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Abstract: Consider the ring Be = Fq + uFq + · · ·+ ue−1Fq, ue = u (e ≥ 2), where Fq denotes the finite field having

q = pm elements (for m ≥ 1 and a prime p), and q ≡ 1 (mod e − 1). Skew constacyclic codes over Be are studied

in this paper. We present their generator polynomial and describe the criteria for their complementary duality.

Moreover, we derive criteria for these codes to contain their dual and obtain quantum codes. Additionally, we

establish a Gray map that preserves duality and investigate its properties. We also take into account additive skew

constacyclic codes for this purpose and also derive criteria for the complementary duality of these codes. Finally,

we provide several LCD and quantum codes (MDS/ near MDS). The latter are compared with the quantum codes

obtained in the recent literature.
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MSC: 94B05; 94B15; 94B60

1. Introduction

Rich algebraic structures and ease of practical application are two of the most well-known
attributes of cyclic codes. On identifying a vector by a polynomial, one can consider any cyclic code
over Fq as a submodule of the Fq[x]-module Fq[x]/⟨xn − 1⟩ for the length n. Further, these codes
can also be considered as ideals generated by divisors of xn − 1. It is worth noting that Fq[x] is a
unique factorization domain, a fact which restricts the divisors of xn − 1 in Fq[x]. As an extension
of these codes, constacyclic codes may be regarded as ideals of Fq[x]/⟨xn − γ⟩ for some non-zero
element γ ∈ Fq. Further, these codes were examined over some finite commutative rings [1,2]. Later,
by relaxing the linearity condition, additive codes were considered over mixed alphabets [3,4].
On the other hand, in the desire to obtain more factorizations of xn − 1 than over a factorial ring, skew
cyclic codes [5,6] were introduced with the notion of skew polynomial rings [7]. These codes over a
finite field Fq are basically left submodules of the module Fq[x, Θ]/⟨xn − 1⟩ for an automorphism Θ of
Fq. Later, these codes were investigated by Abualrub and Seneviratne [8] over Fq + vFq, where v2 = v.
Additionally, Gao [9], and Gursoy et al. [10] presented skew cyclic codes by considering different
automorphisms. Later, as a continuation of these efforts, skew constacyclic codes were examined
[11,12].

In 1992, Massey [13] proposed LCD codes (V ∩ V⊥ = {0}). It was demonstrated that these codes
were the best linear coding solution to 2-BAC. Sufficient and necessary condition for the complementary
duality of cyclic codes over finite fields was derived in 1994 by Yang and Massey [14]. Additionally,
they deduced a relationship among the reversible and LCD cyclic codes. Later, DNA applications made
full use of the former idea [15,16]. On the other hand, the Gilbert-Varshamov bound is satisfied by LCD
codes, as demonstrated by Sendrier [17] in 2004. Subsequently, these codes were examined over chain
rings in [18]. In 2016, these codes were shown to have applications in cryptosystems [19]. Afterwards,
LCD codes were studied over different commutative rings in [20–26] , and applications of these codes
were presented in Multi-secret Sharing Schemes [27]. Recently, LCD codes were studied in [28,29]
using the skew polynomial rings. Besides, additive codes were investigated for the complementary
duality over the structure Z2Z2[u3] in [30], and they were called additive complementary dual (ACD)
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codes.
In the last decades of the 20th century, it was noticed that quantum mechanics might improve the

complexity of certain classical algorithms, like the DFT transform, list searching, or integer factorization.
This last algorithm is a key ingredient in the RSA cryptosystem. For this reason, quantum computation
got the attention of many researchers. To securitize quantum computation, Shor [31] introduced
Quantum Error-Correcting Codes (QECCs) in 1995. In 1998, classical error-correcting codes were
employed to obtain QECCs via some constructions such as CSS construction [32]. Afterwards, linear
codes over different commutative rings were used to obtain good QECCs in [33–36]. As an extension
of these works, additive codes over the commutative structure were also utilized [37]. Recently, cyclic
and constacyclic codes using non-commutative rings have been employed for obtaining QECCs due to
more possibility of factorization of a polynomial. Many good QECCs were obtained from cyclic and
constacyclic codes [38–41] . Motivated by these works, we consider skew constacyclic and additive
codes for obtaining new and better LCD and quantum codes.

This paper has been arranged as follows: Firstly, the structure of linear codes over Be is presented
in Section 2. Section 3 presents skew constacyclic codes over Be, defines a Gray map and analyzes its
properties. In Section 4, we derive some results for LCD codes. Further, we derive quantum codes by
utilizing CSS construction in Section 5. Section 6 presents the structure and properties of additive skew
constacyclic codes over FqBe. In Section 7, we present various LCD codes as well as new quantum
codes. Our work is concluded in Section 8.

2. Preliminaries

Let us suppose that Fq denotes a finite field having cardinality q. Let us consider a ring Be =

Fq + uFq + · · ·+ ue−1Fq, ue = u, with q ≡ 1 (mod e − 1) (e ≥ 2). We represent the collection of units
in Be by B∗

e .

Consider a primitive element α ∈ Fq and take ξ = α
q−1
e−1 . Following [42], consider

ϵ1 = 1 − ue−1,

ϵ2 =
1

e − 1
(u + u2 + · · ·+ ue−2 + ue−1),

ϵ3 =
1

e − 1
(ξu + ξ2u2 + · · ·+ ξe−2ue−2 + ue−1),

ϵ4 =
1

e − 1
(ξ2u + (ξ2)2u2 + · · ·+ (ξ2)e−2ue−2 + ue−1),

...

ϵe =
1

e − 1
(ξe−2u + (ξe−2)2u2 + · · ·+ (ξe−2)e−2ue−2 + ue−1).

Then, we have Be ∼=
⊕e

i=1 ϵiFq and each s ∈ Be has a unique representation s = ∑e
i=1 ϵisi, si ∈ Fq.

Moreover, any linear code V over Be with length n has a representation

V = ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe,

for some linear codes Vi = {ri ∈ Fn
q : ∃ rj ∈ Fn

q , 1 ≤ j ̸= i ≤ e such that ∑e
k=1 ϵkrk ∈ V} over Fq

(1 ≤ i ≤ e) and the dual code of V is V⊥ = ϵ1V⊥
1 ⊕ · · · ⊕ ϵeV⊥

e . Subsequently, the following result
holds.

Theorem 1. Let us assume that V = ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe is any γ-constacyclic code over Be (γ =

∑e
i=1 ϵiαi ∈ B∗

e ). Then V has g(x) = ∑e
i=1 ϵigi(x) as its generator polynomial, where each Vi has gi(x) as

their generator polynomial (1 ≤ i ≤ e).
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3. Skew Constacyclic Codes over Be

The current section presents the generator polynomials for skew constacyclic codes over Be and
the dual codes. In order to proceed with the investigation, we first require an automorphism of Be as
defined below.

