaging analysis. It 

addresses the question of how to establish if radiomics features are stable and reproducible. 

Abstract: Radiomics involves the extraction of information from medical images not visible to the human eye. 

There is evidence these features can be used for treatment stratification and outcome prediction. However, 

there is much discussion about the reproducibility of results between different studies. This paper studies the 

reproducibility of CT texture features used in radiomics, comparing two feature extraction implementations 

namely Matlab toolkit and Pyradiomics when applied on independent datasets of CT scans of patients i) the 

open access RIDER dataset containing a set of repeat CT scans taken 15 minutes apart for 31 patients (RIDER 

Scan 1 and Scan 2 respectively) treated for lung cancer and ii) the open access HN1 dataset containing 137 

patients treated for head and neck cancer. Gross tumor volume (GTV) manually outlined by an experienced 

observer available on both datasets was used. 43 common radiomics features available on Matlab and 

Pyradiomics were calculated using 2 intensity-level quantization methods with and without an intensity 

threshold. Cases were ranked for each feature for all combinations of quantization parameters and the 

Spearman’s rank coefficient, rs, calculated. Reproducibility was defined when a highly correlated feature in the 

RIDER dataset also correlated highly in the HN1 dataset and vice versa. 29 out of 43 reported stable features 

were found to be highly reproducible between Matlab and Pyradiomics implementations, having consistently 

high correlation in rank ordering for RIDER Scan 1 and RIDER Scan 2 (rs > 0.8). 18/43 reported features were 

common in RIDER and HN1 datasets, suggesting they may be agnostic to disease site. Useful radiomics 

features should be selected based on reproducibility. This study identified a set of features that meet this 

requirement and validated the methodology for evaluating reproducibility between datasets. 

Keywords: radiomics; reproducibility; repeatability; validation; lung cancer; head and neck cancer; 

CT imaging 
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1. Introduction 

There is growing evidence that standard-of-care medical images obtained from modalities such 

as CT, MRI and PET contain more information than is visible to the human eye [1]. The high 

throughput extraction and processing of the underlying information from radiological images is 

known as "radiomics". The quantitative data obtained (imaging biomarkers) could be used alongside 

the current gold standard of tumor evaluation and staging tools including TNM staging [2] to aid 

clinical decision making such as personalized treatment planning. 

The predictive power of radiomics features is dependent on having a large set of data. However, 

due to the nature of medical images, the size of the studies is often relatively small and based on a 

single dataset, restricting the impact of the results. To find candidates for reproducible biomarkers 

from the hundreds of features available from first, second and higher order statistical features of 

images, it is necessary for researchers to validate the results published by other groups [3]. This 

should be carried out using a separate dataset from the original study and considered to be a 

retrospective investigation. However, at least 50% of published studies have been described as poorly 

reported with incomplete methodologies and results for successful validation when an analysis of 

biomedical research was performed by Chalmers and Glasziou [3]. The precise cause of this serious 

lack of reproducibility in validation is unclear. The lack of standards for validating results, 

incomplete reporting of methodologies and results, and unrecognized confounding variables in the 

dataset used could all be to blame. 

A recent systematic review of full-text articles in PubMed published in 2018 primarily addressed 

non-small cell lung cancer (NSCLC) and oropharyngeal cancer [4] and found only 7 out of 41 studies 

reported every methodology used in image acquisition, pre-processing, and feature extraction in 

detail. Out of 21 studies on NSCLC, 4 studies using CT images [5–8] and 1 study using PET images 

reported every methodologic aspect. The results identified the sensitivity of radiomics features in 

terms of repeatability and reproducibility to processing details such as the settings used in image 

acquisition, image reconstruction algorithm, image preprocessing and software used to extract 

radiomic features. First-order features were reported to be more reproducible than shape metrics and 

texture features. 

