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State-Space Techniques

Anker C. Yao

Independent Researcher; maxgridsgeneral@gmail.com

Abstract: In many modern power electronic systems, accurate modeling is critical for effective control
design and overall system performance. This paper examines the derivation of AC equivalent circuit
models for pulse-width modulated (PWM) converters operating in the continuous conduction mode.
The primary goal is to isolate the significant low-frequency behavior of converters by removing the
high-frequency switching components inherent to their operation. To accomplish this, the paper
outlines both state-space averaging and circuit averaging techniques, emphasizing how inductor
currents and capacitor voltages can be approximated by averaged quantities over one switching
period. Derivations are presented for key topologies—including buck, boost, and buck-boost
converters—to demonstrate the process of constructing small-signal transfer functions. Practical
considerations such as conduction losses, diode drops, and on-resistance effects are also integrated
to reflect real-world conditions. By capturing the essential dynamics in a linearized form, these
averaged models enable standard analytical tools (such as Bode plot analysis) to guide controller
design, stability assessments, and transient response optimizations. Concluding remarks highlight
the versatility of these methods and recommend directions for future exploration, including
extensions to discontinuous conduction and resonant modes. The results underscore the value of
averaged modeling as a foundation for robust and efficient power converter design.

Keywords: AC equivalent circuit modeling; State-space averaging; circuit averaging; averaged
switch model; canonical circuit; Small-signal analysis; DC-DC converters; Power electronics

1. Introduction and Background

Switch-mode power converters are widely used in modern electronics, providing efficient
methods for transferring and regulating power in applications that range from small portable devices
to large-scale industrial systems. By rapidly switching transistors between fully on and fully off
states, these converters minimize dissipation and achieve high operating efficiency. However, the
rapid transitions intrinsic to the switching action also generate high-frequency components in current
and voltage waveforms, making direct analysis cumbersome when focusing on low-frequency
behavior or feedback loop design.

In many practical situations, especially where precise output regulation is required, engineers
are far more interested in the slower dynamics that govern steady-state accuracy and transient
response than in the switching harmonics themselves. For example, in a basic step-down (buck)
converter, the inductor current ripples rapidly each cycle, but the gradual changes in its average value
have the most significant effect on output regulation and system stability. The ripple can be
sufficiently small that its influence on feedback design is negligible, prompting the use of modeling
techniques that average out the switching action over a single period.
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Figure 1. Typical DC-DC Buck Converter with Voltage Feedback Loop.

Two closely related methods—state-space averaging and circuit averaging—have proven
particularly valuable for modeling switch-mode converters in the continuous conduction mode. Both
involve identifying how inductor voltages and capacitor currents change when a transistor or diode
toggles between conduction and non-conduction intervals, then representing these time-varying
connections with averaged expressions. In state-space averaging, one writes linear differential
equations valid during each subinterval of the switching period, combines them according to duty
ratio, and obtains a piecewise-averaged system that captures the low-frequency behavior. In circuit
averaging, the focus shifts to replacing the active switches with equivalent dependent sources or
averaged switch networks, ultimately forming a time-invariant circuit suitable for analysis with
standard linear techniques.

These modeling strategies are essential for designing robust feedback loops. Without an
adequate small-signal representation, it is difficult to predict how a converter will respond to a
sudden load change, a variation in input voltage, or an alteration in reference commands. Averaged
models, once linearized about a chosen operating point, yield transfer functions (for instance, control-
to-output or line-to-output) that can be evaluated using traditional frequency-domain tools. This
allows designers to set bandwidth, phase margin, and other specifications that ensure stability and
satisfactory transient performance.

Furthermore, while the basic principles are usually illustrated by low-power, single-phase
examples such as buck, boost, and buck-boost converters, the same techniques extend to more
complex configurations. Transformer-based topologies and multi-phase converters can be treated
similarly, albeit with additional care in accounting for winding ratios, parasitic elements, and
conduction modes. In all cases, the strength of the averaged modeling approach lies in striking a
practical balance between simplicity and accuracy. The use of averaged models drastically reduces
the mathematical complexity of high-frequency switching phenomena while retaining enough detail
to make meaningful predictions about the converter’s behavior under typical operating conditions.

In the chapters and sections that follow, a step-by-step approach is taken to show how these
models are derived and validated. This includes handling the principal energy-storage elements,
incorporating conduction losses or voltage drops as needed, and performing the small-signal
linearization that underpins frequency-response analysis. By illustrating these ideas through
multiple converter topologies, the paper highlights the versatility of averaged modeling as a unifying
framework for continuous conduction designs. In doing so, it provides a foundation for
understanding the essential dynamics behind switch-mode power conversion and for designing
controllers that meet demanding performance requirements.
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2. Fundamentals of Averaged Modeling

Averaged modeling is a powerful approach for analyzing switch-mode power converters
without tracking every transition of the high-speed switching elements. In many practical designs,
inductors and capacitors are chosen so that the switching ripple in their currents or voltages remains
modest, allowing one to approximate these signals by their average values over a single switching
period. This simplification makes it possible to study the converter’s low-frequency or system-level
behavior in a more straightforward way, which is particularly useful for control design and stability
analysis.
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Figure 2. Buck Converter Inductor and Capacitor Waveforms, Including Their Averages Over One Switching
Period.