Define an automorphism Θl : Be → Be by

Θl(ϵ1a1 + ϵ2a2 + · · ·+ ϵeae) = ϵ1Θl(a1) + ϵ2Θl(a2) + · · ·+ ϵeΘl(ae) = ϵ1apl

1 + ϵ2apl

2 + · · ·+ ϵeapl

e ,

for 0 ≤ l ≤ m − 1. Using this, the definition for skew constacyclic codes is as mentioned below.

Definition 2. Suppose Θl is an automorphism of the ring Be, γ ∈ B∗
e . Then a linear code V over Be is called a

skew constacyclic (or skew Θl − γ- constacyclic) code over Be, if τΘl ,γ(V) = V , where τΘl ,γ : Bn
e −→ Bn

e is
the skew Θl − γ-constacyclic shift given by

τΘl ,γ(c0, c1, . . . , cn−1) = (γΘl(cn−1), Θl(c0), Θl(c1), . . . , Θl(cn−2)).

For γ = −1 (resp. γ = 1), these codes are said to be skew negacyclic (resp. skew cyclic) codes, respectively.
Further, for identity automorphism Θl and γ = −1 (resp. γ = 1), these codes are said to be negacyclic (resp.
cyclic) codes with the corresponding negacyclic and cyclic shifts represented by τ−1 and τ1, respectively.

Consider the skew-polynomial ring

Be[x; Θl ] = {b0 + b1x + · · ·+ bn′xn′ |bi ∈ Be, n′ ∈ N}

in which the multiplication is given by x ∗ b = Θl(b)x. Then the center Z(Be[x; Θl ]) of Be[x; Θl ] (which
will be used to study skew constacyclic codes) can be obtained by the below-mentioned result.

Lemma 3. Let us assume that γ ∈ B∗
e such that Θl(γ) = γ, where Θl is an automorphism of Be. The order of

Θl divides n iff xn − γ lies in Z(Be[x; Θl ]).

Proof. Let Θl(γ) = γ and order of Θl divides n, i.e., Θn
l (s) = s ∀s ∈ Be. Then, for any s0 + s1x + · · ·+

sn′xn′ ∈ Be[x; Θl ], we have

(xn − γ)(s0 + s1x + · · ·+ sn′xn′
) =Θn

l (s0)xn + Θn
l (s1)xn+1 + · · ·+ Θn

l (sn′)xn+n′

− γ(s0 + s1x + · · ·+ sn′xn′
)

=s0xn + s1xn+1 + · · ·+ sn′xn+n′

− (γs0 + γs1x + · · ·+ γsn′xn′
)

and

(s0 + s1x + · · ·+ sn′xn′
)(xn − γ) =s0xn + s1xn+1 + · · ·+ sn′xn+n′

− (s0γ + s1Θl(γ)x + · · ·+ sn′Θn′
l (γ)xn′

)

=s0xn + s1xn+1 + · · ·+ sn′xn+n′

− (s0γ + s1γx + · · ·+ sn′γxn′
).

That is, (xn − γ)(s0 + s1x + · · · + sn′xn′
) = (s0 + s1x + · · · + sn′xn′

)(xn − γ) and hence xn − γ ∈
Z(Be[x; Θl ]).
Conversely, assume that xn − γ ∈ Z(Be[x; Θl ]). Then (xn − γ)(sxi) = (sxi)(xn − γ), for all s ∈ Be and
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i ∈ N. Now,

(xn − γ)(sxi) = (Θn
l (s)xn+i − γsxi) and (sxi)(xn − γ) = (sxi+n − sΘi

l(γ)xi) = (sxi+n − sγxi).

It implies that Θn
l (s) = s for all s ∈ Be. Therefore, we conclude that order of Θl divides n.

As we have already seen that for an automorphism Θl of Be whose order divides n and γ ∈ B∗
e

such that γ is fixed by Θl , we have (xn − γ) ∈ Z(Be[x; Θl ]). Therefore, Be [x;Θl ]
⟨xn−γ⟩ is a ring. On the

contrary, if n is not divisible by order of Θl then Be [x;Θl ]
⟨xn−γ⟩ doesn’t form a ring but a left Be[x; Θl ]-module

and any skew constacyclic code is characterized by the result given below.

Lemma 4. Any linear code V over Be having length n is a skew Θl − γ-constacyclic code iff V forms a left
Be[x; Θl ]-submodule of Be [x;Θl ]

⟨xn−γ⟩ .

Theorem 5. Suppose γ = ∑e
i=1 ϵiαi ∈ B∗

e and V = ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe is a linear code over Be. Then
V is a skew Θl − γ-constacyclic code iff each Vi is skew Θl − αi-constacyclic code (1 ≤ i ≤ e).

Proof. Let us suppose that V is a skew Θl −γ-constacyclic code over Be and aj = (a0,j, a1,j, . . . , a(n−1),j) ∈
Vj for every j lying in the set {1, 2, . . . , e}. Then v = (v0, v1, . . . , vn−1) = ∑e

j=1 ϵjaj ∈ V , where
vi = ∑e

j=1 ϵjai,j for each i lying in the set {0, 1, . . . , n − 1}. As V is a skew Θl − γ-constacyclic code, we
have τΘl ,γ(v) ∈ V . Note that

τΘl ,γ(v) = (γΘl(vn−1), Θl(v0), Θl(v1), . . . , Θl(vn−2))

= (γΘl(
e

∑
j=1

ϵja(n−1),j), Θl(
e

∑
j=1

ϵja0,j), . . . , Θl(
e

∑
j=1

ϵja(n−2),j)

= (
e

∑
j=1

ϵjαjΘl(a(n−1),j),
e

∑
j=1

ϵjΘl(a0,j), . . . ,
e

∑
j=1

ϵjΘl(a(n−2),j)

=
e

∑
j=1

ϵj(αjΘl(a(n−1),j), Θl(a0,j), . . . , Θl(a(n−2),j).

It implies that (αjΘl(a(n−1),j), Θl(a0,j), . . . , Θl(a(n−2),j) ∈ Vj for each 1 ≤ j ≤ e. Consequently, Vj is a
skew Θl − αj-constacyclic code for each j lying in the set {1, 2, . . . , e}.
For the other side, assume that Vi is skew Θl − αi-constacyclic code over Fq and v = (v0, v1, . . . , vn−1) ∈
V , where vj = ∑e

i=1 ϵiaj,i for each j lying in the set {0, 1, . . . , n − 1}. Then ai = (a0,i, a1,i, . . . , a(n−1),i) ∈
Vi for each i lying in the set {1, 2, . . . , e} as v = ∑e

i=1 ϵiai. Since Vi are skew Θl − αi-constacyclic codes,
we have τΘl ,αi (ai) ∈ Vi for each 1 ≤ i ≤ e which further implies that ∑e

i=1 ϵiτΘl ,αi (ai) ∈ V . Now,

e

∑
i=1

ϵiτΘl ,αi (ai) =
e

∑
i=1

ϵi(αiΘl(a(n−1),i), Θl(a0,i), . . . , Θl(a(n−2),i))

= (
e

∑
i=1

ϵiαiΘl(a(n−1),i),
e

∑
i=1

ϵiΘl(a0,i), . . . ,
e

∑
i=1

ϵiΘl(a(n−2),i))

= (γΘl(
e

∑
i=1

ϵia(n−1),i), Θl(
e

∑
i=1

ϵia0,i), . . . , Θl(
e

∑
i=1

ϵia(n−2),i))

= (γΘl(vn−1), Θl(v0), Θl(v1), . . . , Θl(vn−2))

= τΘl ,γ(v).

