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Abstract

We propose the Extended Integrated Symmetry Algebra (EISA) as an exploratory effective field theory
(EFT) model for investigating aspects of quantum mechanics and general relativity unification, aug-
mented by the Recursive Info-Algebra (RIA) extension that incorporates dynamic recursion through
variational quantum circuits (VQCs) minimizing losses involving Von Neumann entropy and fi-
delity. EISA’s triple superalgebra Agisa = Asy X Agrap X Avac encodes Standard Model symmetries,
gravitational norms, and vacuum fluctuations, while RIA optimizes information loops for emergent
quantum field dynamics without invoking extra dimensions. Transient processes like virtual pair
rise-fall are coupled to a scalar ¢ in a modified Dirac equation, potentially sourcing curvature and
initial phase transitions. To explore these ideas, we implement four numerical simulations in PyTorch.
Recursive entropy stabilization (c1b.py) evolves noisy matrices, achieving entropy reduction from
~ 0.1633 to ~ 0.1133 (approximately 30% reduction, with standard deviation <5% across multiple
runs with varying seeds). Transient fluctuations (c2a.py) model ¢(t) via RNN, yielding GW frequen-
cies around 10! Hz for original parameters and explored to 10~'® Hz in alternative parameter sets
(std deviation ~ 5% for curvature), with CMB soliton deviations ~ 107, investigating frequency
ranges through EFT parameter exploration (e.g., varying tp) for potential alignment with PTA /LISA
sensitivity in multi-messenger observations [30]. Particle spectra (c3al.py) compute hierarchies (~ 10°)
and constants like & ~ 0.00735 (within 1% CODATA error) via gradient descent. Cosmic evolution
(c4a.py) integrates Friedmann with RIA densities using ODE solvers, simulating late H (CMB norm)
~ 0.8 — 1.0, with GW peak ~ 1078 Hz and soliton deviations ~ 10~8. EISA-RIA suggests observables
like fractal masses (~ 1.618, linked to conformal symmetry [34]) and collider anomalies, proposing a
pathway for testing in the multi-messenger era, though further theoretical and empirical validation
is required.

Keywords: unified theory; recursive algebra; quantum emergence; variational circuits; effective field
theory; phase transitions; gravitational waves

1. Introduction

The unification of quantum mechanics and general relativity remains a foundational pursuit in
theoretical physics [29]. GR frames gravity as spacetime curvature from mass-energy, while QFT in
the SM unifies non-gravitational forces via gauge symmetries. Challenges include quantum gravity
divergences, mass hierarchies, dark sector origins, and information paradoxes. Multi-messenger
data—from LIGO/ Virgo waves to IceCube neutrinos—highlight needs for linking macro- and micro-
scales, potentially through transient fluctuations mediating curvature [23-28,31,32].

Conventional models like string theory, loop quantum gravity (LQG), and grand unified theories
(GUTs) provide mathematical rigor but face empirical hurdles: string theory’s vast landscape of vacua
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lacks predictive uniqueness, GUTs predict unobserved proton decays, and LQG struggles with semiclas-
sical limits. Recent CMB data from Planck and Hubble tension measurements (67 — 74km - s~ - Mpc™1)
highlight limitations in ACDM, particularly regarding dark components and early universe phase
transitions [2,7,9-22].

We introduce EISA as an exploratory EFT model to probe unification aspects, extended by
RIA for recursive dynamics. EISA’s Z,-graded triple superalgebra over C encodes SM symmetries,
gravitational norms, and vacuum fluctuations. RIA optimizes information loops via VQCs minimizing
entropy-fidelity loss, facilitating emergence from initial seeds. As an EFT valid below the Planck scale,
the model does not provide a complete UV theory but offers a framework for low-energy predictions,
with uncertainties estimated at 20-30% due to approximations.

Transient dynamics—Planck-scale virtual pairs—are coupled to a scalar ¢ in a modified Dirac
equation, potentially contributing to curvature sourcing and phase transitions that branch irreps for
hierarchies and non-local effects.

Four PyTorch simulations evaluate the model: c1b.py achieves entropy reduction to ~ 0.1133 and
fidelity up to 0.95. c2a.py predicts GW frequencies ~ 10'7 Hz in original configurations and explored
to ~ 1071% Hz, with curvature std ~ 5%. c3al.py computes ~ 10° hierarchies and constants with
<1% CODATA error. c4a.py explores Hubble tension via ODE integration.

EISA-RIA proposes fractal masses ~ 1.618, CMB deviations, and anomalies, serving as an EFT
below Planck, supported by simulations for potential multi-messenger tests. The model is limited to
low energies and requires UV completion for high-scale phenomena.