A convenient starting point is to focus on one inductor and one capacitor, recognizing that many
converters can be broken down into a small set of these energy-storage components. Consider an
inductor of value L subjected to two different voltage levels, v; and v,, within each switching
period T. For a fraction dT of the period, the inductor experiences v; (such as when a transistor is
on), and for the remaining (1 — d)T, it experiences v, (such as when a diode is conducting). The
instantaneous inductor voltage, v_L(t), follows a piecewise function, but can be replaced by its
average over T:

1 T

v, = ?f v (t)dt =dv, + (1 — d)v,,
0

where 0 <d <1 is the duty cycle. This same principle applies to capacitors by averaging their

current waveform over T. In that case, if i; flows into the capacitor for a fraction dT and i, flows

in for (1 — d)T, the average capacitor current is

1 T
l_c = ?f ic(T)dT = dll + (1 - d)lz
0

Such expressions rely on two main assumptions. First, the inductor current and capacitor voltage
should not change drastically within each subinterval of length dT or (1 — d)T. This is often referred
to as the small-ripple approximation, indicating that the actual waveforms do not deviate
significantly from their average during one switching period. Second, the overall time constants of
the converter’s energy-storage elements (dominated by L and C) must be much larger than T,
ensuring that the averaged representation remains valid for frequencies well below the switching

1
frequency —.
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Table 1. Comparison of Large-Signal vs. Small-Signal Characteristics.

Aspect Large-Signal Characteristic Small-Signal Characteristic

Primary Focus Overall converter response under Small deviations around an equilibrium
substantial load changes, input voltage |operating point, used to assess stability,
variations, and start-up transients, control loop behavior, and system response
often covering the full operating range [to minor perturbations.
of the system.

Magnitude Involves sizable changes in inductor  [Perturbations are relatively small
current and capacitor voltage, compared to the steady-state current or
potentially spanning the entire voltage, allowing a linear approximation
converter operating region. around the equilibrium point.

Frequencies of [Extends from DC through the Typically focuses on frequencies well

Interest switching frequency (and may include |pelow the switching frequency, where the
harmonics relevant for electromagnetic |converter’s control loop dynamics
compatibility or transient demands).  |dominate the behavior.

Modeling Often requires simulating each Relies on averaged, linearized models (e.g.,

Complexity  [switching transition or applying state-space or circuit averaging), making
piecewise analysis to capture all standard frequency-domain methods (like
subintervals (e.g., for large-signal Bode plots) feasible.
transients or start-up).

Applications [Evaluating cold start, heavy load Designing and tuning feedback loops,
changes, overload or short-circuit examining stability margins, determining
behavior, and ensuring the converter [loop crossover frequency, and predicting
operates within component and minor load or supply variations.
thermal limits.

Key Insights [Shows ultimate operational boundaries Provides a simplified linear framework for
and helps confirm robust performance (control design, allowing clear identification
under extreme conditions. of poles, zeros, and phase margin for loop

compensation.

In practice, there are two closely related ways to create these averaged models. One is known as
state-space averaging, which involves writing down differential equations for each subinterval and
taking a weighted average based on d. Another approach, circuit averaging, treats the switch
network (usually composed of a transistor and a diode) as a two-port element that can be replaced
by controlled sources or an equivalent “transformer” in the time-invariant version of the converter
schematic. Despite these different viewpoints, both methods ultimately yield a set of equations that
describe how the average inductor current and capacitor voltage evolve over time.

When averaged models are applied under steady-state conditions, two key relationships often
emerge. The first is inductor volt-second balance, which states that the inductor’s average voltage
over one switching period must be zero if its current is to remain constant from cycle to cycle.
Symbolically,

v, d
d'l]l+(1—d)'l72 =0 - v—1=—m,
in a hypothetical two-level system (with the sign depending on specific circuit polarity). The second
is capacitor charge balance, indicating that the net charge flowing into the capacitor over one cycle

must be zero for the capacitor voltage to remain stable:
dil + (1 - d)iz = 0.

These balance conditions provide a convenient way to calculate the converter’s equilibrium
operating point (such as output voltage and inductor current) without delving into the switching
ripple details.
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Following the derivation of average voltages and currents, designers often take one more step:
linearizing the averaged equations around a chosen operating point to obtain a small-signal model.
This model helps predict how the converter responds to small perturbations, such as changes in load,
input voltage, or duty cycle commands. In linearized form, well-known frequency-domain tools like
Bode plots and Nyquist diagrams become applicable, enabling the design of feedback loops that meet
bandwidth and stability requirements.

In summary, averaged modeling provides a practical balance between the complexity of time-
domain switching waveforms and the need to understand a converter’s essential dynamics at lower
frequencies. By replacing piecewise voltages and currents with their cycle averages, one arrives at a
continuous-time representation that is more amenable to classical control analysis. This framework
forms the backbone of the small-signal design process for many switch-mode power converters.

3. State-Space Averaging Method

The state-space averaging method provides a structured approach to modeling the low-
frequency dynamics of switching converters. By writing the converter inductor currents and
capacitor voltages in the form of state variables and then defining corresponding linear equations for
each interval of the switching cycle, one can systematically derive an averaged model that offers clear
insight into system-level behavior.

Identify Subintervals

Determine each distinct interval within the
switching period (e.g., transistor on/off). Assign
labels such as “Interval 1" and “Interval 2.”

Write Subinterval Equations

For each interval, use circuit laws (Kirchhoff's or

state-space forms) to express inductor voltages,
2. capacitor currents, etc

Weighted Sum by Duty Cycles

Multiply each interval's equations by the fraction
of the switching period it occupies (e.g., d or 1-d),
3. then sum them to remove high-frequency ripple

Solve for Equilibrium

Set dx/dt=0 in the averaged equations to find

steady-state (dc) currents and voltages. Solve
4. for the inductor current, capacitor voltage, and

duty cycle at the operating point

Linearize Around Operating
Point
Introduce small-signal perturbations (e.g., a(t), )’é(t))
5 around the equilibrium. Neglect second-order terms,
o yielding a linearized system.

Obtain Small-Signal Model
Represent the linearized relationships as an
equivalent circuit or in transfer-function form
6 Conventional linear analysis (e.g., Bode plots) then
™\ aids in control design and stability checks

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 3. Flow Diagram for Subinterval Equations, Averaging, and Linearization.