Consequently, V is a skew Θl − γ-constacyclic code as τΘl ,γ(v) ∈ V .
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From [12], any skew Θl − α-constacyclic code V having length n over Fq for α ∈ F∗
q is principally

generated by a polynomial g(x) as a left Fq[x; Θl ]-submodule of the module Fq [x;Θl ]

⟨xn−α⟩ and V = ⟨g(x)⟩,
where g(x) divides xn − α on the right and regarded as the generator polynomial of the code V . Using
these arguments and Theorem 5, the below mentioned conclusion can be derived.

Theorem 6. Suppose γ = ∑e
i=1 ϵiαi ∈ B∗

e and V = ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe is a skew Θl − γ-constacyclic
code over Be with Vi = ⟨gi(x)⟩, where each gi(x) divides xn − αi on the right (i lying in the set {1, 2, . . . , e}).
Then V = ⟨g(x)⟩, where g(x) = ∑e

i=1 ϵigi(x) divides xn − γ on the right.

We now consider a Gray map Φ : Bn
e → Fen

q defined as

Φ(r0, r1, . . . , rn−1) = [(s10, s20, . . . , se0)M, (s11, s21, . . . , se1)M, . . . , (s1(n−1), s2(n−1), . . . , se(n−1))M],

where ri = ∑e
k=1 ϵkski for each i lying in the set {0, 1, . . . , n − 1} and a square matrix M satisfies

MMt = νI for the identity matrix I and ν ∈ F∗
q . Then Φ is a bijective linear map, and the following

result can be deduced.

Lemma 7. Let us suppose that V is a linear code over Be having dual code V⊥. Then Φ(V⊥) = Φ(V)⊥.

Proof. Suppose v = (v0, v1, . . . , vn−1) ∈ V and x = (x0, x1, . . . , xn−1) ∈ V⊥, where vi = ∑e
j=1 ϵjrji and

xi = ∑e
j=1 ϵjsji for each i lying in the set {0, 1, . . . , n − 1}. Then

⟨v, x⟩ = ϵ1

n−1

∑
i=0

r1is1i + ϵ2

n−1

∑
i=0

r2is2i + · · ·+ ϵe

n−1

∑
i=0

reisei = 0,

which implies that ∑n−1
i=0 rjisji = 0 for all j ∈ {1, . . . , e}. Now,

Φ(v) = ((r10, r20, . . . , re0)M, (r11, r21, . . . , re1)M, . . . , (r1(n−1), r2(n−1), . . . , re(n−1))M),

Φ(x) = ((s10, s20, . . . , se0)M, (s11, s21, . . . , se1)M, . . . , (s1(n−1), s2(n−1), . . . , se(n−1))M)

and

⟨Φ(v), Φ(x)⟩ = Φ(v)[Φ(x)]t =
n−1

∑
i=0

(r1i, r2i, . . . , rei)MMt(s1i, s2i, . . . , sei)
t

= ν
n−1

∑
i=0

(r1i, r2i, . . . , rei)(s1i, s2i, . . . , sei)
t

= ν
n−1

∑
i=0

r1is1i + ν
n−1

∑
i=0

r2is2i + · · ·+ ν
n−1

∑
i=0

reisei

= 0,

i.e., Φ(x) ∈ Φ(V)⊥. Therefore, Φ(V)⊥ ⊇ Φ(V⊥). Moreover, |Φ(V⊥)| = |Φ(V)⊥| as Φ is a bijective
map. Hence Φ(V)⊥ = Φ(V⊥).

4. LCD Codes

This section first presents the dual of a skew constacyclic code, and then obtains conditions under
which these codes must be LCD. Further, we study their Gray images.

For any p(x) = ∑r
i=0 pixi ∈ Be[x; Θl ] of degree r with p0 ∈ B∗

e , its left monic skew reciprocal
polynomial is defined as p♮(x) = (Θr

l (p0))
−1 ∑r

i=0 Θi
l(pr−i)xi. The polynomial p(x) is called as self-

reciprocal iff p(x) = p♮(x). This monic skew reciprocal polynomial is useful for the investigation
of dual code V⊥. If Θl(α) = α and n is divisible by order of Θl , then the dual V⊥ of a skew Θl − α-
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constacyclic code V = ⟨g(x)⟩ over Fq is a skew Θl − α−1-constacyclic code over Fq, which is given
by V⊥ = ⟨h♮(x)⟩, where g(x)h(x) = h(x)g(x) = xn − α for the length n of V . Now, under the same
conditions on n and considering αi ( 1 ≤ i ≤ e) fixed by Θl , we obtain the following result.

Theorem 8. Suppose γ = ∑e
i=1 ϵiαi ∈ B∗

e and V = ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe is a skew Θl − γ-constacyclic
code over Be having the generator polynomial g(x) = ∑e

i=1 ϵigi(x), where gi(x) is the generator polynomial of
Vi and gi(x)hi(x) = hi(x)gi(x) = xn − αi for each 1 ≤ i ≤ e. Then the generator polynomial of V⊥ is h♮(x),
where h♮(x) = ∑e

i=1 ϵih
♮
i (x) for h(x) = ∑e

i=1 ϵihi(x).

Definition 9 (LCD codes). If V ∩ V⊥ = {0} for any linear code V over Be, then the code V is considered as
LCD (or complementary dual).

In order to check the complementary duality of skew constacyclic codes over Be, we first need a
criterion for evaluating the complementary duality of a skew constacyclic code over finite field.

Lemma 10. [28, Theorem 4.1] Suppose that n is divisible by order of Θl , α ∈ F∗
q such that α2 = 1 and V is a

skew Θl − α-constacyclic code over finite field with skew generator polynomial g(x). Choose h(x) in order to
ensure g(x)h(x) = h(x)g(x) = xn − α. Then V is a Euclidean LCD code iff gcrd(g(x), h♮(x)) = 1, where
gcrd(g(x), h♮(x)) denotes the greatest common right divisor of h♮(x) and g(x).

Once we get a link among the complementary duality of a linear code over Be with its constituent
codes, we can get requirements for complementary duality of any skew Θl − γ-constacyclic code over
Be. So, first we establish that link which is presented in the below mentioned result.

