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Abstract: We advance a mathematical framework for collective conviction by deriving a continuum
theory from the network-based model introduced in [1]. The resulting equation governs the evolu-
tion of belief through a degenerate anisotropic logistic—diffusion process, where diffusion slows as
conviction saturates. In one spatial dimension, we prove global well-posedness, demonstrate spectral
front pinning that arrests the spread of influence at finite depth, and construct explicit traveling-wave
solutions. In two dimensions, we uncover a geometric mechanism of curvature-induced quenching,
where belief propagation halts along regions of low effective mobility and curvature. Building on
this insight, we formulate a variational principle for optimal control under resource constraints. The
derived feedback law prescribes how to spatially allocate repression effort to maximize inhibition of
front motion, concentrating resources along high-curvature, low-mobility arcs. Numerical simulations
validate the theory, illustrating how localized suppression dramatically reduces transverse spread
without affecting fast axes. These results bridge analytical modeling with societal phenomena such as
protest diffusion, misinformation spread, and institutional resistance, offering a principled foundation
for selective intervention policies in structured populations.

Keywords: anisotropic logistic diffusion; curvature-induced front quenching; targeted suppression
control
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1. Introduction

Diffusive models of belief adoption, protest mobilization, and organizational change share a core
intuition: influence radiates outward through social ties but attenuates where saturation, resistance, or repression
occur. The present paper formalizes this intuition in a degenerate anisotropic logistic—diffusion
framework (introduced by us in [1]) and analyses three geometric mechanisms: one-dimensional
pinning, two-dimensional curvature-induced quenching, and curvature-targeted control. Before outlining
the mathematical results, we motivate the study by surveying empirical domains in which these
mechanisms manifest with striking regularity.

Protest diffusion and containment: Recent cross-national panel analyses covering more than thirty
European states (2000-2015) reveal robust spatial contagion of protest: unrest in one country raises both
domestic and neighboring protest frequency in subsequent periods, producing travelling waves of contention.
Yet such waves rarely expand indefinitely. Data from the 2009-2010 Iranian Green Movement, the 2019
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Hong Kong demonstrations, and the 2020 Belarus protests show abrupt "arrests" of expansion after
highly localised crack-downs, corridor blockades, or internet throttling, tactics that leave low-curvature
arterial routes open but pin high-curvature flanks. The pattern echoes our one-dimensional analysis:
once a single depth layer of a protest hierarchy is saturated by repression, upward diffusion of mobilization stalls.

Diffusion and suppression of misinformation: At the level of online discourse, large-scale Twitter
studies demonstrate that false news diffuses more rapidly and broadly than factual information, often
through a few high-degree hub accounts. Platform interventions increasingly adopt a geometry-aware
approach, focusing resources on hub removal, flagging, or rate-limiting where the network curvature,
informally, the concentration of potential diffusion paths, is highest. Experiments show that deleting
or down-ranking a malicious post within thirty minutes can cut cumulative downstream engagement
by over 90 %, whereas uniform throttling of all content achieves far less per unit effort. These findings
parallel our two-dimensional quenching criterion: targeting regions of maximal projected curvature offers
disproportionate leverage.

Organizational inertia and targeted dissent suppression: Inside bureaucratic hierarchies, information
can likewise become "pinned". Morrison and Milliken’s organizational-silence framework, replicated
across corporate and governmental settings, shows that employees suppress negative feedback when
punitive norms saturate a particular managerial layer, effectively halting upward flow of corrective
signals. Recent fieldwork in United Nations peacekeeping departments reveals how "anticipatory
obedience" concentrates along specific reporting corridors, quenching reform initiatives transversally
while allowing day-to-day operations along the main vertical chain to proceed unchecked.

Historical precedents of strategic control: Eastern Germany’s two-stage containment strategy (rapid
arrest of focal organizers followed by selective media blackouts prior to construction of the Berlin
Wall) illustrates curvature-targeted repression avant la lettre. Similarly, Soviet disaster archives on the
Chernobyl accident document top-layer narrative pinning (“all systems normal”) that froze internal
dissent until the curvature of external scrutiny overwhelmed institutional inertia, precipitating a
preference cascade.

These examples demonstrate that pinning, quenching, and curvature-sensitive control are not
abstract artefacts but recurring features of social and political dynamics. Our goal is therefore twofold.
First, we develop a minimal anisotropic logistic—diffusion model that captures the emergence and
arrest of propagating fronts under nonlinear saturation and geometrically localized resistance.
Second, we derive and analyze a variational principle for curvature—targeted control, identifying how
limited repressive or corrective resources can be deployed to maximize suppression efficiency.

The subsequent sections are structured as follows: Sect. 2 introduces the probabilistic foundations
of the underlying network-influence model; Sect. 3 derives its continuum limit and formulates the
associated degenerate parabolic logistic equation; Sect. 4 establishes well-posedness and long-time be-
havior in the one-dimensional case; Sect. 5 investigates front selection and pinning phenomena; Sect. 6
extends the analysis to two dimensions, detailing curvature-induced quenching under anisotropic
diffusion; Sect. 7 presents the optimal-control formalism and numerical illustrations; Sect. 8 interprets
these mathematical results in light of empirical evidence from protest dynamics, organizational sociol-
ogy, and digital media research; and Sect. 9 concludes with broader implications and directions for
future work.

2. Probabilistic Foundations of the Network-Influence Model

Let a finite population of N agents be indexed by i = 1,. .., N, each of whom is exposed to a partic-
ular informational proposition, social norm, innovation, or ideological stance, denoted collectively as a
designated statement A. To formalize the adoption of A, we associate to each agent i a random variable
X; € {0,1}, where the event X; = 1 signifies that agent i has accepted or internalized the statement.
All probabilistic quantities introduced below are rigorously defined with respect to the canonical
product probability space (Q, F,P) generated by the family (X, ..., Xy), where F = 0(Xy, ..., XN)
is the minimal o-algebra capturing joint distributions over all binary adoption states in the system.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1136.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2025 d0i:10.20944/preprints202506.1136.v1

30f25

The prior probability that agent i independently adopts A prior to any social interaction or informa-
tional exchange is denoted Py; = P{X; =1 | ]_—ip ™1, where ]:iprl is the agent-specific information field
summarizing personal history, preferences, heuristics, and possibly exposure to external media or
previous encounters.

To account for socially mediated influence, we introduce a row-stochastic matrix A = (A;;), where
each entry Aj; € [0,1] denotes the conditional probability that agent j takes agent i as an epistemic
reference point when updating her belief. Structurally, A defines a weighted influence graph over the
agent population, whereas probabilistically, it serves as a transition kernel for a Markov chain on the
social network, reflecting the directional flow of informational trust. Each agent is further endowed
with an individual-level parameter y; € [0,1], representing obstinacy, i.e., the cognitive inertia or
resistance to social influence. The posterior probability that agent j adopts A after a single equilibrium
round of belief pooling is then given by the convex combination

N
P = piPo; + (1 —pj) Z;)\jipol', (1)

1

which may be interpreted as the conditional probability P{X; =1 | .7-']P OSt} after integrating private

priors with network-structured second-order beliefs, where .7-"]-p ! is the o-algebra generated by agent
j’s direct observations of the prior beliefs held by her reference group as encoded in A. This expression
extends classical DeGroot-type models [2] by allowing each agent to partially retain individual priors
with strength 1, a feature empirically validated by studies in political psychology and communication
science that associate increased obstinacy with ideological commitment, identity-protective cognition,
and motivated reasoning [3,4].
In matrix notation, denoting by Py € RN the vector of prior adoption probabilities and by
M = diag(1, ..., un) the diagonal obstinacy matrix, we write the posterior update rule in fixed-point
form as
P = MPy + (I — M)AP, )

which resolves uniquely to the closed-form solution
P =SP), where S=[I—(I-M)A] 'M. 3)

The resolvent operator S encapsulates the cumulative outcome of all higher-order influence
pathways over the social graph, incorporating iterated consensus-forming interactions under the
constraint of individual obstinacy. Each entry S;; may thus be interpreted as the marginal contribution
of agent j’s prior belief to agent i’s stabilized posterior, and the operator S plays a central role in the
subsequent dynamical model by fixing the weights of influence propagation in both discrete and
continuous-time regimes.

Within the probabilistic framework described above, we distinguish two fundamentally different
learning regimes based on the nature of exposure accumulation over time.

In the fully correlated (memory-preserving) regime, agents integrate all influence signals received
from the onset of observation (¢t = 0) without any decay or reset, leading to temporally entangled
adoption dynamics. Let P;(t) = P{X; = 1 by time ¢} denote the cumulative probability of adoption
for agent i after t € N discrete rounds of exposure, each governed by the same influence operator S.
Then the adoption probability satisfies the exact formula

; N N
P(t) =1~ /[0,1]N(1 —pi) (}Z% 5iij> jl}dpj/ (4)

as derived in [1], where the integral spans all possible configurations of prior belief probabilities
(p1,.--,pn) € [0,1]N. This formulation captures the Bayesian updating of adoption likelihoods under
perfect memory retention and statistical independence of priors across agents. The factor (1 — p;)*
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represents the cumulative probability that agent i has failed to adopt in t successive exposures, while
the integrand weights this failure by the total social signal }; S;;p; received at each round. As p; — 0,
the decay of (1 — p;)! becomes sub-exponential, resulting in heavy tails in the distribution of adoption
times and the divergence of the expected learning time. Consequently, convergence in this regime is
slow and strongly influenced by the global distribution of initial signals.