1. Purpose and Basic Concept

Switch-mode converters typically operate in two (or more) distinct topologies over the course of
each switching cycle: for example, a transistor-on interval (subinterval 1) and a transistor-off interval
(subinterval 2). In each subinterval, the circuit can be described by linear differential equations
involving the inductor and capacitor variables. The key idea of state-space averaging is to write these
equations in a standard matrix form, then combine them by weighting with the fraction of time spent
in each subinterval (i.e., the duty cycle). By applying this procedure, one obtains a single time-
invariant system that represents the converter’s behavior at frequencies much lower than the
switching frequency.

2. State Equations for Subintervals
In continuous conduction mode (CCM), a common approach is to identify:

® The state vector x(t), consisting of independent inductor currents and capacitor voltages.

® Theinput vector u(t), which includes sources such as the input voltage and any relevant control
signals.

® The output vector y(t), which contains dependent quantities like the converter’s output current
or input current.

Table 2. Summary of State-Space Model Notation.

Symbol Definition / Meaning

x(t) State vector containing inductor currents, capacitor voltages, or other stored-energy
variables

u(t) Input vector representing independent sources (for example, the input voltage) and
control signals

y(t) Output vector that may include converter output voltage, converter input current,
or other dependent quantities of interest

A, B;, Gy, E; Subinterval-specific matrices describing the circuit during each switching phase,
such as transistor-on and transistor-off

K Diagonal matrix of component values (inductances, capacitances), used in K % to
represent stored energy

A,B,C.E Matrices formed by taking a weighted average of the subinterval equations
according to the duty ratio d

d Duty ratio, indicating the fraction of each switching period for which the primary
switch is in conduction

D Steady-state (DC) duty ratio around which small-signal variations are introduced

d(t) Small-signal duty-cycle deviation, assumed much smaller than the quiescent value
D

Xeqr» Ueqs Veq Equilibrium (steady-state) values of the state vector, input vector, and output
vector

%(t),4(t), 9(t) [Small-signal perturbations in the state, input, and output variables about the
equilibrium operating point

Notes: 1. The matrices 4;, B;, C;, E; describe different circuit configurations that arise, for example, when the
switch is on versus off. 2. In continuous conduction mode (CCM), exactly two main intervals typically exist
within each switching period, though more intervals may appear if discontinuous conduction or more complex

switching strategies are used.

For a two-subinterval PWM converter, one writes the following generic linear equations for each
subinterval i = 1,2:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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dx
K— = A;x + B;u, y = C;x + E;u. (1)

dt
Here, K is typically a diagonal matrix of inductances and capacitances, while 4;, B;, C;, and E;

reflect how the circuit is connected during interval i. For instance, when the main switch is on, the

transistor and diode may form one topology; when it is off, the diode and output filter may form

another. The switching period T is divided into two portions: interval 1 of length dT and interval 2

of length (1 —d)T.

3. Averaging Over the Switching Period

To capture the low-frequency evolution of the state variables without tracking every switching
transition, one defines an averaged state vector X(t) and similarly averaged input #(t) and output
¥(t). Under the assumption that x(t) and u(t) do not change significantly within a single cycle (the
small-ripple approximation), the converter’s behavior can be approximated by:

dx
—=d(A4,% + Bju) + (1 — d)(4,% + B,7). (2)

K— =
dt

This equation, often referred to as the averaged state-space equation, applies for frequencies
much less than the switching frequency. By distributing d and 1 — d, one can identify the matrices:

A = dAl + (1 - d)Az,E = dBl + (1 - d)Bz,

leading to
K dx
dt

A similar relation governs the averaged output ¥, yielding:

= Ax + Bu. (3)

y=d(C;x + E;n) + (1 — d)(Cx + E, i) = Cx + Eu,
where

C_‘ = dCl + (1 - d)Cz,E = dE1 + (1 - d)Ez.

4. Equilibrium (Steady-State) Solution

For many practical applications, an important first step is to determine how the converter
operates at steady state. In this situation, the derivatives of the averaged state variables are zero, so:

AXpq + Biigg = 0. (4)

By solving this matrix equation, one finds the equilibrium inductor current and capacitor voltage
(and other relevant internal variables). These equilibrium values are used later as a reference point
for small-signal linearization. A well-known example is the buck converter, where the averaged
approach reveals the familiar relationship V,,; = dV;,, under idealized conditions.

5. Small-Signal Linearization

Once the steady-state (or quiescent) solution X.q, U, is known, the next step is to analyze small
deviations around that point. Let

X(t) = Ko + (), UL) = Ueq + A(L), d() = D + d(0),

where the hat symbol (*) denotes a small perturbation. Substituting these into the averaged
equations and retaining only first-order terms (i.e., neglecting products of small signals) yields a
linear system describing how x(t) and #(t) evolve with time. Symbolically, one can express this as:

o

dx _ _ R
KE =[A+AA)X+(B+AB)U+Gd,
where A A and A B arise from the dependence of A;, 4,, B;, B, on d. The term G captures the
direct effect of duty-cycle perturbations d on the state variables. A parallel set of equations defines

the perturbed output .

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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6. Example Highlights

A common illustration is the buck-boost converter, which has a single inductor and a single
capacitor. One writes K = diag(L,C), then defines subinterval-1 matrices A;, B;, C;, E; based on
how the inductor and capacitor are connected when the transistor is on, and subinterval-2 matrices
A;, By, C,, E, for when the transistor is off. After forming the averaged matrices 4, B, C, E, the
user can solve for the equilibrium operating point. Perturbing around that point makes it possible to
obtain transfer functions such as d(s) = Dy () (control-to-output), which is essential for
determining the converter’s frequency response and designing a compensation network.

ig(t) Q D,
L 4‘1 i(t) |< .
V() ® L C_~ Rgv(t)

Figure 4. Nonideal Buck-Boost Converter Schematic with MOSFET On-Resistance and Diode Drop.