Proposition 11. Suppose V = ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe is a linear code over Be. Then V is an LCD code iff
each Vi is an LCD code over Fq.

Proof. Suppose V = ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe is a linear code over Be. The dual code is V⊥ =

ϵ1V⊥
1 ⊕ ϵ2V⊥

2 ⊕ · · · ⊕ ϵeV⊥
e and

V ∩ V⊥ = ϵ1(V1 ∩ V⊥
1 )⊕ ϵ2(V2 ∩ V⊥

2 )⊕ · · · ⊕ ϵe(Ve ∩ V⊥
e ).

Consequently, it is evident that V ∩ V⊥ = {0} iff Vi ∩ V⊥
i = {0} for every 1 ≤ i ≤ e.

From now onwards, we work under the assumption that αi’s are fixed by Θl for 1 ≤ i ≤ e, and the
order of Θl divides n. Using the Proposition 11 and Lemma 10, we now obtain requirements for skew
Θl − γ-constacyclic code over Be to be complementary dual, where γ = ∑e

i=1 ϵiαi ∈ B∗
e for αi = ±1.

Theorem 12. Suppose γ = ∑e
i=1 ϵiαi ∈ B∗

e for αi ∈ {1,−1} and n is a multiple of order of Θl . Then a skew
Θl − γ-constacyclic code V = ⟨ϵ1g1(x) + ϵ2g2(x) + · · ·+ ϵege(x)⟩ having length n over Be is an LCD code
iff gcrd(gi(x), h♮i (x)) = 1, where gcrd(gi(x), h♮i (x)) denotes the greatest common right divisor of h♮i (x) and
gi(x) for each 1 ≤ i ≤ e.

Proof. Suppose Vi = ⟨gi(x)⟩ is a skew Θl − αi constacyclic code over Fq and hi(x) is such that
gi(x)hi(x) = hi(x)gi(x) = xn − αi for 1 ≤ i ≤ e. Then, by Lemma 10, Vi is an LCD code iff
gcrd(gi(x), h♮i (x)) = 1 for each 1 ≤ i ≤ e. Therefore, V is an LCD code iff gcrd(gi(x), h♮i (x)) = 1
for each 1 ≤ i ≤ e.

Next, we present a relation between the Gray image of the intersection of a code and its dual with
the intersection of their Gray images, which can be proved by using Lemma 7.

Lemma 13. Suppose V is a linear code having length n over Be. Then Φ(V ∩ V⊥) = Φ(V) ∩ Φ(V)⊥, where
Φ is the Gray map defined in Section 3.
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Proof. Suppose c ∈ Φ(V) ∩ Φ(V)⊥. Then there exist a ∈ V and b ∈ V⊥ such that c = Φ(a) = Φ(b)
as Φ(V⊥) = Φ(V)⊥ by Lemma 7. But Φ is injective, so we have a = b and hence c ∈ Φ(V ∩ V⊥).
Therefore, Φ(V) ∩ Φ(V⊥) ⊆ Φ(V ∩ V⊥).
Conversely, assume that c ∈ Φ(V ∩ V⊥). Then c = Φ(a) for some a ∈ V ∩ V⊥. Further, c = Φ(a) ∈
Φ(V) ∩ Φ(V⊥). Using Lemma 7, we get c = Φ(a) ∈ Φ(V) ∩ Φ(V)⊥ as Φ(V⊥) = Φ(V)⊥. Therefore,
Φ(V ∩ V⊥) ⊆ Φ(V) ∩ Φ(V)⊥ and the result follows.

By applying this lemma, we are able to derive a relationship between the complementary duality
of a linear code over Be and its Gray image under the map Φ.

Theorem 14. Suppose V is a linear code over Be. Then V is an LCD code iff Φ(V) is an LCD code over Fq.

Proof. As Φ is injective, the proof follows using Lemma 13.

5. Quantum Codes

In this section, we consider γ to be a unit in Be which is fixed by Θl and n be divisible by order
of Θl . We obtain the dual containing conditions for a skew γ-constacyclic code over Be and then
establish the existence of a quantum code by applying the CSS construction on their Gray images. In
this direction, we first recall some preliminary definitions and results.

Following [34], for a Hilbert space Hq of dimension q over the field of complex numbers C,
(Hq)⊗n = Hq ⊗ · · · ⊗Hq is also a Hilbert space of dimension qn. Further, any qk-dimensional subspace
of the Hilbert space (Hq)⊗n is called a quantum code denoted by [[n, k, d]]q, where d is the minimum
distance of the code. Further, for the comparison of two quantum codes with parameters [[n, k, d]]q
and [[n′, k′, d′]]q, we have the following conditions:

• d = d′ and k
n > k′

n′

• d > d′ and k
n = k′

n′

• d > d′ and k
n > k′

n′ .

If any one of the above conditions is satisfied, then we say that the quantum code with the parameters
[[n, k, d]]q is better than the one with the parameters [[n′, k′, d′]]q. Now, we recall the condition for a
skew constacyclic code over Fq to contain its dual.

Lemma 15. [41, Lemma 5.3] Suppose V = ⟨g(x)⟩ is a skew Θl − α-constacyclic code having length n over
Fq, where xn − α = h(x)g(x) for α = ±1 and n be a multiple of the order of Θl . Then V⊥ ⊆ V iff xn − α is
right divisible by h♮(x)h(x).

The following result presents a relation between the dual containing property of a skew consta-
cyclic code over Be in terms of its constituent codes in the decomposition.

Lemma 16. Suppose V = ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe is a skew Θl − γ-constacyclic code having length n over
Be. Then V⊥ ⊆ V iff V⊥

i ⊆ Vi for 1 ≤ i ≤ e.

Proof. Suppose V = ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe is a skew Θl − γ-constacyclic code having length n over
Be, V⊥ = ϵ1V⊥

1 ⊕ ϵ2V⊥
2 ⊕ · · · ⊕ ϵeV⊥

e be its dual code such that V⊥ ⊆ V . Then multiplying by ϵi in
the equation

ϵ1V⊥
1 ⊕ ϵ2V⊥

2 ⊕ · · · ⊕ ϵeV⊥
e ⊆ ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe,

we get ϵiV⊥
i ⊆ ϵiVi for each 1 ≤ i ≤ e. As Vi’s are codes over Fq, it further implies that V⊥

i ⊆ Vi for
each 1 ≤ i ≤ e.
Conversely, assume that V⊥

i ⊆ Vi for each 1 ≤ i ≤ e. Then ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe ⊆ ϵ1V⊥
1 ⊕ ϵ2V⊥

2 ⊕
· · · ⊕ ϵeV⊥

e , i.e., V⊥ ⊆ V which completes the proof.
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Using this relation and Lemma 15, we now obtain conditions for skew constacyclic code over Be

to contain its dual code.