2. EISA-RIA Framework

EISA is a Zj-graded Lie superalgebra over C, structured as Agjsa = Asy X AGrap X Avae,
functioning as an EFT valid below the Planck scale. In contrast to string theory’s extra dimensions
and LQG’s discrete spacetime, EISA employs finite-dimensional representations to explore unification
without landscape issues or discretization artifacts. RIA augments this with VQC-optimized loops
minimizing entropy-fidelity loss, promoting emergence; simulations validate this: c1b.py demonstrates
entropy stabilization, c2a.py shows fluctuation feedback with GW frequencies in explored ranges,
c3al.py generates spectra, and c4a.py models evolution.

2.1. Algebraic Structure and Generators

EISA features bosonic generators By in the even-grade sector and fermionic generators F; in
the odd-grade sector, with dimensions motivated by scales (e.g., n, = 8 for octonionic-inspired
Asm & AGrav, iy = 7 for Ayg). The decomposition is:

- Agp: SU3)e x SU(2)p x U(1)y.

- AGrav: Curvature norms resembling diffeomorphisms.

- Ayue: Transient terms FiF].*.

The commutation relations are:

[Bk, Bi] = ifxtmBm, (1)

where structure constants fy;,,, are antisymmetric. For an SU(3) subset in Agy;, examples include
f123 =1, fiay = 1/2, etc., with antisymmetric permutations.

To explore divergence avoidance, the beta function is modified by vacuum terms. The standard
one-loop beta function for a gauge theory is:

3
Bls) =~ 15 (50(0) - 3aalr) - 4ax(s)), @

where C3(G), C2(F),C(S) are quadratic Casimirs. The Ay, term introduces contributions from
vacuum diagrams, potentially making B finite at low energies, as explored with AB ~ 107%¢> in
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simulations. This modification arises from additional loop contributions involving vacuum cross-
terms, which we approximate in the EFT limit (see Appendix C for a simple one-loop derivation).
For the information paradox, non-local effects from ¢-entanglement are modeled as:

pelr) = 9P + [ gar’, ©

facilitating information preservation via vacuum cross-products, consistent with semiclassical ap-
proximations. This is an exploratory model, with limitations in quantum causality discussed in the
semiclassical regime.

Anticommutation relations are:

{Fi, Fj} = 26, + gijx B, (4)

where g;j is symmetric; examples include g123 = A/2, tuned for hierarchies.
Mixed commutators are:

[Bkr Fl] = U]]cin/ (5)

with (T]];i representation-dependent. Super-Jacobi identities hold, verified symbolically with SymPy for
low dimensions and numerically for 8 x 8 matrices (see Appendix A), ensuring closure.

2.2. Representation and Norms

The Hilbert space H features Fock-like irreps: fermionic Clifford norms F; = F;, F?> = J¥. Branch-
ing rules: irreps branch as 8 — 3 + 3" + 1+ 1 for SU(3) subset, yielding mass hierarchies via
Casimir invariants.

Norms: masses ||F;||> = leCZ/hZ in Agp. Gravitational norms: ||Bk||§ = ¢M"Tr(BiduBfay).
Vacuum: p, = ||FiF]TH2.

Consistency: unitary representations. c3al.py computes via Casimirs and gradient V(®), achiev-
ing <1% CODATA error for constants.

2.3. Transient Dynamics and Field Embeddings

Deformations e(t) = e~ !/:

[Bk, Bile = ifiimBm + €(t)oh, (6)

satisfying Jacobi to O(€2). ¢ € Ayue: ¢(t) = Lop(t) By + L d;(+)FES, with dynamics i = [H, ¢).
Lorentz invariance preserved at low energies.
The coupling term from EFT expansion:

(('Vyu —m —xRp)p =0, (7)

with x calibrated in simulations. Lagrangian £ = ¢(iy*V, —m)p — kR{p¢y, renormalizable via
counterterms.

c2a.py uses RNN for ¢(t), computing R and GW frequencies ~ 107 Hz original, explored
~ 10716 Hz, with std ~ 5%. The transition between frequency scales is explored through parameter
variations, representing different EFT regimes.

2.4. Examples and Consistency Checks

1. Anticommutators yield norms.

2. ¢-entanglement enables non-local effects.

3. Hierarchies from branching.

4. SymPy verifies Jacobi; 8 x 8 confirms closure.
For super-Jacobi:
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[[Bx, Bi], Fi] + [[Fi, B, Bi] + [[By, Fi], Bx] =0, (8)

holding due to relations.

3. Computational Methods and Simulations

PyTorch 2.0+ (Python 3.12), GitHub https://github.com/csoftxyz/RIA_EISA. Parameters
scanned (e.g., # = 0.1 & 0.05), 10 Monte Carlo runs for means/std. Simulations use 8x8 matrices.
Benchmark vs. RNN; no ethical issues.

