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Abstract: Based on a very fast numerical procedure for the determination of the subsurface stress
field beneath frictional contacts of axisymmetric elastic bodies under arbitrary 2D oblique loading,
the contact mechanical influences of loading parameters and contact profile geometry on the
Smith-Watson-Topper (SWT) fatigue crack initiation parameter in elastic fretting contacts with
superimposed normal and tangential oscillations are studied in detail. The efficiency of the stress
calculation allows for a comprehensive physical analysis of the multi-dimensional parameter space
of influencing variables. It is found that a superimposed normal oscillation of the contact can
significantly increase or decrease the SWT parameter, depending on the initial phase difference and
frequency ratio between the normal and tangential oscillation. Written in proper non-dimensional
variables, the rounded flat punch always exhibits smaller values of the SWT parameter, compared to
a full paraboloid with the same curvature, while the truncated paraboloid exhibits larger values. A
small superimposed profile waviness also significantly increased or decreased the SWT parameter,
depending on the amplitude and wave length of the waviness. While both the load protocol and the
profile geometry can significantly alter the SWT parameter, the coupling between both influencing
factors is weak.

Keywords: axisymmetric contacts; friction; bimodal oscillation; fatigue crack initiation; flat punch
superposition; method of dimensionality reduction

1. Introduction

Mechanical contacts that are subject to small oscillations often suffer from various forms of
damage, which are summarized under the term "fretting", and which can significantly decrease the
lifetime or performance of the contacting materials and bodies. Depending on the characteristic extent
of the stick and slip zones in the contact during the oscillation, it is common to distinguish different
"fretting regimes" [1], mainly the partial slip and the sliding regime.

The two main damage phenomena associated with fretting are fretting wear and fretting fatigue.
While the dominant damage mode in the partial slip regime often is fretting fatigue, the sliding regime
mostly suffers from fretting wear. Nevertheless, both phenomena interact with each, and a numerical
routine for the life prediction of a fretting contact should account for both wear and fatigue ([2], [3],
[4]). However, doing so in a rigorous way — especially considering that, in the partial slip regime, the
wear debris material will act as a "third body" in the contact —has proven to be extremely difficult [5].

The amount of influencing mechanisms and governing parameters in fretting is vast. Some of these
have a contact mechanical origin, while others are of a more general tribological (physico-chemical)
nature. One of the almost strictly contact mechanical aspects of fretting is the fatigue crack initiation
due to the intricate, multiaxial, and rapidly changing stress field beneath the frictional contact
under complex cyclic loading [6]. For the prediction of fatigue crack nucleation, there are different
well-established mechanical frameworks [7]. One of the most common approaches are critical plane
parameters [8], like the Smith-Watson-Topper (SWT, [9]) parameter.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Based on the SWT parameter (or similar critical plane approaches), different aspects of the fatigue
crack initiation problem in fretting have already been analyzed numerically and experimentally in
the literature. In that regard, especially in the past decade, a lot of research interest was dedicated
to the impact of the loading protocol and the contact profile geometry on crack initiation, as these
are influence factors that can be controlled more or less easily in design and construction of fretting
contacts. With respect to the loading protocol, the influences of out-of-phase loading [10] and phase
difference ([11], [12]), as well as more complex cyclic loading paths ([13], [14]) were studied. On the
other hand, regarding the influence of the surface geometry on crack initiation, the overall contact
geometry [15] and macroscopically worn profiles [16], as well as the surface microgeometry [17],
surface pit treatment [18] and machined surface texture [19] have been considered.

Most of the aforementioned numerical studies are based on the Finite-Element-Method (FEM).
While the FEM, due to its flexibility with respect to the physical modelling, can account for a wide
variety of mechanisms and phenomena in a specific fretting contact — und thus achieves good predictive
power under sufficiently well-defined circumstances — its demands for computational power and
calculation time often make large parameter studies for the comprehensive analysis of different
influencing factors unfeasible.

One solution to this problem consists in the application of data science and machine learning
approaches, e.g., artificial neural networks [20]. These, however, sacrifice the aspiration of a physical
description and understanding of the system, for the purpose of a robust prediction of only a few
concrete output variables, e.g., the fatigue life.

