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Abstract: Vibrations of plate structures placed in a supersonic flow is considered. The undisturbed
fluid flow is parallel to the plate. Two specific problems are treated: in the first one the plate is in the
form of an infinite strip and the flow is in the direction of its finite length. Rigid walls extend from
the sides of the plate indefinitely. In the second problem, the plate is a finite rectangle and the flow
is parallel to one of its sides. The first problem is a limiting case of the second problem. The flow
is modeled by piston theory which assumes that the fluid pressure on the plate is proportional to
local slope. This approximation is widely used at high speeds, and reduces the interaction between
the fluid flow and the vibrations of the plate to an additional term in the vibration equation. The
resulting problem can be solved by assumed mode methods. In this study, the solution is also carried
out by using the collocation method. The main result is the flutter velocity of the free fluid flow under
which the plate vibrations become unstable. Finally, simple expressions are proposed between the
various non-dimensional parameters that allows quick estimation of flutter velocity.

Keywords: flutter velocity; flow-induced plate vibration; piston theory; collocation method;
shooting method

1. Introduction

Fluid-elastic structure interactions are ubiquitous in many engineering disciplines. There are
historically famous examples that demonstrate the interaction between fluid flow and the vibrations
of the structure can cause catastrophic failure. It is observed that the character of vibrations typically
depend on a characteristic flow velocity which, if exceeds a certain value (flutter velocity), will cause
instability. Main thrust of fluid-elastic structure interaction research is the determination of flutter
velocity.

The type of problem considered in this study is especially important in aerospace structures
and is usually given the name panel flutter. Uzal et al. deal with incompressible and irrotational
flow in a cylindrical channel to find the flutter velocity analytically [1]. Epureanu et al. investigated
vibration-based damages with the chances in material and/or stiffness properties of structures. Kapkin
et al. investigate the membrane vibrations located at the stagnation point of the flow and they give
the flutter velocity for the system [2]. Vedeneev considers panel flutter at low supersonic speeds by
using piston theory [3]. E. H. Dowell gives flutter velocity graphs for an infinite plate lays with the
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same direction of fluid motion by using the potential theory for different Mach Numbers [4]. Uzal
et al. give an analytical solution for a plate placed in a rigid channel which fluid flows in [5]. Durak
B. investigated the plate vibrations by using potential flow theory in his PhD thesis[6]. Also, some
of the researchers are also try to avoid this flutter point by applying a force or moving one boundary
to control the motion of the plate. Uzal and Korbahti control resonance frequencies of a rectangular
plate vibrations by applying discrete force by measuring the displacement of the plate at a point [7].
Sezgin et al give a boundary backstepping control method to stabilize the flow-induced vibrations for
a membrane [8]. Tubaldi et al. investigate a periodically supported flexible plate under flowing fluid
axial flow which is in a bounded channel by a rigid wall[9]. The effects of the system parameters on
the stability of the plate are discussed.

2. Infinite Strip Plate

Figure 1 shows a schematic of the first problem. The flow occupies the region z > 0 and is in
x—direction with uniform velocity U. The region in xy—plane —b/2 < x < b/2, —o0o <y < coisan
elastic plate (infinite strip) of width b; the rest of the xy—plane is rigid. The vibrations of the plate will
cause small perturbations on flow velocity. The vibrations of the plate are governed by

otw 0%w

Dﬁ +PPhPW+P|2:0:0 1)

where w = w(x, t) is the displacement, h, is the thickness and p, is density of the plate, and

3
Eh,

T 12(1-12) @

is flexural rigidity; E is young modulus and v is the Poisson ratio. The last term in 1 denotes the
fluid pressure on the plate. Although the plate is moving, fluid pressure can be assumed to have
its value at z = 0 within the linear theory. The fluid flow is assumed to be inviscid since viscous
effects are negligible due to lack of flow separation. In general, the linearized form of compressible
potential equation can be used, but here a simpler approximation called piston theory will be adopted.
Piston theory is widely used and basically states that local pressure is proportional to local slope of the

plate [10].
_ et (g 0w
Thus the coupled fluid-plate vibrations obey
otw P?w U [w ow
Dot Terlvgm +o3r (at“’ax) =0 @

where, p; is the density of the fluid, U is the velocity of the fluid and M is the Mach number M = % .
The boundary conditions on the plate will be taken as

w(—b/2) =w(b/2) =0

PO 2y = L0 =0 ©)

dx? - 0x2
which state that the ends of the plate are simply-supported. The problem is non-dimensionalized as
follows
u U
D_ ’ Cs - M (6)
Pl
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Starred quantities are non-dimensional. Substituting in (4,5) and simplifying, the result is, getting rid
of the stars since dimensional quantities will not be needed

d*w  Pw Jw Jw
ot o <8t+uax>_0 @
and the boundary conditions
2w %w
here
psb
== ©)
: ppltp ’
is a non-dimensional number, usually called the mass ratio, and
c
“T1 D 10)
by ophy

is the dimensionless sound velocity. To investigate stability, the plate displacement is assumed to be

w(x,t) = v(x)e'“t (11)
Then, (7,8) become
9% v
@4—#14% +Kiv=20 (12)
% 9%
U(—1/2)—0(1/2)—ﬁ(—1/2)—ﬁ(1/2)—0 (13)
where
Ky = —w* + iwy (14)
u
U= T o (15)
b\ pphyp

