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Abstract: Consider the ring B, = Fy +ulF; + - -+ + ue_qu, u® = u (e > 2), where IF; denotes the finite field having
g = p™ elements (for m > 1 and a prime p), and g =1 (mod e — 1). Skew constacyclic codes over B, are studied
in this paper. We present their generator polynomial and describe the criteria for their complementary duality.
Moreover, we derive criteria for these codes to contain their dual and obtain quantum codes. Additionally, we
establish a Gray map that preserves duality and investigate its properties. We also take into account additive skew
constacyclic codes for this purpose and also derive criteria for the complementary duality of these codes. Finally,
we provide several LCD and quantum codes (MDS/ near MDS). The latter are compared with the quantum codes

obtained in the recent literature.
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1. Introduction

Rich algebraic structures and ease of practical application are two of the most well-known
attributes of cyclic codes. On identifying a vector by a polynomial, one can consider any cyclic code
over [F; as a submodule of the [F;[x]-module F;[x]/(x" — 1) for the length n. Further, these codes
can also be considered as ideals generated by divisors of x” — 1. It is worth noting that F;[x] is a
unique factorization domain, a fact which restricts the divisors of " — 1 in ;[x]. As an extension

of these codes, constacyclic codes may be regarded as ideals of [F;[x]/(x"

— 1) for some non-zero
element 7y € ;. Further, these codes were examined over some finite commutative rings [1,2]. Later,
by relaxing the linearity condition, additive codes were considered over mixed alphabets [3,4].

On the other hand, in the desire to obtain more factorizations of x"” — 1 than over a factorial ring, skew
cyclic codes [5,6] were introduced with the notion of skew polynomial rings [7]. These codes over a
finite field F,; are basically left submodules of the module F;[x, ®]/(x" — 1) for an automorphism ® of
F,. Later, these codes were investigated by Abualrub and Seneviratne [8] over F, + vF,, where v?
Additionally, Gao [9], and Gursoy et al. [10] presented skew cyclic codes by considering different
automorphisms. Later, as a continuation of these efforts, skew constacyclic codes were examined
[11,12].

In 1992, Massey [13] proposed LCD codes (V N V1 = {0}). It was demonstrated that these codes
were the best linear coding solution to 2-BAC. Sufficient and necessary condition for the complementary
duality of cyclic codes over finite fields was derived in 1994 by Yang and Massey [14]. Additionally,
they deduced a relationship among the reversible and LCD cyclic codes. Later, DNA applications made
full use of the former idea [15,16]. On the other hand, the Gilbert-Varshamov bound is satisfied by LCD
codes, as demonstrated by Sendrier [17] in 2004. Subsequently, these codes were examined over chain
rings in [18]. In 2016, these codes were shown to have applications in cryptosystems [19]. Afterwards,
LCD codes were studied over different commutative rings in [20-26] , and applications of these codes
were presented in Multi-secret Sharing Schemes [27]. Recently, LCD codes were studied in [28,29]
using the skew polynomial rings. Besides, additive codes were investigated for the complementary
duality over the structure Z,Z,[1?] in [30], and they were called additive complementary dual (ACD)

= 0.
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codes.

In the last decades of the 20th century, it was noticed that quantum mechanics might improve the
complexity of certain classical algorithms, like the DFT transform, list searching, or integer factorization.
This last algorithm is a key ingredient in the RSA cryptosystem. For this reason, quantum computation
got the attention of many researchers. To securitize quantum computation, Shor [31] introduced
Quantum Error-Correcting Codes (QECCs) in 1995. In 1998, classical error-correcting codes were
employed to obtain QECCs via some constructions such as CSS construction [32]. Afterwards, linear
codes over different commutative rings were used to obtain good QECCs in [33-36]. As an extension
of these works, additive codes over the commutative structure were also utilized [37]. Recently, cyclic
and constacyclic codes using non-commutative rings have been employed for obtaining QECCs due to
more possibility of factorization of a polynomial. Many good QECCs were obtained from cyclic and
constacyclic codes [38—41] . Motivated by these works, we consider skew constacyclic and additive
codes for obtaining new and better LCD and quantum codes.

This paper has been arranged as follows: Firstly, the structure of linear codes over B, is presented
in Section 2. Section 3 presents skew constacyclic codes over B, defines a Gray map and analyzes its
properties. In Section 4, we derive some results for LCD codes. Further, we derive quantum codes by
utilizing CSS construction in Section 5. Section 6 presents the structure and properties of additive skew
constacyclic codes over F;B,. In Section 7, we present various LCD codes as well as new quantum
codes. Our work is concluded in Section 8.

