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Abstract: Greenhouse technologies are techniques that create beneficial environmental conditions for
plants or crops, along with automation. Energy management is the process of monitoring, control-
ling, and conserving energy in a building or organization. That is of prime importance in northern
climates, where greenhouses are identified as the most energy-intensive sectors of the agricultural
industry. This paper provides a review of the current state-of-the-art greenhouse technologies from
an energy management perspective. It covers the energy management flow and related greenhouse
technologies, the benefits and challenges of using them, the main types of technologies available in the
market, the principles and methods of energy management for greenhouses, the best practices and
recommendations for implementing energy management strategies in greenhouses, and the future
trends and opportunities. The paper highlights how greenhouses can play a vital role in enhancing
food production while minimizing environmental impacts.

Keywords: agricultural greenhouse; microclimate; energy management; control strategies; optimization;
modelling; demand response

1. Introduction
The rise in the global urban population is anticipated to be substantial by 2050, reaching a

staggering 9.7 billion [1]. This represents an increase of approximately 21.25%. This surge signifies a
remarkable growth, equivalent to an additional 1.7 billion people within the span of three decades.
This urbanization trend intensifies the demand for food by almost 70% [2], creating pressure on existing
food systems as cities grow. Consequently, urban communities find themselves increasingly reliant
on food sourced from rural areas or imported from distant regions [3]. Furthermore, the expanding
urban footprint contributes to a growing disparity between food production and consumption. When
examining the entire life cycle, it becomes evident that emissions associated with current food systems
constitute a significant portion, representing one-third of the total global greenhouse gas (GHG)
emissions. Besides, transportation related to the food systems alone presents one-fifth of the total
emissions by the food system. This boils down to the reduction in import and development of
self-sufficient sustainable food production to solve the bottleneck of anticipated uncertain climate
change, transportation [4], and the never-ending demand to reduce the emissions causing global
warming [5]. Importantly, self-sufficient sustainable food production is a challenging task for certain
geographical realms, depending on the climate and weather conditions, limited arable land, soil
quality, transportation and infrastructure, limited technological adoption and many more [6]. In
Canada, import dependence varies substantially across different fruits and vegetables. Mostly, Canada
relies on international imports for over 80% of its national supply [7] and provincial dependencies
rely on their personal supplies. For example, in Québec, only half of the wholesale food consumed is
grown/processed locally; the rest is imported. This heavy import is due to low self-sufficiency and
sustainability, which stems from the vulnerabilities to climate change [7].
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In addition to traditional field methods, greenhouses are vital in enhancing crop production and
achieving self-sufficient fruit and vegetable growth. Their structures protect plants from unfavorable
climatic conditions and allow them to grow efficiently and sustainably at any time of the year [8,9]. The
greenhouses’ controlled microclimate environment ensures desired levels of indoor vitals as well as
protects against external factors [9], thus providing high-quality live stocks all year-round [10]. Especially
in northern climates, greenhouse production is of particular interest. Despite greenhouses evolving toward
industrialization and scalability owing to the advancements in facility-based farming, one significant
challenge faced is their substantial energy consumption [11]. Microclimate control activities, such as
lighting, heating, ventilation, and air conditioning, contribute significantly to this energy demand. For
instance, this high energy demand during winter peaks in northern climates can strain the electrical grid,
leading to congestion and other potential issues [12]. Traditional rule-based control methods often fail in
optimizing energy usage and ensuring constraint satisfaction [13]. That underscores the importance of
the energy management perspective in greenhouse technologies. Figure 1 displays the terminologies of
potential work and research in advancing greenhouse technologies towards the grids of the future.
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Figure 1. Terminologies surrounding the important aspects of greenhouse technologies.

Globally, there is a strong push towards renewable energy and smart grid technologies to create
more resilient and sustainable energy systems. Specifically, in Québec, by 2035, 75% of the new
electricity generation will be dedicated to decarbonizing the environment, out of which 35% will
be dedicated to industrial decarbonization [14]. As a significant energy consumer, the agricultural
sector has a crucial role in this transition. Improving grid performance and reducing grid stress
in agricultural greenhouses involves a multifaceted approach integrating advanced mathematical
modeling, sophisticated control strategies, energy optimization techniques, and demand response
programs. Mathematical modeling involves creating mathematical representations of greenhouse
energy systems to simulate and analyze their behavior under various conditions, including models for
energy consumption, crop production, and storage [15]. That enables precise planning and dynamic
response to energy demand fluctuations. Implementing automated control strategies [16], such as
smart thermostats and HVAC systems, enables real-time adjustments that reduce energy consumption
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and shift demand away from peak grid periods. Energy optimization, through efficient lighting
and insulation, coupled with adjusting energy use based on grid conditions and demand-side energy
management strategy, ensures sustainable operations while maintaining crop quality [17]. Participating
in flexibility markets and embedding renewable energy sources [18], like solar panels, further alleviates
grid stress by providing additional flexibility and reducing reliance on fossil fuels. Design optimization
of greenhouses enhances these benefits by integrating energy-efficient structures from the outset [19].
By adjusting energy use based on grid conditions, demand-side management further optimizes
energy consumption patterns [20]. Collectively, these strategies contribute to significant energy
savings, operational efficiency, and decarbonization, which are crucial in mitigating climate change
and enhancing the sustainability of agricultural practices.

Energy management is a crucial aspect of greenhouse operations, affecting cost-effectiveness,
profitability, and grid operations. In the greenhouse operations context, several reviews are available
from the crop-production perspective [21–23]. Also, we can find several reviews describing ways
to achieve energy efficiency, implementing different controls and modeling techniques, embedding
renewables, and different design methods for cost-effectiveness. For instance, Qayyum et al. [24]
talks about econometric models for sustainable agriculture, Zhang et al. [11] describes energy-saving
design and control for sustainable greenhouses and Cuce et al. [25], Gorjian et al. [26] mention
various renewable energy integration options towards sustainable energy saving. Energy efficiency
in agricultural greenhouses has often been linked with control methods, modeling, and operations.
Iddio et al. [27] discusses energy efficient modeling and operations, whereas Paris et al. [18] describes
energy efficiency measures in greenhouses, especially for the EU region. Zhang et al. [28] has discussed
various control strategies for improving energy efficiency in agricultural greenhouses. With the advent
of the Internet of Things (IoT), various works have been carried out for resource management towards
automated agricultural greenhouse [29,30]. The decarbonization perspective about greenhouse gas
mitigation has also been explored in agricultural greenhouses [31,32]. Badji et al. [19] discusses various
design trends specifically related to the construction and management of the greenhouse environment.

Although there is a plethora of existing valuable sources of information focusing on the improve-
ments in greenhouse technologies from the agricultural and control perspective; nevertheless, with the
dawning of the age of smart grids, the energy management perspective to participate in the energy
markets, embedding renewables, and exploiting demand-side flexibility for the DR programs is of
prime importance. To address this, the presented review article provides new perspectives and insights
on developing energy management techniques and optimizing greenhouse microclimate, thereby
emphasizing the importance of agricultural greenhouse participation in transactive energy platforms.