7. Advantages and Practical Considerations

The state-space averaging method excels in providing a clear, unified representation of how the
converter evolves over each switching cycle. Because the final averaged equations no longer explicitly
depend on time-varying connections, analysis becomes much more tractable. In addition, the
resulting framework is naturally compatible with well-established control-system techniques.

One should be aware, however, that this approach relies on the assumption that the converter
stays in continuous conduction mode and experiences relatively small ripple in its state variables
over each cycle. If the inductor current or capacitor voltage undergoes large swings within the
switching period, a more detailed analysis may be warranted. Moreover, in modes such as
discontinuous conduction or when current programming is employed, the standard two-subinterval
state-space averaging may need modifications or additional subintervals.

In conclusion, state-space averaging distills the essential behavior of a switching converter into
a simpler time-invariant system valid at frequencies well below the switching rate. This technique
offers a direct path to computing steady-state conditions, deriving small-signal transfer functions,
and ultimately designing robust controllers that meet performance goals for regulation and transient
response.

4. Circuit Averaging and the Averaged Switch Model

Circuit averaging is a valuable approach for analyzing the behavior of switching converters
without having to track each rapid on-off transition of the power devices. Instead of writing separate
differential equations for each subinterval of the switching cycle (as in state-space averaging), one
identifies the switching elements —usually a transistor and diode network —as a set of ports. The rest
of the converter (inductors, capacitors, load, and input source) remains in place. By “averaging out”
the time-varying connections of the switch network, the converter can be viewed as a single, time-
invariant circuit.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 5. Generic Two-Port Switch Network with Labeled Terminals.

1. Rationale and Basic Idea

When a transistor and diode alternate between conducting and non-conducting states at high
frequency, they effectively force the inductor and capacitor into different circuit configurations
within a single switching period. The goal of circuit averaging is to combine these configurations into
a single equivalent circuit that captures the converter’s net effect on low-frequency signals. To
accomplish this, the key step is to replace the actual transistor-diode arrangement with a simplified
two-port device whose voltages and currents are “averaged” over the switching period.

As an illustration, consider a basic boost converter. The inductor and load remain fixed, but the
transistor and diode switch in such a way that the inductor is connected to the input source when the
transistor conducts and to the output node when the diode conducts. Circuit averaging lumps these
two subintervals together, forming a single model of the switch network. One can then combine the
averaged switch network with the inductor, capacitor, input, and load to produce a time-invariant
representation.

2. Defining the Ports and Averaging

In a typical two-port switch network, each port has a voltage-current pair. Suppose port 1 is
(v1,i;) and port 2 is (v,,i,). Over one switching period T, these variables may exhibit pulsed
waveforms. Denote the duty cycle by d, so the first subinterval spans dT and the second spans
(1 — d)T. If one measures, for example, v;(t) when the transistor is on and off, it generally takes one
value for a fraction dT and another for (1 — d)T. By integrating or summing these values over the
entire period, one defines an average voltage:

1 T
U, = ?j v1(D)dt = dvy 5 + (1 — vy o5
0

Similar expressions hold for 73, 7,,7,. The essence of circuit averaging is to identify relationships
among these averaged voltages and currents. In many continuous conduction mode (CCM)
converters, these relationships take a form akin to

7, = dv, + (possible source terms), T, = di; + (possible source terms),

where the extra source terms might represent diode drops or other parasitic effects.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 3. Mapping of Converter Switch States to Averaged Model Parameters.

Switch State Interval DurationDuty Cycle Variable [Inductor/Capacitor Equation |Averaged Parameter
Transistor ON, Diode [dT d (duty ratio) IDefined by the circuit path when |4;, B;, C, E; (subinterval 1
OFF the switch conducts (e.g., input tojmatrices)

inductor)
Transistor OFF, Diode |(1 —d)T 1—d Defined by the diode conduction |4,, B,, C,, E;, (subinterval 2
ON ath (e.g., inductor to output) matrices)
Averaged Over One [T =dT+ (1 —d)T|d and 1—d Weighted combination of A,B,C,E (averaged
Full Cycle subintervals matrices)
Conduction Mode Varies with Possible extra May require additional intervals |Adjust intervals and
(e.g., CCM, DCM) load/current substate if discontinuous conduction matrices for zero-current

occurs phase or other operational

differences

Notes: 1. In continuous conduction mode (CCM), exactly two main subintervals typically appear during each
switching period (transistor ON, diode ON). 2. If the inductor current becomes zero (DCM), the switching period
may include an additional subinterval where neither transistor nor diode conducts. The analysis then extends

to capture that extra state accordingly.

3. The Averaged Switch Model

Once the average port variables are identified, it is often helpful to redraw the converter with
the switch network replaced by an averaged model. A common representation involves an ideal
transformer with a “turns ratio” set by the duty cycle. For instance, if one port’s voltage is ¥; and
the other’s is 7,, and they relate by #; = dv, in an idealized scenario, then one can depict a
transformer that scales voltages by d. In parallel, controlled sources may appear in the circuit to inject
or draw current in proportion to the duty cycle.

.

- - |
(i SACE
i i
i 3 | | +
=d‘(t)< (t)> + 1 dlt)d' (t)> :
<V (t)>r, :3(_t) Vi e die) "l <V,(t)>r,
| |
| |
] | —
S R | R WY T 3

Averaged switch network
Figure 6. Averaged Switch Model with Ideal Transformer and Dependent Sources.