By contrast, the memory-less or Bernoulli-hazard regime assumes that each exposure event is statisti-
cally independent of prior ones, modeling probabilistic adoption as a continuous-time process governed by
instantaneous hazard rates induced by socially aggregated influence. Letting P;(t) = P{X; = 1 by time ¢}
for t € R(, we obtain the network-coupled nonlinear differential equation

dp; N

as derived in [1]. Here, (1 — P;(t)) denotes the instantaneous probability that agent i remains un-
converted at time ¢, while the aggregated influence }_; S;;P;(t) represents the social pressure from
already-adopting peers. The structure of the influence matrix S encodes both the topology and
weighting of inter-agent effects.

Solutions P;(t) to equation (5) exhibit strictly monotonic and sigmoidal dynamics under general
assumptions: namely, that S is nonnegative and irreducible and P;(0) € (0,1). Indeed, monotonicity
follows since for all t > 0, both multiplicative factors on the right-hand side are positive, which implies
that P;(t) is strictly increasing. The upper bound P;(t) < 1 is maintained at finite time due to the
vanishing of (1 — P;(t)) as P;(t) — 1, and saturation occurs in the long-time limit: lim; o P;(f) = 1.
These properties confirm that P;(t) € (0,1) forall t > 0.

To rigorously establish the sigmoidal profile of the adoption trajectory P;(t), consider its

second derivative: ) dP.
d2P; 2
i - dt ZSZ] () + (1= Pi(0) o Sijp- ©
]

Introducing the auxiliary quantities A;(t) = Y Sij Pi(t), and B;(t) = X SZJP], we obtain the
simplified form
2
T = (1 () (Bi(t) — A1), @)
Since P;(t) is increasing and bounded, B;(t) initially grows faster than A;(t)? but eventually lags
behind as P;(t) flattens. Hence, there exists a critical time ¢*, such that P;(t*) = 0, with P; > 0 for t < t*
and P; < 0 for t > t*. This confirms that P;(t) has a single inflection point and hence is sigmoidal.
The logistic structure of (5), therefore, guarantees that all solution trajectories are smooth, strictly
increasing, and exhibit a single peak in their growth rate. Consequently, the probabilistic interpretation
of P;(t) as a cumulative hazard function remains valid, and the definition of the mean learning time
(MLT) given by the first moment of the activation rate,

dP; (t)

(8)

is mathematically well-defined and directly applicable to the matrix-logistic dynamics. The quantity
dPi/dt in (5) thus serves as a valid probability density function on R>( for each agent’s stochastic
adoption time. The heterogeneous structure of S implies agent-dependent learning curves, which
reflect both local influence topology and initial configuration.

The global behavior of belief propagation in the memory-less regime is ultimately governed by
the spectral properties of the base conformity matrix A, which indirectly shapes the influence matrix S
via (3). As a row-stochastic matrix, A admits a spectral decomposition 1 = Ay > |A;| > -+ > |Ay],
where A1 = 1 corresponds to the trivial consensus eigenvalue, and the associated eigenvector is the
invariant distribution 7 satisfying Ar = 7, }; t; = 1. The spectral gap 1 — |A;| controls the rate
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at which the discrete-time dynamics AF converge to the rank-one projection 177" . In the symmetric
case (i.e., when A is reversible), this convergence is diffusive and uniform; in the asymmetric case,
non-normality can lead to directional biases, transient amplification, or localization of influence.
Obstinacy modulates this convergence by transforming the effective influence kernel to (I — M)A,
scaling all nontrivial eigenvalues by factors bounded above by 1 — pinin. Consequently, obstinate
agents resist rapid shifts in belief, leading to local smoothing but also global delays. This introduces a
structural trade-off: while high obstinacy dampens local volatility and slows saturation, it can impede
large-scale propagation, especially in sparse or weakly connected regions. This interplay between
spectral structure, individual inertia, and global coordination speed will be quantitatively analyzed
in subsequent sections, particularly through the lens of front velocity, saturation depth, and mean
learning time.

3. Continuum Limit of the Matrix-Logistic Dynamics

We now derive the continuum limit of the matrix-logistic equation (5), which governs probabilistic
adoption dynamics over a structured influence network. Consider a large-scale population embedded
in a spatially regular lattice graph G = (V, E), either one- or two-dimensional, with N > 1 nodes
and uniform spacing dx > 0 such that x; = i dx defines the spatial position of node i. For a smooth
adoption profile u(x, t) interpolating the discrete probabilities P;(t), we assume that

Pi(t) ~ u(xi/ t)/ (9)

in the limit 6x — 0. The influence matrix S is specified through the network structure and obstinacy
parameters via Equation (3), and we assume that its entries correspond to a discrete diffusive kernel
with locally varying coefficients, for instance,

D(x;)

Sij ~ ox?

dj=it1, (10)

or more generally a smoothed convolution operator over local neighborhoods.
Under these assumptions, the aggregated influence term in (5) admits the diffusive approximation

i SijPi(t) = D(x) Au(x, t), (11)
j=1

where D(x) is a spatially dependent effective diffusion coefficient emerging from the composition
of the local conformity weights A and obstinacy profile y;, and A is the Laplacian operator in the
continuous spatial domain. Substituting into (5) and passing to the continuum limit yields the nonlinear
degenerate diffusion equation

oru(x,t) = D(x)(1 —u(x, t)) Au(x, t). (12)

This characterizes adoption under locally modulated persuasion and saturating nonlinearity. If
the aggregated influence includes both diffusive dispersion and a mass amplification term, we assume

N
Z; SijPi(t) = r(x) u(x,t) + D(x) Au(x, t), (13)
]:

where r(x) reflects autocatalytic amplification of beliefs in ideologically resonant regions. The resulting
continuum model becomes a nonlinear logistic-diffusion PDE:

o =D(x)(1 —u) Au+r(x)u(l —u). (14)
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To interpret the coefficients D(x) and r(x), we expand the Neumann series for the influence matrix
S=M[I—(I-MA] '~ M[1+ (I— M)A+ (I—M)2A2+...]. (15)

In the regime of weak obstinacy y; ~ p < 1, this yields S ~ uA + y?A? + ..., indicating a
diffusive process governed by A. In the opposite limit y; — 1, we obtain S — I, and the influence
structure collapses to identity, halting propagation. Consequently, the coefficients are approximately

D(x) ~ pu(x)o*(A),  r(x) ~ p(x) A (16)

where ¢?(A) denotes a measure of the local spectral spread or diffusion strength encoded in A. To
formalize this, let A;, denote the i-th row of the conformity matrix, interpreted as a probability
distribution over neighboring nodes. The local spectral spread at node i is then defined as the second
spatial moment

(N)i =Y Ajj(xj — x;)%, (17)

which quantifies the variance of the influence distribution around agent i. In regular lattices with
uniform spacing Jx, this yields c?(A); ~ 6x?, so the diffusion coefficient becomes D(x;) ~ p; 6x2,in
agreement with classical finite-difference approximations of diffusive transport. For general graphs
with spatial embeddings, 02 (A); characterizes the effective width of the influence kernel and reflects
how broadly social influence disperses from each node.

In the continuum limit, belief dynamics synthesize two structurally distinct mechanisms: logistic
self-reinforcement and saturation-limited diffusion. Both mechanisms admit closed-form traveling
wave solutions, but only in the one-dimensional setting, where spatial ordering allows reduction
to ordinary differential equations [5]. In higher-dimensional or networked domains, such explicit
solutions generally fail, and front propagation becomes sensitive to geometry, anisotropy, and boundary
effects. The analysis in [5] applies specifically to depth-ordered hierarchical structures, where a one-
dimensional continuum approximation is valid.

The self-reinforcing component is governed by the classical Fisher—-Kolmogorov-Petrovsky—
Piskunov (FKPP) equation [6,7]:

ou 0%u

Fri Df@ +ru(l —u), (18)

which supports traveling wave solutions u(x,t) = U(x — vgt) of sigmoidal form,

u(x,t) =1 [1 - tanh(x —opt+ & tanh ™ (~1 +2\/@)}Z, (19)

vp = 248 /Dyr. (20)

In contrast, the nonlinear diffusion mechanism is described by

with propagation speed

ou %u
= = Ds(1— u)@, (21)

which degenerates as u — 1, reflecting the inhibition of influence propagation in saturated regions.
This equation admits an exact traveling wave solution [5] of the form u(x,t) = 1 — f(6), where
6 = yx — wt + 6y, given by f(0) = —W(—e’l’(e’e*)), with W(-) denoting the principal branch of the
Lambert function. Here, 6y represents a global phase shift determined by initial conditions, specifying
the spatio-temporal location of the front, while 0, denotes the internal coordinate at which the front
reaches full saturation f(6.) = 1. The difference 6y — 6. encodes the effective delay of front initiation
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and governs the onset position of activation in space-time. The normalization condition w = D f'yz
leads to the linear front velocity

vpp = Dy, (22)

in contrast to the square-root scaling of FKPP fronts (20). The resulting profile
u(x, t) -1+ W(_eflf('yxfthrGOfB*)) (23)

remains bounded in [0, 1] and rises monotonically for yx — wt + 6y — 6, > 0, describing a purely
diffusive sigmoidal front with finite support and delayed activation.