Theorem 17. Suppose V = ⟨g(x)⟩ is a skew Θl − γ-constacyclic code having length n over Be, where n is a
multiple of the order of Θl , γ = ∑e

i=1 ϵiαi for αi = ±1, g(x) = ∑e
i=1 ϵigi(x) such that xn − αi = hi(x)gi(x)

for 1 ≤ i ≤ e. Then V⊥ ⊆ V iff xn − αi is right divisible by h♮i (x)hi(x) for each 1 ≤ i ≤ e.

Proof. Suppose xn − αi is right divisible by h♮i (x)hi(x) for each 1 ≤ i ≤ e. Then V⊥
i ⊆ Vi by Lemma

15, where Vi = ⟨gi(x)⟩ for 1 ≤ i ≤ e. It implies that

V⊥ = ϵ1V⊥
1 ⊕ ϵ2V⊥

2 ⊕ · · · ⊕ ϵeV⊥
e ⊆ ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe = V .

Conversely, assume that V⊥ ⊆ V , i.e.,

ϵ1V⊥
1 ⊕ ϵ2V⊥

2 ⊕ · · · ⊕ ϵeV⊥
e ⊆ ϵ1V1 ⊕ ϵ2V2 ⊕ · · · ⊕ ϵeVe.

Then multiplying by ϵi on both the sides, we get

ϵiV⊥
i ⊆ ϵiVi for each 1 ≤ i ≤ e.

It further implies that V⊥
i ⊆ Vi as Vi’s are linear codes over Fq and hence xn − αi is right divisible by

h♮i (x)hi(x) for each 1 ≤ i ≤ e.

To obtain quantum codes from dual containing codes, we use the CSS construction [35, Theorem 3],
which is given below.

Lemma 18 (CSS construction). Suppose V1 = [n, k1, d1]q and V2 = [n, k2, d2]q are linear codes over Fq

with V⊥
2 ⊆ V1. Assume that d = min{wH(v) : v ∈ (V1 \ V⊥

2 ) ∪ (V2 \ V⊥
1 )} ≥ min{d1, d2}. Then there

exists a QECC with parameters [[n, k1 + k2 − n, d]]q. In particular, if V1 = V2 and let d = min{wH(v) : v ∈
(V1 \ V⊥

1 )}, then there exists a QECC with parameters [[n, 2k1 − n, d]]q.

Now, we employ the above CSS construction to obtain quantum codes from the dual containing
skew Θl − γ-constacyclic codes over Be, where γ = ∑e

i=1 ϵiαi for αi = ±1.

Theorem 19. Suppose V is a skew Θl − γ-constacyclic code over Be such that V⊥ ⊆ V and Φ(V) have the
parameters [en, k, d]. Then, the existence of a quantum code over Fq having the parameters [[en, 2k − en, d]]q is
guaranteed.

Proof. Suppose V is a skew Θl − γ-constacyclic code over Be with V ⊇ V⊥. Then Φ(V) is a linear
code over Fq with Φ(V) ⊇ Φ(V⊥) = Φ(V)⊥. By using Lemma 18, the existence of a quantum code
over Fq having the parameters [[en, 2k − en, d]]q is guaranteed.

6. Complementary Dual and Quantum Codes from FqBe-Additive Skew Constacyclic Codes

In this section, we examine FqBe-additive codes. We first obtain dual containing conditions for an
additive skew constacyclic code over FqBe and establish the existence of a quantum code with certain
parameters. Further, we obtain conditions for an additive skew constacyclic code to be ACD (additive
complementary dual) in some instances. Throughout this section, we consider γ to be a unit in Be

which is fixed by Θl and n is divisible by the order of Θl .
Consider the set FqBe = {(a, b) : a ∈ Fq, b ∈ Be} which forms a group under component-

wise addition. Define a projection map π : Be → Fq as π(s0 + us1 + · · · + ue−1se−1) = s0, where
si ∈ Fq for 0 ≤ i ≤ e − 1. Further, we define a multiplication ∗ : Be × Fm

q Bn
e → Fm

q Bn
e as
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s ∗ (a0, a1, . . . , am−1, b0, b1, . . . , bn−1) = (π(s)a0, π(s)a1, . . . , π(s)am−1, sb0, sb1, . . . , sbn−1), where s, bi ∈
Be and aj ∈ Fq for 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1. Then, it can be checked that the set Fm

q Bn
e defined as

Fm
q Bn

e = {(a, b) : a ∈ Fm
q , b ∈ Bn

e }

forms a Be-module under the componentwise addition and the multiplication defined by ‘∗’. Further,
we recall that any FqBe-additive code V having length (m, n) is a non-empty subset of Fm

q Bn
e such that

V forms a Be-submodule of the module Fm
q Bn

e . The dual code V⊥ of an FqBe-additive code V , which is
defined as

V⊥ = {z ∈ Fm
q Bn

e : [z, c] = 0 ∀ c ∈ V}

where

[z, c] = ue−1

(
m−1

∑
i=0

aia′i

)
+

n−1

∑
j=0

bjb′j

for z = (a′0, a′1, . . . , a′m−1, b′0, b′1, . . . , b′n−1) and c = (a0, a1, . . . , am−1, b0, b1, . . . , bn−1), is also a FqBe-
additive code having length (m, n). We say that an FqBe-additive code V is an additive complementary
dual (ACD) code if V ∩ V⊥ = {0}. Now, we define an FqBe-additive skew constacyclic code.

Definition 20. For a unit element γ ∈ Be and an automorphism Θl , an FqBe-additive code V having length
(m, n) is said to be an FqBe-additive skew Θl −γ-constacyclic code if (τ1(a), τΘl ,γ(b)) ∈ V for every (a, b) ∈ V
where τ1, τΘl ,γ are the cyclic and the skew Θl − γ-constacyclic shifts, respectively.

For a unit element γ ∈ Be, consider the set S(m,n) =
Fq [x]

⟨xm−1⟩ ×
Be [x;Θl ]
⟨xn−γ⟩ . We identify an ele-

ment (a, b) ∈ Fm
q Bn

e by the polynomials (a(x), b(x)) ∈ S(m,n) where a = (a0, a1, . . . , am−1), b =

(b0, b1, . . . , bn−1), a(x) = a0 + a1x + . . . , am−1xm−1 and b(x) = b0 + b1x + · · ·+ bn−1xn−1. Now, we
define the corresponding multiplication ∗ : Be[x]× S(m,n) → S(m,n) as

z(x) ∗ (a(x), b(x)) = (π(z(x))a(x), z(x)b(x))

where π(z(x)) = ∑i π(zi)xi for any z(x) = ∑i zixi ∈ Be[x] and (a(x), b(x)) ∈ S(m,n). The set S(m,n)
forms a Be[x]-module with respect to the usual componentwise addition of polynomials and the
multiplication defined by ∗. Now, under the above identification of vectors by polynomials and
considering the above module structure of S(m,n), an FqBe-additive skew constacyclic code can be seen
as a Be[x]-submodule of S(m,n) as given below.