Another approach may be the reduction and simplification of the physical modelling: If the model
description of the system is simple enough — so that the numerical solution of the resulting system of
equations can be executed sufficiently fast to allow for a comprehensive analysis of a large parameter
space — one is able to get a broad and deep physical understanding of the reduced model. While the
results of such a reduced model, in most cases, won't achieve a very high quantitatively predictive
power, they can provide a broad, physically-based set of ideas, which parameter combinations can be
worthwhile to analyze deeper with a more elaborate modelling, e.g., based on the FEM.

The latter approach shall be pursued in the present work. As was pointed out above, fretting
fatigue crack initiation is mainly due to the complex oscillating mechanical stress field beneath a
frictional contact under cyclic tangential (or multimodal) loading. For the elastic frictional contact
of smooth, convex, axisymmetric bodies (this characterization constitutes the aforementioned model
reduction), very recently an extremely efficient procedure has been suggested for the determination
of the subsurface stress state beneath the frictional contact under arbitrary 2D oblique loading [21],
which reduces the problem of calculating the subsurface stresses to the evaluation of elementary
one-dimensional integrals. Once the subsurface stress state is known, the critical plane parameters for
the prediction of fatigue crack initiation can be determined easily, allowing for the very fast analysis of
a specific set of geometrical and loading parameters.

Based on this procedure, in the present manuscript, the influence of the loading protocol and the
contact profile geometry on the SWT parameter in partial slip bimodal oscillations of axisymmetric
elastic contacts is theoretically studied. That shall provide general insights into the coupled (contact
mechanical) dependencies of fretting fatigue life on these two classes of input parameters, i.e., load
and geometry.

The remainder of the manuscript is structured as follows: In Sect. 2, the analyzed problem is
formulated in a physically rigorous form. After that, in Sect. 3, the semi-analytical and numerical
procedures for the solution of the contact problem and the determination of the subsurface stress state,
as well as the fatigue crack initiation criterion, are described in detail. Sect. 4 presents the obtained
numerical results with respect for the influence of load and profile geoemtry on the SWT parameter. A
discussion of the results finishes the manuscript.
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2. Problem Statement

Let us consider the contact of axisymmetric elastic bodies, made of linear, isotropic, homogeneous
materials that are elastically similar to each other (to avoid elastic coupling between the normal and
tangential contact problems), i.e., whose shear moduli G; and Poisson ratios v; (at least, approximately)

satisfy the relation
1-2vr1 1-21p

Gy Gy

Moreover, the bodies shall also obey the restrictions of the half-space approximation; in that case, the
contact between the two elastic bodies is equivalent to the one between an elastic half-space, having
the effective moduli

. T—v;  1—wp\ ! i 1-21; 1-21p\ !
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and a rigid indenter having the axisymmetric profile z = f(r), with the polar radius r in the contact
plane and the contact normal direction z; f is given by the gap between the contacting surfaces in the
instant of first contact. Microscopic surface roughness is neglected

We will consider different profile functions f; specifically, the paraboloid (i.e., the axisymmetric
Hertzian contact),

2
f(r) = R’ 3)
with the curvature radius R; the cylindrical rounded flat punch,
_(r=b?

with the radius b of the flat face of the punch, the curvature radius R of the rounded edge, and the
Heaviside step function H; the truncated paraboloid

1’2—b2
f(r) = " Hr - b), ©

and the paraboloid with superimposed small waviness,

o=yl (32)].

with the amplitude h and wave length A of the waviness. The analyzed contact problems are shown
schematicallyin Figure 1.

The contacts shall be subject to displacement-controlled bimodal harmonic oscillations; that is to
say, the indentation depth § as a function of the time ¢ shall be

5(t) = 8y + 84 sin (w1t + ), (7)

with the average indentation depth ¢y, the amplitude J4 and angular frequency w; of the normal
oscillation, and a phase angle ¢; moreover, for the macroscopic relative tangential displacement
between the contacting bodies, u,

u(t) = uysin (wot), 8)

with the amplitude u 4 and angular frequency w; of the tangential oscillation.