(12,13) is an eigenvalue problem for w. The vibrations of the plate will not grow as long as the
imaginary part of w is positive; the stability boundary is Im(w) = 0. Since w depends on u (as well as
1) , the condition Im(w) = 0 the non-dimensional flutter velocity. The problem defined by (12,13) will
be solved using the collocation method. For this purpose, the approximate solution is expressed as

N
o(x) =) Cun (%) (16)
1
where ¢, suitably chosen base functions and C,, are constants to be determined. Base functions are to

be chosen so as to satisfy the boundary conditions (12). Here, a family of polynomials will be chosen:

Sl 243
4n—2 16(2n — 1)

Pu(x) = x"F3 17)
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¢n(x) satisfies all the boundary conditions (13). Substituting the approximate solution (16) into the
governing equation (12) will not satisfy it, but will result in a “residual”

N
R =R(Cy,Cy,...,.Cn, %) = Y Qulx,w, 4, u)Cy (18)
n=1
where, for brevity, we defined

Q) = 3 Caln+3)(1+2) (1 + D™ — 37 Gyl + 1)(n = 2)(n — !

n=1 n=1

N N
+Y (n—4)(n-3)(n—2)(n— 1)Bux"° + K4 Y Cu(x"3 — Apx™™ 4 B,x" 1)
n=1

n=1
N
+pu Y Cu((n+3)2"*% — (n+ 1) Ayx" + (n — 1) + Byx"?) (19)
n=1
where
2n+1
- 2
A= (20)
2n+3
T 16(2n—1) 21
B 16(2n — 1) (21)

In the collocation method, the free parameters C,, are determined by equating the residual R to zero at
N collocation points x1, x2, x3, ...xy, which gives a linear homogeneous system of algebraic equations

N
Y Qu(x,w,pu) =0 (22)
n=1

For non-trivial solution, the determinant of the coefficients should be zero

Q1 (1, w, pu) Qulxg,w,p,u) - Qn(xn,w, p,u)
Q2(x1/:w/ pou) Qz(lefd, pou) QN(XN/.W/ pou) . 23
Qz(xll'w, wou) Qz(le'w, wou) QN(xN/'CU/ o)
The eigenvalue w is determined from this equation in the form
w=w(p,u) (24)

and the flutter velocity is found as a function of mass ratio y from

Im[w(p,u)] =0. (25)
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Figure 1. Fluid and strip plate coupled system

3. Rectangular Plate

Figure 2 shows a schematic of the second problem considered. Now the plate also has a finite
width 2d; d = co limit of this problem gives the first problem. Again using piston theory, the vibration
equation takes the form

otw dw  dtw Pw pfU (0w | dw
D (m +2—ax28y2 +W> +Pphp¥+v <§+Ua) =0 (26)

The plate is assumed to be simply-supported at all sides, so the boundary conditions are

w(—=b/2,y,t) =w(/2,y,t) =wx,—dt) =w(xd,t) =0, (27)
%w ?w w 2w
W(—b/Z,y,t) = W(b/Zly’t> = W(x, —d,t) = W(x,d,t) =0 (28)
Non-dimensionalization is defined similarly
X Y W oz, b d
T L S A YT A 29)

and again getting rid of stars, the non-dimensional problem is

o*w o*w dw  Pw ow Jw
W +2—ax28y2 + W + W (E + u$> =0, (30)
w(—=1/2,y,t) =w(1/2,y,t) =w(x,—1,t) =w(x,1,t) =0, (31)
w w %w 2w
W(—l/Z,y,t) = W(l/Z,y,t) = W(x,—l,t) = W(X,l,t) =0 (32)
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with the same y and u as before. In this case, the solution is assumed in the following form
w(x,y,t) = v(x)sin %.ei“’t (33)

This is the first term of a Fourier expansion in , but the common wisdom is that the higher terms do
not affect the results [[4], [7]]. (30-32) become

9*v 2 d%v dv
@— (E) ﬁ—'—‘uua—i—Kﬂ):O, (34)

2 2
o(~1/2) = 0(1/2) = %(—1/2) - %(1/2) —0, (35)
K, = (%)4 —w?+ iwp (36)

The solution of (34,35) is carried out exactly as before, only the expression Q; changes.