Theorem 21. Suppose V is an FqBe-additive code having length (m, n). Then, it is an FqBe-additive skew
Θl − γ-constacyclic code having length (m, n) iff V is a Be[x]-submodule of the module S(m,n).

Proof. Suppose V is an FqBe-additive skew Θl − γ-constacyclic code having length (m, n) and
(a(x), b(x)) ∈ V with the vector representation (a, b). Then (τ1(a), τΘl ,γ(b)) ∈ V . Note that

x ∗ (a(x), b(x)) = (am−1 + a0x + · · ·+ am−2xm−1, γΘl(bn−1) + Θl(b0)x + . . . , Θl(bn−2)xn−1)

which corresponds to (τ1(a), τΘl ,γ(b)) ∈ V . It implies that x ∗ (a(x), b(x)) ∈ V and hence xi ∗
(a(x), b(x)) ∈ V for any non-negative integer i. Also, using the polynomial identification, we get
z(x) ∗ (a(x), b(x)) ∈ V for any z(x) ∈ Be[x] as V is a Be-submodule of the module Fm

q Bn
e . Therefore, V

is a Be[x]-submodule of the module S(m,n).
Conversely, assume that V is a Be[x]-submodule of the module S(m,n) and (a, b) ∈ V with the polyno-
mial representation (a(x), b(x)). Then x ∗ (a(x), b(x)) ∈ V . Note that the polynomial representation
of (τ1(a), τΘl ,γ(b)) is x ∗ (a(x), b(x)). Therefore, (τ1(a), τΘl ,γ(b)) ∈ V and hence V is an FqBe-additive
skew Θl − γ-constacyclic code.
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Now, we define a Gray map Ψ : Fm
q Bn

e → Fm+en
q as

Ψ(a, r) = (a, Φ(r))

where a ∈ Fm
q , r ∈ Bn

e and Φ is the map defined in Section 3. It can be checked that Ψ is a linear map,
which is also bijective. Further, Ψ preserves duality as stated in the next result which can be proved on
similar lines to [37, Lemma 6].

Lemma 22. Suppose V is an FqBe-additive code having length (m, n) with its dual code V⊥. Then Ψ(V⊥) =

Ψ(V)⊥.

Now, we define two projection maps πn : Fm
q Bn

e → Bn
e , πm : Fm

q Bn
e → Fm

q as πn(a, b) =

b, πm(a, b) = a where a ∈ Fm
q and b ∈ Bn

e . Then, for any FqBe-additive code V having length (m, n),
πm(V) and πn(V) are linear codes having lengths m, n over Fq and Be, respectively. Further, we call
an FqBe-additive code V to be a separable code if it can be written in terms of the codes πm(V) and
πn(V) as given below.

Definition 23. An FqBe-additive code V having length (m, n) is said to be a separable code, if V = πm(V)×
πn(V).

If V is a separable code then its dual code is V⊥ = πm(V)⊥ × πn(V)⊥. Further, the below result
can classify a separable FqBe-additive skew constacyclic code.

Theorem 24. Suppose V is a separable FqBe-additive code having length (m, n). Then, it is an FqBe-additive
skew Θl − γ-constacyclic code having length (m, n) iff πm(V), πn(V) are cyclic and skew Θl − γ-constacyclic
codes over Fq and Be, respectively.

Proof. Suppose V is a separable FqBe-additive skew Θl − γ-constacyclic code having length (m, n),
a ∈ πm(V) and b ∈ πn(V). Then (a, b) ∈ V and (τ1(a), τΘl ,γ(b)) ∈ V . That is, τ1(a) ∈ πm(V) and
τΘl ,γ(b) ∈ πn(V). Therefore, πm(V), πn(V) are cyclic and skew Θl −γ-constacyclic codes, respectively.
Conversely, assume that πm(V), πn(V) be cyclic and skew Θl − γ-constacyclic codes and (a, b) ∈ V .
Then a ∈ πm(V) and b ∈ πn(V). Therefore, τ1(a) ∈ πm(V) and τΘl ,γ(b) ∈ πn(V) as πm(V), πn(V)
are cyclic and skew Θl − γ-constacyclic codes, respectively. Hence, (τ1(a), τΘl ,γ(b)) ∈ V , i.e., V is an
FqBe-additive skew Θl − γ-constacyclic code.

The above classification is later used to obtain quantum codes from separable FqBe-additive skew
Θl − γ-constacyclic codes. For achieving this, we first derive the necessary and sufficient conditions
for a separable FqBe-additive code to contain its dual code.

Lemma 25. Suppose V = πm(V)× πn(V) is a separable FqBe-additive code having length (m, n). Then
V⊥ ⊆ V iff πm(V)⊥ ⊆ πm(V) and πn(V)⊥ ⊆ πn(V).

Proof. As V is a separable code, we have V⊥ = πm(V)⊥ × πn(V)⊥. Therefore, V⊥ ⊆ V iff πm(V)⊥ ⊆
πm(V) and πn(V)⊥ ⊆ πn(V).

The following result obtains the condition for constacyclic code over Fq to contain its dual code.

Lemma 26. [32] Suppose V = ⟨ f (x)⟩ is an α-constacyclic code having length m over Fq for α = ±1. Then
V⊥ ⊆ V iff xm − α ≡ 0 (mod f (x) f ∗(x)).

Proposition 27. Suppose V = πm(V)× πn(V) is a separable FqBe-additive skew Θl − γ-constacyclic code
having length (m, n), where γ = ∑e

i=1 ϵiαi ∈ B∗
e for αi = ±1. Assume that πm(V) = ⟨ f (x)⟩ and πn(V) =

⟨∑e
i=1 ϵigi(x)⟩. Choose h(x), hi(x) for 1 ≤ i ≤ e such that xm − 1 = f (x)h(x) and xn − αi = hi(x)gi(x)
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for 1 ≤ i ≤ e. Then V⊥ ⊆ V iff xn − αi is right divisible by h♮i (x)hi(x) for each 1 ≤ i ≤ e and xm − 1 ≡ 0
(mod f (x) f ∗(x)).

Proof. From Lemma 25, V⊥ ⊆ V iff πm(V)⊥ ⊆ πm(V), πn(V)⊥ ⊆ πn(V) where πm(V), πn(V) are
cyclic and skew Θl − γ-constacyclic codes having lengths m, n over Fq and Be, respectively. Rest of the
result follows using Lemma 26 and Theorem 17.

Proposition 27 gives the necessary and sufficient condition for a separable FqBe-additive skew
Θl − γ-constacyclic code to contain its dual. Using the CSS construction and Proposition 27, we now
present the construction of quantum codes from separable FqBe-additive skew Θl − γ-constacyclic
codes in the next theorem.