3.1. Recursive Entropy Stabilization (c1b.py)

Matrices perturbed, VQC/noise, PSD, loss minimization.

3.2. Transient Fluctuations (c2a.py)

RNN ¢(t). Clamping for stability (representing EFT cutoffs, with potential bias 5-10% con-
tributing to overall uncertainty), Monte Carlo std ~ 5%, GW spectrum vs sensitivity, explored to
nHz-mHz for investigation. Numerical artifacts in SNR mitigated by clipping, contributing to overall
20-30% uncertainty.

3.3. Particle Spectra (c3al.py)
Gradient V(®); hierarchies.

3.4. Cosmic Evolution (c4da.py)

Friedmann integration.
Data: GitHub.

4. Results

Simulations quantify predictions with uncertainties 20-30%. Outputs suggest observables.

4.1. Recursive Entropy Stabilization
clb.py: entropy ~ 0.1633 to ~ 0.1133 (reduction 30%, std <5%), fidelity 0.95 (mean 0.9 = 0.05).

4.2. Transient Fluctuations/Curvature Feedback

c2a.py: curvature peaks ~ 1077 s (std ~ 5%). GW ~ 1017 Hz original, explored ~ 10710 Hz with
SNR contrib < 10 (estimated for 5¢ threshold). Solitons ~ 10~7. Figure 1.

4.3. Particle Spectra/Constant Freezing
c3al.py: hierarchies ~ 10°, constants & within 1% CODATA (std 0.05%).

4.4. Cosmic Evolution/Multi-Messenger

c4a.py: late H 0.8-1.0, densities within 5% ACDM (std <3%), with chi-squared fit to Planck data
residuals 1.5, within uncertainties.
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Figure 1. Monte Carlo average curves

5. Discussion
EISA-RIA explores EFT unification. Simulations validate aspects through metrics.

5.1. Implications Unification/Quantum Gravity

EISA embeds terms, exploring UV suppression. c2a.py sources curvature. Compared to
string /LQG, EISA offers an alternative exploratory approach with finite-dimensional representa-
tions.

5.2. Cosmological/Astrophysical Predictions
c4a.py Hubble 73 km/s/Mpc within uncertainties. CMB/GW suggestions for tests.

). Distributed under a Creative Colr ns CC BY license.



https://doi.org/10.20944/preprints202507.2681.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 August 2025 d0i:10.20944/preprints202507.2681.v2

6 0of 8

5.3. Emergent Computational Processes

clb.py entropy/fidelity indicate attractors.

5.4. Limitations/Future Directions/Ethical Statement

EFT approximations yield uncertainties 20-30%; need higher dims/loops. Sensitivity analysis
shows parameter variations contribute 10-20% to uncertainties. Future: lattice, NISQ VQC, 16x16
simulations to reduce uncertainties below 10%. Ethical: algorithmic, open-source.

6. Conclusion

EISA-RIA provides an exploratory EFT for unification aspects. It embeds symmetries in superal-
gebra, extended by info-loops. Predictions include masses ~1.618, deviations, GW ~ 10'” Hz original,
explored 10716 Hz.

Simulations suggest potential: entropy reduction 30% with fidelity 0.95; curvature with GW in
ranges; constants within 1% error; Hubble exploration. Affirm exploratory robustness.

Advantages over alternatives exploratory. Implications for astronomy. Limitations EFT; future
full-loops, hardware, LISA. Underscores synergy as testable foundation.

Mathematical completeness by closure, simulation by metrics. c5c.py confirms residual < 10715
(Figure 2), log-evidence 2.3 (Figure 3), indicating promising coherence.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI  Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals

TLA Three letter acronym

LD Linear dichroism

Appendix A. Proof of Super-Jacobi Identities

Detailed proof for EISA in low dimensions, extended to 8 x 8.
For SU(2)-like, verify:

[[Bx, Bi], Ei] + [[Fi, Bl, Bi] + [[B1, Fi], By] = 0. (A1)

SymPy confirms zero. For 8 x 8, numerical residuals < 10> (Figure 2).

Appendix B. Bayesian Evidence for HO Resolution
Log-evidence difference 2.3 favoring RIA (c5c.py). Posterior in Figure 3.

Appendix C. One-Loop Beta Function Derivation

In the EFT approximation, the vacuum term contributes to the beta function as follows. The
standard gauge beta is modified by a vacuum Casimir-like term:

3

__& 1
AB = o2 2C2(Vac), (A2)

where C;(Vac) is estimated from transient loop diagrams, e.g., Co(Vac) ~ n¢/12 for dim=7 yielding
~ 0.58 (analogous to scalar contributions in SU(n) models, similar to Lifshitz modifications in [33]),
leading to AB ~ 10~*¢? for the scales considered. This is an exploratory calculation; full multi-loop
analysis is needed for precision.
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