Figure 2. Fluid and rectangular coupled system

4. Analytical Solution

The solutions of both problems were performed by collocation method above. These problems
can also be solved analytically; but the problem with analytical solution is that the solution procedure
involves finding the roots of a quartic equation and the resulting determinant involves transcendent
functions and searching for its zeroes is difficult. The collocation method is simpler to apply and is at
similar to analytical solution in terms of performance. The solutions of both 12 and 34 are sought in
the form

v = Ce'™~. (37)
Substituting 37, 12 gives

r+pur + K =0, (38)

doi:10.20944/preprints202311.0916.v1
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and 34 gives
r4—2(§)2r2+yur+1<2:0. (39)
Denoting the roots of these equations r1, 7, 73, 74 the solutions can be written as
v = C1e* + Coe™* 4 C3e”3™ + Cye’. (40)
Applying the boundary conditions 13 and 35 both give
e2"1 ez2"2 e2'3 6%74 G
e e 1" e 373 o274 Cy _ 0 (1)

1 1 1 1
r%eirl r%eirz r§e7r3 rﬁef“1 G

1 1 1 1
r%e_frl r%e_frz r%e_ir3 rﬁe‘ir‘l Cy

The difference between the two solutions is due to the fourth-degree algebraic equations 38 and 39.
For non-trivial solution, the determinant of the coefficients in 41 should be zero.

e 3" e e 3" e 3" (42)
1 1 1 1
r2ez  pez2  plea’s  yleans

2% 2, 2 L 2 1ny
rle 2 1’26 2 7’36 2 r4e 2
This gives omega as a function of the other parameters in the problem.

5. Results and Discussion

Collocation solutions were performed for N = 10,12 and 14 and sufficient convergence was
observed for N = 10. Table 1 shows convergence of the results for flutter velocity uf while increasing
the number of collocation points. The collocation points were chosen to be equally spaced between
x=-1/2,..+1/2in all cases.

Table 1. The convergence of the results while increasing of the number of collocation points.

Number of collocation points us
8 90.9697280425894
10 91.1667370035824
12 91.1563146276537
14 91.1564970192325

The solution of 38 (analytical solution) was carried out by an iterative shooting method [9]-[11].
Table 2 shows comparisons between collocation, and analytical solutions.
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Table 2. Numerical results for a random chosen d = 3 value of the two methods.
Collocation Method Analitical Results

U Before Flutter After Flutter Before Flutter After Flutter
1.006255 358.920571 359.571969 359.467520 359.571969
1.242290 291.097486 291.372886 291.315280 291.372886
1.572273 230.265262 230.461233 230.377137 230.461233
2.053581 176.682416 176.762617 176.671744 176.762617
2.795152 130.248788 130.299136 130.23840 130.299136
4.025020 90.6746705 91.1957893 91.156960 91.195789
6.289093 59.2604927 59.6428185 59.604512 59.642818
11.18061 36.0023423 36.1616447 36.111424 36.161644

The collocation solution agrees with the analytical solution. As was mentioned, collocation
method gives results quickly; analytical solution here is meant to check the correctness of the collocation
solution. As another validation of the results presented here, comparison with Dowell 1966 shows
similar results, bearing in mind that in the mentioned work, full potential theory was used, and the
solution was carried out for a plate infinite in the direction of flow The results obtained in this study
for small d agree with Dowell.

5.1. Infinite Strip

Figure 3 shows the non-dimensional flutter velocity as a function of mass ratio. As expected,
flutter velocity decreases with increasing mass ratio. Since the curve in Figure 3 seems to have a simple
structure, a mathematical expression between u; and p could be developed by using curve-fitting.
This was done by using Matlab and the result is

L. — 333743249 +0.1461 u?
f- 1 —0.02

(43)

This equation gives the same points as in Figure 3 within an error of 1 percent.
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Flutter velocity and p relation
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Figure 3. Relationship between the dimensionless state parameter y = %cs and the dimensionless
PP
flutter velocity for the strip plate given in Figure 1.

5.2. Rectangular Plate

For rectangular plate, there are two parameters that the flutter velocity depends on; mass ratio
and plate width ratio. Figure 4 shows the flutter velocity as a function of plate width ratio for various
values of mass ratio, for d > 1. The results for d < 1 are shown in a separate Figure 4. It is observed
that the flutter velocity decreases and asymptotically converges to the value for the infinite strip as the
plate width increases.
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- Flutter Velocity versus Plate Length Ratio
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Figure 4. Relation between u and d in different situations for the case d < 1.

To generalize 43 to rectangular plate, it was found to be useful to look at the graph of d?u ¥
(Figure 5). Assuming the relation between the flutter velocities for finite and infinite width plates to be

u
U = lloo + Frk (44)
Here u is the expression 41, and, by curve-fitting « is found to be
159.4  12.02
59 0 ' (45)

a=1125+—+—5

H H
44 gives the flutter velocity in Figure 5 within 1 percent for d > 1 and y < 25 To give an example, for
Aluminum (with density p = 2720 kg/m?, Elasticity Modulus E = 70 GPa and Poisson ratio v = 0.3
plate of thickness 5 mm for b = 1m and d = 3m equation 44 gives the non-dimensional flutter velocity
as 91.7847 (91.166737 with collocation method) and the actual flutter velocity is 704.5209 m/s (699.7770
m/s with collocation method).
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Figure 5. Relation between d?u £ and d in different situations for the case d > 1.

6. Conclusion

To summarize, the flutter velocity of a plate structure, under very varied geometric conditions can
be estimated with simple algebraic expressions given in this study. These expressions were derived
by curve fitting to data obtained by collocation method. To validate the collocation results, analytical
solution was also carried out and seen to give the same results.
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