For a boost converter, an averaged switch model might show that the average current entering
1

(1-ay
depending on how the two ports are defined. Each converter topology has its own characteristic form
of these relationships.

from the inductor side is di;, while the average voltage seen at the output side is scaled by

4. Example: Circuit Averaging in a Buck Converter

Consider a buck converter with a single transistor and a diode. During the “on” phase, the switch
connects the input to the inductor, and the diode is reverse-biased. During the “off” phase, the
transistor opens, the diode conducts, and the inductor current flows into the load. If we define:

e  Port 1 at the transistor input side (v, i;),
e  Port 2 at the diode output side (v,,1,),

then one can work out how v; and i, behave over a full cycle, and replace the actual switching
elements with a voltage source or current source that captures the average effect. For example, if 7;
is the average current from the input side, then in CCM, one often finds 1; = di, if I; is the inductor
current, because the transistor effectively connects port 1 to the inductor for a fraction d of the time.
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The net result is a circuit with fewer time-varying branches, where each source or transformer is
controlled by d, but otherwise remains a static element over the analysis interval.

5. Including Large-Signal Behavior and Linearization

Like state-space averaging, circuit averaging can be expressed first as a large-signal model. This
form indicates how the duty cycle and average inductor or capacitor waveforms interact to determine
the converter’s steady-state operating point. One can then linearize around that steady operating
point by writing:

d() =D +d(®),5,(t) = Vy + 9,(0), 1, (8) = I, + §,(0),

and so on. Products of small signals d(t)D,(t) are discarded, leaving first-order terms that define the
linear small-signal relationships. Often, these end up implying that each transformer winding in the
averaged switch model is accompanied by a dependent source whose value is tied to the steady-state
current or voltage multiplied by the duty-cycle perturbation.

6. Benefits and Practical Considerations

Circuit averaging offers a straightforward way to “see” how duty cycle modulates the flow of
energy. By focusing on a two-port (or multi-port) switch network, one can reuse standard circuit
analysis tools to find transfer functions, input or output impedances, or the converter’s frequency
response. This approach complements state-space averaging, and both methods should yield
consistent results if all assumptions—continuous conduction, small ripple, and high switching
frequency relative to system bandwidth—are satisfied.

However, large ripple, discontinuous conduction mode, and other complexities may necessitate
caution. Additional subintervals or specialized models might be required. Still, for many continuous
conduction designs operating at moderate ripple, circuit averaging and the averaged switch model
remain dependable techniques. They provide a concise, physically insightful view of how transistors
and diodes guide energy from the source to the load on average, ultimately simplifying both analysis
and design of controllers for low-frequency dynamics.

In summary, circuit averaging moves beyond time-domain switching details by substituting the
actual high-frequency transistor-diode network with averaged voltage and current sources (or
transformers plus sources). When combined with the converter’s inductors, capacitors, and resistive
elements, this yields a time-invariant model that is well suited to Bode-plot analysis, controller
tuning, and system-level optimization.

5. Canonical Model Representation

The idea of a canonical model emerges when examining the small-signal behavior of any
continuous-conduction-mode (CCM) converter driven by pulse-width modulation (PWM). Although
different converters —buck, boost, buck-boost, forward, flyback, and others —arrange their switches,
inductors, and capacitors in various ways, the underlying control actions and energy-transfer
processes share fundamental similarities. By isolating those shared dynamics, one can write a
standardized set of equations or construct a single “canonical” circuit that models how duty-cycle
perturbations affect inductor currents, capacitor voltages, and the converter’s output.

1. Motivation for a Canonical Form

In small-signal analyses, each converter’s differential equations can be linearized about an
operating point, typically defined by a quiescent duty ratio D and steady-state inductor current and
capacitor voltage. The resulting expressions often reveal a second-order (or higher) system governed
by inductor-capacitor interactions and altered by duty-cycle variations. Since all CCM PWM
converters must, in some sense, regulate energy flow from an input source to an output through
switching devices, it is possible to group the resulting transfer functions and impedances into a more
general form that applies to multiple topologies.

By casting the converter’s inductor(s), capacitor(s), and load into a generic two-port framework,
the small-signal model becomes a standardized network. Key features include:
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An ideal transformer-like element associated with the average conversion ratio.
Dependent sources that introduce duty-cycle control variations into the node and loop equations.
Inductor and capacitor elements that store and release energy, dictating dynamic behavior.

d
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Figure 7. Canonical Circuit Model for PWM Converters.

2. Standardized Small-Signal Equations

A central goal is to represent the control-to-output transfer function, line-to-output transfer
function, and output impedance in a way that highlights the roles of the inductor and capacitor. In
the canonical model, these transfer functions often appear in forms such as

Dp(8) = Gya()d(s) + Gy ()Dy(s),
where

U,(s) is the small-signal variation of the output voltage in the Laplace domain,
d(s) is the small-signal variation of the duty cycle,

Dy(s) is the small-signal variation of the input (line) voltage,

Gy,q(s) is the control-to-output transfer function,

Gyg(s) is the line-to-output transfer function.

Although the exact poles and zeros differ among buck, boost, or buck-boost converters, each
has:

One or more energy-storage elements giving rise to low-frequency poles.
Possibly a right-half-plane zero (as in boost and buck-boost converters).

A steady-state gain defined by the average conversion ratio (for example, D for buck, ﬁ for

boost, or — % for a simple buck-boost).

These features can be compiled into a canonical representation, showing that any single-
inductor, single-capacitor converter essentially behaves like a second-order system with certain
characteristic coefficients.

3. Physical Circuit Interpretation

The canonical circuit typically includes an inductor and capacitor in a configuration that
represents the energy flow from input to output, a load resistor, and dependent sources or ideal
transformers that reflect how the duty cycle modulates the inductor voltage or current. A generalized
schematic may contain:

e A controlled voltage source driven by d(s), injecting variations into the inductor node.

e A current source that depends on d(s) and the quiescent currents, capturing how changes in
duty cycle alter the overall current flow.