Our previously published study [9] analyzing radiomics features extracted from the CT 

component of PET/CT scans of patients with NSCLC, treated at the Royal Surrey NHS Foundation 

Trust (RSFT). The radiomics features were calculated using the toolkit of Vallières et al [10]. which is 

available in the Matlab package. This study found that a set of radiomics features were stable to 

settings used in image acquisition and reconstruction algorithms used in different scanner models. 

Features were also stable to variations in tumor delineation. However, features were sensitive to 

intensity quantization parameters including i) the number of intensity levels, ii) the method of 

quantization to select the intensity levels and iii) the use of an intensity threshold around the tumor 

or organ being analyzed. These results show that different parameter choices in different datasets 

may help to explain the results in the two afore-mentioned review papers [4,5]. Therefore, a question 

is would these features be successfully reproduced and validated under different conditions such as 

with a different lung cancer dataset, or for a different disease site or using a different implementation 

of radiomics feature extraction? 

2. Materials and Methods 

The purpose of this paper is to investigate the generalizability of the findings from the initial 

study[9] and if a common set of CT radiomics features is stable. This was achieved firstly by 

evaluating which radiomics features are stable from the originally used the 43 features of the Vallières 

toolkit, for a publicly available lung cancer dataset: the Reference Image Database to Evaluate 

Therapy Response (RIDER)[11]. As Pyradiomics is one of the most used radiomics toolkits and 

provides the 43 features of the Vallières [10] plus 59 other original features, the RIDER dataset was 

also evaluated using Pyradiomics [12] and the results of the two toolkits were compared to study 

generalizability across radiomics implementations plus the extra features from Pyradiomics. As with 

the original study this was carried using the full intensity range in the images and thresholding to 
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analyze the tumor intensity region only. To explore the applicability to other disease sites, a head and 

neck dataset was analyzed using MATLAB toolkit and Pyradiomics. The dataset used was the HN1 

dataset made publicly available in The Cancer Imaging Archive [1]. The stable features for HN1 were 

compared with those from RIDER. 

2.1. Imaging Datasets 

Two publicly available datasets were used in this study.  

2.1.1. RIDER Dataset 

The Reference Image Database to Evaluate Therapy Response (RIDER) dataset consists of 31 

non-contrast enhanced PET/CT images from pathologically confirmed NSCLC patients scanned in 

the Memorial Sloan-Kettering Cancer Center, New York, United States [11]. All patients received 

conventional radiotherapy, none received SABR. Each patient had a repeat scan 15 minutes after the 

first scan using the same scanner and imaging protocol. These are referred to as RIDER Scan 1 and 

RIDER Scan 2. The image datasets were acquired using two scanner types: GE LightSpeed RT16 and 

GE VCT. Each CT image size was 512 by 512 pixels, with pixel size ranging from 0.58 mm by 0.58 mm 

to 0.87 mm by 0.87 mm and a slice thickness of 1.25 mm. 

2.1.2. HN1 dataset  

The HN1 dataset contains PET/CT images of 137 head and neck patients with squamous cell 

carcinoma. The patients were treated with definitive radiotherapy or concurrent chemoradiation. All 

patients underwent a treatment planning free-breathing 18F FDG-PET-CT scan (Biograph, 

SOMATOM Sensation-16 with an ECAT ACCEL PET scanner; Siemens, Erlangen, Germany), 45 

minutes after uptake. A spiral CT (3 mm slice thickness) was performed covering the complete 

thoracic region. Slice thickness 1.5 - 3.0 mm in-plane resolution 0.9 x 0.98 mm2 to 1.09 x 1.09 mm2. 

