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Anker C. Yao 

Independent Researcher; maxgridsgeneral@gmail.com 

Abstract: In many modern power electronic systems, accurate modeling is critical for effective control 

design and overall system performance. This paper examines the derivation of AC equivalent circuit 

models for pulse-width modulated (PWM) converters operating in the continuous conduction mode. 

The primary goal is to isolate the significant low-frequency behavior of converters by removing the 

high-frequency switching components inherent to their operation. To accomplish this, the paper 

outlines both state-space averaging and circuit averaging techniques, emphasizing how inductor 

currents and capacitor voltages can be approximated by averaged quantities over one switching 

period. Derivations are presented for key topologies—including buck, boost, and buck-boost 

converters—to demonstrate the process of constructing small-signal transfer functions. Practical 

considerations such as conduction losses, diode drops, and on-resistance effects are also integrated 

to reflect real-world conditions. By capturing the essential dynamics in a linearized form, these 

averaged models enable standard analytical tools (such as Bode plot analysis) to guide controller 

design, stability assessments, and transient response optimizations. Concluding remarks highlight 

the versatility of these methods and recommend directions for future exploration, including 

extensions to discontinuous conduction and resonant modes. The results underscore the value of 

averaged modeling as a foundation for robust and efficient power converter design. 

Keywords: AC equivalent circuit modeling; State‑space averaging; circuit averaging; averaged 

switch model; canonical circuit; Small‑signal analysis; DC‑DC converters; Power electronics 

 

1. Introduction and Background 

Switch-mode power converters are widely used in modern electronics, providing efficient 

methods for transferring and regulating power in applications that range from small portable devices 

to large-scale industrial systems. By rapidly switching transistors between fully on and fully off 

states, these converters minimize dissipation and achieve high operating efficiency. However, the 

rapid transitions intrinsic to the switching action also generate high-frequency components in current 

and voltage waveforms, making direct analysis cumbersome when focusing on low-frequency 

behavior or feedback loop design. 

In many practical situations, especially where precise output regulation is required, engineers 

are far more interested in the slower dynamics that govern steady-state accuracy and transient 

response than in the switching harmonics themselves. For example, in a basic step-down (buck) 

converter, the inductor current ripples rapidly each cycle, but the gradual changes in its average value 

have the most significant effect on output regulation and system stability. The ripple can be 

sufficiently small that its influence on feedback design is negligible, prompting the use of modeling 

techniques that average out the switching action over a single period. 
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Figure 1. Typical DC–DC Buck Converter with Voltage Feedback Loop. 

Two closely related methods—state-space averaging and circuit averaging—have proven 

particularly valuable for modeling switch-mode converters in the continuous conduction mode. Both 

involve identifying how inductor voltages and capacitor currents change when a transistor or diode 

toggles between conduction and non-conduction intervals, then representing these time-varying 

connections with averaged expressions. In state-space averaging, one writes linear differential 

equations valid during each subinterval of the switching period, combines them according to duty 

ratio, and obtains a piecewise-averaged system that captures the low-frequency behavior. In circuit 

averaging, the focus shifts to replacing the active switches with equivalent dependent sources or 

averaged switch networks, ultimately forming a time-invariant circuit suitable for analysis with 

standard linear techniques. 

These modeling strategies are essential for designing robust feedback loops. Without an 

adequate small-signal representation, it is difficult to predict how a converter will respond to a 

sudden load change, a variation in input voltage, or an alteration in reference commands. Averaged 

models, once linearized about a chosen operating point, yield transfer functions (for instance, control-

to-output or line-to-output) that can be evaluated using traditional frequency-domain tools. This 

allows designers to set bandwidth, phase margin, and other specifications that ensure stability and 

satisfactory transient performance. 

Furthermore, while the basic principles are usually illustrated by low-power, single-phase 

examples such as buck, boost, and buck-boost converters, the same techniques extend to more 

complex configurations. Transformer-based topologies and multi-phase converters can be treated 

similarly, albeit with additional care in accounting for winding ratios, parasitic elements, and 

conduction modes. In all cases, the strength of the averaged modeling approach lies in striking a 

practical balance between simplicity and accuracy. The use of averaged models drastically reduces 

the mathematical complexity of high-frequency switching phenomena while retaining enough detail 

to make meaningful predictions about the converter’s behavior under typical operating conditions. 

In the chapters and sections that follow, a step-by-step approach is taken to show how these 

models are derived and validated. This includes handling the principal energy-storage elements, 

incorporating conduction losses or voltage drops as needed, and performing the small-signal 

linearization that underpins frequency-response analysis. By illustrating these ideas through 

multiple converter topologies, the paper highlights the versatility of averaged modeling as a unifying 

framework for continuous conduction designs. In doing so, it provides a foundation for 

understanding the essential dynamics behind switch-mode power conversion and for designing 

controllers that meet demanding performance requirements. 
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2. Fundamentals of Averaged Modeling 

Averaged modeling is a powerful approach for analyzing switch-mode power converters 

without tracking every transition of the high-speed switching elements. In many practical designs, 

inductors and capacitors are chosen so that the switching ripple in their currents or voltages remains 

modest, allowing one to approximate these signals by their average values over a single switching 

period. This simplification makes it possible to study the converter’s low-frequency or system-level 

behavior in a more straightforward way, which is particularly useful for control design and stability 

analysis. 

 

Figure 2. Buck Converter Inductor and Capacitor Waveforms, Including Their Averages Over One Switching 

Period. 

A convenient starting point is to focus on one inductor and one capacitor, recognizing that many 

converters can be broken down into a small set of these energy-storage components. Consider an 

inductor of value 𝐿  subjected to two different voltage levels, 𝑣1  and 𝑣2 , within each switching 

period 𝑇. For a fraction 𝑑𝑇 of the period, the inductor experiences 𝑣1 (such as when a transistor is 

on), and for the remaining (1 − 𝑑)𝑇, it experiences 𝑣2 (such as when a diode is conducting). The 

instantaneous inductor voltage, 𝑣_𝐿(𝑡) , follows a piecewise function, but can be replaced by its 

average over 𝑇: 

𝑣̅𝐿 =
1

𝑇
∫ 𝑣𝐿(𝜏)𝑑𝜏 = 𝑑𝑣1 + (1 − 𝑑)𝑣2

𝑇

0

,  

where 0 ≤ 𝑑 ≤ 1  is the duty cycle. This same principle applies to capacitors by averaging their 

current waveform over 𝑇. In that case, if 𝑖1 flows into the capacitor for a fraction 𝑑𝑇 and 𝑖2 flows 

in for (1 − 𝑑)𝑇, the average capacitor current is 

𝑖𝐶̅ =
1

𝑇
∫ 𝑖𝐶(𝜏)𝑑𝜏 = 𝑑𝑖1 + (1 − 𝑑)𝑖2

𝑇

0

.  