4. One-Dimensional Degenerate Parabolic Logistic Models: Well-Posedness and
Long-Time Behavior

In many applications of belief dynamics and saturation-limited propagation, particularly within
hierarchical or tree-like network topologies, the underlying graph structure admits a natural depth
stratification. Formally, if the interaction graph is a directed acyclic graph (DAG) G = (V, E), a layering
is a partition V = | |I'_; V} such that every edge (1, v) € E respects the ordering depth(u) < depth(0).
This framework allows belief propagation models to be reformulated as effectively one-dimensional
processes indexed by the discrete depth variable k € Z~1. Such a reduction is particularly well-suited
to systems initiated by a fully convinced source agent, interpreted as a “teacher” node, anchored at
the base level k = 1, with obstinacy y; = 1 and belief state fixed at P;(t) = 1 [5]. All downstream
agents, positioned at greater depths k > 2, adopt uniform skeptical priors P;(0) = Py < 1 and evolve
under logistic belief dynamics governed by depth-dependent influences. In the continuum limit, this
depth-indexed propagation reduces to a one-dimensional degenerate parabolic partial differential
equation of logistic type, as analyzed in the present section.

4.1. Mathematical Formulation and Physical Interpretation

We investigate the nonlinear degenerate parabolic equation
oit = D(1 —u) Oyt +ru(l —u), u=u(x,t)el01], (24)

posed on a bounded spatial domain () = (0, L) C R, equipped with homogeneous Neumann boundary
conditions dy 1|3 = 0, ensuring conservation of total mass within the system. The parameters D > 0
and r > 0 denote the effective diffusivity and intrinsic reaction rate, respectively, and are treated as fixed
throughout. The unknown scalar field u(x,t) is normalized to lie within the physically admissible
interval [0,1], and is interpreted as a concentration variable subject to saturation constraints—for
instance, encoding a belief level or occupancy probability, where u = 0 represents complete absence
and u = 1 total saturation. The initial condition is assumed to satisfy ug € [0,1] N L}(Q) N BV(Q), so
that the initial profile is both integrable and of bounded variation, thereby admitting a well-defined
weak formulation and ensuring compatibility with entropy methods. The principal structural feature
of (24) is its degeneracy in the diffusive coefficient a(1) = D(1 — u), which vanishes continuously
as u — 1. This degeneracy is multiplicative, in the sense of [8], as the diffusive flux takes the
form a(u) dyu, leading to a collapse of the ellipticity near saturation and rendering the classical De
Giorgi-Nash—-Moser theory [9-11] inapplicable cf. [8]. The effect is a spatially localized pinning of the
diffusion process: regions where u approaches one become effectively frozen, halting the propagation
of gradients and giving rise to finite-speed fronts and persistent saturated plateaux. This nonlinear
interaction between reaction and degenerate diffusion constitutes the central mathematical challenge
and physical richness of the model, which serves as a canonical paradigm for saturation-limited
transport in heterogeneous media.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4.2. Weak and Entropy Formulations for Degenerate Diffusion

To rigorously define the solution concept for (24), we first recast the equation in a conservative
form by introducing the nonlinear flux and reaction terms

g(u) = /Ou a(s)ds = D(u - %uz), f(u) =ru(l—u), (25)
so that (24) becomes
Ottt + Ox(—a(u) oyu) = f(u). (26)

The degeneracy of the mobility a(z) = D(1 — u), which vanishes as u — 1, precludes the direct
use of standard elliptic regularity theory and necessitates a weak formulation in weighted Sobolev
spaces. For a fixed function u: QO — [0, 1], we define the weighted energy space

HY ) (Q) = {v € 12(0) ’ Valu)ax € LZ(Q)}, 27)

equipped with the norm

ol ) = 1ol + 1y/a00) 2:0iE . (28)

loc([o’ T); H;(u)
(Q))NC(]0,T); L1(Q)) is said to be a weak solution of (24) if it satisfies, for all test functions ¢ € H'(Q)),
the integral identity

which captures the vanishing of diffusive transport in saturated zones. A functionu € L

/ u(x, ) p(x )dx—/ o (x) §(x dx_// 1) Ot D5 + §(u) §ldx ds, (29)

for almost every t € [0, T). While this definition is suitable for capturing energy dissipation and mass
conservation, the presence of possible discontinuities in u, especially across sharp interfaces near
saturation, motivates a more refined notion of solution that incorporates admissibility constraints via
entropy inequalities.

Following the generalized entropy method pioneered by Kruzhkov [12] and subsequently ex-
tended to degenerate parabolic problems by Carrillo [13], and within nonlinear reaction—diffusion
systems by Andreianov, Bendahmane, and Karlsen [14], we say that u € L* ([0, T); L}(Q) N BV(Q)) is
an entropy solution of (24) if for every k € [0, 1], the entropy pair

n(u) =lu—kl,  n'(u) =sign(u—k) (30)
and the corresponding degenerate entropy flux
qy(u) == 5" (u) a(u) xu = sign(u — k) D(1 — u) 0xu (31)
satisfy, in the sense of distributions on Q7 := Q) x (0, T), the entropy inequality
Of|u — k| + 9xqy (1) < sign(u — k) f(u — k). (32)

This inequality ensures that solutions are physically admissible and compatible with the irre-
versible character of the dynamics, particularly in the presence of shocks and saturation plateaux where
classical derivatives may fail to exist. The entropy formulation implies L!-contractivity of the solution
semigroup, yields comparison principles under suitable initial data, and permits the derivation of
uniqueness within the entropy class. Moreover, the entropy framework is robust under vanishing
viscosity limits and aligns with numerical schemes designed to respect the structural degeneracy of
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the diffusion operator, thereby forming the cornerstone of the rigorous theory of nonlinear saturated
transport models.

4.3. Friedrichs—Lax Regularisation and Approximate Solutions

In order to construct global-in-time solutions to the nonlinear degenerate parabolic Equation (24),
we adopt a Friedrichs-Lax type regularisation scheme, which introduces a uniform ellipticity into
the diffusive operator by perturbing the vanishing mobility near the saturated state. This procedure
restores strict parabolicity and enables the derivation of energy estimates and compactness properties
in a fully analytical setting [13,15,16]. For a fixed parameter ¢ € (0,1), we define a mollified mobility
function that strictly bounds the diffusion coefficient away from zero:

ag(u) =D[(1—u)+¢e =D(1—u+e), foru € [0,1], (33)

which satisfies the uniform positivity condition a.(#) > De > 0 for all u € [0,1]. The resulting
regularized model reads

01 + Iy (—ae(uf)oxu®) = rut(1 —uf), u®(x,0) = ug(x), dxulyn =0, (34)

posed on a bounded spatial domain (2 C R under homogeneous Neumann boundary conditions.
These guarantee the conservation of total mass and prevent flux across the boundaries. The essential
idea is that while the original degeneracy a(1#) = D(1 —u) — 0 as u — 1 introduces analytic
difficulties associated with loss of regularity and compactness, the approximation a.(u) retains the
qualitative features of the degeneracy while avoiding pathological vanishing. This structure allows
for multiple numerical and analytical approximations. In particular, equation (34) may be discretized
using a monotone Lax—Friedrichs finite-difference scheme [15,16], wherein the artificial viscosity
arising from numerical fluxes regularizes potential shock formation and ensures stability in the
sense of bounded total variation [17]. Alternatively, the same equation can be approximated using
a semi-discrete Galerkin method, in which the diffusive term is augmented by an explicit artificial
viscosity ddyyu®, where the vanishing parameter 6 = 6(h) — 0 depends on the spatial mesh size
h — 0[13,18]. Both approaches yield global-in-time, smooth classical solutions u¢ € C®(Qr), which
are uniformly bounded and lie in the physical interval [0, 1] under appropriate Stampacchia-type
truncation arguments. These regularized solutions serve as the analytic backbone for deriving uniform
a priori estimates, entropy inequalities, and compactness results required for the passage to the singular
limit e — 0, wherein weak or entropy solutions to the original degenerate problem are recovered. This
framework, rooted in classical treatments of degenerate parabolicity, provides a robust methodological
bridge between strictly parabolic approximation schemes and the multiplicatively degenerate limiting
equation, and forms a key analytic step in the proof of well-posedness for nonlinear belief propagation
models under saturation constraints.

4.4. Entropy Dissipation and A Priori Estimates

Uniform a-priori estimates for the approximate solutions u® € C®(Qr) of the regularised equa-
tion (34) are obtained via the entropy method of Bénilan-Crandall [19], based on a strictly convex
Lyapunov functional adapted to the degeneracy structure. For each € > 0, define the regularised
mobility a¢(u) := D(1 — u + ¢), and introduce the convex entropy potential

u S 1
@, (1) ::/0 /O e 4 s (35)

so that ®/(u) = a.(u)~! > 0, uniformly on [0,1]. Multiplying (34) by ®.(uf) € C'([0,1]) and
integrating by parts over () yields the entropy dissipation identity:

%/ﬂég(ug)dx—i—/gag(ue) |0 uf|? dx = r/ﬂus(l—ue)ég(us)dx. (36)
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The right-hand side of (36) is nonpositive due to the sign structure of the product u®(1 — u®) P, (u®):
for u € [0,1], the reaction term f(u) = ru(1 — ) is nonnegative for u € [0, 1], nonpositive for u € [1,1],
and @/, is strictly increasing, so that the product is everywhere bounded above by zero. Hence, for all
t € [0, T], the entropy is non-increasing:

sup @l () d < | @) dx. (37)

Moreover, the second term in (36) yields coercive control of the weighted gradient,

/ /ag ) [t 2 dx dt < oo, (38)

which implies \/a.(uf) 9yu¢ € L?(Qr). Consequently, the approximate solutions u¢ are uniformly
bounded in the reflexive space

L%(0,T; Hy (Q)) == {v € L2(0,T; L*(Q ' ) | \/ae(u) 950 € L2(Qr) } (39)

and the time derivatives d;u¢ are controlled in L2(0, T; H~1(Q)) via testing the weak form of (34)
against functions in H!(Q). By the Aubin-Lions lemma [20,21], applied in the compact embedding

H, (Q) == LY(Q) = H(Q), (40)

this yields strong precompactness of {uf}.~o in L}(Qr). The dissipation identity (36) thus plays a
central role in controlling the nonlinear fluxes and establishing convergence of the regularised sequence
to an entropy solution of the original degenerate problem (24).