2. Greenhouse Energy Management in Smart Grid Context
Energy management within the smart grid context involves the integration of advanced tech-

nologies and strategies to optimize energy consumption and production [33]. Smart grids utilize
real-time data, automation, and communication technologies to enhance the efficiency and reliability
of electricity distribution. This enables the grid to adapt to fluctuations in energy demand and supply,
thereby improving overall grid stability and resilience. Smart grids also facilitate the integration
of renewable energy sources, distributed energy resources, and energy storage systems, which are
essential for achieving sustainability goals.

One of the key components of smart grid energy management is demand response (DR) [34],
which involves adjusting energy demand to match supply conditions. DR mechanisms provide grid
operators with the flexibility to manage load fluctuations, particularly during peak demand periods, by
incentivizing consumers to reduce or shift their energy usage. This is especially critical in managing the
challenges posed by increasing energy demand during winter peaks, as it helps to alleviate pressure
on distribution system operators (DSOs).

As we move towards more sophisticated energy management frameworks, the concept of Trans-
active Energy (TE) emerges as a promising approach. TE frameworks extend the capabilities of smart
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grids by integrating economic signals and market mechanisms to optimize energy use and production.
This involves integrating advanced technologies and market mechanisms to optimize energy use and
production within greenhouses. That includes dynamic pricing [35] and economic incentives [36,37],
embedding renewable and energy storage elements [18,38], and distributed energy resources [39],
among others. From a broader perspective of the TE framework, DR can be viewed as a mechanism
adjusting demand to balance supply, which can be a part of a broader range of mechanisms, including
automated energy trading, comprehensive grid management, and real-time pricing. Mainly, DR
provides promising solutions for load management from the consumer side when the increasing load
demand causes significant problems for the DSOs, especially during winter peaks [40].

Figure 2 represents a typical DR mechanism, where various sub-systems within agricultural
greenhouses can interact to respond to the demand response events. That contributes to grid stability
through an optimized energy consumption strategy that aligns with external grid requirements while
maintaining greenhouse microclimate conditions. The process starts with a dispatch event from the
distributed system operator (DSO) sending a price signal or request for flexibility to the aggregator
based on capacity limits and grid distance. Then the requirement is evaluated with flexible availability,
which is further activated if accepted by the DSO. The role of a greenhouse energy management
system (GHEMS) is to calculate the flexibility possibility within its sub-systems. Once the offer is
activated, GHEMS commands its sub-system (greenhouse control system (GHCS)) to achieve defined
consumption objectives according to the received flexibility instructions based on the price policy.

:Distributed
System  Operator

:ADRA

dispatch event

inform the execution

:GHEMS :GHCS

based on the capacity limit
& price signal from DSO,

send signal for flexibility requirement 

response with flexibility availability

set sub-control systems
to achieve the defined power 

measurements

send signal for flexibility activation

calculate the flexibility
possibility within sub-systems

smart metering

if offer acceptable,
signal for activation

make an offer

GHEMS:  Greenhouse Energy Management System
GHCS:  Greenhouse Control System
ADRA:  Agricultural Demand Response Aggregator

Figure 2. Sequence diagram of a DR mechanism for a greenhouse.
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Note that Figure 2 is a scenario of a grid operated by automated agents; there are mainly three
bifurcations from the perspective of automation: (i) Manual DR, (ii) Semi-automated DR and (iii)
Automated DR [41]. Many sources are available for energy management strategies in the TE framework.
However, in the context of smart grids, agricultural greenhouses participating in the energy markets
or specific DR programs are scarcely available until recently. For instance, Rezaei et al. [42] considered
a network of greenhouses participating in demand response to reduce power consumption during
peak hours, thereby managing power exchange with the primary grid. Table 1 shows a high-level
comparison of different demand-side energy management strategies for grid-connected agricultural
greenhouses to participate in DR programs. From the survey, it can be found that multi-agent DRL
and MPC are the popular methodologies to employ for the specific task. Moreover, only a few research
works have considered uncertainties and maximum demand limit constraints from the aggregator side.
Most of the work encapsulated the PV generation for trading with the grid aggregator, whereas only a
few considered the model of the crop. That is one of the important aspects of agricultural greenhouse
microclimate. The importance of crop models brings the mathematical intricacies for the overall energy
optimization problem, which will be further discussed in Section 3.2. To solve the demand-side and
aggregator-side problems, the interaction between entities is crucial, which has become a point of
interest for many researchers in recent years [43].

Substantially, game-theoretic approaches in collaboration with a multi-agent system perspective
are widely used in energy optimization for greenhouses, particularly for managing energy consump-
tion. They provide a structured way to analyze and design energy management strategies, considering
participants’ interactions. These methods often involve strategic decision-making among multiple
participants, such as energy prosumers, utility companies, and consumers, to achieve an optimal
balance between energy supply and demand [44]. Naz et al. [45] proposed a two-stage non-cooperative
Stackelberg game to capture the interconnection between the consumers and the micro-grid.
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Table 1. Comparison of demand-side management methods for DR programs of agricultural greenhouse

References Method Objective Pricing
Renewable
Energy
Integration

Max.
Demand
Limit

Mathematical Model Unc. Reliability/Scalability

PV WT HVAC TESS PV BESS WP AL Crop

[46] Multi-agent DRL Load reduction Dynamic pricing ✓ - - ✓ - ✓ ✓ - ✓ - -

It can be adapted to
include other renewable
sources, such as wind
and geothermal energy

[42] ADMM-based MPC for
multi greenhouse system

Aggregator water
reservoir pumping system Dynamic pricing ✓ - ✓ ✓ - ✓ ✓ - ✓ - -

Applicable for multi
greenhouse system,
limited to the use of
water reservoir

[47] Prosumer-based
PSO problem-solving

Maximises power income and
time-shifting power usage

Day-ahead
dynamic pricing
(peak and valley)

✓ - - ✓ - ✓ ✓ - - - -
Limited to
prosumer-based
models

[48] Bi-level MILP
Stackelberg game-theory Minimise HVAC consumption Hourly load

curve-based pricing - - ✓ ✓ - - - - - - -

20% HVAC flexibility
demonstrated, which can
be extended to stochastic
formulations

[49]
Coordinated
optimization
embedded MPC

Optimal dispatch
of renewables, water storage
and HVAC

- ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ - -
Balanced use of
renewables and
power loads

[50] Supervisory
Centralized MPC

Operating setpoints of
microclimate - ✓ ✓ - ✓ - ✓ ✓ ✓ - - ✓

Applicable to
Smart Multi-floor
Vertical Greenhouses

[51] Agent-based implicit DR Optimal overall consumption Time-varying
spot market pricing - - - ✓ - - - - ✓ ✓ - Commercial software

dependencies

[52]
Robust optimization
(grid-connected and
islanded mode)

Balancing power buying
and selling to grid

Time-of-Use (ToU)
market pricing ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ - ✓

Applicable for
trading in different
operational modes

[53] Multi-agent system with
modified contract protocol

Minimizing operational cost
of building microgrid
(energy transactions with grid)