Such expressions rely on two main assumptions. First, the inductor current and capacitor voltage 

should not change drastically within each subinterval of length 𝑑𝑇 or (1 − 𝑑)𝑇. This is often referred 

to as the small-ripple approximation, indicating that the actual waveforms do not deviate 

significantly from their average during one switching period. Second, the overall time constants of 

the converter’s energy-storage elements (dominated by 𝐿  and 𝐶 ) must be much larger than 𝑇 , 

ensuring that the averaged representation remains valid for frequencies well below the switching 

frequency 
1

𝑇
. 
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Table 1. Comparison of Large-Signal vs. Small-Signal Characteristics. 

Aspect Large-Signal Characteristic Small-Signal Characteristic 

Primary Focus Overall converter response under 

substantial load changes, input voltage 

variations, and start-up transients, 

often covering the full operating range 

of the system. 

Small deviations around an equilibrium 

operating point, used to assess stability, 

control loop behavior, and system response 

to minor perturbations. 

Magnitude Involves sizable changes in inductor 

current and capacitor voltage, 

potentially spanning the entire 

converter operating region. 

Perturbations are relatively small 

compared to the steady-state current or 

voltage, allowing a linear approximation 

around the equilibrium point. 

Frequencies of 

Interest 

Extends from DC through the 

switching frequency (and may include 

harmonics relevant for electromagnetic 

compatibility or transient demands). 

Typically focuses on frequencies well 

below the switching frequency, where the 

converter’s control loop dynamics 

dominate the behavior. 

Modeling 

Complexity 

Often requires simulating each 

switching transition or applying 

piecewise analysis to capture all 

subintervals (e.g., for large-signal 

transients or start-up). 

Relies on averaged, linearized models (e.g., 

state-space or circuit averaging), making 

standard frequency-domain methods (like 

Bode plots) feasible. 

Applications Evaluating cold start, heavy load 

changes, overload or short-circuit 

behavior, and ensuring the converter 

operates within component and 

thermal limits. 

Designing and tuning feedback loops, 

examining stability margins, determining 

loop crossover frequency, and predicting 

minor load or supply variations. 

Key Insights Shows ultimate operational boundaries 

and helps confirm robust performance 

under extreme conditions. 

Provides a simplified linear framework for 

control design, allowing clear identification 

of poles, zeros, and phase margin for loop 

compensation. 

In practice, there are two closely related ways to create these averaged models. One is known as 

state-space averaging, which involves writing down differential equations for each subinterval and 

taking a weighted average based on 𝑑 . Another approach, circuit averaging, treats the switch 

network (usually composed of a transistor and a diode) as a two-port element that can be replaced 

by controlled sources or an equivalent “transformer” in the time-invariant version of the converter 

schematic. Despite these different viewpoints, both methods ultimately yield a set of equations that 

describe how the average inductor current and capacitor voltage evolve over time. 

When averaged models are applied under steady-state conditions, two key relationships often 

emerge. The first is inductor volt-second balance, which states that the inductor’s average voltage 

over one switching period must be zero if its current is to remain constant from cycle to cycle. 

Symbolically, 

𝑑𝑣1 + (1 − 𝑑)𝑣2 = 0 →  
𝑣2

𝑣1

= −
𝑑

1 − 𝑑
,  

in a hypothetical two-level system (with the sign depending on specific circuit polarity). The second 

is capacitor charge balance, indicating that the net charge flowing into the capacitor over one cycle 

must be zero for the capacitor voltage to remain stable: 

𝑑𝑖1 + (1 − 𝑑)𝑖2 = 0.  

These balance conditions provide a convenient way to calculate the converter’s equilibrium 

operating point (such as output voltage and inductor current) without delving into the switching 

ripple details. 
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Following the derivation of average voltages and currents, designers often take one more step: 

linearizing the averaged equations around a chosen operating point to obtain a small-signal model. 

This model helps predict how the converter responds to small perturbations, such as changes in load, 

input voltage, or duty cycle commands. In linearized form, well-known frequency-domain tools like 

Bode plots and Nyquist diagrams become applicable, enabling the design of feedback loops that meet 

bandwidth and stability requirements. 

In summary, averaged modeling provides a practical balance between the complexity of time-

domain switching waveforms and the need to understand a converter’s essential dynamics at lower 

frequencies. By replacing piecewise voltages and currents with their cycle averages, one arrives at a 

continuous-time representation that is more amenable to classical control analysis. This framework 

forms the backbone of the small-signal design process for many switch-mode power converters. 

3. State-Space Averaging Method 

The state-space averaging method provides a structured approach to modeling the low-

frequency dynamics of switching converters. By writing the converter inductor currents and 

capacitor voltages in the form of state variables and then defining corresponding linear equations for 

each interval of the switching cycle, one can systematically derive an averaged model that offers clear 

insight into system-level behavior. 
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Figure 3. Flow Diagram for Subinterval Equations, Averaging, and Linearization. 

1. Purpose and Basic Concept 

Switch-mode converters typically operate in two (or more) distinct topologies over the course of 

each switching cycle: for example, a transistor-on interval (subinterval 1) and a transistor-off interval 

(subinterval 2). In each subinterval, the circuit can be described by linear differential equations 

involving the inductor and capacitor variables. The key idea of state-space averaging is to write these 

equations in a standard matrix form, then combine them by weighting with the fraction of time spent 

in each subinterval (i.e., the duty cycle). By applying this procedure, one obtains a single time-

invariant system that represents the converter’s behavior at frequencies much lower than the 

switching frequency. 

2. State Equations for Subintervals 

In continuous conduction mode (CCM), a common approach is to identify: 

⚫ The state vector 𝑥(𝑡), consisting of independent inductor currents and capacitor voltages. 

⚫ The input vector 𝑢(𝑡), which includes sources such as the input voltage and any relevant control 

signals. 

⚫ The output vector 𝑦(𝑡), which contains dependent quantities like the converter’s output current 

or input current. 

Table 2. Summary of State-Space Model Notation. 