Note that in the literature recently also variable amplitude fretting oscillations have been
considered ([22], [23]). This would in principle be possible to analyze within the framework described
in the present manuscript, but would too significantly extent the relevant parameter space.
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Figure 1. Schematic representation of the considered contact profiles. A: Paraboloid B: Flat punch with
rounded corners C: Truncated paraboloid D: Paraboloid with small waviness

The tangential contact problem with friction shall be solved within the framework of the
Cattaneo-Mindlin approximation ([24], [25]), specifically:

1. validity of a local Amontons-Coulomb friction law between normal and frictional surface tractions,
with a globally constant coefficient of friction u

2. neglect of the lateral (i.e., orthogonal to the loading plane) elastic surface displacements — which
would slightly violate the isotropy of the friction law

Munisamy et al. [26] compared the Cattaneo-Mindlin approximate theory to a rigorous numerical
contact solution for the frictional Hertzian contact under shear load, and found that the error of the
approximation in terms of the contact tractions is generally small.

We are interested in the Smith-Watson-Topper (SWT, [9]) multiaxial fatigue crack initiation
parameter due to the oscillating subsurface stress and deformation fields. It belongs to the group
of critical plane criteria of (fretting) fatigue crack initiation [7]; that is to say, it evaluates a certain
characteristic scalar quantity of the intricate time-evolution of the subsurface stress and deformation
fields in each material plane at a specific material point. The plane with the highest value of the scalar
quantity is deemed critical, i.e., most prone to crack nucleation.

In the case of the SWT parameter, the scalar quantity is given by the product of the maximum

normal stress 0;7"® and the normal strain amplitude Ag; /2 in the specific plane,

A
swt = {U,If‘ax ;”] , 9)
max

where the upper index "max" of the stress and the strain amplitude are to be understood over one
(stationary) oscillation cycle; the lower index "max" indicates maximizing with respect to the orientation
of the plane [27]. The SWT parameter is thus defined for every material point with the cartesian
coordinates (x, 1, z); we will be interested only in the maximum value of the field,

SWT = max [swt(x,y,2)], (10)
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which can be connected to the specimen lifetime (measured in oscillation cycles to initiate a crack of
given length) [8]. In that regard, it has to be kept in mind, that, because of the highly localized character
of the contact stress fields — and therefore, too, the SWT parameter — such a strictly local version of the
crack initiation criterion will provide very conservative lifetime estimates [6]. To obtain better lifetime
predictions, the local field of the parameter can either be averaged over a certain volume [28], or
evaluated at a certain critical distance [29] from the strictly local maximum. Both the averaging volume
and the critical distance depend on the specifics of the fretting contact, e.g., the material pairing. As the
present work doesn’t aim for concrete lifetime predictions — but rather aspires to analyze the behavior
of the criterion (9) under different contact mechanical conditions — and therefore chracteristics like
the concrete material pairing aren’t specified, we will use a local formulation of the SWT parameter.
However, theoretically speaking, the averaged or critical distance formulations can easily be obtained
from the local field, as well.

Final it should be noted, that very recently also the crack orientation prediction within the SWT
framework has been significantly improved, based on the critical direction method [30].

3. Methods

In this section, the semi-analytical and numerical procedures for the solution of the problem
formulated above are described. First, the contact solver, which is based on the method of
dimensionality reduction (MDR), is detailed. After that, the determination of the subsurface stress
fields and the SWT parameter are discussed.

3.1. Contact Solution

There are different formalisms for the solution of the axisymmetric tangential contact problem
with friction under arbitrary 2D oblique loading, within the framework of the Cattaneo-Mindlin
approximation; namely, Jager’s algorithm [31], the method of memory diagrams (MMD, [32]), and the
method of dimensionality reduction (MDR, [33], [34]). All these are equivalent to each other, and can,
in fact, be "translated" into one another. Depending on the specific task which is to be executed, all
methods have their own advantages and disadvantages. To solve the problem at hand, for reasons that
will become clear below, the most efficient and direct approach is the MDR.