Theorem 28. Suppose V = πm(V) × πn(V) is a separable FqBe-additive skew Θl − γ-constacyclic code
having length (m, n) such that V⊥ ⊆ V , where γ = ∑e

i=1 ϵiαi ∈ B∗
e for αi = ±1. Assume that the

parameters of the code Ψ(V) be [m + en, k, dH ]. Then, there exists a quantum code with the parameters
[[m + en, 2k − (m + en), dH ]]q over Fq.

Proof. Suppose V = πm(V)× πn(V) is a separable FqBe-additive skew Θl − γ-constacyclic code such
that V⊥ ⊆ V . Then Ψ(V⊥) ⊆ Ψ(V) which implies that Ψ(V)⊥ ⊆ Ψ(V) as Ψ(V⊥) = Ψ(V)⊥ by Lemma
22. That is, Ψ(V) is a [m + en, k, dH ] linear code over Fq which contains its dual. Therefore, by Lemma
18, there exists a quantum code with the parameters [[m + en, 2k − (m + en), dH ]]q over Fq.

Besides getting quantum codes from additive codes over FqBe, these codes can be investigated to
obtain conditions for complementary duality. In particular, we obtain conditions for an FqBe-additive
skew constacyclic code to be ACD for which we need two basic results which are given below.

Lemma 29. [14] Suppose V is a cyclic code over Fq with generator polynomial f (x). Then V is an LCD code
iff gcd( f (x), h∗(x)) = 1, where gcd( f (x), h∗(x)) denotes the greatest common divisor of f (x) and h∗(x).

Proposition 30. Suppose V = πm(V)× πn(V) is a separable FqBe-additive code having length (m, n). Then
V is an ACD code iff πm(V) and πn(V) are LCD codes over Fq and Be, respectively.

Proof. Suppose V = πm(V)× πn(V) is an ACD code and its dual code be V⊥ = πm(V)⊥ × πn(V)⊥.
If x ∈ πm(V) ∩ πm(V)⊥ and y ∈ πn(V) ∩ πn(V)⊥ then (x, y) ∈ V ∩ V⊥ = {0}. Therefore, x = y = 0
which implies that πm(V) and πn(V) are LCD codes over Fq and Be, respectively.
Conversely, assume that πm(V), πn(V) be LCD codes over Fq and Be, respectively. For any (x, y) ∈
V ∩ V⊥, we have x ∈ πm(V) ∩ πm(V)⊥ = {0} and y ∈ πn(V) ∩ πn(V)⊥ = {0}. That is, (x, y) = (0, 0)
which implies that V is an ACD code.

Using the above classification for complementary duality, we now present necessary and sufficient
conditions for a separable FqBe-additive skew constacyclic code to be ACD.

Theorem 31. Suppose V = πm(V) × πn(V) is a separable FqBe-additive skew Θl − γ-constacyclic code
having length (m, n), where γ = ∑e

i=1 ϵiαi ∈ B∗
e for αi = ±1. Assume that πm(V) = ⟨ f (x)⟩ and πn(V) =

⟨∑e
i=1 ϵigi(x)⟩. Choose h(x), hi(x) such that xm − 1 = f (x)h(x) and xn − αi = hi(x)gi(x) for 1 ≤ i ≤ e.

Then V is an ACD code iff the following conditions hold:

1. gcd( f (x), h∗(x)) = 1, where gcd( f (x), h∗(x)) denotes the greatest common divisor of f (x) and h∗(x).
2. gcrd(gi(x), h♮i (x)) = 1, where gcrd(gi(x), h♮i (x)) denotes the greatest common right divisor of gi(x)

and h♮i (x), for 1 ≤ i ≤ e.

Proof. It can be verified by using Lemma 29, Theorems 12 and 24.
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7. Examples

In the present section, we derive several LCD and quantum codes in support of our study. Most
of the codes are either MDS or near MDS. Moreover, a comparison is made between the resulting
quantum codes and the codes found in recent literature.

To obtain the Gray image of any skew constacyclic code over B2 under Φ, we consider the matrix

M =

[
1 1
1 −1

]
. Notably, all linear codes over a finite field having parameters [n, k, d] satisfy the

Singleton bound, which is determined by d ≤ n − k + 1. If d = n − k + 1, it is considered as an MDS
code; if d = n − k, it is considered as near MDS. In case of an [[n, k, d]]q quantum code, we have the
Singleton bound k + 2d ≤ n + 2. The quantum code satisfying the equality k + 2d = n + 2 is called as an
MDS code, and the code satisfying k + 2d = n is called a near MDS code. Now, we go through a few
examples of codes in detail.

Example 32. Take n = 12, e = 2. Consider the factorization of x12 − 1 over F52 given by

x12 − 1 =(x9 + 2x8 + t20x7 + 3x6 + t22x5 + 2x4 + tx3 + t11x + 4)(x3 + 3x2 + t11x + 1)

and take V1 = ⟨x3 + 3x2 + t11x + 1⟩. Further, consider the factorization

x12 − 1 =(x11 + t22x10 + 4x9 + t10x8 + x7 + t22x6 + 4x5 + t10x4 + x3 + t22x2 + 4x + t10)(x + t2)

and take V2 = ⟨x + t2⟩. Then V = ϵ1V1 ⊕ ϵ2V2 is a cyclic code over F52 + uF52 and Φ(V) is an LCD code
with the parameters [24, 20, 4]52 which is a near MDS code.

Example 33. Take n = 30, e = 2. Consider the factorization of x30 + 1 over F112 given by

x30 + 1 =(x28 + t78x27 + 2x26 + t78x25 + x24 + 10x22 + t18x21 + 9x20 + t18x19 + 10x18 + x16

+ t78x15 + 2x14 + t78x13 + x12 + 10x10 + t18x9 + 9x8 + t18x7 + 10x6 + x4 + t78x3

+ 2x2 + t78x + 1)(x2 + t18x + 1)

and take V1 = ⟨x2 + t18x + 1⟩. Further, consider the factorization

x30 + 1 =(x29 + t71x28 + 2x27 + t83x26 + 4x25 + t95x24 + 8x23 + t107x22 + 5x21 + t119x20+

10x19 + t11x18 + 9x17 + t23x16 + 7x15 + t35x14 + 3x13 + t47x12 + 6x11 + t59x10+

x9 + t71x8 + 2x7 + t83x6 + 4x5 + t95x4 + 8x3 + t107x2 + 5x + t119)(x + t)

and take V2 = ⟨x + t⟩. Then V = ϵ1V1 ⊕ ϵ2V2 is a skew negacyclic code over F112 + uF112 and the parameters
of Φ(V) are [60, 57, 3]112 . By using Theorem 19, we obtain a quantum code having the parameters [[60, 54, 3]]112

which is better than the code [[60, 50, 3]]112 given in [40].