Symbol Definition / Meaning 

𝑥(𝑡) State vector containing inductor currents, capacitor voltages, or other stored-energy 

variables 

𝑢(𝑡) Input vector representing independent sources (for example, the input voltage) and 

control signals 

𝑦(𝑡) Output vector that may include converter output voltage, converter input current, 

or other dependent quantities of interest 

𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖, 𝐸𝑖  Subinterval-specific matrices describing the circuit during each switching phase, 

such as transistor-on and transistor-off 

𝐾 Diagonal matrix of component values (inductances, capacitances), used in 𝐾
𝑑𝑥

𝑑𝑡
 to 

represent stored energy 

𝐴̅, 𝐵̅, 𝐶̅, 𝐸̅ Matrices formed by taking a weighted average of the subinterval equations 

according to the duty ratio 𝑑 

𝑑 Duty ratio, indicating the fraction of each switching period for which the primary 

switch is in conduction 

𝐷 Steady-state (DC) duty ratio around which small-signal variations are introduced 

𝑑̂(𝑡) Small-signal duty-cycle deviation, assumed much smaller than the quiescent value 
𝐷 

𝑥𝑒𝑞 , 𝑢𝑒𝑞 , 𝑦𝑒𝑞  Equilibrium (steady-state) values of the state vector, input vector, and output 

vector 

𝑥̂(𝑡), 𝑢̂(𝑡), 𝑦̂(𝑡) Small-signal perturbations in the state, input, and output variables about the 

equilibrium operating point 

Notes: 1. The matrices 𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐸𝑖 describe different circuit configurations that arise, for example, when the 

switch is on versus off. 2. In continuous conduction mode (CCM), exactly two main intervals typically exist 

within each switching period, though more intervals may appear if discontinuous conduction or more complex 

switching strategies are used. 

For a two-subinterval PWM converter, one writes the following generic linear equations for each 

subinterval 𝑖 = 1, 2: 
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𝐾
𝑑𝑥

𝑑𝑡
= 𝐴𝑖𝑥 + 𝐵𝑖𝑢, 𝑦 = 𝐶𝑖𝑥 + 𝐸𝑖𝑢. (1) 

Here, 𝐾 is typically a diagonal matrix of inductances and capacitances, while 𝐴𝑖, 𝐵𝑖 , 𝐶𝑖, and 𝐸𝑖 

reflect how the circuit is connected during interval 𝑖. For instance, when the main switch is on, the 

transistor and diode may form one topology; when it is off, the diode and output filter may form 

another. The switching period 𝑇 is divided into two portions: interval 1 of length 𝑑𝑇 and interval 2 

of length (1 − 𝑑)𝑇. 

3. Averaging Over the Switching Period 

To capture the low-frequency evolution of the state variables without tracking every switching 

transition, one defines an averaged state vector 𝑥̅(𝑡) and similarly averaged input 𝑢̅(𝑡) and output 

𝑦̅(𝑡). Under the assumption that 𝑥(𝑡) and 𝑢(𝑡) do not change significantly within a single cycle (the 

small-ripple approximation), the converter’s behavior can be approximated by: 

𝐾
𝑑𝑥̅

𝑑𝑡
= 𝑑(𝐴1𝑥̅ + 𝐵1𝑢̅) + (1 − 𝑑)(𝐴2𝑥̅ + 𝐵2𝑢̅). (2) 

This equation, often referred to as the averaged state-space equation, applies for frequencies 

much less than the switching frequency. By distributing 𝑑 and 1 − 𝑑, one can identify the matrices: 

𝐴̅ = 𝑑𝐴1 + (1 − 𝑑)𝐴2, 𝐵̅ = 𝑑𝐵1 + (1 − 𝑑)𝐵2,  

leading to 

𝐾
𝑑𝑥̅

𝑑𝑡
= 𝐴̅𝑥̅ + 𝐵̅𝑢̅. (3) 

A similar relation governs the averaged output 𝑦̅, yielding: 

𝑦̅ = 𝑑(𝐶1𝑥̅ + 𝐸1𝑢̅) + (1 − 𝑑)(𝐶2𝑥̅ + 𝐸2𝑢̅) = 𝐶̅𝑥̅ + 𝐸̅𝑢̅,  

where 

𝐶̅ = 𝑑𝐶1 + (1 − 𝑑)𝐶2, 𝐸̅ = 𝑑𝐸1 + (1 − 𝑑)𝐸2.  

4. Equilibrium (Steady-State) Solution 

For many practical applications, an important first step is to determine how the converter 

operates at steady state. In this situation, the derivatives of the averaged state variables are zero, so: 

𝐴̅𝑥̅𝑒𝑞 + 𝐵̅𝑢̅𝑒𝑞 = 0. (4) 

By solving this matrix equation, one finds the equilibrium inductor current and capacitor voltage 

(and other relevant internal variables). These equilibrium values are used later as a reference point 

for small-signal linearization. A well-known example is the buck converter, where the averaged 

approach reveals the familiar relationship 𝑉𝑜𝑢𝑡 = 𝑑𝑉𝑖𝑛 under idealized conditions. 

5. Small-Signal Linearization 

Once the steady-state (or quiescent) solution 𝑥̅𝑒𝑞 , 𝑢̅𝑒𝑞  is known, the next step is to analyze small 

deviations around that point. Let 

𝑥̅(𝑡) = 𝑥̅𝑒𝑞 + 𝑥̂(𝑡), 𝑢̅(𝑡) = 𝑢̅𝑒𝑞 + 𝑢̂(𝑡), 𝑑(𝑡) = 𝐷 + 𝑑̂(𝑡),  

where the hat symbol (∙)̂  denotes a small perturbation. Substituting these into the averaged 

equations and retaining only first-order terms (i.e., neglecting products of small signals) yields a 

linear system describing how 𝑥̂(𝑡) and 𝑢̂(𝑡) evolve with time. Symbolically, one can express this as: 

𝐾
𝑑𝑥̂

𝑑𝑡
= (𝐴̅ +△ 𝐴)𝑥̂ + (𝐵̅ +△ 𝐵)𝑢̂ + 𝐺𝑑̂,  

where △ 𝐴 and △ 𝐵 arise from the dependence of 𝐴1, 𝐴2, 𝐵1, 𝐵2 on 𝑑. The term 𝐺 captures the 

direct effect of duty-cycle perturbations 𝑑̂ on the state variables. A parallel set of equations defines 

the perturbed output 𝑦̂. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 May 2025 doi:10.20944/preprints202505.0668.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0668.v1
http://creativecommons.org/licenses/by/4.0/


 8 of 20 

 

6. Example Highlights 

A common illustration is the buck-boost converter, which has a single inductor and a single 

capacitor. One writes 𝐾 = 𝑑𝑖𝑎𝑔(𝐿, 𝐶), then defines subinterval-1 matrices 𝐴1, 𝐵1, 𝐶1, 𝐸1 based on 

how the inductor and capacitor are connected when the transistor is on, and subinterval-2 matrices 

𝐴2, 𝐵2, 𝐶2, 𝐸2 for when the transistor is off. After forming the averaged matrices 𝐴̅, 𝐵̅, 𝐶̅, 𝐸̅, the 

user can solve for the equilibrium operating point. Perturbing around that point makes it possible to 

obtain transfer functions such as 𝑑̂(𝑠) → 𝑣̂𝑜𝑢𝑡(𝑠)  (control-to-output), which is essential for 

determining the converter’s frequency response and designing a compensation network. 