Within the framework of MDR, the contact between axisymmetric elastic bodies is mapped
exactly onto an equivalent contact between a rigid plane profile ¢ and a one-dimensional foundation
of independent linear springs. Sketches of the original three-dimensional contact and the equivalent
contact within MDR are shown in Figure 2.

Az /F"
o(1) a(1)

a(t) _ r,x,u

Figure 2. A: Original axially symmetric tangential contact problem between a rigid indenter with the
profile f(r) and an elastic half-space B: Equivalent problem within the MDR
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For the mapping procedure to be exact, the MDR profile ¢ must correspond to the relation between
indentation depth J and contact radius a in the original axisymmetric system. Hence ([34], p. 7),

i<l
=l [ 5 an

where the prime denotes the derivative.
Moreover, the spring elements of the elastic foundation must have normal and tangential values
of line stiffness according to ([34], p. 131)

dky = E*d¢ , dke = G*dg, (12)

with the effective moduli defined in Eq. (2), and the spacing d¢ between the elastic elements.

For the exact mapping of the tangential contact problem with friction, the spring elements only
have to obey a local Amontons-Coulomb friction law with the same coefficient of friction as in the
original system ([34], p. 132).

If these mapping rules are implemented and evaluated according to the given load protocol —in
our case, given by Egs. (7) and (8) — the relationships between the macroscopic displacements (6 and
u), contact forces (Fy and Fy), as well as the radii of the contact and the inner stick zone (2 and ¢) in the
MDR model will exactly match the ones in the original three-dimensional system, for arbitrary 2D
oblique loading of the contact ([35], p. 102).

Moreover, the MDR solution of the contact problem allows for a very fast determination of the
subsurface elastic stress fields for the original contact, as will be discussed below.

3.2. Subsurface Stress Fields and SWT Parameter

The determination of the subsurface stress field is based on the understanding of the partial slip
tangential contact as a superposition of incremental rigid translations of circular contact domains —
which originally stems from Mossakovski [36] and later Jager [37] — and this superposition’s very close
relationship to the MDR contact solution.

Suppose, the original axisymmetric bodies are brought into contact over a circular contact area
with the radius ¢, and two remote points of the bodies on the axis of symmetry are moved to one
another by an incremental indentation depth dd. Then, the two bodies will experience an increment of
the contact pressure p of ([34], p. 12)

E* d¢
dp(r;¢) = ;W ;<G (13)
which corresponds to the pressure under the incremental indentation by a rigid cylindrical flat punch
with the radius ¢. Similarly, if two remote points on the axis of symmetry are moved relative to one
another in the tangential direction by an incremental displacement du (without slip and without
tilting), the bodies will experience incremental tangential surface tractions ([34], p. 137)
G* du

d‘i(r)é):?ﬂ , r<g¢. (14)

The subsurface stress fields due to the surface tractions (13) and (14) have been very recently
determined analytically and in closed form by the author [21].

As the tangential contact with friction under 2D oblique loading can be thought of as a specific
series of incremental (normal and tangential) rigid translations of circular contact domains with
varying radius ¢, the corresponding subsurface elastic stress field can be superimposed from the
"basic" fields that originate from the surface tractions (13) and (14).
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Hence, the subsurface stress field due to the normal contact load is given by [21]

oy, za) = [ o (vy,58) 81(2) de, (15)

where US{l ) denotes the stress field due to the unit indentation by a rigid cylindrical flat punch (which

is known explicitly). The subsurface stress field due to the tangential contact load is analogously given
by [21]
a
08 (x,y,2i0) = /O 0P (x,y,28) ' (©) dE, (16)
where (7].(,3) denotes the stress field due to the (rigid) unit tangential displacement without slip of a
circular contact domain (which is also known explicitly).

However, what are the correct "histories" of rigid translations, 6(¢) and u(&) — which are required
for the evaluation of the superposition integrals (15) and (16) - to reproduce the contact configuration
of the partial slip contact under oblique loading?