2. Preliminaries

Let us suppose that F; denotes a finite field having cardinality q. Let us consider a ring B, =
Fyg+ulFg+---+ ue’lqu, u® =u,withg =1 (mod e — 1) (¢ > 2). We represent the collection of units
in B, by Bj.

—1
Consider a primitive element a € F; and take § = = Following [42], consider

-1
eg=1—-u"",

1
€ = e_l(u+u2+-~+ue*2+ue*1),

1
€3 — ((—:u §2u2 . ge—Zue—Z ue—l),
1
€1 = — (CZM (‘:2)2”2 . (62)67211872 uefl)’
1
€ = — (é—e—Zu (ge—Z)ZuZ . (66—2)6—21/{6—2 ue—l)_

o~

Then, we have B, = @;_, ¢;F; and each s € B, has a unique representation s = )} {_; €;s;, 5; € ;.
Moreover, any linear code V over B, with length 7 has a representation

V=eV1 PV ® - PeVe,

for some linear codes V; = {r; € Fj : Jr; € Fj,1 <j #i < esuchthat Y3, e € V} over Fy
(1 <i < e) and the dual code of Vis V- = Vi & - - - @ €. Vi-. Subsequently, the following result
holds.

Theorem 1. Let us assume that V = €1V @ Vo @ - - - ® €.V, is any y-constacyclic code over B, (y =
Yo q€in; € By). ThenV has g(x) = Y.i_; €;gi(x) as its generator polynomial, where each V; has g;(x) as
their generator polynomial (1 <i < e).
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3. Skew Constacyclic Codes over B,

The current section presents the generator polynomials for skew constacyclic codes over B, and
the dual codes. In order to proceed with the investigation, we first require an automorphism of B, as
defined below.

Define an automorphism @; : B, — B, by

! ! !
Oy(e101 + €202 + - - - + €ctte) = €10 (a1) + €20;(a2) + - - - + €0y (ac) = €1a] +e2ah + - +eeal,

for 0 < I < m — 1. Using this, the definition for skew constacyclic codes is as mentioned below.

Definition 2. Suppose ©; is an automorphism of the ring B,, v € Bj. Then a linear code V over B, is called a
skew constacyclic (or skew ©; — - constacyclic) code over B,, if te,,(V) = V, where 1, , : By — B} is
the skew ©; — «y-constacyclic shift given by

T®Ir’Y(C0’ Cl,--- /Cnfl) = (’)’@l(cn,l),@1(C0),®1(C1), oo ,@l(cn_z)).

For v = —1 (resp. vy = 1), these codes are said to be skew negacyclic (resp. skew cyclic) codes, respectively.
Further, for identity automorphism ©; and -y = —1 (resp. v = 1), these codes are said to be negacyclic (resp.
cyclic) codes with the corresponding negacyclic and cyclic shifts represented by T_1 and Ty, respectively.

Consider the skew-polynomial ring
Be[x;0)] = {bo + b1x + - - - + byx" |b; € B, n' € N}

in which the multiplication is given by x x b = ©;(b)x. Then the center Z(5,[x; ®;]) of B,[x; ©;] (which
will be used to study skew constacyclic codes) can be obtained by the below-mentioned result.

Lemma 3. Let us assume that v € By such that ©;(y) = -y, where © is an automorphism of B,. The order of
O, divides n iff x" — vy lies in Z(B.[x; ©)]).

Proof. Let ®;(y) = v and order of ©; divides 1, i.e., @] (s) = s Vs € B,. Then, for any sg +s1x + - - - +
sn/x”/ € B.[x; ®;], we have
(x" —y)(sp+s1x+---+ sn/x”,) =@ (s)x" 4+ O (s)x" T -+ + @l"(sn/)x”“‘/
— y(so+ 51X 4 -+ 5yx")
=sox" + 512" 4 g x" T

—(yso+ys1x+---+ 'ysn/x”')
and

(s0+ 51+ -+ 5™ ) (X" — ) =s0x" + 512" T - g
! !/
= (o7 + 5191 (7)x + - + 50 (7)x")
=sox" + 512" 4 g 1"
— (so7 +s17x 4 -+ 572",
That is, (x" — 9)(so + 81X + -+ - + syx™) = (50 + 51X + - - - + 5,yx" ) (x" — ) and hence x" — €

Z(Be{x}@)l])' ) )
Conversely, assume that x* — v € Z(B,[x;©;]). Then (x" — )(sx’) = (sx')(x" — ), for all s € B, and
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i € N. Now,

(x" =) (sx') = (O ()" —ysx’) and (s2')(x" — 7) = (sx™" = 50](7)x) = (s2"*" — 57x").
It implies that ©]' (s) = s for all s € B,. Therefore, we conclude that order of @; divides n. [

As we have already seen that for an automorphism ©; of B, whose order divides n and y € B}

such that v is fixed by ©@;, we have (x" — ) € Z(B,[x;0)]). Therefore, K:E[X %]

contrary, if n is not divisible by order of ®; then [x O doesn’t form a ring but a left B [x; ©;]-module
and any skew constacyclic code is characterized by the result given below.

is a ring. On the

Lemma 4. Any linear code V over B, having length n is a skew ©; — «y-constacyclic code iff V forms a left
Be[x; ©;]-submodule of %.