ToU day-ahead
market pricing ✓ - - ✓ ✓ ✓ ✓ - ✓ - - Applicable to rooftop

type greenhouses

[54] Time-based DR Optimal energy consumption
of artificial lighting

spot market
pricing - - - ✓ - - - - ✓ - -

Commercial software
dependencies, limited
modeling ability

[55] Monte Carlo Simulation
and MILP

Minimizing total energy
cost and demand charges

Real-time pricing
+ demand charges
+ flat rate price

- - - ✓ - - - - ✓ - ✓
Applicable to hierarchical
control approach for
greenhouses

Unc.: Uncertainty, PV: Photovoltaics, WT: Wind Turbine, BESS: Battery Energy Storage System, TESS: Thermal Energy Storage System, WP: Water Pump, AL: Artificial Lighting, DRL: Deep
Reinforcement Learning, MPC: Model Predictive Control, DR: Demand Response, MILP: Mixed Integer Linear Programming, PSO: Particle Swarm Optimization, ToU: Time of Use
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One of the principal uses of non-cooperative games has been in strategic bidding in electricity
markets. Moreover, cooperative games have also found a place in energy management to improve
the collective playoffs, including sharing distributed resources or coordinating energy consumption.
Dynamics and static games are also often utilized for energy trading systems for demand side man-
agement [56]. Apart from individual research articles, Ji et al. [57] provides a systematic review
of the game-theoretic approach for decision-making on demand-side energy management. Wang
et al. [58] reviews comprehensively evolutionary game approach for sustainable energy development,
encompassing energy savings, carbon emission reduction, energy vehicles, electric power market,
DERs, micro-grid, smart grid, and energy storage. Similarly, He et al. [59] focused on reviewing the
application of game theory in integrated energy systems.

3. Greenhouse Microclimate
GHEMS is critical to address the grid challenges and to participate in the DR programs. Figure 3

depicts the stages involved in greenhouse microclimate environment management.
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Indoor Climate
Control
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Figure 3. Stages of greenhouse energy management system (GHEMS).

3.1. Sensors & Data Acquisition

The first stage is data acquisition and monitoring, which has caught the attention of various
researchers owing to Industrial Revolution 4.0. [30]. This stage is an important practical aspect as
it involves data collection from various sources, which must be robust and efficient to handle large
volumes of data and ensure data quality. This stage of sensors and data acquisition has undergone
numerous technological advancements over recent decades, evolving to become more industrialized
and reliant on technology [60]. IoT has equipped growers with smart agricultural tools, enhancing their
control over crop growth, increasing predictability, and boosting efficiency. However, the challenge
comes in handling the heterogeneity and fast pace of data generation, especially with the advent of
smart grids that involve numerous data points and high-frequency data [61]. At the same time, there
are high capital expenditures for these newer technologies, specifically for small and medium-sized
growers. Consequently, as a potential solution, a three-S strategy is also proposed by Miranda et al.
[62] encapsulating sensing, smart and sustainable [63]. The question arises: what are the variables of
interest specialized for the agricultural greenhouses, and what type of sensors monitor these variables?

In Table 2 of this review paper, we have summarised the measurement variables for the green-
house microclimate that are of importance from crop growth as well as energy management perspective.
Here, the measurement variables are bifurcated regarding their requirement for the most common irri-
gation systems acquired in greenhouses. However, their communication, environmental adaptability,
characteristics, and economics are altogether different and pose exciting challenges, which are out of
the scope of this paper.
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Table 2. Measurement Variables for Comprehensive Agricultural Greenhouse Management.

Category Variable Drip Irrigation Sprinkler Irrigation Hydroponics Crop Growth External Weather
Climate Control Temperature ✓ ✓ ✓ ✓ ✓

Humidity ✓ ✓ ✓ ✓ ✓
CO2 concentration ✓ ✓ ✓ ✓ -
Light intensity ✓ ✓ ✓ ✓ ✓

Soil Parameters Soil moisture ✓ ✓ - ✓ -
Soil temperature ✓ ✓ - ✓ -
Soil pH ✓ ✓ - ✓ -
Soil salinity ✓ ✓ - ✓ -

Water Quality Water pH ✓ ✓ ✓ - -
Water salinity ✓ ✓ ✓ - -
Water temperature ✓ ✓ ✓ - -

Plant Growth Plant height - - - ✓ -
Leaf area index - - - ✓ -
Chlorophyll content - - - ✓ -
Biomass - - - ✓ -

Hydroponics Nutrient concentration - - ✓ - -
pH level - - ✓ - -
Dissolved oxygen - - ✓ - -

External Weather Ambient temperature - - - - ✓
Wind speed - - - - ✓
Rainfall - - - - ✓
Solar radiation - - - - ✓

3.2. Modelling & Simulation

This stage involves creating mathematical models to simulate the system’s behavior under differ-
ent conditions. The challenge is ensuring that the models accurately represent the real-world system
and predict its behavior under various scenarios. As mentioned earlier, agricultural greenhouses
provide a controlled environment to optimize the indoor microclimate, mitigating the variability
caused by weather, diseases, and soil conditions. However, external factors, such as freezing weather,
still present challenges, necessitating continuous reassessment and adjustment of cultivation strategies.
For that purpose, digital twins can be considered an ideal choice to test the algorithms based on
real-time data or near real-time data [64]. Digital twins are virtual representations of physical systems,
processes, or assets. They mirror the real-world behavior of their counterparts and allow real-time
monitoring, analysis, and prediction [65].

With smart grids, the complexity increases due to the need to model and simulate various
components like renewable energy sources, storage devices, and consumer loads. It is argued that DTs
can be crucial in cyber-physical system-based DR programs [66]. Van Der Veen et al. [67] talks about
the importance of DTs in the interaction between the cyber and physical systems for the coordination
between various stakeholders, such as prosumers, consumers, DSOs, and DRAs. With the advent of
Industry 4.0, digital twins in power systems (DTiPS) have been coined with a focus on real-time or
near real-time energy management systems for better decision-making [68]. DTs can have essential
characteristics to be addressed, such as timeliness, fidelity, integration, intelligence, and complexity.
Broadly, DTs can be based on three modeling paradigms [69]: black box, grey box, and white box.

3.2.1. White Box

These models are derived from the energy and mass balance equations and are capable of
describing physics-based dynamics. These models are considered the most detailed and closest-to-
reality models, which are ideal for DTs. However, their parameters carry physical meaning and hence
must be obtained from technical documentation, orientation, geometry, properties, and specifications.
Here are the principal benefits and drawbacks mentioned for white box models.
Benefits:

• Detailed Process Insight: Provides a comprehensive insight into the dynamics, enhancing under-
standing of every aspect of the system.

• Predictive Precision: Considering that all the details are rightfully mentioned and understood, it
can provide extremely precise predictions of the system under study, making them ideal for DTs.
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• Customizability: It can customized to the specific systems and conditions, allowing tailored
solutions.

• Reliability: Complimentary to the precision, they provide reliable results under perfect details.
• Controllability: Higher controllability at a granular level.

Drawbacks:

• Complexity: As the number of variables grows, model complexity increases, demanding greater
domain-specific knowledge and expertise.