 

Figure 4. Nonideal Buck-Boost Converter Schematic with MOSFET On-Resistance and Diode Drop. 

7. Advantages and Practical Considerations 

The state-space averaging method excels in providing a clear, unified representation of how the 

converter evolves over each switching cycle. Because the final averaged equations no longer explicitly 

depend on time-varying connections, analysis becomes much more tractable. In addition, the 

resulting framework is naturally compatible with well-established control-system techniques. 

One should be aware, however, that this approach relies on the assumption that the converter 

stays in continuous conduction mode and experiences relatively small ripple in its state variables 

over each cycle. If the inductor current or capacitor voltage undergoes large swings within the 

switching period, a more detailed analysis may be warranted. Moreover, in modes such as 

discontinuous conduction or when current programming is employed, the standard two-subinterval 

state-space averaging may need modifications or additional subintervals. 

In conclusion, state-space averaging distills the essential behavior of a switching converter into 

a simpler time-invariant system valid at frequencies well below the switching rate. This technique 

offers a direct path to computing steady-state conditions, deriving small-signal transfer functions, 

and ultimately designing robust controllers that meet performance goals for regulation and transient 

response. 

4. Circuit Averaging and the Averaged Switch Model 

Circuit averaging is a valuable approach for analyzing the behavior of switching converters 

without having to track each rapid on-off transition of the power devices. Instead of writing separate 

differential equations for each subinterval of the switching cycle (as in state-space averaging), one 

identifies the switching elements—usually a transistor and diode network—as a set of ports. The rest 

of the converter (inductors, capacitors, load, and input source) remains in place. By “averaging out” 

the time-varying connections of the switch network, the converter can be viewed as a single, time-

invariant circuit. 
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Figure 5. Generic Two-Port Switch Network with Labeled Terminals. 

1. Rationale and Basic Idea 

When a transistor and diode alternate between conducting and non-conducting states at high 

frequency, they effectively force the inductor and capacitor into different circuit configurations 

within a single switching period. The goal of circuit averaging is to combine these configurations into 

a single equivalent circuit that captures the converter’s net effect on low-frequency signals. To 

accomplish this, the key step is to replace the actual transistor-diode arrangement with a simplified 

two-port device whose voltages and currents are “averaged” over the switching period. 

As an illustration, consider a basic boost converter. The inductor and load remain fixed, but the 

transistor and diode switch in such a way that the inductor is connected to the input source when the 

transistor conducts and to the output node when the diode conducts. Circuit averaging lumps these 

two subintervals together, forming a single model of the switch network. One can then combine the 

averaged switch network with the inductor, capacitor, input, and load to produce a time-invariant 

representation. 

2. Defining the Ports and Averaging 

In a typical two-port switch network, each port has a voltage-current pair. Suppose port 1 is 

(𝑣1, 𝑖1)  and port 2 is (𝑣2, 𝑖2) . Over one switching period 𝑇 , these variables may exhibit pulsed 

waveforms. Denote the duty cycle by 𝑑, so the first subinterval spans 𝑑𝑇 and the second spans 

(1 − 𝑑)𝑇. If one measures, for example, 𝑣1(𝑡) when the transistor is on and off, it generally takes one 

value for a fraction 𝑑𝑇 and another for (1 − 𝑑)𝑇. By integrating or summing these values over the 

entire period, one defines an average voltage: 

𝑣̅1 =
1

𝑇
∫ 𝑣1(𝜏)𝑑𝜏 = 𝑑𝑣1,𝑜𝑛 + (1 − 𝑑)𝑣1,𝑜𝑓𝑓

𝑇

0

  

Similar expressions hold for 𝑖1̅, 𝑣̅2, 𝑖2̅ . The essence of circuit averaging is to identify relationships 

among these averaged voltages and currents. In many continuous conduction mode (CCM) 

converters, these relationships take a form akin to 

𝑣̅1 = 𝑑𝑣̅2 + (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑒𝑟𝑚𝑠), 𝑖2̅ = 𝑑𝑖1̅ + (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑒𝑟𝑚𝑠),  

where the extra source terms might represent diode drops or other parasitic effects. 
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Table 3. Mapping of Converter Switch States to Averaged Model Parameters. 

Switch State Interval Duration Duty Cycle Variable Inductor/Capacitor Equation Averaged Parameter 

Transistor ON, Diode 

OFF 

𝑑𝑇 𝑑 (duty ratio) Defined by the circuit path when 

the switch conducts (e.g., input to 

inductor) 

𝐴1, 𝐵1, 𝐶1, 𝐸1 (subinterval 1 

matrices) 

Transistor OFF, Diode 

ON 

(1 − 𝑑)𝑇 1 − 𝑑 Defined by the diode conduction 

path (e.g., inductor to output) 

𝐴2, 𝐵2, 𝐶2, 𝐸2 (subinterval 2 

matrices) 

Averaged Over One 

Full Cycle 

𝑇 = 𝑑𝑇 + (1 − 𝑑)𝑇 𝑑 and 1 − 𝑑 Weighted combination of 

subintervals 

𝐴̅, 𝐵̅, 𝐶̅, 𝐸̅ (averaged 

matrices) 

Conduction Mode 

(e.g., CCM, DCM) 

Varies with 

load/current 

Possible extra 

substate 

May require additional intervals 

if discontinuous conduction 

occurs 

Adjust intervals and 

matrices for zero-current 

phase or other operational 

differences 

Notes: 1. In continuous conduction mode (CCM), exactly two main subintervals typically appear during each 

switching period (transistor ON, diode ON). 2. If the inductor current becomes zero (DCM), the switching period 

may include an additional subinterval where neither transistor nor diode conducts. The analysis then extends 

to capture that extra state accordingly. 

3. The Averaged Switch Model 

Once the average port variables are identified, it is often helpful to redraw the converter with 

the switch network replaced by an averaged model. A common representation involves an ideal 

transformer with a “turns ratio” set by the duty cycle. For instance, if one port’s voltage is 𝑣̅1 and 

the other’s is 𝑣̅2 , and they relate by 𝑣̅1 = 𝑑𝑣̅2  in an idealized scenario, then one can depict a 

transformer that scales voltages by 𝑑. In parallel, controlled sources may appear in the circuit to inject 

or draw current in proportion to the duty cycle. 

 

Figure 6. Averaged Switch Model with Ideal Transformer and Dependent Sources. 

For a boost converter, an averaged switch model might show that the average current entering 

from the inductor side is 𝑑𝑖𝐿̅, while the average voltage seen at the output side is scaled by 
1

(1−𝑑)
, 

depending on how the two ports are defined. Each converter topology has its own characteristic form 

of these relationships. 