Theorem 5. Suppose vy =Y €in; € By andV = e1V1 @ Vo & - - - @ €.V, is a linear code over B,. Then
V is a skew ©; — y-constacyclic code iff each V; is skew ®; — w;-constacyclic code (1 < i < e).

Proof. Letussuppose that ) is a skew @) — y-constacyclic code over B, and a; = (agj, a1 j, - -, A(n—1 ),]-) €
V; for every j lying in the set {1,2,...,e}. Thenv = (vy,v1,...,05_1) = ;:1 €jaj € V, where
v; = Z]‘?Zl €;a;; for each i lying in the set {0,1,...,n — 1}. As )V is a skew @; — y-constacyclic code, we
have 1, ,(v) € V. Note that

70,1 (v) = (101(vn-1), O (v0), O1 (1), . .., O (vp-2))

7@1(261 (n—1,7) ©1( Zejﬂo] L 0(
j=

-

€j(n—2),)
1

-
I

e

= (Zej"‘j@l (n-1),1)7 Z%@l a,), Z
j=1 j= j=1
e

Z (X]@)l A(n—1 ]) ®l(a0]) ,@[(ﬂ(nfz),j)-

It implies that (¢;0;(a(,_1);), ©1(ao;), ..., O1(ag,_z),;) € Vjforeach1 < j < e. Consequently, V;isa
skew ©; — aj-constacyclic code for each j lying in the set {1,2,...,e}.

For the other side, assume that V; is skew ©; — a;-constacyclic code over Fy and v = (vg, v1,...,0,-1) €
V, where v; = Y, €;a;,; for each j lying in the set {0,1,...,n — 1}. Thena; = (ag;, a1, ..., a(,-1),) €
V; for each i lying in the set {1,2,...,e} asv = }{_; €;a;. Since V; are skew ®; — a;-constacyclic codes,
we have Tg, 4,(a;) € V; for each 1 < i < e which further implies that }¢_; €;7e,4,(4;) € V. Now,

e

Zeﬂ-@,,le i) Zel ;0 (a ) @l<a01) ®l(a(n—2),i))
i=1
e
261‘" ®l Z€1®l(a01 26161 )
i=1
e e

= (79, 261 (1)), O1(Y_ €iag), .., O1(Y €iag,_s) ;)
i= i=1 i=1

= (’Y®l(Un—l)@l(?fo),@z(vl)/ e, Op(vn-2))

= T@W(v).

Consequently, V is a skew @; — y-constacyclic code as g, ,(v) € V. O
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From [12], any skew ©; — a-constacyclic code V having length n over F, for a € I} is principally

Fq[x;0©
Lo and V = (3(x),
where g(x) divides x"" — « on the right and regarded as the generator polynomial of the code V. Using

these arguments and Theorem 5, the below mentioned conclusion can be derived.

generated by a polynomial g(x) as a left F;[x; ©®;]-submodule of the module

Theorem 6. Suppose y =Y ei; € By and V = e1V1 @ Vo @ - - - D €.V, is a skew ©; — y-constacyclic
code over B, with V; = (g;(x)), where each g;(x) divides x" — w; on the right (i lying in the set {1,2,...,e}).
Then' V = (g(x)), where g(x) = Y_i_; €;i(x) divides x — -y on the right.

We now consider a Gray map @ : By — F¢" defined as
CI)(]"O, SVERRY rn—l) - [(510/ 520/« +s SEO)M/ (5111521/ e /Se].>M/ sy (S](n—])/s2(n—1)/ e /Sg(n—l))M]/
where r; = Y}, €sy; for each i lying in the set {0,1,...,n — 1} and a square matrix M satisfies

MM'" = vI for the identity matrix [ and v € 7. Then @ is a bijective linear map, and the following
result can be deduced.

Lemma 7. Let us suppose that V is a linear code over B, having dual code V. Then ®(V+) = &(V)*.