® Anideal transformer with turns ratio related to D, representing the dc transformation property
in the small-signal domain.

Once arranged, this network yields a uniform set of node and loop equations. In practice, the
exact form of each source or transformer ratio depends on the baseline steady-state duty cycle and
the directions of inductor current or capacitor voltage.

4. Benefits of Canonical Representation
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a) Unified Analysis:
Rather than re-deriving each converter’s model from scratch, one can rely on the canonical form

to quickly identify the dominant poles, zeros, and loop interactions. This speeds up analysis and
design, especially when moving from one topology to another.

b) Transfer Function Consistency:

The canonical approach ensures that quantities such as G,4(s), G,4(s), and the output
impedance appear in standard polynomial forms, whose coefficients can be tied directly to
inductance, capacitance, load resistance, and duty cycle.

¢) Simplified Controller Design:

Since all single-inductor, single-capacitor CCM converters share the same fundamental
structure, a controller design approach that works for one topology can often be adapted to another.
In particular, if a converter exhibits a right-half-plane zero (as in boost-type designs), the canonical
form helps highlight how that zero’s frequency depends on operating conditions like load current or
duty ratio.

5. Example: Mapping a Buck-Boost to the Canonical Model

A non-isolated buck-boost converter, when averaged and linearized, produces small-signal
equations with a right-half-plane zero for certain load and duty cycle ranges. In the canonical model,
this zero appears as a particular arrangement of inductor and capacitor, combined with dependent
sources that inject current and voltage variations related to the duty cycle. By writing the converter’s
inductor voltage and capacitor current equations in the canonical framework, one finds that the

negative sign in the dc gain (— %) translates into an effectively inverted output node in the

standard circuit diagram. The result still fits neatly into the same overall “shape” used by buck and
boost converters, preserving uniformity in how the small-signal transfer functions are expressed.

6. Concluding Remarks

While the canonical model does not eliminate the need for detailed derivations —particularly
when converters include additional elements or operate in modes such as discontinuous
conduction—it provides a clear, high-level understanding of what drives the converter’s dynamic
behavior in continuous conduction mode. By focusing on the universal roles of inductors, capacitors,
duty cycles, and load interactions, engineers can streamline both the analysis of existing topologies
and the exploration of novel designs. Ultimately, this perspective emphasizes how fundamental
energy-storage processes remain constant across seemingly diverse converters, all of which can be
captured through a consistent canonical representation once the high-frequency switching is
averaged out and linearized around a chosen operating point.

6. Comparative Evaluation and Application Examples

Averaged models derived via state-space methods or circuit-based approaches each provide
valuable insights into the low-frequency operation of switch-mode power converters. Although the
paths to these models differ, the resulting transfer functions are typically consistent, capturing the
same poles, zeros, and overall dynamics. This section illustrates how the methods may be compared
in two common converter topologies, highlighting the practical uses of these results in control-system
design.

1. Buck Converter Example

Consider a buck converter operating in continuous conduction mode (CCM). When using state-
space averaging, one divides the switching period into two subintervals: in one, the main transistor
is on; in the other, it is off. The corresponding linear equations for inductor current i; and capacitor
voltage v, are then weighted by the duty cycle d. Circuit averaging, on the other hand, interprets
the transistor-diode pair as a two-port switch network and replaces it with a single time-invariant
component whose averaged inputs and outputs replicate the net effect of high-frequency switching.
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Although these two derivations differ in style, both yield a small-signal transfer function of the
form
0o(s)

d(s)’

Gya (s) =

which usually has a dominant low-frequency pole set by the inductor-capacitor (LC) filter. Under
ideal conditions (neglecting losses and higher-order effects), G,4(s) resembles a single-pole roll-off
at frequencies below the switching frequency. Designers can then use classical Bode-plot methods to
place compensator poles and zeros, ensuring an acceptable bandwidth and stable transient behavior.
In practice, both the circuit-averaged and state-space-averaged models correctly predict where this
primary LC pole and any additional parasitic poles or zeros appear.
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Figure 8. Representative Bode Plots of a Buck Converter’s Control-to-Output Transfer Function.

2. Boost Converter and the Right-Half-Plane Zero

A particularly instructive application arises with the boost converter, which often exhibits a
right-half-plane (RHP) zero in its control-to-output transfer function. Whether one employs state-
space averaging or circuit averaging, the linearized equations show that raising the duty cycle —
intended to increase the output voltage—briefly increases the inductor current at the expense of
immediate output voltage drop, causing a temporary negative dip in the output before it ultimately
settles to a higher level. This behavior is mathematically characterized by a zero in the right half of
the s-plane. An expression frequently cited is:

R(1 - D)?

s =—

RHPZ L
where R is the load resistance, D is the steady-state duty ratio, and L is the inductance. The
presence of this RHP zero complicates feedback design because it introduces a 180-degree phase shift
at higher frequencies. Both state-space and circuit-averaged models make it clear that for large D, the

RHP zero moves to relatively low frequency, demanding careful compensation to maintain stability
and meet transient specifications.

3. Control Design Implications

Once an averaged model is obtained —regardless of the specific averaging method —engineers
can construct the open-loop transfer function and design a suitable compensator. For instance, in the
boost converter case, a compensator strategy might include:

e Placement of a zero well below the LC resonance to boost phase margin.
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Additional filtering to counteract high-frequency noise and mitigate the phase shift from the

Such design steps are directly guided by the magnitude and phase plots generated from the

linearized model. In each topology, the small-signal parameters (inductance L, capacitance C, load

R, and duty cycle D) determine the poles and zeros that dominate the response, and these dominate

the choice of compensation network.

Table 4. Example Numeric Parameter Set and Resulting Small-Signal Parameters.