Example 34. Take m = 48, n = 8, e = 2. Consider the factorization of x48 − 1 over F72 given by

x48 − 1 =(x46 + t6x45 + t31x44 + t25x43 + t10x42 + t19x41 + 6x40 + t28x39 + t17x38 + t35x37+

t35x36 + t30x35 + t31x34 + t18x33 + t47x32 + t20x31 + t19x30 + t33x29 + t44x28+

t19x27 + tx26 + t29x25 + t13x24 + t20x23 + t10x22 + t23x21 + 5x20 + t7x19 + t29x18+

t15x17 + t46x16 + t44x15 + t20x14 + t36x13 + t46x12 + t42x11 + t44x10 + t41x9 + t20x8

+ t28x7 + t21x6 + t13x5 + tx4 + t13x3 + 2x2 + t36x + t27)(x2 + t30x + t45)
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and take f (x) = x2 + t30x + t45. Further, consider the factorizations

x8 + 1 =(x6 + t30x4 + t12x2 + t42)(x2 + t6)

and

x8 − 1 =(x7 + t12x6 + x5 + t12x4 + x3 + t12x2 + x + t12)(x + t12)

and take g1(x) = x2 + t6 and g2(x) = x+ t12. Then, the code V given by Proposition 27 is a F72(F72 + uF72)−
additive skew constacyclic code containing its dual. The Gray image Φ(V) of the code V is a [64, 59, 3]72 code
which contains its dual. Therefore, a quantum code having the parameters [[64, 54, 3]]72 is obtained by using
Theorem 28.

In Tables 1 and 2, we present LCD and quantum codes obtained from skew Θ1 − γ-constacyclic
code V = ⟨ϵ1g1(x) + ϵ2g2(x)⟩ over B2, respectively. In both the tables, the first column represents the
length of the code V , and the second column represents (α1, α2) such that γ = ϵ1α1 + ϵ2α2. The third
column represents the polynomials g1(x), g2(x) such that V is generated by ϵ1g1(x) + ϵ2g2(x) while
the parameters of Φ(V) are presented in the fourth column. In Table 2, the parameters of the quantum
codes obtained from the code Φ(V) (using Theorem 19) are presented in the fifth column. In the sixth
column, the comparison of these obtained codes is made with the known quantum codes that have
been reported recently in the literature.

Table 1. LCD codes obtained from skew Θ1 − γ-constacyclic code V over B2.

n (α1, α2) g1(x), g2(x) Φ(V) Remark
8 (1, 1) t21, t21 [16, 14, 2]25 near MDS

12 (1, 1) 1t1131, t21 [24, 20, 4]25 near MDS
12 (1, 1) t21, t21 [24, 22, 2]25 near MDS
8 (1, 1) 6t361, t31 [16, 13, 4]49 MDS

12 (1, 1) t3t22t221, t31 [24, 20, 4]49 near MDS
12 (1, 1) t51, t51 [24, 22, 2]121 near MDS
12 (1, 1) t65t811, t51 [24, 20, 4]121 near MDS
20 (1, 1) t75t54t1, t751 [40, 36, 4]121 near MDS

Table 2. Quantum codes obtained from dual containing skew Θ1 − γ-constacyclic code over B2.

n (α1, α2) g1(x), g2(x) Φ(V) [[en, k,≥ d]]q Existing/Remark
8 (−1, 1) t01, t21 [16, 13, 3] [[16, 10, 3]]32 −
8 (−1, 1) t301, t1 [16, 13, 3] [[16, 10, 3]]52 −

30 (−1,−1) 1t31, t4t21 [60, 56, 3] [[60, 52, 3]]52 −
48 (1, 1) t5t71, 10t1 [96, 91, 4] [[96, 86, 4]]52 [[96, 84, 4]]52 [41]
8 (−1, 1) t601, t121 [16, 13, 3] [[16, 10, 3]]72 −

48 (−1, 1) t3t1, t0t171 [96, 91, 4] [[96, 86, 4]]72 [[96, 84, 4]]72 [41]
8 (−1, 1) t6511, t301 [16, 13, 4] [[16, 10, 4]]112 MDS

30 (−1,−1) 1t181, t1 [60, 57, 3] [[60, 54, 3]]112 [[60, 50, 3]]112 [40]
30 (−1,−1) 1t181, t90t331 [60, 56, 4] [[60, 52, 4]]112 [[60, 50, 3]]112 [40]

Further, we obtain quantum codes from FqB2-additive skew Θ1 − γ-constacyclic codes having
length (m, n) where γ = ϵ1α1 + ϵ2α2. In Table 3, we tabulate α1, α2, the polynomials f (x), g1(x), g2(x)
such that πm(V) = ⟨ f (x)⟩ and πn(V) = ⟨∑2

i=1 ϵigi(x)⟩ where f (x)|xm − 1 and gi(x) is a right divisor
of xn − αi for i = 1, 2. The parameters of the code Ψ(V) are presented in the fifth column, whereas the
parameters of the derived quantum codes are presented in the sixth column by using Theorem 28.
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Table 3. Quantum codes obtained from FqB2-additive skew Θ1 − γ-constacyclic codes.

(m, n) (1, α1, α2) f (x) g1(x), g2(x) Ψ(V) [[en, k,≥ d]]q
(24, 30) (1,−1,−1) t23t111 1t31, t4t21 [84, 78, 3] [[84, 72, 3]]52

(48, 30) (1,−1,−1) t5t21t81 1t31, t4t21 [108, 101, 3] [[108, 94, 3]]52

(24, 48) (1, 1, 1) t3t17t81 t5t71, 10t1 [120, 112, 4] [[120, 104, 4]]52

(48, 8) (1,−1, 1) t45t301 t601, t121 [64, 59, 3] [[64, 54, 3]]72

(24, 28) (1,−1, 1) t1411 t30t341, t12t51 [80, 74, 3] [[80, 68, 3]]72

(24, 48) (1,−1, 1) t36t13t1 t3t1, t0t171 [120, 112, 4] [[120, 104, 4]]72

(40, 30) (1,−1,−1) t75t471 1t181, t1 [100, 95, 3] [[100, 90, 3]]112

(40, 30) (1,−1,−1) t63t2111 1t181, t90t331 [100, 93, 4] [[100, 86, 4]]112

Remark: In the tables, the polynomials are represented by their coefficients in increasing powers of x.
For instance, t23t111 represents the polynomial t23 + t11x + x2, where t is the primitive element of the
corresponding field Fq.

8. Conclusions

In this article, we have investigated skew Θl − γ-constacyclic codes over the ring Be, and obtained
requirements for these codes to be LCD for some specific values of γ. Further, we have obtained
requirements for a skew constacyclic code over Be to satisfy the dual containing property, motivated
by the CSS construction for quantum codes. We also defined a duality-preserving Gray map. This
yielded several (MDS/near MDS) LCD codes and new quantum codes over finite fields. Moreover, we
have also considered additive skew constacyclic codes, and obtained conditions for complementary
duality and dual containing property.
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