4. Example: Circuit Averaging in a Buck Converter 

Consider a buck converter with a single transistor and a diode. During the “on” phase, the switch 

connects the input to the inductor, and the diode is reverse-biased. During the “off” phase, the 

transistor opens, the diode conducts, and the inductor current flows into the load. If we define: 

⚫ Port 1 at the transistor input side (𝑣1, 𝑖1), 

⚫ Port 2 at the diode output side (𝑣2, 𝑖2), 

then one can work out how 𝑣1 and 𝑖2 behave over a full cycle, and replace the actual switching 

elements with a voltage source or current source that captures the average effect. For example, if 𝑖1̅ 

is the average current from the input side, then in CCM, one often finds 𝑖1̅ = 𝑑𝐼𝐿 if 𝐼𝐿  is the inductor 

current, because the transistor effectively connects port 1 to the inductor for a fraction 𝑑 of the time. 
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The net result is a circuit with fewer time-varying branches, where each source or transformer is 

controlled by 𝑑, but otherwise remains a static element over the analysis interval. 

5. Including Large-Signal Behavior and Linearization 

Like state-space averaging, circuit averaging can be expressed first as a large-signal model. This 

form indicates how the duty cycle and average inductor or capacitor waveforms interact to determine 

the converter’s steady-state operating point. One can then linearize around that steady operating 

point by writing: 

𝑑(𝑡) = 𝐷 + 𝑑̂(𝑡), 𝑣̅1(𝑡) = 𝑉1 + 𝑣̂1(𝑡), 𝑖2̅(𝑡) = 𝐼2 + 𝑖̂2(𝑡),  

and so on. Products of small signals 𝑑̂(𝑡)𝑣̂1(𝑡) are discarded, leaving first-order terms that define the 

linear small-signal relationships. Often, these end up implying that each transformer winding in the 

averaged switch model is accompanied by a dependent source whose value is tied to the steady-state 

current or voltage multiplied by the duty-cycle perturbation. 

6. Benefits and Practical Considerations 

Circuit averaging offers a straightforward way to “see” how duty cycle modulates the flow of 

energy. By focusing on a two-port (or multi-port) switch network, one can reuse standard circuit 

analysis tools to find transfer functions, input or output impedances, or the converter’s frequency 

response. This approach complements state-space averaging, and both methods should yield 

consistent results if all assumptions—continuous conduction, small ripple, and high switching 

frequency relative to system bandwidth—are satisfied. 

However, large ripple, discontinuous conduction mode, and other complexities may necessitate 

caution. Additional subintervals or specialized models might be required. Still, for many continuous 

conduction designs operating at moderate ripple, circuit averaging and the averaged switch model 

remain dependable techniques. They provide a concise, physically insightful view of how transistors 

and diodes guide energy from the source to the load on average, ultimately simplifying both analysis 

and design of controllers for low-frequency dynamics. 

In summary, circuit averaging moves beyond time-domain switching details by substituting the 

actual high-frequency transistor-diode network with averaged voltage and current sources (or 

transformers plus sources). When combined with the converter’s inductors, capacitors, and resistive 

elements, this yields a time-invariant model that is well suited to Bode-plot analysis, controller 

tuning, and system-level optimization. 

5. Canonical Model Representation 

The idea of a canonical model emerges when examining the small-signal behavior of any 

continuous-conduction-mode (CCM) converter driven by pulse-width modulation (PWM). Although 

different converters—buck, boost, buck-boost, forward, flyback, and others—arrange their switches, 

inductors, and capacitors in various ways, the underlying control actions and energy-transfer 

processes share fundamental similarities. By isolating those shared dynamics, one can write a 

standardized set of equations or construct a single “canonical” circuit that models how duty-cycle 

perturbations affect inductor currents, capacitor voltages, and the converter’s output. 

1. Motivation for a Canonical Form 

In small-signal analyses, each converter’s differential equations can be linearized about an 

operating point, typically defined by a quiescent duty ratio 𝐷 and steady-state inductor current and 

capacitor voltage. The resulting expressions often reveal a second-order (or higher) system governed 

by inductor-capacitor interactions and altered by duty-cycle variations. Since all CCM PWM 

converters must, in some sense, regulate energy flow from an input source to an output through 

switching devices, it is possible to group the resulting transfer functions and impedances into a more 

general form that applies to multiple topologies. 

By casting the converter’s inductor(s), capacitor(s), and load into a generic two-port framework, 

the small-signal model becomes a standardized network. Key features include: 
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⚫ An ideal transformer-like element associated with the average conversion ratio. 

⚫ Dependent sources that introduce duty-cycle control variations into the node and loop equations. 

⚫ Inductor and capacitor elements that store and release energy, dictating dynamic behavior. 

 

Figure 7. Canonical Circuit Model for PWM Converters. 

2. Standardized Small-Signal Equations 

A central goal is to represent the control-to-output transfer function, line-to-output transfer 

function, and output impedance in a way that highlights the roles of the inductor and capacitor. In 

the canonical model, these transfer functions often appear in forms such as 

𝑣̂𝑜(𝑠) = 𝐺𝑣𝑑(𝑠)𝑑̂(𝑠) + 𝐺𝑣𝑔(𝑠)𝑣̂𝑔(𝑠),  

where 

⚫ 𝑣̂𝑜(𝑠) is the small-signal variation of the output voltage in the Laplace domain, 

⚫ 𝑑̂(𝑠) is the small-signal variation of the duty cycle, 

⚫ 𝑣̂𝑔(𝑠) is the small-signal variation of the input (line) voltage, 

⚫ 𝐺𝑣𝑑(𝑠) is the control-to-output transfer function, 

⚫ 𝐺𝑣𝑔(𝑠) is the line-to-output transfer function. 

Although the exact poles and zeros differ among buck, boost, or buck-boost converters, each 

has: 

⚫ One or more energy-storage elements giving rise to low-frequency poles. 

⚫ Possibly a right-half-plane zero (as in boost and buck-boost converters). 

⚫ A steady-state gain defined by the average conversion ratio (for example, 𝐷 for buck, 
1

1−𝐷
 for 

boost, or −
𝐷

1−𝐷
 for a simple buck-boost). 

These features can be compiled into a canonical representation, showing that any single-

inductor, single-capacitor converter essentially behaves like a second-order system with certain 

characteristic coefficients. 

3. Physical Circuit Interpretation 

The canonical circuit typically includes an inductor and capacitor in a configuration that 

represents the energy flow from input to output, a load resistor, and dependent sources or ideal 

transformers that reflect how the duty cycle modulates the inductor voltage or current. A generalized 

schematic may contain: 

⚫ A controlled voltage source driven by 𝑑̂(𝑠), injecting variations into the inductor node. 

⚫ A current source that depends on 𝑑̂(𝑠) and the quiescent currents, capturing how changes in 

duty cycle alter the overall current flow. 