Parameter Symbol [Value |Derived Small-Signal Quantities [Notes
Input Voltage Vs 12V [Reference for duty-cycle Typical for low-voltage dc—
calculations, affects control-to-  |dc applications (e.g.,
output gain battery or adapter input).
Switching fs 100 kHz Sets upper limit for control-loop [Balances
Frequency bandwidth design inductor/capacitor size,
efficiency, and EMI
considerations.
Inductor L 47 uH  |Dominant factor in determining [Selected to keep inductor
low-frequency pole location current ripple within
acceptable range.
Capacitor C 100 uF [Helps define output filter Larger values reduce
dynamics and dominant output ripple but can
ole/zero increase cost/size.
Load Resistor R 100  (Contributes to damping and sets |Actual load may vary in
steady-state output current practice, requiring
recalculation of small-
signal parameters.
Quiescent Duty D 0.4 Steady-state ratio for switch Implies nominal
Cycle conduction conversion ratio, e.g.,
~4.8 V output in a buck
setup under ideal
conditions.
DC Output Vout ~4.8V Dependson D, V;, and any losses |Actual value shifts if
Voltage conduction losses
(MOSFET 1,,, diode drop)
are considered.
Inductor Current I, ~0.48 A Baseline for linearization around (Computed via volt-second
operating point balance and the chosen
duty cycle.
Small-Signal Pole W, \Varies [Reflects combined inductor and |[Exact position found
(ex: 1- |capacitor dynamics through the linearized
2 krad/s) averaged model or Bode-
lot approximation.
Small-Signal Zero W, None or May not appear in an ideal buck [Parasitic ESR or a diode
> W,  |scenario drop can introduce an

additional zero in some
cases.

Remarks:

Numerical values in this table serve as a starting point for design and analysis. In practice,

parasitic elements (like transistor on-resistance, diode forward drop, or capacitor ESR) should

be included to refine the small-signal predictions.
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e For boost or buck-boost converters, the steady-state duty cycle and resulting output voltage
would differ accordingly, and additional poles or a right-half-plane zero may arise in the transfer
function.

4. Concluding Observations

Both circuit averaging and state-space averaging have proven effective for deriving small-signal
AC models of converters in CCM. While circuit averaging may offer more visual insight into the role
of the switch network, state-space averaging supplies a systematic procedure rooted in linear system
theory. Ultimately, the two methods converge on the same essential description of converter
dynamics, including the identification of significant transfer functions such as G,4(s) and G,4(s), as
well as crucial elements like the RHP zero in certain topologies. Armed with these models, designers
can confidently analyze system stability, shape the loop response, and ensure that switching
converters meet performance targets under a variety of operating conditions.

7. Guidelines for Implementation in Design and Simulation

Once a converter’s low-frequency model has been derived through averaging, it can be
incorporated into both analytical workflows and computer-based simulations to streamline design,
optimization, and verification. The following points outline a practical sequence for using averaged
models effectively, while noting important considerations that help maintain accuracy.

1. Selecting the Appropriate Level of Detail

At the earliest stages of design, a simplified averaged model is often sufficient to determine loop
stability requirements and estimate bandwidth limitations. By removing high-frequency switching
terms, the averaged approach provides concise relationships among the inductor current, capacitor
voltage, duty cycle, and input variables. When higher fidelity is required, for example to capture
conduction losses or parasitic components, these can be introduced into the averaged equations as
additional resistive or voltage-drop elements in the relevant inductor or diode paths. If the converter
operates close to boundary conditions—such as when the inductor current may become
discontinuous—then an extended model or an additional subinterval (reflecting the zero-current
state) must be included.

2. Implementation in Circuit Simulators and Control Tools

Modern circuit simulators (e.g., SPICE-based platforms) and system-level tools (such as
MATLAB® or similar environments) both accommodate averaged models:

¢ Circuit Averaging in SPICE:

In a SPICE-like simulator, replace the switching elements (transistor and diode) with controlled
sources or an ideal transformer whose ratios depend on the steady-state duty cycle. The rest of the
circuit (inductors, capacitors, load, and input source) remains in place. Voltage and current sources
in the averaged switch model can then be driven by small-signal duty-cycle variations, as outlined in
the preceding chapters.

e State-Space Matrices in Control Software:
If a state-space approach was used, one typically collects the matrices
AB,CE
and writes the system equations in the form
dx __ ___ __
KE= x+ Bu,y = Cx + Eu.

By inverting K if necessary, and defining a state-space object (for example, in MATLAB®), one
can directly generate Bode plots, step responses, and root-locus diagrams for a variety of converter
operating points.

3. Model Validation Against Switching Simulations
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Although averaged models excel at capturing dynamics in the frequency range of the control
loop, it is prudent to confirm the validity of key predictions by comparing them to a more detailed
switching simulation:

¢ Time-Domain Transient Comparison:

Apply a load step or an input-voltage change in both the averaged and switching-level models.
Over intervals that span several switching cycles, the averaged model’s inductor current and output
voltage should closely follow the smoothed behavior seen in the detailed simulation.

* Frequency-Response Measurements:

In certain simulators, it is possible to inject a small-signal perturbation around the operating
point and measure the converter’s transfer functions. These measured responses can then be
compared to the transfer functions derived from the linearized averaged model, particularly in the
range below one-fifth of the switching frequency, where the approximation is strongest.

4. Practical Tips for Loop Design
e Control Bandwidth Placement:

Because the averaged model omits high-frequency switching harmonics, it is most reliable for
frequencies well below the switching frequency. As a rule, designers often restrict the control-loop
crossover to below one-tenth (or at most one-fifth) of the switching frequency to ensure that the linear
approximation remains accurate.

* Incorporating Losses and Parasitics:

When conduction losses or component parasitics significantly affect the converter’s
performance, these can be introduced as additional small resistances in the inductor or transistor
path, or as voltage sources modeling diode drops. The resulting corrections appear in the averaged
equations as terms that slightly shift the poles and zeroes of the converter’s transfer functions.