• Sensitivity to Parameter Change: Model accuracy and stability can be questionable due to the
model sensitivity to the parameter change.

• Time Expense: Describing the system’s aspects is tedious and time-consuming, making it compu-
tationally expensive.

• Adaptation Difficulty: Challenging to adapt quickly to new or significantly changing conditions
without extensive recalibration or redevelopment.

For the brevity of the presentation, a foundational generalized greenhouse model for energy man-
agement is presented. Contributions from diverse sources [70–73] are considered to comprehensively
describe the model with a particular focus on aligning with the GHEMS, including both the axes
climatic as well as agronomic.
Indoor Temperature: Maintaining an appropriate indoor temperature is vital for plant health and
productivity. The temperature inside the greenhouse influences several physiological processes in
plants, including photosynthesis, respiration, and transpiration. From the first law of thermodynamics,
we have

Cair
dTin

dt
= Qheat − Qcool + Qsolar + Qvent − Qwalls, cond

− Qwalls, conv − Qex, air − Qtrans, crop + Qlight,
(1)

where Qsolar = ηsolar Aglazing Isolar(1 − e−kL) and Qtrans, crop is the latent heat loss due to crop tran-
spiration, which is proportional to ṁtrans, i.e. Qtrans, crop = λṁtrans (latent heat of vaporization λ).
Qlight represents the heat generated by artificial lighting, i.e. Qlight = Plight(tlight/Vair)(Tlight − Tin).
Qwalls, cond = (κA/d)(Tin − Text) and Qwalls, conv = hA(Tin − Text).

Crop Canopy Temperature: The temperature of the crop canopy is a critical component of the greenhouse
microclimate. The crop canopy temperature (Tcrop) affects both the indoor temperature and humidity
balance. It is influenced by solar radiation, ambient air temperature, and the transpiration process.
The energy balance equation for the crop canopy temperature can be written as:

Ccrop
dTcrop

dt
= Qsolar,crop − Qtrans + Qex,air, (2)

where Qsolar,crop = ηcrop Acrop Isolare−k·L with k as the extinction coefficient varying with the type of
vegetation, leaf orientation, and solar angle. Qex,air = hc Acrop(Tcrop − Tin) represents the heat exchange
between the crop canopy and the indoor air. Note that Qtrans and Qtrans, crop refer to the same physical
process of latent heat loss due to transpiration. However, their perspective is different: For (1), it is the
heat loss from the air due to the latent heat of transpiration by the crop, and in (2), it is the latent heat
loss from the crop canopy due to transpiration.

Leaf Area Index (LAI) Growth Model: LAI affects both the light interception and transpiration rates,
influencing the greenhouse’s energy and humidity balance. LAI can be described as a function of the
node development rate, which is itself influenced by temperature and other environmental conditions.
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The LAI dynamics can be modeled using a growth equation, such as the logistic growth model, where
the rate of change in LAI depends on the node development rate and the current temperature.

dL
dt

= α · NDR ·
(

1 − L
Lmax

)
, (3)

where NDR = f (Tcrop) represents the node development rate (NDR) influenced by temperature.
Generally, f (Tcrop) can take the form of a polynomial or an exponential function that accounts for the
optimal temperature range for crop growth. Golzar et al. [15] can be referred for a more detailed model
of LAI.

Indoor Humidity: Moisture balance within a greenhouse is a crucial aspect of maintaining optimal
growing conditions for crops. This balance is influenced by both the ventilation system, which
exchanges air with the outside environment, and the transpiration process, where plants release
moisture into the air.

dHin

dt
=

1
Vair

(ṁw, in − ṁw, out + ṁevap − ṁcond + ṁtrans), (4)

where ṁtrans denotes crop transpiration, which can be modeled by the Penman-Monteith method as

ṁtrans =
∆(Rn − G) + ρacp

Dv
ra

∆ + γ(1 + rs
ra
)

(5)

or empirically as ṁtrans = βL(1 − Lmax/L) · f (Tcrop, Dv, ra, rs). Eq. (5) uses radiative, aerodynamic,
and resistive factors to estimate transpiration, whereas the simple empirical model uses a coefficient
and a function of environment factors to estimate transpiration [74].

Soil temperature and humidity: Soil environment is the backbone to promote crop nutrient uptake. The
temperature and humidity of the soil can be given by

Csoil
dTsoil

dt
= ksoil∇2Tsoil + Qex, air

− Qloss − Qtransn, crop,
(6)

dHsoil
dt

=
1

Vsoil
(ṁw, in − ṁw, uptake

− ṁw, evap − ṁw, drain − ṁtrans).
(7)

CO2 Concentration: CO2 in a greenhouse can enhance photosynthesis rates and improve crop yields.
Importantly, ventilation and plant respiration can mainly influence CO2 concentration.

dCO2,in

dt
=

1
Vair

(ṁCO2, in − ṁCO2, out − ṁCO2, uptake), (8)

where ṁCO2,uptake = φ · L · f (Tcrop, CO2,in) with γ is a coefficient that scales the CO2 uptake rate with
LAI.

Ventilation System: Ventilation systems play a pivotal role in regulating temperature and humidity
within the greenhouse. By exchanging air with the external environment, ventilation helps to remove
excess heat and moisture, introducing fresh air and maintaining optimal growing conditions. Effective
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ventilation management is crucial for preventing overheating, reducing humidity to acceptable levels,
and ensuring a constant supply of CO2 for photosynthesis.

Qvent = ṁaircp(Text − Tin) + ṁair((Hin(Cp,vaporTin + λ)

− Hext(Cp,vaporText + λ)),
(9)

Eq. (9) consists of sensible and latent heat components. The first term represents the energy due to
temperature difference between the inside and outside air. The second term represents the energy
associated with moisture content change, including both sensible heat of water vapor and the latent
heat of vaporization. This formulation ensures that both temperature and moisture dynamics are
accurately captured in the ventilation system model.

ṁw, vent = ṁair(Hext − Hin) + ṁtrans, (10a)

ṁCO2, vent = ṁair(CO2,out − CO2,in)− ṁCO2, uptake. (10b)

Note that although the above mathematical model (1) to (10b) aims to provide a comprehensive
understanding of the greenhouse system dynamics, it is essential to acknowledge that specific com-
ponents, such as empirical coefficients, may require more profound expertise in thermodynamics or
agricultural science for precise determination. These aspects represent areas where further refinement
and specialized knowledge could enhance the model’s accuracy and applicability. Additionally, the
dynamics change as we add other components and distributed/renewable energy sources, such as
water pumps, wind turbines, photovoltaic (PV) systems, Battery Energy Storage (BESS), and Thermal
Energy Storage Systems (TESS).

3.2.2. Grey Box

Grey box models have always found a sweet spot between black and white, as they offer a
more practical and flexible approach to modeling. For real-world applications, if the data from the
greenhouse is accessible, then grey box models are a practical solution as they can be effectively
calibrated and validated using experimental data. Grey box models balance physical principles and
empirical relationships to capture the essential dynamics [75]. Below are some of the benefits and
drawbacks of a typical grey box model.
Benefits:

• Development Time: Compared to white box models, grey box models take less time owing to the
partial dependence on empirical data.