⚫ An ideal transformer with turns ratio related to 𝐷, representing the dc transformation property 

in the small-signal domain. 

Once arranged, this network yields a uniform set of node and loop equations. In practice, the 

exact form of each source or transformer ratio depends on the baseline steady-state duty cycle and 

the directions of inductor current or capacitor voltage. 

4. Benefits of Canonical Representation 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 May 2025 doi:10.20944/preprints202505.0668.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0668.v1
http://creativecommons.org/licenses/by/4.0/


 13 of 20 

 

a) Unified Analysis: 

Rather than re-deriving each converter’s model from scratch, one can rely on the canonical form 

to quickly identify the dominant poles, zeros, and loop interactions. This speeds up analysis and 

design, especially when moving from one topology to another. 

b) Transfer Function Consistency: 

The canonical approach ensures that quantities such as 𝐺𝑣𝑑(𝑠) , 𝐺𝑣𝑔(𝑠) , and the output 

impedance appear in standard polynomial forms, whose coefficients can be tied directly to 

inductance, capacitance, load resistance, and duty cycle. 

c) Simplified Controller Design: 

Since all single-inductor, single-capacitor CCM converters share the same fundamental 

structure, a controller design approach that works for one topology can often be adapted to another. 

In particular, if a converter exhibits a right-half-plane zero (as in boost-type designs), the canonical 

form helps highlight how that zero’s frequency depends on operating conditions like load current or 

duty ratio. 

5. Example: Mapping a Buck-Boost to the Canonical Model 

A non-isolated buck-boost converter, when averaged and linearized, produces small-signal 

equations with a right-half-plane zero for certain load and duty cycle ranges. In the canonical model, 

this zero appears as a particular arrangement of inductor and capacitor, combined with dependent 

sources that inject current and voltage variations related to the duty cycle. By writing the converter’s 

inductor voltage and capacitor current equations in the canonical framework, one finds that the 

negative sign in the dc gain (−
𝐷

1−𝐷
)  translates into an effectively inverted output node in the 

standard circuit diagram. The result still fits neatly into the same overall “shape” used by buck and 

boost converters, preserving uniformity in how the small-signal transfer functions are expressed. 

6. Concluding Remarks 

While the canonical model does not eliminate the need for detailed derivations—particularly 

when converters include additional elements or operate in modes such as discontinuous 

conduction—it provides a clear, high-level understanding of what drives the converter’s dynamic 

behavior in continuous conduction mode. By focusing on the universal roles of inductors, capacitors, 

duty cycles, and load interactions, engineers can streamline both the analysis of existing topologies 

and the exploration of novel designs. Ultimately, this perspective emphasizes how fundamental 

energy-storage processes remain constant across seemingly diverse converters, all of which can be 

captured through a consistent canonical representation once the high-frequency switching is 

averaged out and linearized around a chosen operating point. 

6. Comparative Evaluation and Application Examples 

Averaged models derived via state-space methods or circuit-based approaches each provide 

valuable insights into the low-frequency operation of switch-mode power converters. Although the 

paths to these models differ, the resulting transfer functions are typically consistent, capturing the 

same poles, zeros, and overall dynamics. This section illustrates how the methods may be compared 

in two common converter topologies, highlighting the practical uses of these results in control-system 

design. 

1. Buck Converter Example 

Consider a buck converter operating in continuous conduction mode (CCM). When using state-

space averaging, one divides the switching period into two subintervals: in one, the main transistor 

is on; in the other, it is off. The corresponding linear equations for inductor current 𝑖𝐿 and capacitor 

voltage 𝑣𝐶  are then weighted by the duty cycle 𝑑. Circuit averaging, on the other hand, interprets 

the transistor-diode pair as a two-port switch network and replaces it with a single time-invariant 

component whose averaged inputs and outputs replicate the net effect of high-frequency switching. 
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Although these two derivations differ in style, both yield a small-signal transfer function of the 

form 

𝐺𝑣𝑑(𝑠) =
𝑣̂𝑜(𝑠)

𝑑̂(𝑠)
,  

which usually has a dominant low-frequency pole set by the inductor-capacitor (LC) filter. Under 

ideal conditions (neglecting losses and higher-order effects), 𝐺𝑣𝑑(𝑠) resembles a single-pole roll-off 

at frequencies below the switching frequency. Designers can then use classical Bode-plot methods to 

place compensator poles and zeros, ensuring an acceptable bandwidth and stable transient behavior. 

In practice, both the circuit-averaged and state-space-averaged models correctly predict where this 

primary LC pole and any additional parasitic poles or zeros appear. 

 

Figure 8. Representative Bode Plots of a Buck Converter’s Control-to-Output Transfer Function. 

2. Boost Converter and the Right-Half-Plane Zero 

A particularly instructive application arises with the boost converter, which often exhibits a 

right-half-plane (RHP) zero in its control-to-output transfer function. Whether one employs state-

space averaging or circuit averaging, the linearized equations show that raising the duty cycle—

intended to increase the output voltage—briefly increases the inductor current at the expense of 

immediate output voltage drop, causing a temporary negative dip in the output before it ultimately 

settles to a higher level. This behavior is mathematically characterized by a zero in the right half of 

the 𝑠-plane. An expression frequently cited is: 

𝑠𝑅𝐻𝑃𝑍 =
𝑅(1 − 𝐷)2

𝐿
,  

where 𝑅  is the load resistance, 𝐷  is the steady-state duty ratio, and 𝐿  is the inductance. The 

presence of this RHP zero complicates feedback design because it introduces a 180-degree phase shift 

at higher frequencies. Both state-space and circuit-averaged models make it clear that for large 𝐷, the 

RHP zero moves to relatively low frequency, demanding careful compensation to maintain stability 

and meet transient specifications. 

3. Control Design Implications 

Once an averaged model is obtained—regardless of the specific averaging method—engineers 

can construct the open-loop transfer function and design a suitable compensator. For instance, in the 

boost converter case, a compensator strategy might include: 

⚫ Placement of a zero well below the LC resonance to boost phase margin. 
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⚫ Additional filtering to counteract high-frequency noise and mitigate the phase shift from the 

RHP zero. 

Such design steps are directly guided by the magnitude and phase plots generated from the 

linearized model. In each topology, the small-signal parameters (inductance 𝐿, capacitance 𝐶, load 

𝑅, and duty cycle 𝐷) determine the poles and zeros that dominate the response, and these dominate 

the choice of compensation network. 

Table 4. Example Numeric Parameter Set and Resulting Small-Signal Parameters. 

Parameter Symbol Value Derived Small-Signal Quantities Notes 

Input Voltage 𝑉𝑔 12 V Reference for duty-cycle 

calculations, affects control-to-

output gain 

Typical for low-voltage dc–

dc applications (e.g., 

battery or adapter input). 