¢ Discontinuous Conduction Mode:

Should the converter slip into discontinuous conduction under light-load conditions, the
averaged approach outlined in earlier chapters for continuous conduction may require modification.
One might add a third subinterval representing the inductor current falling to zero, leading to a
different set of state equations for that portion of the cycle.

5. Summary of the Workflow

In typical practice, an engineer uses the averaged model to establish the essential controller
structure and tune its key parameters, then performs a switching-level simulation to confirm that the
converter behaves as expected when switching dynamics, non-ideal component behaviors, and high-
frequency noise are considered. By combining these complementary perspectives, design cycles can
be shortened significantly, and issues like insufficient phase margin or unexpected transient
overshoots can be caught early in the development process.

In conclusion, averaged converter models provide a balanced compromise between purely ideal
theoretical analyses and full-scale switching simulations. They capture the crucial LC resonance and
duty-cycle modulation behavior that govern loop stability and transient performance, with enough
accuracy for most control design tasks, yet retain sufficient simplicity to be readily implemented in
SPICE or control-system software.

8. Conclusion

This paper has examined how fundamental concepts of state-space and circuit averaging can be
leveraged to model the low-frequency behavior of switch-mode power converters under continuous
conduction. By representing switching devices through their averaged impact on inductor current
and capacitor voltage, designers gain an efficient way to analyze transfer functions, predict system
stability, and shape the feedback loop without simulating every high-frequency event.
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One of the central observations is that both averaging techniques ultimately converge on
equivalent small-signal models, yielding similar poles, zeros, and steady-state relationships. This
convergence underscores the reliability of averaged models for tasks such as establishing loop
bandwidth targets or identifying the potential for right-half-plane zeros in boost-type converters.
Moreover, the canonical representation provides a unifying viewpoint, enabling comparisons across
different topologies and streamlining the design process when moving from one converter
architecture to another.

While these methods work best when the converter operates in a regime with relatively small
ripple and a clearly defined duty cycle, they form a solid baseline for many practical applications.
More specialized approaches may be required for discontinuous conduction or more intricate
switching schemes, yet the general principles described here remain directly applicable to a broad
class of modern power electronic systems.

Appendix A. Extended Mathematical Derivations

Certain derivations in the main chapters may benefit from more detailed mathematical steps
than those presented in the primary discussion. This appendix provides the additional detail for a
nonideal buck-boost converter, incorporating the effects of finite MOSFET on-resistance and diode
drops into the averaged equations.

Appendix A.1 Nonideal Buck-Boost Modeling

Consider a switching period T with duty cycle d. During the on-interval dT, the MOSFET is
assumed to conduct with on-resistance 7,,, while the diode is reverse-biased; during the off-interval
(1 — d)T, the diode conducts with forward voltage drop V, and the MOSFET is non-conducting. For
the inductor L and capacitor C, the averaged inductor voltage and capacitor current over one

switching cycle can be summarized as follows:
v, = d[vin — Tonly — 77(:] +@1- d)[_ﬁc - VD]:
. _ T
lC:d'0+(1_d)lL_§,

where 1 is the time-averaged inductor current, 7. is the time-averaged capacitor voltage, and R is
the load resistor. In steady-state, one sets the time derivatives of 7; and ¥, to zero, yielding two
algebraic equations:

1. Volt-second balance on the inductor:
d[vin - 7'onIL - V] + (1 - d)[_V - VD] =0,

2. Charge balance on the capacitor:

4
(1=l -5 =0,

where I, =1, at steady state and V =¥ is the steady-state capacitor voltage. Solving these
equations reveals the output voltage in terms of the input voltage v;,, duty cycle d, and the nonideal
parameters 1,, and Vj. One can then introduce small perturbations around that operating point to
form a linearized (small-signal) model for AC analysis.

Appendix B. Simulation Parameters and Reference Values

For ease of replication, Table B.1 lists typical parameter values and initial operating conditions
used for illustrative simulations in various converter examples:
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Parameter Symbol | Example Value [Notes

Switching period T 10us Corresponds to f; = 100kHz

Nominal duty cycle d 0.4 Chosen to reflect a moderate step-down or
step-up range

Inductor L 50uH [Used in buck-boost test cases

Capacitor C 100uF Basic output filter design

Load resistor R 5Q Varied between 1Q) and 10Q in tests

IMOSEFET on-resistance Ton 20mQ) Reflects conduction loss

Diode drop Vp 0.5,V Simplified constant drop model

These sample values can be altered based on the specific application under study. In more
refined models, the user might also include parasitic inductances, ESR in capacitors, or a more
detailed diode I-V curve.

Appendix C. Additional Control Schemes

While the main chapters focus on conventional voltage-mode control under continuous
conduction, many practical designs implement different strategies:

1. Current-Mode Control:

The inductor current is sampled each cycle to generate an inner current loop. Averaged
modeling can still be applied, but it often includes an additional control-block representation
accounting for current sensing and slope compensation.

2. Discontinuous Conduction Mode (DCM):

When the inductor current reaches zero before the next switching cycle begins, an extra
subinterval appears in the switch operation. The averaging process then typically involves three
intervals instead of two, requiring separate derivations for each interval’s inductor voltage and
capacitor current.

3. Digital or Predictive Control:

Advanced digital controllers may adjust the duty cycle based on real-time measurements or
predictive algorithms. Although the underlying converter hardware can still be represented by a
small-signal averaged model, the control law itself might not adhere to the linear feedback formats
typically seen in analog designs. For each scenario, the principles of averaging remain consistent:
identify the main energy-transfer paths, compute the averaged inductor and capacitor relations, and
then derive small-signal equations by linearizing about an equilibrium point.
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