Proof. Suppose v = (vg,v1,...,v,-1) € Vand x = (x9,X1,...,X,_1) € VL, where v; = Z]”le €jrji and
X; = 216'21 €;sji for each i lying in the set {0,1,...,n — 1}. Then

(v,x) =€ nil 1481 + €2 ni,l 12iS2i + -+ € nil TeiSei = 0,
i=0 i=0 i=0
which implies that Y7~ rjisji = 0forallj € {1,...,e}. Now,
@(0) = ((r10,720, - - -, 7e0) M, (111,721, -, et )M, o, (Fi(n—1)s T2 (n1)r - - - Te(n—1)) M),
@(x) = ((510,520, - - -, Se0) M, (511,521, - - -, Se1) M, -+, (S1(n=1), S2(n=1) - - - 1 Se(n—1)) M)

and

n—1
(@(v), @(x)) = D(0)[@(x)]" = Y (r1i72is -+ Tei) MM (517,821, - -, 5ei)’
i=0

[uny

n—

V'Y (1,120 Tei) (516,820 - - - 1 Sei)
i

t

- O

n— n—1

n—1
V) TStV ) TSyt -tV Z TeiSei
' i=0 i=0

o

:O,

ie, ®(x) € ®(V)*. Therefore, ®(V)+ 2O ®(V1). Moreover, |®(V1)| = |®(V)!| as @ is a bijective
map. Hence ®(V)+ = ®(V1). O

4. LCD Codes

This section first presents the dual of a skew constacyclic code, and then obtains conditions under
which these codes must be LCD. Further, we study their Gray images.

For any p(x) = YI_,pix’ € Be[x;®;] of degree r with py € B, its left monic skew reciprocal
polynomial is defined as p?(x) = (©(po)) "t Xi_o @i (p,—i)x'. The polynomial p(x) is called as self-
reciprocal iff p(x) = p’(x). This monic skew reciprocal polynomial is useful for the investigation
of dual code V. If () = a and # is divisible by order of @, then the dual V! of a skew ©; — a-
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constacyclic code V = (g(x)) over F, is a skew ©; — a~!-constacyclic code over F;, which is given

by V1 = (h¥(x)), where g(x)h(x) = h(x)g(x) = x" — « for the length 1 of V. Now, under the same
conditions on # and considering a; (1 < i < ¢) fixed by ©;, we obtain the following result.

Theorem 8. Suppose y =Y _j€in; € By andV = e1V1 @ Vo & - - - @ €.V, is a skew ©; — y-constacyclic
code over B, having the generator polynomial g(x) = Y_i_; €;gi(x), where g;(x) is the generator polynomial of
V;and g;(x)hi(x) = hi(x)gi(x) = x" — a; for each 1 < i < e. Then the generator polynomial of V- is h%(x),
where h*(x) = Y¢_, eihf(x)for h(x) = Y5 eihi(x).

Definition 9 (LCD codes). If VN VL = {0} for any linear code V over B,, then the code V is considered as
LCD (or complementary dual).

In order to check the complementary duality of skew constacyclic codes over B, we first need a
criterion for evaluating the complementary duality of a skew constacyclic code over finite field.

Lemma 10. [28, Theorem 4.1] Suppose that n is divisible by order of ©), a € Fy such that > =1andVisa
skew ©; — a-constacyclic code over finite field with skew generator polynomial g(x). Choose h(x) in order to
ensure g(x)h(x) = h(x)g(x) = x" —a. Then V is a Euclidean LCD code iff gcrd(g(x), h%(x)) = 1, where
gerd(g(x), h*(x)) denotes the greatest common right divisor of h(x) and g(x).

Once we get a link among the complementary duality of a linear code over B, with its constituent
codes, we can get requirements for complementary duality of any skew ©; — y-constacyclic code over
Be. So, first we establish that link which is presented in the below mentioned result.

Proposition 11. Suppose V = e1V; @ 2Vo @ - - - ® €.V, is a linear code over B,. Then V is an LCD code iff
each V; is an LCD code over F,.

Proof. Suppose V = €1V eV @ - B €.V, is a linear code over B,. The dual code is YL =
aVi @&V ®--- de )V and

Vvt =e(Vinvi)eaVany) o - de(Ven V).

Consequently, it is evident that V N V1 = {0} iff V; N V- = {0} forevery 1 <i<e. O

From now onwards, we work under the assumption that «;’s are fixed by @; for 1 <i < ¢, and the
order of ®; divides n. Using the Proposition 11 and Lemma 10, we now obtain requirements for skew
©®; — y-constacyclic code over B, to be complementary dual, where v = Y7, €;a; € B} for a; = £1.