The data also includes gross tumor volume (GTV) delineation by an experienced radiologist and a 

radiotherapy structure set. Further details are given here. [1]  

2.2. Texture Features Analyzed  

To mimic the methodology of our previous study, the Matlab texture analysis toolkit of Vallières 

et al. [13] was used to extract 43 standard features from the CT defined GTV for the RIDER dataset. 3 

were first order features and 40 were second or higher order, of which 9 were from the grey level 

correlation matrix (GLCM), 13 from the grey level run length matrix (GLRLM), 13 from the grey level 

size zone matrix (GLSZM) and 5 from the neighborhood grey tone difference matrix (NGTDM). For 

the second and higher order features, matrices were generated to assess the relationship between the 

center voxel and its neighbors. One matrix was generated for each of the 13 directions in 3D space, 

the texture features were calculated then averaged over the GTV volume. A full list of the features 

and equations defining them used for the 43 radiomics features can be found in the literature [10].  

Using Pyradiomics a total of 103 features were extracted from the segmented GTV.  These 

features encompassed eight types: 18 first-order, 14 shape,14 gray-level dependence matrix (GLDM), 

22 gray-level co-occurrence matrix (GLCM), 16 gray-level run length matrix (GLRLM), 16 gray-level 

size zone matrix (GLSZM) and 5 neighboring gray tone difference matrix (NGTDM).  

2.3. Experimental Set-up and Statistical Analysis 

The 43 features from the Matlab toolkit were generated for both RIDER Scan 1 and Scan 2. 

Secondly the results were also compared with and without an intensity threshold applied to the CT 

scan. The threshold used was -200 to 300 HU as in our previous study [9]. Thirdly stability was 

measured by comparing global uniform quanitizer (GUQ – with the same quantizer applied to each 

scan) and individual uniform quantizer (IUQ – with the quantizer optimized for each scan). All these 

were uniform quantizers which quantized the intensity range of each GTV into equal width bins.  
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The same features were generated for the two RIDER scans using Pyradiomics with the same 

thresholding and Fixed Bin Width (equivalent to Global Uniform quantizer) and Fixed Bin Count 

(equivalent to Individual Uniform Quantizer).  

Results were compared between the Matlab and Pyradiomics implementations and between the 

two RIDER scans, with and without intensity threshold. No outcome information was available; 

hence validation of the features was based on assessing reproducibility of the rank ordering using 

each feature to changes to the quantization parameters for all datasets. Changes in the rank ordering 

indicate low reproducibility, leading to unreproducible predictions of biomarkers. In addition, the 

stability of the other 59 features available in Pyradiomics was also studied. Although these cannot be 

used to comment on the consistency with the MATLAB toolkit, it is instructive to determine if they 

are candidate stable features. 

A feature was considered reproducible if it produces the same rank ordering for the cohort 

regardless of the quantization parameters. Spearman's rank correlation, rs, was used to measure the 

rank ordering quantized using IUQ against GUQ at 128 intensity levels used as a reference with and 

without intensity thresholding, for all datasets. The rank ordering quantized with GUQ at 128 

intensity levels as a reference was used as the standard comparator as it was found to be the most 

stable quantization combination [9]. Validation was considered successful if a feature which 

expressed high or low correlation for the Matlab toolkit also expressed high or low correlation in 

Pyradiomics.  

In the comparison of stable features between arms of the study in the results, e.g. between 

radiomics toolkits and disease sites, Venn diagrams are used to illustrate which features show 

promise as stable features in multiple arms. 

Research manuscripts reporting large datasets that are deposited in a publicly available database 

should specify where the data have been deposited and provide the relevant accession numbers. If 

the accession numbers have not yet been obtained at the time of submission, please state that they 

will be provided during review. They must be provided prior to publication. 

Interventionary studies involving animals or humans, and other studies that require ethical 

approval, must list the authority that provided approval and the corresponding ethical approval 

code. 

3. Results 

Table 1 lists all features that were reproducible, with high correlation, for RIDER Scans 1 and 2 

based on the Spearman's correlation coefficient with (blue) and without threshold (red) using the two 

quantizers GUQ and IUQ. Features with rs >= 0.8 were classified as highly correlated. This was a 

subjective decision as no published guidance was available. 34 features were found to be 

reproducible; 29 and 21 with and without intensity threshold applied, respectively and 21 features 

were found to be reproducible for all data. This suggests that including intensity threshold around 

the region of interest as a pre-processing step tends to increase the stability of some radiomics 

features. 