• Robustness: More robust to the stochasticity of the variables, such as the climate conditions,
compared to black box models, enhancing crop yield predictions.

• Management: Combining simplified plant growth models and data can improve environmental
management.

Drawbacks:

• Calibration Complexity: Robust parameter estimation methods are required to improve accuracy,
which is one of the major challenges of grey box models.

• Computational Demand: The complexity of the model’s physical part and the objective function’s
complexity can make them computationally expensive.

• Re-calibration: Periodic re-calibration is required with more recent data.
• Moderate Data and Knowledge Requirement: Though better than the black box model, it might

be challenging to fit sometimes if the training period is too long. Additionally, appropriate
knowledge is necessary as some of the sub-processes can have analogy or empirical

Traditionally, the RC analogy is the most widely used method to achieve a well-suited grey box
model for control applications. Eqs. (11a) - (11f) covers a simplified RC model for the greenhouse
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system. The RC model analogy allows us to represent the CO2 transfers, temperature, humidity, crop,
and soil dynamics in terms of capacitive and resistive elements, capturing the system’s transient
response to changes in environmental conditions.

Cair
dTin

dt
=

Text − Tin

Rheating
− Tin − Text

Rcooling
+

Text − Tin

Rvent
−

Tin − Tcrop

Rtrans

+
Tlight − Tin

Rlight
+ ηsolar Aglazing Isolar(1 − e−kL), (11a)

Cair
dHin

dt
=

Hext − Hin

Rhumid
− Hin − Hext

Rdehumid
, (11b)

Cair
dCO2,in

dt
=

CO2,ext − CO2,in

RCO2,supp
− CO2,in − CO2,ext

RCO2,vent
−

CO2,in − CO2,crop

RCO2,uptake
, (11c)

Csoil
dTsoil

dt
=

Text − Tsoil
Rheating, soil

− Tsoil − Text

Rcooling, soil
, (11d)

Ccrop
dTcrop

dt
= ηcrop Acrop Isolar · LAI − ṁtransλ −

Tcrop − Tin

Rex, air
, (11e)

ṁtrans = β · L ·
(

1 − L
Lmax

)
· f (Tcrop, Dv, ra, rs). (11f)

In the indoor temperature balance (11a), thermal capacitance Cair represents the thermal inertia
of the air inside the greenhouse, while the resistances (R) correspond to heat transfer rates between
different components of the system, such as heating, cooling, ventilation, and crop canopy exchange.
Similarly, eqs. (11b) - (11f) represent moisture content, CO2 concentration, the thermal mass of the soil,
and crop canopy temperature. Notice that heat gain from solar radiation is often treated separately
due to its direct dependence on light interception efficiency and LAI. This term remains empirical
and based on the specific characteristics of the crop and glazing, capturing the direct impact of solar
radiation on the greenhouse temperature.

Various optimization techniques can be utilized to obtain the parameters of a grey box model,
namely, convex optimization [75], PSO [76], genetic algorithm [71] evolutionary algorithms [77],
etc. There are two stages of this parameter estimation: batch and online. Batch estimation includes
minimization of the model error over a specific period of time, which can be performed offline. On the
other hand, an online estimation can be argued as a filtering technique such as Kalman filtering [78],
non-linear Kushner filtering [79], sequential Monte Carlo, and many others.

Figure 4 displays a potential application of integrated modeling, which can be adapted to manage
the microclimate of greenhouses effectively. Notably, the DT/white box can virtually represent an
actual greenhouse that creates a database by simulating various scenarios [65,80]. It could contain
a detailed greenhouse simulation, including all the components in this context. Subsequently, a
grey box or a black box model can be learned to capture the dynamics essential for a particular
control/optimization technique, for instance, MPC. That can also take decisions and apply the changes
to the real greenhouse or digital twin. Consequently, this decision-making mechanism can be of great
use to interact and test various algorithms and management schemes.

Table 3 compares various simulators available based on their offerings. Altes-Buch et al. [81]
provides a detailed simulator compared to others by leveraging Modelica libraries. However, the
control scheme is limited to PID only. On the other hand, Szalai [82] provides a complete open-source
Python-based library for greenhouse simulations. It provides predominately vertical farming simula-
tions, where the crop models are limited to just two, and the control solution is only a proportional
controller. Nevertheless, owing to its open-source nature, the framework can be further extended to
improve the controller, add types of crops, and use other optimization techniques from the energy
management perspective.
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Real Greenhouse

Digital Twin /
White-box Database

Model Learning
Grey-box /
Black-boxDecisions

Real-time
Control &

Optimization

Figure 4. Schematic representation of integrated modeling approaches in greenhouse technologies.

3.2.3. Black Box

Purely data-driven black box models rely on historical data and machine learning algorithms to
predict system behavior without prior knowledge of the underlying physics-based dynamics. Broadly,
black box models can be classified into parametric and non-parametric models. Parametric linear
models are argued to be the simplest of all, mainly covering the offsprings of regressive and auto-
regressive models [83,84]. Recently, parametric nonlinear models such as NN, ANN, LSTM, etc., are
the most popular, demonstrating improved microclimate predictions [85,86]. LSTMs are flexible as
they do not make strong assumptions about the form of the mapping function from inputs to outputs.
Instead, they are designed to learn the patterns from the data, regardless of the underlying distribution.
Gharghory [87] can be consulted for detailed time series prediction of microclimate data inside the
greenhouse. On the other hand, Zhou et al. [88] claimed to improve the prediction accuracy of the
process-based greenhouse with a combination of particle filtering and DNN. Also, a multi-model
DL approach has recently surfaced [89], addressing the prediction imbalances in smart greenhouses
arising from a single-model approach.
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Table 3. Comparison of simulators for agricultural greenhouses.

References Platform Method Open
Source

Modular
Design

Microclimate
Model

Crop
Model

Crops
Grown

Supplementary
Lighting

Validated /
Location

Sub-Systems
Measurements

Data
Acquisition Control

[81] Modelica Sub-process
oriented

✓ (3-clause
BSD License) ✓ ✓ ✓ Tomato ✓ ✓ (Beglium)

HVAC, Window
Aperture, Lighting,
Energy Consumption

✓ ✓ (PID)

[90] MATLAB
+ EnergyPlus ODEs ✗ (Apache 2.0) ✗ ✓

Yes, Detailed
Crop Model Tomato ✓ (Configurable

HPS/LED)
✓ (Netherlands
and USA)

Microclimate, Lighting,
Energy Consumption ✓ ✗

[91] Sketchup
+ TRNSYS CFD 7 ✓ (Requires new

3D design)
✓ (20 Thermal
Zones) ✓

Flowering
Crops ✓ (HPS) ✓ (Italy) Crop Thermal Condition,

Energy Consumption ✓ (Hourly) ✗

[73] Undisclosed Undisclosed ✗
✓ (Semi-closed
and Closed) ✓ ✓

Multiple
vegetables
and fruits

✓
✓ (Weather File
Required)

HVAC, Lighting,
Energy Consumption ✓ (Hourly) ✓

[82] Python ODEs ✓
✗ (Changeable
characteristics
of the structure)

✓ ✓ Basil, Tomato ✓ (LEDs) ✓ (Spain)

Microclimate,
Ventilation,
CO2, Humidity,
Lighting, Energy
Consumption

✓ (Custom) ✓ (only P)

[92]
Web-based
Application,
ActionScript 2.0

Energy and
Mass Balance ✗

✓ (Three different
structure) ✓

✓ (Plant
Transpiration) Tomato ✗ ✓ (Arizona, USA) Microclimate ✓ (15 min

time step) ✓ (ON/OFF)
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Benefits:

• Rapid Deployment: Quick to implement for real-time monitoring and control based on historical
data.