Theorem 12. Suppose v = Yi_; e;n; € By for a; € {1, —1} and n is a multiple of order of ©;. Then a skew
©; — y-constacyclic code V = (e181(x) + €282(x) + - - - + €c8e(x)) having length n over B, is an LCD code
iff gcrd(gi(x), h? (x)) =1, where gcrd(g;(x), hE (x)) denotes the greatest common right divisor ofh? (x) and
Qi(x) foreach1 <i<e.

Proof. Suppose V; = (gi(x)) is a skew @; — &; constacyclic code over F; and h;(x) is such that
Qi(x)hi(x) = hi(x)gi(x) = x" —a; for 1 < i < e. Then, by Lemma 10, V; is an LCD code iff
gcrd(gi(x),h?(x)) = 1foreach1 < i < e. Therefore, V is an LCD code iff gcrd(gi(x),hg(x)) =1
foreachl1 <i<e O

Next, we present a relation between the Gray image of the intersection of a code and its dual with
the intersection of their Gray images, which can be proved by using Lemma 7.

Lemma 13. Suppose V is a linear code having length n over Be. Then ®(V N V+) = (V) N ®(V)*+, where
D is the Gray map defined in Section 3.
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Proof. Suppose c € ®(V) NP (V). Then there exista € V and b € V! such that c = ®(a) = ®(b)
as ®(V*+) = ®(V)* by Lemma 7. But @ is injective, so we have a = b and hence ¢ € ®(V N V').
Therefore, ®(V) N ® (V1) C (VN VL)

Conversely, assume that c € ®(V N V). Then ¢ = ®(a) for some a € V N V+. Further, c = ®(a) €
®(V) N®(V1). Using Lemma 7, we get ¢ = ®(a) € ®(V) Nd(V)*+ as d(V1) = &(V)L. Therefore,
d(VNYL) Cd(V)ND(V)! and the result follows. [

By applying this lemma, we are able to derive a relationship between the complementary duality
of a linear code over B, and its Gray image under the map ®.

Theorem 14. Suppose V is a linear code over Be. Then V is an LCD code iff (V) is an LCD code over ;.

Proof. As & is injective, the proof follows using Lemma 13. [

5. Quantum Codes

In this section, we consider <y to be a unit in B, which is fixed by ®; and n be divisible by order
of ®;. We obtain the dual containing conditions for a skew <y-constacyclic code over B, and then
establish the existence of a quantum code by applying the CSS construction on their Gray images. In
this direction, we first recall some preliminary definitions and results.

Following [34], for a Hilbert space H? of dimension g over the field of complex numbers C,
(H9)®" = H1 ® - - - ® H1 is also a Hilbert space of dimension ¢". Further, any g*-dimensional subspace
of the Hilbert space (H)®" is called a quantum code denoted by [[n, k, d]];, where d is the minimum
distance of the code. Further, for the comparison of two quantum codes with parameters [[n, k, d]],
and ([, k', d']];, we have the following conditions:

ed=dand k>
) d>d’and%:k—/
. d>d’and%>k—.

If any one of the above conditions is satisfied, then we say that the quantum code with the parameters
[[n, k,d]], is better than the one with the parameters [[1’, K, d']];. Now, we recall the condition for a
skew constacyclic code over [, to contain its dual.

Lemma 15. [41, Lemma 5.3] Suppose V = (g(x)) is a skew ©; — a-constacyclic code having length n over
F,, where x" — o = h(x)g(x) for « = 1 and n be a multiple of the order of ®,. Then V* C V iff x" — a is
right divisible by h® (x)h(x).

The following result presents a relation between the dual containing property of a skew consta-
cyclic code over B, in terms of its constituent codes in the decomposition.

Lemma 16. Suppose V = €1V @ €2Vo @ - - - D €.V, is a skew ©; — y-constacyclic code having length n over
Be. Then VE CViff V- CVifor1 <i<e.

Proof. Suppose V =e1V1 @ eV, @ - - - D €.V, is a skew ©; — y-constacyclic code having length n over
Be, Vt = Vi @ Vs & - @ eV} beits dual code such that V- C V. Then multiplying by €; in
the equation

eV oeVi @ DeVi CeVioeah® - deV,,

we get (—:iVil C gV, foreach 1 <i <e. AsV;’s are codes over [y, it further implies that Vf- C VY, for
eachl <i<e.

Conversely, assume that V} CV;foreachl <i<e Thene1Vi ®erVo ®---De Ve C €1 VlL @ GQVZL D
D eeVEL, ie., V1 C V which completes the proof. O
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Using this relation and Lemma 15, we now obtain conditions for skew constacyclic code over B,
to contain its dual code.