4.5. Compactness and Limit Passage to Entropy Solutions

Uniform a priori bounds derived from the entropy dissipation identity (36) and Stampacchia
truncation [22,23] imply compactness of the regularised sequence {u}.~o C C®(Qr) in L'(Qr). The
pointwise maximum principle yields

0<u(x,t) <1 forae. (x,t)€Qr, (41)

ensuring confinement to the admissible interval. Integration of the regularised equation (34) under
homogeneous Neumann boundary conditions provides the mass decay estimate

€ 3 €
— — — <
t/ ut(x,t)dx r/ ut(1—uf)dx <0, (42)

yielding uniform boundedness in L*(0, T; L' (Q))). A weighted Poincaré inequality [24], applied to the
dissipation structure, implies bounded variation:

1/2
/Q|8xu€(x,t)| dx < C(/Q ag(ue)|axue|2dx> , (43)

with the right-hand side uniformly bounded in L?(0, T) due to the entropy decay (36) [19]. Temporal
regularity follows from the differential Bénilan-Crandall inequality:

// \u — k| Qe dx dt + // sen (i€ — K) ae (1) dxu® dyp dx dt > 0, (44)
Qr Qr
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valid forallk € (0,1), p € CZ(Qr), > 0, which guarantees equi-continuity in time in the negative
Sobolev space H~1(Q). Applying the Aubin-Lions-Simon lemma [20,21] in the compact embedding
scale H;(u)(Q) — LY(Q) < H~(Q), one obtains

u® — u strongly in L}(Qr), up to a subsequence, (45)

and almost everywhere convergence. To justify the limit passage in the nonlinear diffusion term, one
invokes the Minty—Browder monotonicity trick [25,26], yielding

ae(uf) dyu® — a(u)dyu  weakly in L' (Qr), (46)

with a(u) = D(1 — u), while lower semicontinuity ensures that the limit function u inherits the
bounds (41)-(43). Uniqueness follows by Kruzhkov’s doubling-of-variables method [12], adapted
to the degenerate flux q(u) = D(u — u?). Testing with mollified indicators ¢s(x — y)ns(t —s), one
obtains the L!-contraction estimate

[u(t) = o)l () < lluo —vollpq) V€ [0,T], (47)

which ensures that the limit u € L® ([0, T]; L'(Q)) N BV (Qr) is the unique entropy solution of the orig-
inal degenerate initial-boundary value problem (24). This compactness and convergence analysis, to-
gether with the a priori entropy bounds and structural dissipation, provides a rigorous well-posedness
framework for the multiplicatively degenerate logistic-diffusion system, as developed in [13,14,19].

4.6. Stability and Saturation Fronts in Entropy Dynamics

Central to the well-posedness of the degenerate logistic—diffusion equation is an L!-contraction
principle extending Kruzhkov’s theory [12] to nonlinear fluxes with degenerating mobility a(u) =
D(1 — u), which vanishes at u = 1. Let u, v be entropy solutions with initial data uo, v € [0,1] N L' N
BV. Testing the entropy inequalities with the Kruzhkov pair 17 (u, k) = |u — k|, ' (1) = sgn(u — k), and
its counterpart for v, summing the resulting relations, and exploiting the concavity of the primitive
flux q(u) = D(u — $u?), together with the Lipschitz monotonicity of the reaction f(u) = ru(1 —u),
yields the differential estimate

%Hu(.,t)—v(.,t)||L1(Q)—1—/0[a(u)+a(v)—2a(ﬁ,\v)] 19x(1 —v)| dx < 0, (48)

where 4,0 = max{u,v}. Since the bracketed term satisfies a(u) + a(v) > 2a(u,v) by subadditivity
of a = ¢/, the second integral is non-negative and may be discarded, yielding the strict contraction
estimate |[u(-,t) —v(-,t)||;1 < [Juo — vol| ;1 for all t > 0; cf. [12,13]. Choosing v as a supersolution with
vg > ug furnishes the comparison principle u(x, t) < v(x, t), while the degeneracy of a(u) precludes
interior attainment of the saturated state u = 1. Indeed, if u(xy, tp) = 1 at an interior point, then the
flux —a(u) oxu vanishes identically in a neighbourhood, and the saturated plateau propagates with
finite speed governed by the travelling-wave reduction

—cU'(§) =a(U@)U"(@) +rU@)(1-UE)), EF=x—ct, (49)

whose phase-plane analysis reveals a critical half-width beyond which no monotone front connects
u = 1 to lower values, implying front pinning [5]. The contraction estimate (48), combined with
the positivity of the approximate solutions from the regularised scheme, guarantees uniqueness of
entropy solutions in the class L®(0, T; BV(Q)) N C([0, T]; L}(Q))), and continuous dependence on the
data (ug, D, r) in the L!-metric, thereby completing the stability theory for the degenerate parabolic
model (24).

Although the degenerating coefficient a(u) = D(1 — u) annihilates the classical Krylov—Safonov
machinery [27] at saturation, the combination of BV-compactness and weighted elliptic regularity [8]
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ensures instantaneous spatial smoothing away from the plateau set {# = 1}. For every ty > 0,
the distributional gradient satisfies du(-,t) € L1(Q) for all t > to, implying u(-,t) € BV(Q) and,
via the Morrey embedding [28], interior Holder continuity with exponent and constant deteriorat-
ing algebraically near {# = 1} [8]. The argument refines the weighted Caccioppoli inequality of
Bénilan-Crandall [19] by incorporating the Lyapunov weight (1 — u)~#, followed by Alikakos itera-
tion [29] in the spirit of DiBenedetto-Friedman [30], though without invoking the De Giorgi-Nash
theorem [9,10], which fails under multiplicative degeneracy [8]. It follows that for every compact
K € {x € Q:supy,, u(x,s) <1}, thereexistsa € (0,1) such thatu € C*%(K x [to, ®)), whereas no
Holder gain is possible where u reaches unity, a rigidity underpinning the pinning effect.
Long-time dynamics are governed by the entropy functional

En(] = [ Qu(x0)dx,  Q(s) = ~log(1—s), (50)

whose evolution along entropy solutions satisfies the dissipation identity
d D(1—u) 2 B
E[u(t)] +/Qﬁ EXA dx—i—r/Qu(l 1) log(1 — ) dx = 0, (51)

so that E[u(t)] is non-increasing and coercive in L!. If the initial mass of the unsaturated region,
Jo (1 —ug) dx, is strictly positive but sufficiently small, the reaction term dominates and the solution
converges exponentially to the homogeneous state # = 1. Conversely, if the saturated support
{x : up(x) = 1} contains an interval longer than the critical diffusion length L, ~ /D /r, the entropy
identity (51) admits steady minimisers with pinned plateaus, and the solution converges algebraically
to such heterogeneous equilibria, the decay rate determined by the spectral gap of the linearised arrest
operator. These decay estimates reinforce the earlier uniqueness result and clarify the dynamical
dichotomy between full consensus and finite-speed stagnation.

Extending this analysis to higher spatial dimensions, anisotropic diffusivity tensors Dj;(x), or
additional advective drifts b(x)0,u presents significant challenges: the loss of one-dimensional order
invalidates Kruzhkov’s flux-pair construction, the weighted BV-framework becomes vectorial, and
accurate numerics must resolve evolving pinning interfaces governed by a free-boundary problem
coupled to the degenerate parabolic core. These are topics to be addressed in future work.

The analytical framework developed above rigorously establishes the well-posedness, regularity,
and long-time behavior of entropy solutions to the degenerate parabolic logistic equation (24). The
interplay between structural degeneracy, entropy dissipation, and finite-speed propagation leads to a
rich phenomenology of pinning and stagnation that departs fundamentally from classical diffusion-
reaction models. The convergence theory, built on compactness and monotonicity tools, not only
affirms existence and uniqueness in low regularity classes but also sets the stage for further investiga-
tions into multidimensional degeneracies, anisotropic fluxes, and free-boundary evolutions associated
with saturated fronts.