As it turns out, these are directly "encoded” in the MDR solution to the contact problem. Let the
normal and tangential displacements of the spring elements in the MDR model be wypr (¢, t) and
unmpRr (G, t), respectively. These displacements can be calculated very easily based on the MDR rules
described in the previous subsection. Any of the spring elements at position ¢ corresponds to a rigid
cylindrical flat punch with radius ¢ in the original system. Therefore, the histories of rigid translations
can be calculated from the MDR displacements according to

0(¢,t) = wnvpr(¢ = 0,t) — wmpr(E, t), (17)

and
u(g,t) = umpr(¢ = 0,t) — umpr(E, 1) (18)

The problem of determining the subsurface stress fields has thus been reduced to the (numerical)
calculation of the elementary one-dimensional integrals (15) and (16). Once the stress fields are known,
it is easy to implement a numerical routine for the evaluation of the definitions (9) and (10) for the
SWT parameter.

4. Results

4.1. Scaling Laws

The characteristic scale of the SWT parameter is the scale of the elastic energy density,

)
SWTo = E*ej = E* 2, (19)
with the characteristic deformation scale in an axisymmetric Hertzian contact, g = v/dy/R.
Dimensional analysis and numerical solutions of the problem stated in Sect. 2 show that the SWT
parameter, normalized for its characteristic scale (19), will only depend on a few non-dimensional

parameters, specifically

SWT - ( (SA wy G*uA > (20)

5= SWTO =S Ul#’%’willﬂE*(solllei

Here, x; denote the non-dimensional parameters for the characterization of the profile geometry, which
wil be detailed in Subsection 4.3.

It should be noted that the dependencies of the non-dimensional SWT parameter on the friction
coefficient and the non-dimensional tangential oscillation amplitude, G*u,/(E*¢y), are rather
elementary (increasing these parameters with all others held constant increases s), and shall not
occupy us further. The dependence on Poisson’s ratio is intricate, but very weak. Therefore, the
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remaining dependencies, that will be analyzed in the following, are the ones on the normalized normal
oscillation amplitude, 4/ éy, the frequency ratio between tangential and normal oscillation, w, /w1,
the (initial) phase difference ¢, and the profile parameters ;.

Unless stated otherwise explicitly, the simulations used the fixed non-dimensional parameters

listed in Table 1.
Table 1. List of used fixed non-dimensional parameters for the simulations (unless stated otherwise in
the text)
[ w G*u
Parameter v U T & LE? 4

Value 03 03 3/4 1 5/6 0

It should be pointed out, that for basically all simulations the critical point (with the maximum
SWT parameter) was in the contact surface, in the plane y = 0, and well outside the region of permanent
stick. The orientation of the critical plane was always close to perpendicular into the material (i.e., the
normal vector of the critical plane pointed in the tangential x-direction). This is in agreement with
respective experimental data in the literature [7].

4.2. Influence of Load Parameters in Parabolic Contact

First, let us analyze in-detail the influence of the bimodal loading protocol parameters 64 /dy
(normalized amplitude of normal oscillation), wy /w; (frequency ratio between tangential and normal
oscillation) and ¢ (phase angle between normal and tangential oscillation at the beginning of the
stationary cycle), on the non-dimensional SWT parameter in a parabolic contact.

In the case of oscillations with the same frequency (w, = wj), the remaining function s =
s(64 /00, ) could, in theory, be demonstrated comprehensively in a countour diagram. However, this
presentation would be hard to read; therefore, in Figure 3, the normalized SWT parameter is shown as
a function of the phase angle i for different values of the normal oscillation amplitude.

0.12

SWT/SWT,

e

| —e—0dy/06g=1/9 04/00=2/3
——0,/ 0y= 1/4—A—5A/()‘0:3/4

[ ——0,/0,=V2——5,/6,=89

o

0 0.2 0.4 6 0.8

0.
v/m

Figure 3. Normalized maximum SWT parameter for the same-frequency bimodal contact oscillation
between a paraboloid and a flat, as a function of the phase angle 1, for different values of the normal
oscillation amplitude

Without normal oscillation, there would, of course, be no dependence on the phase angle.
Therefore, for small normal oscillation amplitudes, the curves in Figure 3 are almost constant.
Expectedly, for large normal oscillations, the dependence on the phase angle increases, and turns
out to be actually very relevant, as for d4 /5y = 8/9, the maximum and minimum values of the SWT
parameter, as a function of the phase angle, differ by almost the factor of Two!