Theorem 17. Suppose V = (g(x)) is a skew ©; — y-constacyclic code having length n over B,, where n is a
multiple of the order of @), v = Y5 €;a; for a; = £1, g(x) = Y54 €;i(x) such that x" — a; = h;j(x)gi(x)
for 1 <i<e Then V*+ C Viff x" — a; is right divisible by hf (x)h;(x) foreach1 <i<e.

Proof. Suppose x" — «; is right divisible by h? (x)hi(x) for each 1 <i < e. Then V;* C V; by Lemma

i

15, where V; = (gi(x)) for 1 <i < e. It implies that
Vi=eVioaV; o eVl CeVi@er® el = V.
Conversely, assume that V- Cy,ie,
Vi DeVs @ SeVi CeV@eVra® - DeVe.
Then multiplying by €; on both the sides, we get
ein‘ CeVforeachl <i<e.

It further implies that V- C V) as V;’s are linear codes over F; and hence x" — a; is right divisible by
hf(x)hi(x) foreachl1 <i<e 0O

To obtain quantum codes from dual containing codes, we use the CSS construction [35, Theorem 3],
which is given below.

Lemma 18 (CSS construction). Suppose Vi = [n,ky,d1]; and Vo = [n,ky,d3), are linear codes over I,
with Vi~ C Vy. Assume that d = min{wy(v) : v € (V1 \ V5) U (V2 \ Vi)} > min{dy,da}. Then there
exists a QECC with parameters [[n, ki + ko — n,d]]q. In particular, if Vi =V, and let d = min{wy (v) : v €
(V1 \ Vi")}, then there exists a QECC with parameters [[n, 2ky — n,d]],.

Now, we employ the above CSS construction to obtain quantum codes from the dual containing
skew ©; — y-constacyclic codes over B,, where v = Y7, €;a; for a; = £1.

Theorem 19. Suppose V is a skew ©; — ~y-constacyclic code over B, such that V*+ C V and ®(V) have the
parameters [en, k, d]. Then, the existence of a quantum code over Fy having the parameters [[en, 2k — en, d]], is
guaranteed.

Proof. Suppose V is a skew ®; — y-constacyclic code over B, with V O V. Then ®(V) is a linear
code over Fy with ®(V) 2 ®(V+) = ®(V)+. By using Lemma 18, the existence of a quantum code
over [F, having the parameters [[en, 2k — en, d]]; is guaranteed. [

6. Complementary Dual and Quantum Codes from F;5,-Additive Skew Constacyclic Codes

In this section, we examine ]Fde—additive codes. We first obtain dual containing conditions for an
additive skew constacyclic code over F; B, and establish the existence of a quantum code with certain
parameters. Further, we obtain conditions for an additive skew constacyclic code to be ACD (additive
complementary dual) in some instances. Throughout this section, we consider v to be a unit in 3,
which is fixed by ®; and # is divisible by the order of ©;.

Consider the set F;B8, = {(a,b) : a € F;,b € B,} which forms a group under component-
wise addition. Define a projection map 7 : B, — F; as m(sg + usy + - -- + uls,_1) = so, where
si € Fyfor 0 < i < e—1. Further, we define a multiplication * : B, X F?Bg’ — IE‘?B? as
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s« (ag,ar,...,a,_1,bo,b1,...,by_1) = (7t(s)ag, (s)ay, ..., mw(s)am_1,8bo,sbq,...,sb,_1), where s, b; €
B, and aj € Fyfor0 <i<n-1,0<j<m~—1. Then, it can be checked that the set ]F?BZ} defined as

FyBy ={(a,b) :a € FJ',b € B/}

forms a B,-module under the componentwise addition and the multiplication defined by “+’. Further,
we recall that any I, B.-additive code V having length (m, 1) is a non-empty subset of F' B such that
V forms a B.-submodule of the module ]Fg1 BI. The dual code Y+ of an [F; Be-additive code V, which is
defined as

Vi={z €FyB; i [z,c] =0V ceV}

where

_ e—1 = o) = 1/
[z,c] = u Y aal |+ ) b;b;
i=0 i=0
!

for z = (ag,ay,...,a,,_4,by,by,...,b,_;) and ¢ = (ap,ay,...,a,-1,bo,b1,...,by_1), is also a FyB,-

additive code having length (1, 7). We say that an IF; B,-additive code V is an additive complementary
dual (ACD) code if VN V+ = {0}. Now, we define an F,B,-additive skew constacyclic code.

Definition 20. For a unit element vy € B, and an automorphism ©y, an ¥y B,-additive code V having length
(m, n) is said to be an ¥y Be-additive skew @) — «y-constacyclic code if (11 (a), T@,,, (b)) € V for every (a,b) € V
where T, Tg,,, are the cyclic and the skew @, — y-constacyclic shifts, respectively.