Switching 

Frequency 

𝑓𝑠 100 kHz Sets upper limit for control-loop 

bandwidth design 

Balances 

inductor/capacitor size, 

efficiency, and EMI 

considerations. 

Inductor 𝐿 47 µH Dominant factor in determining 

low-frequency pole location 

Selected to keep inductor 

current ripple within 

acceptable range. 

Capacitor 𝐶 100 µF Helps define output filter 

dynamics and dominant 

pole/zero 

Larger values reduce 

output ripple but can 

increase cost/size. 

Load Resistor 𝑅 10 Ω Contributes to damping and sets 

steady-state output current 

Actual load may vary in 

practice, requiring 

recalculation of small-

signal parameters. 

Quiescent Duty 

Cycle 

𝐷 0.4 Steady-state ratio for switch 

conduction 

Implies nominal 

conversion ratio, e.g., 

~4.8 V output in a buck 

setup under ideal 

conditions. 

DC Output 

Voltage 

𝑉𝑜𝑢𝑡 ~4.8 V Depends on 𝐷, 𝑉𝑔, and any losses Actual value shifts if 

conduction losses 

(MOSFET 𝑟𝑜𝑛, diode drop) 

are considered. 

Inductor Current 𝐼𝐿  ~0.48 A Baseline for linearization around 

operating point 

Computed via volt-second 

balance and the chosen 

duty cycle. 

Small-Signal Pole 𝑤𝑝 Varies 

(ex: 1–

2 krad/s) 

Reflects combined inductor and 

capacitor dynamics 

Exact position found 

through the linearized 

averaged model or Bode-

plot approximation. 

Small-Signal Zero 𝑤𝑧 None or 
> 𝑤𝑝 

May not appear in an ideal buck 

scenario 

Parasitic ESR or a diode 

drop can introduce an 

additional zero in some 

cases. 

Remarks: 

⚫ Numerical values in this table serve as a starting point for design and analysis. In practice, 

parasitic elements (like transistor on-resistance, diode forward drop, or capacitor ESR) should 

be included to refine the small-signal predictions. 
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⚫ For boost or buck-boost converters, the steady-state duty cycle and resulting output voltage 

would differ accordingly, and additional poles or a right-half-plane zero may arise in the transfer 

function. 

4. Concluding Observations 

Both circuit averaging and state-space averaging have proven effective for deriving small-signal 

AC models of converters in CCM. While circuit averaging may offer more visual insight into the role 

of the switch network, state-space averaging supplies a systematic procedure rooted in linear system 

theory. Ultimately, the two methods converge on the same essential description of converter 

dynamics, including the identification of significant transfer functions such as 𝐺𝑣𝑑(𝑠) and 𝐺𝑣𝑔(𝑠), as 

well as crucial elements like the RHP zero in certain topologies. Armed with these models, designers 

can confidently analyze system stability, shape the loop response, and ensure that switching 

converters meet performance targets under a variety of operating conditions. 

7. Guidelines for Implementation in Design and Simulation 

Once a converter’s low-frequency model has been derived through averaging, it can be 

incorporated into both analytical workflows and computer-based simulations to streamline design, 

optimization, and verification. The following points outline a practical sequence for using averaged 

models effectively, while noting important considerations that help maintain accuracy. 

1. Selecting the Appropriate Level of Detail 

At the earliest stages of design, a simplified averaged model is often sufficient to determine loop 

stability requirements and estimate bandwidth limitations. By removing high-frequency switching 

terms, the averaged approach provides concise relationships among the inductor current, capacitor 

voltage, duty cycle, and input variables. When higher fidelity is required, for example to capture 

conduction losses or parasitic components, these can be introduced into the averaged equations as 

additional resistive or voltage-drop elements in the relevant inductor or diode paths. If the converter 

operates close to boundary conditions—such as when the inductor current may become 

discontinuous—then an extended model or an additional subinterval (reflecting the zero-current 

state) must be included. 

2. Implementation in Circuit Simulators and Control Tools 

Modern circuit simulators (e.g., SPICE-based platforms) and system-level tools (such as 

MATLAB® or similar environments) both accommodate averaged models: 

• Circuit Averaging in SPICE: 

In a SPICE-like simulator, replace the switching elements (transistor and diode) with controlled 

sources or an ideal transformer whose ratios depend on the steady-state duty cycle. The rest of the 

circuit (inductors, capacitors, load, and input source) remains in place. Voltage and current sources 

in the averaged switch model can then be driven by small-signal duty-cycle variations, as outlined in 

the preceding chapters. 

• State-Space Matrices in Control Software: 

If a state-space approach was used, one typically collects the matrices 

𝐴̅, 𝐵̅, 𝐶̅, 𝐸̅  

and writes the system equations in the form 

𝐾
𝑑𝑥̅

𝑑𝑡
= 𝐴̅𝑥̅ + 𝐵̅𝑢̅, 𝑦̅ = 𝐶̅𝑥̅ + 𝐸̅𝑢̅.  

By inverting 𝐾 if necessary, and defining a state-space object (for example, in MATLAB®), one 

can directly generate Bode plots, step responses, and root-locus diagrams for a variety of converter 

operating points. 

3. Model Validation Against Switching Simulations 
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Although averaged models excel at capturing dynamics in the frequency range of the control 

loop, it is prudent to confirm the validity of key predictions by comparing them to a more detailed 

switching simulation: 

• Time-Domain Transient Comparison: 

Apply a load step or an input-voltage change in both the averaged and switching-level models. 

Over intervals that span several switching cycles, the averaged model’s inductor current and output 

voltage should closely follow the smoothed behavior seen in the detailed simulation. 

• Frequency-Response Measurements: 

In certain simulators, it is possible to inject a small-signal perturbation around the operating 

point and measure the converter’s transfer functions. These measured responses can then be 

compared to the transfer functions derived from the linearized averaged model, particularly in the 

range below one-fifth of the switching frequency, where the approximation is strongest. 

4. Practical Tips for Loop Design 

• Control Bandwidth Placement: 

Because the averaged model omits high-frequency switching harmonics, it is most reliable for 

frequencies well below the switching frequency. As a rule, designers often restrict the control-loop 

crossover to below one-tenth (or at most one-fifth) of the switching frequency to ensure that the linear 

approximation remains accurate. 

• Incorporating Losses and Parasitics: 

When conduction losses or component parasitics significantly affect the converter’s 

performance, these can be introduced as additional small resistances in the inductor or transistor 

path, or as voltage sources modeling diode drops. The resulting corrections appear in the averaged 

equations as terms that slightly shift the poles and zeroes of the converter’s transfer functions. 

• Discontinuous Conduction Mode: 

Should the converter slip into discontinuous conduction under light-load conditions, the 

averaged approach outlined in earlier chapters for continuous conduction may require modification. 