5. Pinning and Front Selection in One Dimension

In this section, we develop a rigorous theory of front propagation in the one-dimensional degener-
ate logistic-diffusion model (24), focusing on two dynamically distinct mechanisms: (i) the emergence
and spatial localization of pinned plateaus near saturation; and (ii) the nonlinear selection of front
velocity via matched asymptotics between the weak-signal and degenerate regions. The mobility
coefficient D(1 — u) vanishes near saturation and encodes the mechanism of spontaneous arrest. As
shown below, any saturated point u(xg, tp) = 1 initiates a region of finite-speed propagation governed
by the travelling-wave reduction (49), whose phase-plane structure reveals a critical half-width below
which no admissible front can connect the saturated and unsaturated states [5].
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We define a pinned plateau as a nontrivial interval on which the solution remains saturated
irreversibly. More precisely, for some fy > 0 and interval (x_,x4) C R,

u(x,tg) =1forxe (x_,xy) = u(x,t)=1fort>ty, xe (x_,xyq), (52)

since the flux —D(1 — u) dyu vanishes identically at saturation [19]. In the sociophysical interpretation
of (24), this corresponds to a frozen-conviction zone: a saturated agent cluster becomes dynamically
inert, and external influence cannot penetrate it. The domain splits into an active sector u < 1, where
diffusion operates, and a pinned core whose survival depends on initial overshoot and the ratio D /r.

A refined maximum principle explains the irreversibility of such plateaux. Let u be a bounded
weak solution, and suppose u(xg,tg) = 1 is achieved in the interior. The degeneracy annihilates
diffusion, and evaluating the PDE yields

0 < 9su(xp,tg) = D(1 —u) dxxu +ru(l —u) =0, (53)

so that all inequalities are saturated. The strong maximum principle [8,19] then forces # = 1in a
neighborhood, and unique continuation implies persistence. A sharp threshold follows from matched
asymptotics: equating the exponential tail U(¢) ~ e~7¢, where 9> = r/D, to the interior curvature

D
L ~ V/r~’ (54)

so that initial plateaus of width less than 2L, vanish, while wider ones persist.

scale yields the minimal half-width

1 —_— L=21t=1
- = L=01t=1
0.8" —_— L =2,t=5
- - L =01t=5
| —_— L=2t=10
,;:0.6 - = L=01t=10
et L. = 0.31622
= =
0.4 ’
0.2
O . y v - - T T T Y

Figure 1. Time evolution of u(x, t) with initial condition ug(x) = 1joj(x) for L = 2 > Lc ~ 0.316 (solid) and
L =0.1 < L. (dashed). Supercritical plateaux propagate; subcritical ones decay.

Further insight comes from the phase portrait of the travelling-wave system. Setting V = U,
equation (49) becomes
ctr(1-U)

/:V V/:
w=v D —U)

v, (55)

with degenerate saddle at (U, V) = (1,0). Linearization reveals one zero and one diverging eigenvalue,
placing the origin on a non-hyperbolic center manifold. Centre-manifold theory [31] shows that orbits
launched at U = 1 remain pinned, while those with U < 1 escape immediately. The entire segment
{U =1,V = 0} is invariant, structurally enforcing pinning.

Numerical integration confirms this: given a saturated initial patch, the edge recedes at finite
velocity cpin(D, 7), and the interior remains flat. Rescaling ¢ + ¢/ /Dt collapses interface profiles to
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a similarity shape, consistent with the law Xeqge(t) ~ xo £ 2v/Dt. Motion halts precisely when the
profile shrinks to size 2L, after which the segment remains permanently pinned.

0.2 0.9 c* = 0.4472
: : ; . . . . s ; 0.8 c=02
10.20.30.40.50.60.70.80 0.7 — =07
—-0.21 U gg
—0.4 Yoa
\ 0.3
V -0.6 02
=i ¢ = 0.4472 0'(1)
-1 =02 , ( : : :
—_c=07 0 5) 10 15 20
X

Figure 2. (a) Phase-plane trajectories for ¢ = 0.2 < ¢* = 0.447 (grey, unstable) and ¢ = 0.7 > ¢* (red, admissible).
(b) Corresponding profiles U(x). Subcritical waves violate monotonicity and positivity; supercritical ones yield
valid fronts.

Finally, we examine front selection numerically. The critical velocity c* = 2+/Dr arises from
linearization at the leading edge and marks the pulled/pushed transition. Subcritical waves violate
monotonicity and decay conditions, while supercritical ones connect U = 1to U = 0 smoothly. Figure 2
confirms this dichotomy. Thus, despite the absence of spectral bifurcations, the system exhibits sharp
thresholds: L. for plateau survival, and ¢* for admissible propagation.

This completes the analytic picture: pinned regions emerge and persist due to degeneracy,
propagation occurs when saturation is sufficient, and coherent fronts exist only when their speed
exceeds the linear threshold. No instability or bifurcation was observed; hence, the degenerate
logistic—diffusion model in one dimension admits only robust, threshold-governed dynamical regimes.

6. Two-Dimensional Geometry, Anisotropy and Curvature-Induced Quenching in
Degenerate Parabolic Logistic Models

We now turn to the analysis of degenerate logistic belief propagation in spatial domains of
dimension d = 2, focusing on geometric and tensorial extensions of the one-dimensional dynamics
studied previously. In higher dimensions, the propagation of conviction fronts becomes sensitive not
only to the degeneracy structure D(x,y)(1 — u), which encodes saturation-induced diffusion arrest,
but also to anisotropy arising from the directional asymmetries of the influence network.

The motivating discrete structure is depicted in Figure 3, and consists of a two-dimensional
directed grid of agents arranged on a square lattice augmented by diagonal links, forming a full
8-neighbor Moore-type connectivity pattern. Each node i € V influences its immediate neighbors
in the horizontal, vertical, and diagonal directions, with direction-dependent conformity weights as
indicated. The central node at spatial index (0, 0), marked in red, acts as a fully convinced teacher: its
belief state is fixed at unity and its obstinacy coefficient normalized as /(o) = 1. All other agents share
homogeneous low obstinacy u < 1, and evolve under the matrix logistic dynamics. This configuration
defines a canonical anisotropic two-dimensional influence network whose macroscopic limit inherits
both degeneracy and directional asymmetry.

We define the influence matrix S via the posterior amplification structure (3), with homogeneous
obstinacy y < 1 for all (m,n) # (0,0), and full Moore-type neighborhood weighted by direction-
dependent conformity coefficients. For each node i = (m, 1), the matrix element S; ; is nonzero only if
j€ Ninn, where Ny, , denotes the ordered list of horizontal, vertical, and diagonal predecessors of i,
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each linked by weight A, according to their geometric orientation. The resulting belief dynamics on
the lattice takes the form

dpm,n
dt

= (1=Pun(®) Y SmmywnPre(t), (6)
(k,0) ENwn

with fixed boundary condition Py (t) = 1. The structure of S encodes both local amplification and
anisotropic influence geometry, inducing direction-sensitive nonlinear propagation and degenerate
self-reinforcement at saturation.

CJU _/ \J\)

Figure 3. Two-dimensional influence graph with full Moore neighborhood. All nodes (except the central teacher)
are agents with identical low obstinacy y < 1; the teacher at (0, 0) is fully convinced. Link directions correspond
to weighted influence edges with distinct conformity coefficients A, /\i’ A AR,

Rescaling lattice indices by x = em, y = en and Taylor-expanding the Moore-sum to O(&?)
converts the matrix-logistic rule to the degenerate reaction-diffusion form

o = (1—u)V-(DVu) +r(x,y) u(l —u), (57)

where the anisotropic tensor
poufto iy TAN) S AN (58)
1Ay =AN) Atz +A)
and the point source
r(@y) = (Ao + A+ 2+ A) ay),00) 9

inherit the directional weights of the lattice. Anisotropy enters through the off-diagonal component
Dyy < A », — Axy. To eliminate shear while retaining axis heterogeneity we set the two diagonal
weights equal, A - = Ax, = Ay, yielding the diagonal model

aﬂ/l = (1 — u)(Dx Uxyx + Dy uyy) + 7”(1 - M), (60)

with
Dy =5(2As +20g),  Dy=502M+24),  r=u(de +Ap+22). (61)

Equation (60) captures the minimal two-dimensional geometry: axis-weighted elliptic spreading
governed solely by the ratio Dy / Dy and quenched as u — 1, without the additional tilt that would arise
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from unequal diagonal links. Throughout the numerical experiments we fix = 0.1 and choose the
conformity weights A, )\$, A4 so that the effective diffusivities satisfy Dy = 0.5 and Dy € {0.2, 0.01}.

1001 D, = 05,D, = 0.2 100
] xT oy e D, =0.5,D, = 0.01

_ﬁ
o S ——————
30 ~—— | 30-

L L L L B B B B N B L L B B L L L B B B

10 30 50 70 100 10 30 50 70 100
Figure 4. (a) Conviction front at intermediate time in the axis—anisotropic model (60) with moderately unequal
diffusivities Dy = 0.5, Dy = 0.2, producing smooth elliptic level sets aligned with the coordinate frame. (b)

Strongly anisotropic case with Dy, = 0.01, exhibiting vertical pinning and transverse flattening of the front. Both
simulations initiated from a localized teacher at the center; shown is the isoline field of u(x, y, t) at fixed t > 0.

Passing to the sharp—interface limit of (60) we separate an outer region, where u is essentially
binary (1 ~ 0 or u ~ 1), from an inner layer of width O(y/¢) centered on the isoconviction curve
r() = {u=1}.