Moreover, there is a very interesting effect with regard to the coupled dependencies on the
frequency ratio and the phase angle, which is shown in Figure 4. There, the normalized SWT parameter
is shown as a function of the phase angle for different frequency ratios, and small (A, left) or large
normal oscillations (B, right).
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Figure 4. Normalized maximum SWT parameter for the different-frequency bimodal contact oscillation
between a paraboloid and a flat, as a function of the phase angle 1, for different values of the frequency
ratio. A: 64 = 0.2569 B: 64 = 0.75 &y

The variation of the crack initiation criterion with the phase angle seems to be most prominent
for frequency ratios of 1/4, 1/2 and 3/2; other values were tested, but showed little influence on the
SWT parameter; probably, because the cycle duration of the full stationary cycle is very long for less
commensurate frequencies, and thus the precise form of the loading protocol becomes less relevant, as
normal and tangential contact configurations become statistically less correlated. Also, there seems to
be a periodicity in the function s = s(¢), whose period length decreases with increasing frequency of
the tangential oscillation.

Once again, all effects are amplified for larger amplitudes of the normal oscillation.

4.3. Influence of Profile Geometry

Let us now turn our attention to the influence of the contact profile geometry on the crack initiation
criterion.

4.3.1. Rounded Flat Punch and Truncated Paraboloid

In the popular case of the cylindrical flat punch with rounded corners — the contact profile was
given in Eq. (4) — the only governing profile parameter in the non-dimensional formulation (20) is the
ratio between the radius b of the flat face of the punch, and the Hertzian contact radius ag = v/Réy.
Note that the curvature radius R of the rounded corners also enters the scale SWT, of the SWT
parameter in Eq. (19); that is to say, if the curvature radius is reduced, the scale of the crack initiation
criterion (and accordingly, the criterion itself) increases; the limit R — 0 corresponds to the sharp flat
punch, which will be extremely prone to crack nucleation, due to the oscillating stress singularity at
the edge of the punch.

For the truncated paraboloid with the profile given in Eq. (5), once again, the only influencing
profile parameter in the non-dimensional formulation is the ratio between the radius b of the indenter’s
flat face, and the Hertzian contact radius

In Figure 5, the normalized maximum SWT parameter is shown for the same-frequency bimodal
contact oscillation, as a function of the phase angle ¢, for different values of the normalized radius of
the punch face, b/ay, for the rounded flat punch (A, left) and the truncated paraboloid (B, right).
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Figure 5. Normalized maximum SWT parameter for the same-frequency bimodal contact oscillation
between a flat face indenter and a flat, as a function of the phase angle ¢, for different values of the
radius of the punch face. A: rounded flat punch B: truncated paraboloid

Obviously, in these cases, the dependence on the profile geometry is rather simple: For increasing
values of b/ap, the normalized SWT parameter globally and monotonously decreases for the rounded
flat punch, and increases for the truncated paraboloid.

Also there seems to be only a very weak coupling between the profile geometry as an influencing
factor, and the loading protocol — especially for the rounded punch, for which this coupling is basically
negligible — as the curves for different profile parameters differ only slightly in their dependence on
the loading protocol (i.e., in the case of Fig. 5, the phase angle). This phenomenon is highlighted
again in Figure 6, showing the normalized SWT parameter for the different-frequency oscillation of a
rounded flat punch, as a function of the normalized radius of the punch face b/ap, for different values
of the frequency ratio between tangential and normal oscillation, for a phase angle = 0 (A, left) and
a phase angle i = 7t (B, right).

oal \y +w2/wl :1/4—V—w2/wl :3/27 0.16 —e—wz/a)l :1/4—‘9'—602/54)' =3/24
’ \ ——0, /o, =12 20,/ 0, =2 —— o,/ 0, =12 —L—0,/0 =2
0.14 i
0.18 F
£ 0161 (5 0.12
% 0.14 % 0.1
~ ~
E 0.12¢ E 0.08|
» 0.1 n 0.061
0.08
0.04
0.06 s ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

blay, blay

Figure 6. Normalized maximum SWT parameter for the different-frequency bimodal contact oscillation
between a rounded flat punch and a flat, as a function of the normalized radius of the punch face b/ay,
for different values of the frequency ratio between tangential and normal oscillation. A: phase angle
tp = 0B: phaseanglep = 7