• Cost-effective: Lower initial cost is one of the major benefits of black box models as they do not
require domain-specific knowledge.

• Flexible and Scalable: Large dataset handling capacity and swiftly transformable to state space
formulation for control applications.

Drawbacks:

• Generalization: Cannot be generalized as they are vulnerable to uncertain conditions previously
not encountered.

• Data Dependent: As no physics-based knowledge is involved, they are highly dependent on data
and can lead to inaccuracies for certain processes where knowledge is paramount, for instance,
plant growth patterns or anomalies.

• Trust Issues: Lack of insights can limit understanding of predictions.

3.3. Control & Optimization

In this stage, an objective function is defined, and the system parameters are tuned to optimize this
function. The challenge in this stage is to ensure that the optimization process leads to a solution that
is not only optimal but also feasible in the real world. In the context of smart grids, the optimization
process becomes complex due to the need to balance various factors like energy efficiency, cost,
reliability, and sustainability.

Subsequently, the final stage, where the optimized strategies are put into action through control
decisions. The challenge is to ensure that the control strategies are implemented correctly and can adapt
to changes in the system. With smart grids, the control implementation becomes challenging due to the
need to manage a large number of interconnected devices and systems, and to ensure their coordinated
operation. The onset of smart grid technologies has indeed brought about numerous challenges. These
include security and privacy concerns, information management issues, grid imbalance problems,
inclusive participation of partners, embedding renewable and distributed resources, and the increasing
complexity of the grid. However, these challenges also present opportunities for innovation and
improvement in how we generate, distribute, and consume electricity. The key lies in leveraging
advanced technologies and methodologies to address these challenges and make the most of the
opportunities presented by smart grids.

Figure 5 depicts a schematic of an existing greenhouse system with its control system for control-
ling the microclimate. Here, an entity responsible for energy management is established that evaluates
the greenhouse model, utility price signal, weather, and the constraints to generate optimal power
profiles for optimizing energy usage with respect to the price signal as well as plant comfort. In
flexibility/energy markets, this manager can respond to the ADRA in the hierarchy (Figure 2). This
optimizer is essentially for demand-side problem solving; similarly, the ADRA also solves an optimiza-
tion problem. As discussed in Section 2, various game-theoretic strategies can be employed for energy
management encompassing case-specific optimization algorithms. Table 4 shows the comparison of
control as well as optimization algorithms employed for greenhouse systems. Also, a bifurcation of the
roles of various variables of the greenhouse control system is made. The objective of each methodology
has to be divided into either setpoint or energy cost perspective. Moreover, comments on the results of
the study, convergence/stability criteria undertaken, sensitivity, platform, and crops grown are also
considered. Here, we present the most commonly used optimization problems in the literature for
greenhouse control and optimization. From the energy management perspective participating in DR
scenarios, the common modes of operation adopted are the grid-connected and islanded modes. The
optimization problem adopted for grid-connected mode is [93],
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minimize ∑
0≤t≤T

(CG
t + COP

t + CBP
t − CSP

t )

subject to microclimate bounds

power generation bounds

I/O bounds

(12)

In (12), CG
t denotes the cost of generation of power and startup, which can be sourced from various

renewable energy resources. COP
t depicts the operational cost. CBP

t −CSP
t is for the difference in the cost

of buying the power from the grid to maintain the microclimate conditions and selling the generated
power to the grid. Based on the number of units for power production and type of renewables used,
(12) can be modified to accommodate the changes. Importantly, the objective function in (12) is subject
to certain constraints. Specifically, microclimate bounds are the indoor environmental conditions that
need to be maintained within the greenhouse, such as temperature, humidity, light intensity, CO2
concentration, etc. The energy management system should ensure these conditions are kept within
certain ranges for optimal plant growth. Moreover, power generation bounds could be the limits on
the amount of power that can be generated or used. For instance, there might be a maximum limit on
the power that can be drawn from the grid or a minimum amount of power that needs to be generated
by the greenhouse’s own energy sources (like solar panels or wind turbines). On the contrary, in the
islanded mode, the following objective function could be adopted:

minimize ∑
0≤t≤T

(CG
t + COP

t + CP
t )

subject to microclimate bounds

power generation bounds

I/O bounds

penalty bounds

(13)

Here, in (13), a total penalty cost is added to the objective function. That covers the cost of violating
the microclimate bounds, which may cover the basic penalty factor as well as an additional penalty for
consecutive interval violations. This penalty term CP

t is important as the violation of not maintaining
the microclimate parameters at the desired levels can adversely affect the growth of plants. Lin et al.
[94] proposed an optimization to reduce the consumption of not only energy but water and CO2 as
well, i.e.

minimize ∑
0≤t≤T

(pE
t ψE

t + pW
t ψW

t + pCO2
t ψCO2

t )

subject to ventilation rate

CO2 injection rate

microclimate bounds

(14)

In (14), pE
t , pW

t , pCO2
t are the prices for energy ($/kWh), water ($/L) and CO2 ($/ton). ψE

t is the total
energy consumed by heating/cooling, ventilation, irrigation pump, and artificial lighting. ψW

t is the
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water consumption and ψCO2
t is the CO2 consumption. Importantly, water requirements have no

constraints as they depend on the crop. [93] proposed a more growers-oriented objective function, i.e.

maximize ∑
0≤t≤T

(CG
t − CO

t )

subject to input bounds

models

microclimate bounds

harvesting time

(15)

where CG
t is the gross economic return of the production process by selling the harvested crops at

the harvest auction and CO
t represents the overall operating cost for maintaining the microclimatic

conditions. Moreover, another instance of a growers-oriented objective function can be found in [95],
i.e.

minimize ∑
0≤t≤T

(−γt + ψE
t )

subject to input bounds

models

microclimate bounds

(16)

The aim of this objective function (16) is to maximize the crop yield γt and minimize the energy usage
ψE

t at the same time. [46] has utilized the most commonly used objective function comprising of the
more precisely all microclimate controlled variables (from i to N) and energy consumption (17). That
helps to minimize the energy consumption and maximize the plant comfort.

minimize ∑
0≤t≤T

∑
0≤i≤N

(xi
t − x̂i

t)
2 + ptψ

E
t

subject to input bounds

models

microclimate bounds

(17)

Control
Decisions

Constraints/Model

Existing Control
System CropDesired

Ranges

Weather
Data

Optimizer

Price Signal

Optimized 
Trajectories 

Yield

Greenhouse

Figure 5. Control & optimization framework: greenhouse energy usage and crop yield with price adaptation.
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Table 4. Comparison of control and optimization algorithms for agricultural greenhouses.