In stretched normal coordinates { = dist(x,I')/+/¢ a matched-asymptotic expansion a la
Fife-McLeod [33] shows that the leading inner profile U({) travels with speed ¢ and effective diffusiv-
ity D, = Dyv2 + Dyvi, where v = (vy, vy) is the unit normal to I'(¢). The Euclidean curvature of the
interface is defined by

Vu
= v- , = — . 62
A | 7RO “
Flux matching gives the normal velocity law
Vo= (1-u)Dyx,  Dy=Dw?+Dy2 (63)

with u, € (0,1) the mid-layer value of U. Equation (63) describes anisotropic mean-curvature
motion attenuated by saturation; if D, or x becomes too small the interface stalls, a phenomenon
we term curvature-induced quenching. For an initially circular patch of radius Ry one obtains the

Ry (t) = \/R3 +4Dxt, Ry(t) = /R3+4Dyt, (64)

verified numerically and exhibiting pinning along the slow axis when Dy < Dj.
With a diagonal tensor D = diag(Dy, D) the law (63) reduces to

self-similar ellipse

Vi = (1—uy) (va,zc + Dyvﬁ)x, (65)

so that only Dy, D, modulate curvature. A radially symmetric contour evolves via V,, = (1 —
u,) min(Dy, Dy)(d — 1) /R, giving the critical stopping radius

_ (1 —u,)(d —1)min(Dy, Dy)

R
¢ V.

(66)

where Vi is the one-dimensional wave speed extracted from U(¢). If Dy # D, the level set elongates
with R,/ Ry = Dy /Dy; hence the fast axis expands while the slow one can hit R, first, arresting motion
transversally, a behaviour reproduced in Fig. 4.
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Figure 5. (a) Surface profile of belief field u(x,y, t) at two time snapshots (t = 0.1 and t = 0.9) under strongly
anisotropic diffusion Dy = 0.5,D, = 0.01, showing progressive front expansion in the fast x-direction and
near-stalling transversally. (b) Map of curvature x = V - (Vu/|Vu|) evaluated at final time; note the emergence
of high-curvature ridges along transverse flanks exceeding the critical threshold for quenching.

A rigorous quenching criterion emerges by minimising the mobility in (65). Setting Dmin =
min(Dy, Dy) yields the maximal admissible curvature

Vi

(1 - u*)Dmin, (67)

Ke =
so the interface stops whenever ¥ > x.. Analytically this inequality defines an anisotropic Wulff
shape bounding all feasible fronts; linear stability of a planar wave gives the neutral wavenumber
ke = (1 — tt4) Dmin/ V. Numerically, level-set or phase-field discretisations of (60) corroborate these
predictions: an initially elliptic interface grows according to (64) until the minor semi-axis meets the cur-
vature threshold !, after which motion ceases along the slow direction while persisting along the fast
one, reproducing the pinned contours in Fig. 4. Mapping (Dy, Dy) — «. and validating its geometric
realization thus constitute the next step in both analytical refinement and high-resolution computation.

Numerical confirmation of this criterion is provided in Fig. 5, where we visualize the evolution of
an initially circular front under strongly anisotropic diffusion. The profile u(x, y, t) forms an elongated
lobe along the fast axis, while transversal expansion halts due to curvature pinning. The corresponding
curvature field exhibits pronounced peaks along the slow direction, exceeding the critical threshold (67),
and thereby arresting further propagation in those regions.

7. Curvature-Targeted Control of Belief Propagation in Two Dimensions

We now address the problem of curvature-targeted suppression of front propagation under
resource constraints. In many realistic settings, ranging from protest diffusion and epidemic spread
to adversarial information campaigns, blanket intervention across the domain is either infeasible
or counterproductive.

Instead, inhibition must be applied selectively and strategically, focusing on geometrically sensi-
tive regions where the front is most susceptible to arrest. To this end, we develop a sharp—interface
control formulation that quantifies how a limited repressive rate q(x,y,t) > 0, concentrated on a
thin neighborhood of the isoconviction manifold I'(t) = {u = 1}, perturbs the matched-asymptotic
balance governing front motion and prescribes an optimal spatial allocation strategy that maximizes
inhibitory efficiency under a finite enforcement budget.

Augmenting the anisotropic logistic—diffusion field by a non—negative repressive rate g = q(x,y, t)
concentrated on a thin tubular neighborhood of the isoconviction manifold I'(t) = {u = 1} perturbs
the matched-asymptotic balance that governs front motion. Expressed in arclength-time coordinates

(s, t) the uncontrolled normal speed reads V,SO) = (1 — ux)D,x, where D, = D,v2 + DyV§ projects the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1136.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2025 d0i:10.20944/preprints202506.1136.v1

18 of 25

mobility tensor onto the unit normal v and the Euclidean curvature is ¥ = V- v. Introducing q removes
growth rather than adding it, so the sharp-interface velocity becomes

Vi(s,t) = (1 —u.) [Dy(s, t) k(s,t) — q(s, t)]. (68)

During an elementary interval dt the occupied area therefore varies by

64 = [— J (0 ds + (1w [ D5, ) (s, 8)ds dt, (69)

where the sign convention is such that V;, > 0 denotes outward motion. If an instantaneous enforce-
ment budget

/ A0 ds = Q) (70)

is prescribed, the optimization problem becomes the allocation of g along I'(t) so as to maximize the
negative first term in (69) while respecting (70); equivalently, one seeks to deploy scarce repression
where curvature is high and projected diffusivity is low, thereby exerting the greatest leverage on the
advance of the front without resorting to blanket suppression.

Maximizing the retardation of front propagation under the constraint of a fixed enforcement
budget leads to a variational optimization problem formulated over the interface I'(t). The control
density q(s, t) is determined by maximizing inhibitory effect per unit resource, giving rise to the
Lagrangian functional

LigA] = /r(t)q(s,t) ds—A(/r(t)q(s,t) ds—Q(t)), (71)

where A enforces the linear constraint [, (1 qds = Q(t). Taking the first variation of £ and imposing
non-negativity of g leads to a complementary—slackness condition: optimal control vanishes on
segments where curvature is below the quenching threshold «.(t), and is positive only where the local
geometry is sufficiently convex to allow effective intervention. On these segments the optimal profile
is given by
Q(t
750 = AW [0 - k0], AW = o ™)
x(s,t) —xc(t S
JRCCEREOIN

where [-]| denotes the positive part and x.(t) = V./[(1 —u,) Dy(s,t)] is the curvature threshold
derived in equation (67). The function A(t) acts as a normalising factor ensuring that the total
enforcement matches the budget Q(t). The resulting distribution of repression is thus sharply focused:
it concentrates entirely on high—curvature flanks where the interface exhibits reduced projected mobility
and is therefore most susceptible to quenching. In such regions, even modest local inhibition suffices
to arrest propagation, enabling targeted suppression without recourse to full-domain intervention.
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Figure 6. Numerical demonstration of curvature—targeted suppression for anisotropic diffusion (Dy, Dy) =
(0.5,0.01) at time ¢ = 0.1. (a) The colored surface visualizes the belief field u(x,y, t) under optimal control g*;
the transparent mesh represents the uncontrolled solution. The narrow trench encircling the peak delineates the
elliptic control shell in which the repressive feedback is activated. (b) Top view of the same simulation overlaid
with arrows indicating the transverse flanks of the front where curvature is highest and the optimal control is
most strongly concentrated. These arcs are precisely the regions predicted by (72) to yield maximal retardation.

To demonstrate the efficacy of curvature-targeted suppression, we integrate equation (60) numer-
ically in a rectangular domain with strongly anisotropic diffusion coefficients (Dy, D) = (0.5, 0.01).
The initial profile consists of a compactly supported teacher source centered within the domain, and
the control law g* prescribed by equation (72) is activated within a dynamically evolving elliptic shell
that closely tracks the support of the uncontrolled interface I'(¢).

The resulting simulations, summarized in Figure 6(a), reveal a pronounced asymmetry in the
suppression effect: the active repressive shell, visible as a dark-blue trench encircling the peak of the
belief field, induces substantial retardation along the transverse (y) direction while exerting negligible
influence along the fast (x) axis. Quantitatively, the radial extent in the y-direction is reduced by
approximately 40% at time t = 0.1, despite the total resource budget Q() remaining fixed and the
feedback being confined to a thin boundary layer. This outcome aligns precisely with the theoretical
prediction based on the projected mobility D, = Dyv2 + Dyvf, which is minimal along the short axis
of the elliptic front and thereby maximizes the leverage of localized repression. To further highlight
the spatial localization of the repressive feedback, Figure 6(b) presents a top—view projection of the
same simulation with arrows marking the regions of highest curvature. These flanks correspond to the
loci of maximal g* intensity and exhibit clear suppression effects.

This example substantiates the central hypothesis that finely tuned curvature-selective feedback
can yield nontrivial spatial inhibition with minimal energetic expenditure. Operationally, the prescrip-
tion (72) admits efficient implementation: once the evolving front I'(¢) is approximated (e.g., as a level
set of the solution field), the curvature (s, t) and projected diffusivity D, (s, t) can be computed locally,
and the control density ¢*(s, t) is obtained by thresholding against the analytically derived critical
curvature k. (t) and allocating the available budget proportionally. The conceptual and computational
tractability of this scheme offers a robust baseline for more sophisticated control frameworks, such as
those incorporating spatial heterogeneity in diffusivity, temporally adaptive budgets, or second-order
penalization. These generalizations present natural extensions for future work, particularly in domains
where spatial anisotropy and limited intervention capacity dominate system dynamics.
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8. Discussion: Empirical Parallels and Societal Implications

The preceding sections developed a degenerate anisotropic logistic—diffusion framework, de-
rived its sharp—interface limit, established curvature-dependent quenching criteria, and proposed a
curvature-targeted control law. Taken together, these results show that

e  one-dimensional hierarchies admit pinning when diffusion is quenched at a single depth,

* two-dimensional fronts undergo curvature-limited arrest that depends on the local mobility projec-
tion D,, and

®  scarce control resources can be optimally allocated along high-curvature flanks to stall propagation
with minimal effort.