Table 1. List of radiomics features with reproducibility for thresholded and without threshold shown 

by blue and red ticks for RIDER Scans 1 and 2, respectively in columns 2, 3, 4 and 5 for Matlab, 

columns 5, 6,7 and 8 for Pyradiomics and column 9 and 10 for both the implementations. Similarly, 

features reproducible across all data is shown by a black tick in column 12. Reproducibility is 

measured by a rs value greater than or equal to 0.8. 

Radiomics 

Feature 
Matlab Pyradiomics 

Across scans 1 

&2  and 

feature 

extraction 

implementati

ons   

All 

dat

a  
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Figure 1 shows a Venn diagram plotting the overlap in highly correlated features quantized with 

GUQ versus IUQ for 43 features that are commonly available in the MATLAB toolkit and 

Pyradiomics. Panels A and B plot the correlation of rank ordering quantized between GUQ and IUQ 

without and with the use of an intensity threshold. The correlation value for most shape, first order, 

GLCM, GLRLM, GLZSM and NGTDM texture features were high (>0.8) for the RIDER Scan 1, with 

9 and 14 features with rs >0.9 without and with intensity threshold. The number of features that 

overlapped between Matlab toolkit and Pyradiomics were higher when intensity threshold was 

applied. A similar trend was seen for RIDER scan 2 data. 

 

 

Figure 1. Venn diagrams with a visual representation of features that are reproducible between 

Matlab and Pyradiomics feature extraction toolkits for GUQ versus IUQ with 128 quantizer levels 

(Fixed Bin Width in Pyradiomics) with a A) without Threshold B) with threshold applied. 

Reproducibility is measured by a rs value greater than or equal to 0.8. Features heighted in bold had 

rs value greater than 0.9. 

Figure 2 presents the results for features that were uniquely available in Pyradiomics. Figure 2A 

shows correlation of rank order between features extracted with and without intensity threshold with 

the use of GUQ and IUQ quantization. Similarly, Fig. 2B shows the correlation of ranks quantized 

between GUQ and IUQ with and without intensity threshold being applied. Shape features were 

found to be invariant to intensity threshold or quantization techniques. For all other classes, the 

features showed more variance based on application of an intensity threshold and less so on the 

quantization used. A few features showed negative correlation with the choice of quantization used 

namely GLCM Inverse Variance, GLDM Large Dependence Low Gray Level Variance, GLRLM Run 

Entropy, and GLZSM Size Zone Nonuniformity Normalized. This negative correlation was seen only 

in GLCM Maximum Probability when an intensity threshold was applied. 
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Figure 3 plots a Venn diagram with the overlap in the highly correlated features quantized 

between GUQ and IUQ and with an intensity threshold applied for datasets RIDER Lung 1 and Head 

and Neck HN1.The features were extracted using Pyradiomics 18/43 features were agnostic of the 

disease site and 4/5 from HN1 and 8/11 from RIDER lung had rank correlation above 0.9, respectively. 

 

Figure 2. The Spearman correlation ranks of features extracted using A) threshold versus no threshold 

and comparing the impact of the quantisation techniques (GUQ (bin count) vs IUQ (bin width) B) 

Correlation between quantization methods (GUQ and IUQ) and comparing the impact of 

thresholding. Each colour pair block represents a separate feature class. 

 

Figure 3. Venn diagram with a visual representation of features that are reproducible between RIDER 

Lung 1 and the Head and Neck (HN1) dataset and with intensity threshold applied. Reproducibility 

is measured by a rs value greater than or equal to 0.8. Features heighted in bold had rs value greater 

than 0.9. 