Reference Control
Framework

Optimization
Algorithm

Linear/
Nonlinear

Controlled
Variables

Maniplulated
Variables

Disturbance
Variables

Objective Convergence /
Stability Sensitivity Results of the study Platform Climate CropSP EC

[17] NMPC IPOPT N T, H, CO2, AL

Fan flow rate,
heating,
CO2injection,
fogging rate,
shade curtain
coverage

Ext. T, H,
SR, CO2

Min. control cost
CO2, Nat. Gas
and Elec.

Jacobian
linearization
for stability

On penalty weights
and energy costs

A 20% reduction in
control costs and
40% increase in nominal\
sensitivity analysis

do-MPC /
Python

Winter,
Spring,
Summer

Tomato

[93]
Two-stage
optimal PI
control

Maximum
Principle of
Pontryagin

L CDW, T, H, CO2
Ventilation, heating,
CO2 injection

Ext. T, H,
SR, CO2,
WS

Max. the diff. B/W
gross income
and operating cost

Necessary
conditions to
achieve optimality

N/A
Cascade control loop with
slower crop growth and faster
microclimate dynamics

N/A Winter Lettuce

[77] MIMO PID Multi-objective EA L T, H Ventilation,
fogging rate

Ext. T, H,
SR, CO2,
WS

Static-dynamic
ref. tracking ISE convergence N/A

Time-consuming method
not suitable for real-time
control requirement

MATLAB N/A

[96] Nonlinear
control N/A N T, H Heating,

fogging rate
Ext. T, H,
SR, CO2

Ref. tracking
with fixed rules N/A N/A

Improved transient
time response
in comparison to SMC

MATLAB Summer N/A

[94]
MPC -
two layer
strategy

IPOPT N T, H, CO2

Heating/cooling,
ventilation,
CO2 injection,
solar radiation-based
shading rate

Ext. T, H,
SR, CO2

Min. energy, water
and CO2
consumption

N/A Energy, water and
CO2 costs

Cannot work in
sub-zero exterior climates,
67% of total cost reduction

MATLAB Winter
(above 10C) N/A

[95]
Receding
Horizon MPC IPOPT N CDW, T, H, CO2

Heating/cooling,
ventilation,
CO2 injection

Ext. T, H,
SR, CO2

Max. crop yield
Min. energy N/A N/A

MPC achieves a higher
economic return but
slow due to an opt. problem

CasADi +
MATLAB

Winter
(2 to 8.5 C ) Lettuce

RL agent
based control DDPG N CDW, T, H, CO2

Heating/cooling,
ventilation,
CO2 injection

Ext. T, H,
SR, CO2

Max. crop yield
Min. energy

500 epochs
agent training,
each epoch is
one day of
crop growth

White noise data
to avoid overfitting

RL is faster after learning but
permissive with
humidity constraints.
A health problem for the crops

N/A N/A N/A

[97] DRL agent
based control

ϵ-greedy
strategy with SGA
for
max. Q-learning

N T Heating power Ext. T Maintaining T N/A Stochastic transient
dyanmics

61% more energy savings in
Q-learning than DDPG MATLAB Winter,

Spring Tomato

[16]
AI-based
model-free
control

Robust Opt.
with L-BFGS/
Adam

N

T, H, CO2,
Carbohydrates
per unit area in fruit,
leaves and stem

Heating/cooling,
humidification,
CO2 injection, AL

Ext. T, RH,
SR, CO2,
ST

Max. comfort Improve energy
efficiency N/A Weather unc.

26.8% improvement
in ref. tracking and 57%
in energy consumption
over traditional MPC

MATLAB Winter Tomato

[98]
Multivariate
Robust
control

LMI formalism L T, H Heating, Moistening,
Roofing, Shadiness

Ext. T, H,
SR, CO2

Min. H2 norm Check of robust
stability performed Model unc. 12% and 33 % improvement

in the ref. tracking for T and H MATLAB Spring N/A

[99] Optimal
control PROPT algorithm N T, H, CO2

Heating/cooling,
ventilation,
CO2 injection

Ext. T, H,
SR, CO2,
WS

Min. energy N/A N/A
Heating and cooling energy
were potentially reduced
by 47% and 15%

MATLAB Year around

Tomato,
Cucumber,
Sweet Pepper
and Rose

[100] Robust MPC ADF policy L T, H, CO2

Heating/cooling,
dehumidifcation,
CO2 injection

Ext. T, H,
SR, CO2

Min. power
of actuators and
constraint
violation penalty

Bounded I/Os
and COV
for stability

Weather unc.

PCA and KDE-based
data-driven robust MPC
needs lower total control cost
than rule-based control

MATLAB Summer Tomato

T: Temperature, H: Humidity, AL: Artificial Lighting, CRW: Crop Dry Weight, ST: Sky Temperature, WS: Wind Speed, EA: Evolutionary Algorithm, RL: Reinforcement Learning, IPOPT: Interior Point
OPTimizer, ADF: Affine Disturbance Feedback, Nat. Gas: Natural Gas, DDPG: Deep Deterministic Policy Gradient, DRL: Deep Reinforcement Learning, MPC: Model Predictive Control, SMC:
Sliding Mode Control, Unc.: Uncertainty, Ref.: Reference
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4. Discussions and Future Research
According to the literature, the scarcity of energy management perspective for agricultural

greenhouse systems is evident due to a lack of awareness, inherent intricacies attached to the multi-
variable greenhouse system, and a variety of algorithms, among others. Energy management within the
TE framework for agricultural greenhouses integrates advanced technologies and market mechanisms
to optimize energy use and production. Key strategies include dynamic pricing, economic incentives,
incorporation of renewable energy sources, and deployment of distributed energy resources. Demand
response (DR) plays a crucial role in this framework, adjusting demand to match supply and offering
load management solutions during peak periods, particularly in winter. DR mechanisms involve
the interaction between distributed system operators (DSOs) and greenhouse energy management
systems (GHEMS), which evaluate and implement flexible energy consumption strategies to maintain
grid stability while meeting greenhouse microclimate requirements. The literature highlights the
importance of multi-agent systems, game-theoretic approaches, and machine learning techniques
such as deep reinforcement learning (DRL) and model predictive control (MPC) in optimizing these
processes. Studies reveal that while many efforts focus on integrating photovoltaic generation and
trading, fewer address crop modeling within greenhouses.

On the other hand, in GHEMS, as data acquisition and monitoring plays a crucial role, it also
poses challenges, including handling heterogeneous and fast-paced data generation and the high costs
of new technologies, especially for small and medium-sized growers. Key greenhouse monitoring
variables, crucial for crop growth and energy management, require specialized sensors tailored to
different irrigation systems. Moreover, though very tedious and time-consuming, white box modeling
can be a great asset for making digital twins or virtual greenhouses for further testing of energy
management schemes. However, according to literature mostly grey box or black box approaches are
adopted for quick control implementation and energy management schemes. Also, various control
and optimization algorithms have been put forth; it remains highly subjective to employ the one that
best suits the needs.