While the analysis is mathematical, the underlying phenomena have clear analogues in contem-
porary social systems: protest waves expand until repressive pinning intervenes, misinformation
cascades accelerate or stall according to network geometry, and hierarchical organizations suppress
dissent in ways that mirror one-dimensional front arrest. The following discussion surveys data-rich
case studies from sociology, political science, and organizational research that illustrate these three
mechanisms — pinning, quenching, and targeted control — thereby grounding the theoretical model
in observable social dynamics and highlighting its practical relevance.

8.1. Protest Diffusion and Containment

Historical and contemporary evidence shows that protest movements often spread in ways
analogous to contagion, and authorities have developed strategies to "pin" or contain these diffuse
uprisings. Large-scale data studies confirm that protests exhibit significant spatiotemporal diffusion.
For example, an analysis of over 30 European countries (2000-2015) found robust evidence of protest
contagion in both time and space, increased protest activity in one year raises protest frequency the
next year, and protests in one country help trigger protests in neighboring states [34]. Such findings
underscore how quickly dissent can propagate across networks of communities and countries. Modern
research efforts have consequently turned to comprehensive event databases and real-time protest monitoring.
Researchers are building systematic datasets and conducting on-the-ground surveys to better capture
the spread of today’s protests [35]. These data-rich approaches improve our understanding of when
local disturbances escalate into wider protest waves and when they fizzle out.

In response to this inherent diffusivity, governments have long employed containment tactics,
essentially attempts at two-dimensional quenching of protests across geographic and social space. Re-
pressive regimes, in particular, often favor targeted control measures to prevent protests from spreading.
A striking illustration is the use of relational repression in China: when protests emerge, local officials
investigate activists’ personal networks and dispatch teams to pressure the protesters’ friends and family
to convince them to stand down (e.g., by salary suspension or removal from office) as a warning [39].
This targeted approach can be quite effective under the right conditions: if authorities wield influence
over the recruited persuaders and if social bonds are strong, “relational repression can help demobilize
protesters and halt popular action” [39]. Even when it cannot fully end a protest, such pinpointed pressure
often limits a movement’s scope or duration by breaking it into smaller, more manageable pockets of
dissent [39]. Historical cases likewise demonstrate one-dimensional "pinning" tactics, such as arresting
or co-opting key leaders to rob a protest of its momentum. By neutralizing focal individuals or channels
(for instance, cutting off a movement’s communications), authorities effectively pin the movement
in place to prevent wider diffusion. In short, protest dynamics involve a race between horizontal
spread and vertical containment: protesters leverage social networks and inspiration from elsewhere
to expand the uprising, while regimes employ targeted repression, communication blackouts, curfews,
and strategic concessions to quench the spread and keep contention localized.

8.2. Spread of Beliefs and Misinformation

The diffusion of beliefs, rumors, and misinformation in society provides parallel examples of
contagion vs control. Here, too, one finds cascades propagating rapidly through networks, and
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interventions that attempt to pin or quench this spread. On social media, for instance, recent empirical
studies have revealed how false information often outpaces the truth. A landmark analysis of millions
of Twitter posts found that “falsehood diffuses significantly farther, faster, deeper, and more broadly than the
truth, in all categories of information” [36]. Notably, this study showed that false news stories are about
70% more likely to be retweeted than true stories, and they reach audiences of 1,500 people six times
faster than factual stories do [36]. Such findings highlight the challenge: misinformation behaves like a
virulent contagion, exploiting social network structure to rapidly cascade through populations before
correctives can catch up.

Why do false beliefs spread so effectively? One sociological factor is the formation of "echo
chambers" and homophilous communities that amplify one-sided information. A large Facebook study
of science vs. conspiracy news demonstrated that “homogeneity appears to be the primary driver for the
diffusion of content”, with users clustering into like-minded groups that each have their own internal
cascade dynamics [37]. Within these insulated communities, misinformation can persist and grow
unchallenged, reinforcing polarization. Psychologically, social validation plays a powerful role: people
often take cues from others’ beliefs, leading to herd behavior. Classic experiments by Asch showed
that if everyone around us voices the same incorrect view, many individuals will conform. Yet, these
experiments also offer a key insight into targeted intervention: the presence of even a single dissenter telling
the truth can dramatically free people from conformity, dropping false agreement rates to as low as 9% [43]. In
other words, "one-dimensional pinning" of the narrative, by inserting one source of truth or skepticism,
can disrupt a runaway consensus and inoculate the group against a false belief cascade.

Building on such insights, today’s researchers and platforms are exploring targeted controls to
quench misinformation spread. One effective strategy is early removal or correction of false content, akin
to isolating a spark before it ignites a wildfire. Simulation studies on large Twitter data sets show
that swiftly removing a false post or banning a malicious account can dramatically curtail viral spread. For
instance, deleting misinformation within 30 minutes of its appearance yields an estimated 94 reduction
in total downstream engagement on that topic [38]. Even a moderate delay (a few hours) lowers
this effectiveness, resulting in about a 56% reduction [38]. Such results suggest a critical window for
intervention. Moreover, combining multiple interventions. For example, pairing content removal with
measures like flagging disputed posts or throttling their algorithmic reach, substantially enhances the
overall quenching effect [38].

These findings align with network science principles: analyses of complex networks have long
shown that removing a small fraction of highly connected "hub” nodes can fragment the network and disrupt
flows [42]. In the context of misinformation, strategically targeting super-spreader accounts or central
nodes in the diffusion network can thus "disconnect" the information cascade. Of course, such
interventions must balance efficacy with concerns like free expression, but the evidence indicates that
targeted control of belief diffusion is indeed possible, by pinning critical nodes or injecting timely truthful
signals, one can significantly dampen the wildfire-like spread of false or extremist beliefs.

8.3. Organizational Inertia and Suppression

One-dimensional pinning and targeted control dynamics are also evident inside organizations and
bureaucracies, often manifesting as institutional inertia or deliberate suppression of change. Sociological
studies have found that many organizations create climates of silence, where information flow is
effectively "pinned" by hierarchical power and fear. Morrison and Milliken (2000) describe how
powerful forces in organizations lead employees to withhold reports of problems or dissenting ideas, producing a
collective phenomenon of "organizational silence” [41]. In such environments, staff learn that speaking up
is "unwise", as managers may punish or ignore negative feedback. Over time, this one-dimensional
suppression of voice leads to stagnation: the organization fails to correct errors or innovate, since
internal feedback loops are quenched at the source. The result is a self-reinforcing inertia, a kind of
frozen status quo, where only the officially approved perspective circulates (analogous to a single
pinned opinion), and any potential change agents remain quiet or exit the organization.
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Political and historical case studies echo this pattern. Authoritarian bureaucracies, for example,
have notoriously suppressed internal criticism to maintain an appearance of unanimity and control.
Recent research on the United Nations bureaucracy provides a vivid, data-rich example: even in
a modern 10 with formal "lessons learned” systems, the suppression of internal criticism has prevented real
institutional learning [40]. Field evidence from the UN’s peace and security departments shows that staff
often engage in “anticipatory obedience” and self-censorship, avoiding critical discussions and not fully
using their discretion, for fear of reprisal or futility. This entrenched culture of dissent-suppression
means that mistakes are repeated and reforms stifled: the system, in effect, pins itself to old ways
despite changing external demands. Christian (2025) finds that such internal silencing in the UN has
become a major source of dysfunction, as the organization cannot adapt or improve when internal
feedback is systematically quenched [40]. The phenomenon is not unique to international bodies; similar
dynamics appear in corporate and government hierarchies throughout history. Analysts have noted,
for instance, that major disasters like the Challenger Shuttle explosion or the Chernobyl accident were
preceded by warnings that went unheeded due to bureaucratic inertia and a culture of silence. In these
cases, management effectively pinned the narrative to "all is well", suppressing engineers’ alarms until
catastrophe forced a change.

Yet, just as in networks of protest or information, breaking a climate of organizational silence
often hinges on targeted interventions. A single whistleblower or an empowered dissenting unit can
sometimes penetrate the shield of inertia and spark broader change, much like a lone dissenter in
Asch’s experiment can free others to speak. History provides examples of "preference cascades" in
regimes and institutions: once one person voices a hidden opinion or new idea and is seen to survive,
others follow, and the enforced consensus rapidly unravels [44]. This underscores a hopeful corollary to
one-dimensional pinning: although strong suppression can sustain a stable illusion of unanimity for a
long time, it is inherently brittle. When targeted control falters, when a critical node of opposition is
allowed to stand, the quenching force can give way to a cascade of change. Therefore, understanding these
sociological and psychological cases enriches our perspective on control in complex systems: whether
we aim to sustain a social order or disrupt a harmful status quo, the key often lies in managing the
right "dimensions" of influence, be it pinning a crucial element in place or quenching a spreading
pattern before it becomes ungovernable.