Interestingly, no coupling between profile and loading influences can be detected in Figure 6, as
all curves exhibit exactly the same decreasing behavior; the influence of the loading protocol on the
crack initiation criterion for the rounded flat punch seems to be the same as for the paraboloid, which
was discussed in-detail in Subsection 4.2.
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4.3.2. Paraboloid with Small Waviness

An intriguing problem is the question, whether a small waviness influences the crack initiation
criterion. As it turns out, there are two non-dimensional parameters to characterize the waviness, as
given in the profile function (6): the normalized waviness amplitude /1/Jj, and the normalized wave
length A/ \/ﬁ Note that for the contact area to remain compact (which is a necessary prerequisite for
the contact solution within the MDR), the wave length has to be large enough; this has been checked
in the simulations.

In Figure 7, the normalized maximum SWT parameter for the same-frequency bimodal contact
oscillation are shown as a function of the waviness amplitude, for different values of the normalized
wave length; for small (A, left), or large (B, right) normal oscillations.
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Figure 7. Normalized maximum SWT parameter for the same-frequency bimodal contact oscillation
between a paraboloid with small waviness and a flat, as a function of the normalized waviness
amplitude, for different values of the normalized wave length; A: for 54 = 0.25 6y B: for 64 = 0.75 &y

It is apparent that even a very small waviness can have a significant impact, especially the
waviness amplitude. In that regard, it is interesting that this impact is only slightly affected by the
normal oscillation, as both diagrams in Figure 7, qualitatively and quantitatively, show quite similar
behavior. Another notheworthy effect are the oscillations of the crack initiation parameter for small
waviness amplitudes, which decrease in period length and amplitude, as the waviness amplitude
decreases.

To analyze the coupling between the influencing variables of contact profile and load protocol for
this indenter type, in Figure 8 the normalized SWT parameter for the different-frequency oscillation is
shown, as a function of the normalized waviness amplitude //Jy, for different values of the frequency
ratio between tangential and normal oscillation, for a phase angle ¢ = 0 (A, left) and a phase angle
¢ = 7 (B, right).

As was the case also for the paraboloid without waviness, the most significant difference in the
SWT parameter for different phase angles appears for a frequency ratio of w, /w1 = 1/2. Moreover,
there seems to be weak coupling between the profile and load influences, as all curves in Figure 8
quantitatively are quite distinct from each other, but qualitatively all exhibit similar trends.
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Figure 8. Normalized maximum SWT parameter for the different-frequency bimodal contact oscillation
between a paraboloid with small waviness with A2 = 20hR and a flat, as a function of the normalized
waviness amplitude, for different values of the frequency ratio between tangential and normal
oscillation. A: phase angle ¢ = 0 B: phase angle ¢y = 7

5. Discussion

As was laid out in the Introduction, the obtained results are not necessarily intended as
quantitative predictions of fretting fatigue life, but shall give a comprehensive understanding of
the coupled contact mechanical influences of loading and profile geometry on the SWT parameter —
which is a very valid indicator for possible fatigue crack initiation — in elastic fretting contacts. Various
interesting trends and ideas have been identified, which are worthwhile to analyze deeper with
physically more flexible numerical procedures, e.g., the FEM.

The calculations have been performed within the framework of several simplifying model
assumptions, that should be kept in mind when applying the results to real engineering contacts, most
prominently linear elasticity, the validity of a local-global Amontons-Coulomb friction law and the
neglect of microscopic surface roughness. In that regard, it should be noted that the influences of both
plasticity [38] and an unstable friction law [39] on fretting fatigue crack initiation have already been
considered in the literature.

A very desirable extension of the proposed formalism, which remains for future work, is the
inclusion of bulk stress (which is also necessary to propagate nucleated fatigue cracks from the vicinity
of the contact into the bulk material) into the calculation of the subsurface stress fields, as was already
done successfully very recently for plane fretting contacts [40].
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