One might add a third subinterval representing the inductor current falling to zero, leading to a 

different set of state equations for that portion of the cycle. 

5. Summary of the Workflow 

In typical practice, an engineer uses the averaged model to establish the essential controller 

structure and tune its key parameters, then performs a switching-level simulation to confirm that the 

converter behaves as expected when switching dynamics, non-ideal component behaviors, and high-

frequency noise are considered. By combining these complementary perspectives, design cycles can 

be shortened significantly, and issues like insufficient phase margin or unexpected transient 

overshoots can be caught early in the development process. 

In conclusion, averaged converter models provide a balanced compromise between purely ideal 

theoretical analyses and full-scale switching simulations. They capture the crucial LC resonance and 

duty-cycle modulation behavior that govern loop stability and transient performance, with enough 

accuracy for most control design tasks, yet retain sufficient simplicity to be readily implemented in 

SPICE or control-system software. 

8. Conclusion 

This paper has examined how fundamental concepts of state-space and circuit averaging can be 

leveraged to model the low-frequency behavior of switch-mode power converters under continuous 

conduction. By representing switching devices through their averaged impact on inductor current 

and capacitor voltage, designers gain an efficient way to analyze transfer functions, predict system 

stability, and shape the feedback loop without simulating every high-frequency event. 
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One of the central observations is that both averaging techniques ultimately converge on 

equivalent small-signal models, yielding similar poles, zeros, and steady-state relationships. This 

convergence underscores the reliability of averaged models for tasks such as establishing loop 

bandwidth targets or identifying the potential for right-half-plane zeros in boost-type converters. 

Moreover, the canonical representation provides a unifying viewpoint, enabling comparisons across 

different topologies and streamlining the design process when moving from one converter 

architecture to another. 

While these methods work best when the converter operates in a regime with relatively small 

ripple and a clearly defined duty cycle, they form a solid baseline for many practical applications. 

More specialized approaches may be required for discontinuous conduction or more intricate 

switching schemes, yet the general principles described here remain directly applicable to a broad 

class of modern power electronic systems. 

Appendix A. Extended Mathematical Derivations 

Certain derivations in the main chapters may benefit from more detailed mathematical steps 

than those presented in the primary discussion. This appendix provides the additional detail for a 

nonideal buck-boost converter, incorporating the effects of finite MOSFET on-resistance and diode 

drops into the averaged equations. 

Appendix A.1 Nonideal Buck-Boost Modeling 

Consider a switching period 𝑇 with duty cycle 𝑑. During the on-interval 𝑑𝑇, the MOSFET is 

assumed to conduct with on-resistance 𝑟𝑜𝑛 while the diode is reverse-biased; during the off-interval 

(1 − 𝑑)𝑇, the diode conducts with forward voltage drop 𝑉𝐷, and the MOSFET is non-conducting. For 

the inductor 𝐿  and capacitor 𝐶 , the averaged inductor voltage and capacitor current over one 

switching cycle can be summarized as follows: 

𝑣̅𝐿 = 𝑑[𝑣𝑖𝑛 − 𝑟𝑜𝑛𝑖𝐿̅ − 𝑣̅𝐶] + (1 − 𝑑)[−𝑣̅𝐶 − 𝑉𝐷],  

𝑖𝐶̅ = 𝑑 ∙ 0 + (1 − 𝑑)𝑖𝐿̅ −
𝑣̅𝐶

𝑅
,  

where 𝑖𝐿̅ is the time-averaged inductor current, 𝑣̅𝐶 is the time-averaged capacitor voltage, and 𝑅 is 

the load resistor. In steady-state, one sets the time derivatives of 𝑖𝐿̅ and 𝑣̅𝐶 to zero, yielding two 

algebraic equations: 

1. Volt-second balance on the inductor: 

𝑑[𝑣𝑖𝑛 − 𝑟𝑜𝑛𝐼𝐿 − 𝑉] + (1 − 𝑑)[−𝑉 − 𝑉𝐷] = 0,  

2. Charge balance on the capacitor: 

(1 − 𝑑)𝐼𝐿 −
𝑉

𝑅
= 0,  

where 𝐼𝐿 = 𝑖𝐿̅  at steady state and 𝑉 = 𝑣̅𝐶  is the steady-state capacitor voltage. Solving these 

equations reveals the output voltage in terms of the input voltage 𝑣𝑖𝑛, duty cycle 𝑑, and the nonideal 

parameters 𝑟𝑜𝑛 and 𝑉𝐷. One can then introduce small perturbations around that operating point to 

form a linearized (small-signal) model for AC analysis. 

Appendix B. Simulation Parameters and Reference Values 

For ease of replication, Table B.1 lists typical parameter values and initial operating conditions 

used for illustrative simulations in various converter examples: 
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Parameter Symbol Example Value Notes 

Switching period 𝑇 10𝜇𝑠 Corresponds to 𝑓𝑠 = 100𝑘𝐻𝑧 

Nominal duty cycle 
𝑑 0.4 

Chosen to reflect a moderate step-down or 

step-up range 

Inductor 𝐿 50𝜇𝐻 Used in buck-boost test cases 

Capacitor 𝐶 100𝜇𝐹 Basic output filter design 

Load resistor 𝑅 5Ω Varied between 1Ω and 10Ω in tests 

MOSFET on-resistance 𝑟𝑜𝑛 20𝑚Ω Reflects conduction loss 

Diode drop 𝑉𝐷 0.5, 𝑉 Simplified constant drop model 

These sample values can be altered based on the specific application under study. In more 

refined models, the user might also include parasitic inductances, ESR in capacitors, or a more 

detailed diode I–V curve. 

Appendix C. Additional Control Schemes 

While the main chapters focus on conventional voltage-mode control under continuous 

conduction, many practical designs implement different strategies: 

1. Current-Mode Control: 

The inductor current is sampled each cycle to generate an inner current loop. Averaged 

modeling can still be applied, but it often includes an additional control-block representation 

accounting for current sensing and slope compensation. 

2. Discontinuous Conduction Mode (DCM): 

When the inductor current reaches zero before the next switching cycle begins, an extra 

subinterval appears in the switch operation. The averaging process then typically involves three 

intervals instead of two, requiring separate derivations for each interval’s inductor voltage and 

capacitor current. 

3. Digital or Predictive Control: 

Advanced digital controllers may adjust the duty cycle based on real-time measurements or 

predictive algorithms. Although the underlying converter hardware can still be represented by a 

small-signal averaged model, the control law itself might not adhere to the linear feedback formats 

typically seen in analog designs. For each scenario, the principles of averaging remain consistent: 

identify the main energy-transfer paths, compute the averaged inductor and capacitor relations, and 

then derive small-signal equations by linearizing about an equilibrium point. 
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