9. Conclusions

This study has advanced a unified geometric—probabilistic framework for the spatio-temporal
evolution of collective conviction, protest mobilization, and organizational change.

Starting from a network-influence model with agent-level obstinacy, we derived a continuum-limit
equation of degenerate anisotropic logistic diffusion, established well-posedness in one dimension,
and characterized front selection and pinning via spectral and entropy methods.

Extending the analysis to two spatial dimensions revealed a curvature-induced quenching
mechanism: propagation arrests once the product of projected mobility and interface curvature falls below a
critical threshold.

We further developed a variational law of curvature—targeted control, showing that scarce repres-
sive (or corrective) resources should be concentrated along high-curvature, low—mobility flanks to maximize
retardation. Numerical experiments confirm the analytic predictions, while an extensive discussion
mapped the three principal phenomena: one-dimensional pinning, two-dimensional quenching, and
optimal control onto data-rich cases from protest science, misinformation studies, and organizational
sociology.

Broader implications: The degenerate logistic-diffusion paradigm provides a minimal yet expressive
template for modeling opinion fronts, behavioral contagion, and institutional inertia in heterogeneous
media. The curvature law V,, = (1 — u,)D,k captures the intuitive idea that diffusion slows in
saturated regions and at sharply curved protrusions that is insightful for risk assessment in domains as
diverse as crowd management, algorithmic content moderation, and policy rollout. The control result
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offers a quantitative rationale for selective, geometry-aware interventions, guiding law-enforcement
tactics, fact-checking priorities, or organizational feedback channels, while cautioning against blanket
suppression strategies that dissipate resources without proportional effect.

Future work: Three natural extensions are immediate. (i) Stochastic heterogeneity: allowing diffusion
coefficients, obstinacy, or amplification rates to vary randomly in space and time would bridge to em-
pirical settings with dynamic network topologies and shifting media ecologies. Rigorous quantification
of front speed distributions and quenching probabilities under noise remains largely open. (ii) Fully
tensorial mobility: relaxing the diagonal assumption and analysing shear-induced oblique pinning could
uncover new geometric regimes, including non-convex Wulff envelopes and orientation locking. (iii)
Adaptive or adversarial control: embedding the curvature-targeted feedback into a game-theoretic setting,
where propagators and suppressors co-evolve strategies, would link the present theory to real-time
protest policing, cyber-warfare over narratives, and organisational learning under dissent. Empiri-
cally, high-resolution protest trajectories, platform-level misinformation logs, and intra-organisational
communication audits constitute fertile datasets for calibrating and validating the model.

By integrating geometric PDE analysis with probabilistic network foundations and empirically
grounded control concepts, the work lays a mathematical cornerstone for the quantitative social science
of collective dynamics under constraint.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: The author is grateful to his institution for the administrative and technical support. The
author also gratefully acknowledge Dr. Ori Swed and Dr. Vakhtang Putkaradze for their valuable insights and
stimulating discussions, which significantly contributed to the conceptual development of this work.

Abbreviations

The following abbreviations are used in this manuscript:

10 information operation
ODE ordinary differential equation
PDE partial differential equation

References

1. Volchenkov, D.; Putkaradze, V. Mathematical Theory of Social Conformity I: Belief Dynamics, Propaganda
Limits, and Learning Times in Networked Societies. Mathematics 2025, 13, 1625. https://doi.org/10.3390/
math13101625

2. M. H. DeGroot, Reaching a consensus, Journal of the American Statistical Association, 69(345):118-121, 1974.

3. K. L. Blankenship and D. T. Wegener, Opening the marketplace of relationship ideals: The persuasive impact
of expert and similarity information in resistance to persuasion, Personality and Social Psychology Review,
19(2):119-141, 2015.

4.  D. M. Kahan, Misconceptions, misinformation, and the logic of identity-protective cognition, Cultural
Cognition Project Working Paper, Yale University, 2017.

5. D. Volchenkov. Learning from a Teacher: Andrew the First-Called and Thomas the Doubter, 30 May 2025,
PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203 /rs.3.rs-6710850/v1]

6.  R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), 355-369.

7. A. Kolmogorov, I. Petrovsky, N. Piskunov, A study of the equation of diffusion with increase in the quantity of
matter, and its application to a biological problem, Bull. Moscow Univ. Math. Mech. 1 (1937), 1-25.

8.  E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 2002.

9.  E.De Giorgi, Sulla differenziabilita e I’analiticita delle estremali degli integrali multipli regolari, Mem. Accad.
Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3(3):25-43, 1957.

10. J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. ]. Math., 80:931-954, 1958.

11.  J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math., 14(3):577-591, 1961.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.3390/math13101625
https://doi.org/10.3390/math13101625
https://doi.org/10.20944/preprints202506.1136.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2025 d0i:10.20944/preprints202506.1136.v1

24 of 25

12.  S.N. Kruzhkov, First-order quasilinear equations in several independent variables, Mat. Sb., 81(123):228-255, 1970.

13.  J.A. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147:269-361, 2000.

14. B. Andreianov, M. Bendahmane, and K.H. Karlsen, Discrete duality finite volume schemes for doubly
nonlinear degenerate hyperbolic—parabolic equations, ]. Hyperbolic Differ. Equ., 2(4):633-681, 2005.

15.  K.O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7:345-392, 1954.

16. PD. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, 1973.

17.  E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math.
Comp., 49(179):91-103, 1987.

18.  M.J. Berger and R. Kohn, A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm.
Pure Appl. Math., 41(6):841-863, 1988.

19. P. Bénilan and M.G. Crandall, The continuous dependence on ¢ of solutions of u; — Ag(u) = 0, Indiana Univ.
Math. J., 30(2):161-177, 1981.

20. ].-L. Lions, Quelques méthodes de résolution des problemes aux limites non linéaires, Dunod, 1969.

21. J.Simon, Compact sets in the space L¥ (0, T; B), Ann. Mat. Pura Appl., 146:65-96, 1987.

22. G. Stampacchia, Le probleme de Dirichlet pour les équations elliptiques du second ordre a coefficients
discontinus, Ann. Inst. Fourier, 15(1):189-258, 1965.

23. D.Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic
Press, 1980.

24. F. Andreu-Vaillo, ] M. Mazén, ]J.D. Rossi, and ]. Toledo, The Neumann problem for nonlocal nonlinear
diffusion equations, J. Evol. Equ., 7(1):145-175, 2007.

25. G.J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. |., 29:341-346, 1962.

26. H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-
Holland, 1973.

27.  N.V.Krylov and M.V. Safonov, A property of the solutions of parabolic equations with measurable coefficients,
Izvestiya: Mathematics, 44(1):161-175, 1980.

28. C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc.,
43(1):126-166, 1938.

29. N.D. Alikakos, LP bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations,
4(8):827-868, 1979.

30. E. DiBenedetto and A. Friedman, Holder estimates for nonlinear degenerate parabolic systems, J. Reine
Angew. Math., 357:1-22, 1985.

31. Tasso J. Kaper, An introduction to geometric methods and dynamical systems theory for singular per-
turbation problems, in: Analyzing multiscale phenomena using singular perturbation methods, Springer, 1999,
pp. 85-131.

32. L.S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of
Optimal Processes, Interscience (Wiley), New York, 1962.

33. P. C. Fife and J. B. McLeod, P.C. Fife & J.B. McLeod, The approach of solutions of nonlinear diffusion
equations to travelling wave solutions, Bull. Amer. Math. Soc. 81, 1075-1078 (1975)

34. Gonzélez-Rostani, V. & Nonnemacher, J. (2025). Are Protests Contagious? The Dynamics of Temporal
and Spatial Diffusion of Political Protests. Journal of Elections, Public Opinion & Parties, 35(1), 123-145
(forthcoming).

35. Fisher, D. R, Andrews, K. T., Caren, N., Chenoweth, E., & Heaney, M. T. (2019). The science of contemporary
street protest: New efforts in the United States. Science Advances, 5(10), eaaw5461.

36. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380),
1146-1151.

37. Del Vicario, M., Bessi, A., Zollo, F,, et al. (2016). The spreading of misinformation online. Proceedings of the
National Academy of Sciences, 113(3), 554-559.

38. Kennedy, 1., Wack, M., Beers, A., et al. (2022). Combining interventions to reduce the spread of viral
misinformation. Nature Human Behaviour, 6(10), 1372-1380.

39. Deng, Y. & O’Brien, K. J. (2013). Relational Repression in China: Using Social Ties to Demobilize Protesters.
The China Quarterly, 215, 533-552.

40. Christian, B. (2025). Why International Organizations Don’t Learn: Dissent Suppression as a Source of IO
Dysfunction. International Studies Quarterly, 69(1), sqaf008.

41. Morrison, E. W. & Milliken, F. J. (2000). Organizational silence: A barrier to change and development in a
pluralistic world. Academy of Management Review, 25(4), 706-725.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1136.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2025 d0i:10.20944/preprints202506.1136.v1

25 of 25

42. Albert, R,, Jeong, H., & Barabdsi, A.-L. (2000). Error and attack tolerance of complex networks. Nature,
406(6794), 378-382.

43.  Asch, S. E. (1955). Opinions and social pressure. Scientific American, 193(5), 31-35.

44. Kuran, T. (1995). Private Truths, Public Lies: The Social Consequences of Preference Falsification. Cambridge, MA:
Harvard University Press.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202506.1136.v1
http://creativecommons.org/licenses/by/4.0/