Fx] B,[x:0)]
(m=1) 7 (¥ =7)
ment (a,b) € Fy'B; by the polynomials (a(x),b(x)) € S,y where a = (ag,a1,...,am-1),b =
(bo, by, .. .,bn_l),a(x) =ay+ax+.. .,am_lx’”*l and b(x) =by+bix+---+ bn_lxnfl. Now, we
define the corresponding multiplication * : Be[x] X S(, ) = S(n,n) @S

For a unit element v € B, consider the set S, ,) = We identify an ele-

where 7(z(x)) = ¥; 7t(z;)x' for any z(x) = ¥;z;x' € Be[x] and (a(x),b(x)) € S(mn)- The set S, )
forms a B,[x]-module with respect to the usual componentwise addition of polynomials and the
multiplication defined by *. Now, under the above identification of vectors by polynomials and
considering the above module structure of 5, ,,), an I, B,-additive skew constacyclic code can be seen
as a Be[x]-submodule of S,, ) as given below.

Theorem 21. Suppose V is an FyB.-additive code having length (m,n). Then, it is an I, B,-additive skew
@) — y-constacyclic code having length (m,n) iff V is a Be[x|-submodule of the module S, ,,).

Proof. Suppose V is an F;B.-additive skew ®; — y-constacyclic code having length (m,1) and
(a(x),b(x)) € V with the vector representation (a,b). Then (7 (a), Te,, (b)) € V. Note that

x# (a(x),b(x)) = (ap_1+apx+---+ am,zxm_l,fyG)l(bn_l) +O;(bg)x + .. .,@l(bn,2)x”_1)

which corresponds to (11(a), Te, (b)) € V. It implies that x = (a(x),b(x)) € V and hence x'
(a(x),b(x)) € V for any non-negative integer i. Also, using the polynomial identification, we get
z(x) * (a(x),b(x)) € V forany z(x) € B.[x] as V is a Be-submodule of the module Fi B;'. Therefore, V
is a Be[x]-submodule of the module S, ,,).

Conversely, assume that V' is a B[x]-submodule of the module S, ,y and (a,b) € V with the polyno-
mial representation (a(x),b(x)). Then x * (a(x),b(x)) € V. Note that the polynomial representation
of (11(a), 7@, (b)) is x * (a(x), b(x)). Therefore, (11(a), Te,,(b)) € V and hence V is an [, B,-additive
skew @; — y-constacyclic code. [
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Now, we define a Gray map ¥ : Fj'B;' — IF;”*@” as
Y(a,r) = (a,®(r))

where a € Fj',r € B and @ is the map defined in Section 3. It can be checked that ¥ is a linear map,
which is also bijective. Further, ¥ preserves duality as stated in the next result which can be proved on
similar lines to [37, Lemma 6].

Lemma 22. Suppose V is an I B,-additive code having length (m, n) with its dual code V. Then ¥ (V) =
Y(V)*.

Now, we define two projection maps 7, : Fy'Bf — B, my @ F'By — F' as mu(a,b) =
b, ty(a,b) = a where a € F;” and b € B}. Then, for any F;B.-additive code V having length (m, n),
(V) and 7, (V) are linear codes having lengths m, n over F,; and B., respectively. Further, we call
an [F;B.-additive code V to be a separable code if it can be written in terms of the codes 77, (V) and
m, (V) as given below.

Definition 23. An IF,B,-additive code V having length (m,n) is said to be a separable code, if V = 71,,(V) X
T (V).

If V is a separable code then its dual code is V1 =, (V) x 7, (V)*. Further, the below result
can classify a separable [F;B,-additive skew constacyclic code.

Theorem 24. Suppose V is a separable IF, B,-additive code having length (m,n). Then, it is an IF,B,-additive
skew @) — y-constacyclic code having length (m, n) iff 71, (V), 7w, (V) are cyclic and skew ©; — y-constacyclic
codes over Iy and B,, respectively.

Proof. Suppose V is a separable F;B,-additive skew ©; — y-constacyclic code having length (m, 1),
a € my(V)and b € 71y(V). Then (a,b) € V and (11(a), Te,,(b)) € V. Thatis, 1i(a) € 7y, (V) and
T,y (b) € 7, (V). Therefore, 71, (V), 71, (V) are cyclic and skew @; — y-constacyclic codes, respectively.
Conversely, assume that 71,,(V), 71,(V) be cyclic and skew ©; — y-constacyclic codes and (a,b) € V.
Then a € (V) and b € 7, (V). Therefore, 11(a) € 7y (V) and 7g,,,(b) € (V) as ww(V), (V)
are cyclic and skew @; — y-constacyclic codes, respectively. Hence, (11(a), o, (b)) € V,i.e., Visan
[F,; Be-additive skew ©; — y-constacyclic code. [

The above classification is later used to obtain quantum codes from separable F;5,-additive skew
®; — y-constacyclic codes. For achieving this, we first derive the necessary and sufficient conditions
for a separable [F; B.-additive code to contain its dual code.