4.1. Future Research Opportunities
4.1.1. Crop Model

Crop models are essential for accurately predicting the growth and yield of crops under varying
environmental conditions, which directly impacts energy management in greenhouses. Integrating
these models with energy models is crucial for creating a comprehensive management system that
optimizes both crop production and energy usage. However, current literature often overlooks the
detailed integration of crop models with energy models in the context of smart grids. Future research
should focus on developing comprehensive models that incorporate both crop growth dynamics and
energy consumption patterns. This integration can lead to more precise control strategies that balance
the energy requirements for maintaining optimal microclimate conditions with the goal of reducing
energy consumption and costs.

4.1.2. Integrated Modeling Approach

An integrated modeling approach that leverages virtual greenhouses can significantly enhance
energy management strategies. Virtual greenhouses can simulate different scenarios and control
strategies without impacting real-world operations, allowing for the testing and optimization of various
energy management techniques. Despite the potential benefits, the inclusion of virtual greenhouses in
energy management research is still limited. Future research should explore how virtual greenhouses
can be used to develop and validate integrated models that combine environmental control, energy
consumption, and crop production. This approach can provide a robust framework for testing new
energy management technologies and strategies, ultimately leading to more efficient and sustainable
greenhouse operations.
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4.1.3. Smart Grid Inclined Management

Future work needs to explore the interaction between entities and the application of game theory
in energy optimization to enhance energy management in greenhouse systems. The application of
smart grid technologies in greenhouse energy management is an emerging field with significant
potential. Multi-agent systems (MAS) can play a crucial role in this context by facilitating decentralized
control and decision-making processes. These systems allow different components of the greenhouse
(e.g., heating, cooling, lighting) to interact and optimize their operations collectively. However, there
are few references in the current literature that address the application of MAS in greenhouse energy
management. Future research should focus on developing MAS-based frameworks for smart grid-
inclined management of greenhouses. By leveraging these capabilities, it is possible to enhance the
efficiency, reliability, and adaptability of energy management systems in greenhouses, leading to better
overall performance and sustainability.

5. Concluding Remarks
This review provides the most relevant recent advancements in greenhouse technologies, specifi-

cally inclined toward energy management for agricultural greenhouses. That supports researchers with
a comprehensive overview of the present state-of-the-art and further research. The review described
the main pillars of energy management in greenhouses, including a general DR program and stages of
GHEMS. Various demand-side management methods have been reviewed based on their usability
and fitment based on the management goals, revealing that MPC is central to the majority of the
methods, with MAS equipped with DRL gaining popularity mainly due to adaptability to include
renewable sources. From GHEMS’s perspective, it is recommended to include the crop growth data
for model learning to achieve a more accurate impact of environmental change on crop yield and
growth. However, the selection of sensor technology and measurement methods implies a trade-off
between costs and data accuracy for small to medium-sized growers. For accurate representations,
digital twins/virtual greenhouses are recommended to be developed through white box modeling or
agricultural greenhouse simulators. Open-access simulators to generate synthetic data have emerged
as an alternative; however, they lack the application to a wide range of crops. Lastly, various control
and optimization techniques have been explored, where the variables are bifurcated to be selected
wisely based on the optimization objective tailored to the needs of energy management.
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Nomenclature

Abbreviations
ADF Affine Disturbance Feedback
ADRA Agricultural Demand Response Aggregator
AL Artificial Lighting
ANN Artificial Neural Network
BESS Battery Energy Storage System
CDW Crop Dry Weight
DER Distributed Energy Resources
DNN Deep Neural Network
DDPG Deep Deterministic Policy Gradient
DT Digital Twin
DTiPS Digital Twins in Power Systems
DR Demand Response
DRL Deep Reinforcement Learning
DSO Demand Side Operator
EC Energy Cost
EA Evolutionary Algorithm
GHCS Greenhouse Control System
GHEMS Greenhouse Energy Management System
GHG Greenhouse Gas
HVAC Heating, Ventilation, Air Conditioning
IoT Internet of Things
IPOPT Internal-point Optimizer
LSTM Long Short Term Memory
MPC Model Predictive Control
MILP Mixed-integer Programming
NDR Node Development Rate
NN Neural Network
PSO Particle Swarm Optimization
PV Photovoltaic
SMC Sliding Mode Control
SP Set Point
TE Transactive Energy
TESS Thermal Energy Storage System
WT Wind Turbine
WP Water Pump
Greek Symbols
ρa Air density
ηsolar Efficiency of solar radiation conversion
ηcrop Efficiency of crop light interception
γ Psychrometric constant
∆ Slope of the saturation vapor pressure curve
β Coefficient for transpiration rate
∇2 Laplacian operator
α Growth coefficient for LAI
φ Coefficient for CO2 uptake rate
λ Latent heat of vaporization
Variables
ṁw,in Mass flow rate of water vapor entering
ṁw,out Mass flow rate of water vapor leaving
ṁevap Mass flow rate of water vapor due to evaporation

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 March 2025 doi:10.20944/preprints202503.0665.v1

https://doi.org/10.20944/preprints202503.0665.v1


22 of 27

ṁcond Mass flow rate of water vapor due to condensation
ṁtrans Mass flow rate of water vapor due to transpiration
ṁw,drain Mass flow rate of water drainage
ṁw,uptake Mass flow rate of water uptake by plants
ṁCO2,uptake Mass flow rate of CO2 uptake by plants
ṁair Mass flow rate of air
ṁCO2,in Mass flow rate of CO2 entering the greenhouse
ṁCO2,out Mass flow rate of CO2 exiting the greenhouse
ṁw,vent Mass flow rate of water vapor due to ventilation
Acrop Effective area of the crop canopy
Aglazing Area of the greenhouse glazing
cp Specific heat of air
Cair Thermal capacitance of indoor air
Ccrop Thermal capacitance of the crop canopy
Csoil Thermal capacitance of the soil
CO2,in Indoor CO2 concentration
CO2,out External CO2 concentration
Dν Vapor pressure deficit
G Soil heat flux density
Hext External humidity
Hin Indoor humidity
Hsoil Soil humidity
Isolar Incident solar radiation
k Extinction coefficient for light interception
ksoil Thermal conductivity of the soil
L Leaf Area Index (LAI)
Lmax Maximum LAI
Plight Power of the artificial lighting system
Qcool Heat removal by the cooling system
Qex,air Heat exchange with the soil and plants
Qheat Heating input from the heating system
Qlight Heat generated by artificial lighting
Qloss Heat loss to deeper soil layers or surroundings
Qsolar Solar heat gain
Qsolar,crop Solar heat absorbed by the crop canopy
Qtrans,crop Latent heat loss due to transpiration
Rn Net radiation at the crop surface
Tcrop Crop canopy temperature
Tin Indoor temperature
Tlight Temperature of artificial lighting
Tsoil Soil Temperature
Vair Indoor air volume
Vsoil Volume of soil
ra Aerodynamic resistance
rs Stomatal resistance
tlight Duration of artificial lighting
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