4. Discussion 

This study was to verify the robustness of the methods reported earlier for improving stability 

of radiomic features. The study used two different datasets with different pixel sizes acquired in a 
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different center using different scanners and protocols, one lung cancer and the other head and neck 

cancer, both available publicly while additionally testing for reproducibility of stability to 

implementation of radiomic features. High levels of correlation were achieved for more than half of 

the features for both Matlab and Pyradiomics implementations for the RIDER lung data and more 

than one third features stable for lung and head and neck datasets suggesting that some features are 

agnostic to the disease site and generally robust.  

In the literature, low reproducibility is one of the biggest challenges in radiomics [3,4]. Features 

identified to be predictive may be biased to the specific dataset and have limited predictive power on 

another dataset. Possible causes for the low reproducibility may include pre-existing differences in 

the dataset used, for example different acquisition parameters, reconstruction methods, pixel sizes 

and slice thickness, low reproducibility of features to variations in quantization parameters and low 

repeatability of the features. Other considerations include the preprocessing of the imaging data. For 

instance, Mottola et al. studied the effects of image resampling and showed that different resampling 

approaches produced very different error metrics, with Lanczos interpolation performing 

substantially better than simple linear interpolation [14]. In our previous work [9] we have shown 

that some radiomics features are reproducible across different scanner models, acquisition 

parameters, reconstruction methods, and modest variations in slice thickness, provided pixel sizes 

are resampled to a fixed standard. It was identified that feature reproducibility was highly sensitive 

to the choice of quantization parameters.  

The imaging biomarker standardization initiative was set up to ensure features are reproducible 

across implementations [15]. PyRadiomics does not exactly comply completely with all IBSI 

requirements including quantization parameters and although care was taken to keep the suggested 

stability parameters as close as possible, the implementation would have affected the present study. 

Hence, IBSI compliance is strongly recommended to allow better reproduction and validation of the 

results externally.  

The aim of many radiomics studies including those of by our group is to predict an outcome 

such as response to treatment or disease-free survival using one or multiple features referred to as 

biomarkers. Predictions are often performed using statistical approaches including Kaplan-Meier 

analysis based on a single feature of the data at a time [16] and machine learning approaches with 

multiple features from a large set of features up to hundreds [1,17]. Outcome prediction accuracy is 

heavily reliant upon having highly reproducible features. For instance, the widely used Kaplan-Meier 

analysis method involves ordering the dataset based on a feature and dichotomizing it into two sets 

for prediction. It is vital for the rank ordering to be consistent, as changes in the rank order may 

change the dichotomization and hence results in Kaplan-Meier studies, leading to low reproducibility 

and low predictive power. 

Unreproducible features lead to even bigger challenges with big data driven methods. Machine 

learning approaches with medical images are prone to overfitting since the number of features 

available may be large compared to the number of cases available for study. Overfitting potentially 

increases the false discovery rate and limits the predictive power of the model to new datasets. It is a 

common practice to pre-select the features available for analysis using methods such as inter-feature 

correlation, interclass correlation (ICC) and LASSO Regularization. However, these methods are 

statistical, without any knowledge of the underlying radiomics features. Based on our results, we 

recommend excluding unreproducible features from analysis to reduce dimensionality and 

computational burden. 

This study has successfully validated our previous results [9] and reproduced the changes in 

radiomics features using different quantization parameters, suggesting the methodology used for the 

study9 is robust. These results highlight the importance of using the same quantization parameters 

for all analyses and reporting detailed methodology used. 

5. Conclusions 

Radiomics features reported as stable were analyzed for reproducibility using RIDER  lung 

dataset with. 29 of 43 features found to be reproducible to changes in the feature extraction toolkits 
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when intensity threshold was applied maintaining stable rank ordering (rs > 0.8) and are 

recommended for use for biomarker analysis. 1843 reported features were common in RIDER and 

HN1 datasets, suggesting they may be agnostic to disease site. Useful radiomics features should be 

selected based on reproducibility. This study identified a set of features that meet this requirement 

and validated the methodology for evaluating reproducibility between datasets. 
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