Lemma 25. Suppose V = 71,y(V) x mw,(V) is a separable F;Be-additive code having length (m,n). Then
VECViff mn(V)E C (V) and 7, (V)* C (V).

Proof. AsV is a separable code, we have V! = 7, (V) x 71,,(V)*. Therefore, V- C V iff 71,,(V)+ C
(V) and 7T, (V)+ C 7, (V). O

The following result obtains the condition for constacyclic code over [, to contain its dual code.

Lemma 26. [32] Suppose V = (f(x)) is an a-constacyclic code having length m over F, for & = £1. Then
VECViffx™ —a=0 (mod f(x)f*(x)).

Proposition 27. Suppose V = 1, (V) x 1,(V) is a separable ¥, B.-additive skew ®; — y-constacyclic code
having length (m,n), where v = Y5 €ja; € By for a; = £1. Assume that 17,,(V) = (f(x)) and 11,(V) =
(Y71 €igi(x)). Choose h(x),hi(x) for 1 < i < esuch that x™ —1 = f(x)h(x) and x" — «; = h;(x)g;(x)
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for1 <i<e. Then V* C Viff x" — w; is right divisible by h?(x)hi(x)for eachl <i<eandx™—-1=0
(mod £(x)f*(x)).

Proof. From Lemma 25, V+ C Viff (V) C 70 (V), ma (V) C 7, (V) where m,(V), 7a(V) are
cyclic and skew @; — y-constacyclic codes having lengths 1, n over F; and B,, respectively. Rest of the
result follows using Lemma 26 and Theorem 17. [

Proposition 27 gives the necessary and sufficient condition for a separable I, B.-additive skew
®; — y-constacyclic code to contain its dual. Using the CSS construction and Proposition 27, we now
present the construction of quantum codes from separable F,B.-additive skew ®; — y-constacyclic
codes in the next theorem.

Theorem 28. Suppose V = 11,(V) x 11,(V) is a separable F,Be-additive skew ®; — ~y-constacyclic code
having length (m,n) such that V+ C V, where v = Y¢_,ea; € B for a; = £1. Assume that the
parameters of the code ¥ (V) be [m + en, k,dy). Then, there exists a quantum code with the parameters
[[m +en, 2k — (m +en),dy]], over .

Proof. Suppose V = 7, (V) x (V) is a separable F; B.-additive skew ®; — y-constacyclic code such
that V1 C V. Then ¥(V+) C ¥(V) which implies that ¥ (V)+ C ¥(V) as ¥(V') = ¥(V)* by Lemma
22. Thatis, ¥ (V) is a [m + en, k,dy] linear code over IF; which contains its dual. Therefore, by Lemma
18, there exists a quantum code with the parameters [[m + en, 2k — (m +en),dy]]; over Fy. O

Besides getting quantum codes from additive codes over IF;3,, these codes can be investigated to
obtain conditions for complementary duality. In particular, we obtain conditions for an [, B.-additive
skew constacyclic code to be ACD for which we need two basic results which are given below.

Lemma 29. [14] Suppose V is a cyclic code over F; with generator polynomial f(x). Then V is an LCD code
iff ged(f(x),h*(x)) = 1, where gcd(f(x), h*(x)) denotes the greatest common divisor of f(x) and h*(x).

Proposition 30. Suppose V = 71, (V) x 71, (V) is a separable F;B,-additive code having length (m,n). Then
V is an ACD code iff 71, (V) and 11,,(V) are LCD codes over Fy and B,, respectively.

Proof. Suppose V = 7, (V) x m,(V) is an ACD code and its dual code be V* = 71,,(V)* x 7, (V)*.
Ifx € (V)N (V) - and y € (V) Nty (V) * then (x,y) € VN VE = {0}. Therefore, x = y = 0
which implies that 7,,(}) and 77,(V) are LCD codes over [, and B,, respectively.

Conversely, assume that 7, (V), 7, (V) be LCD codes over F; and B, respectively. For any (x,y) €
VNV, wehave x € (V) Ny (V)*E = {0} and y € 7, (V) N7ty (V)E = {0}. Thatis, (x,y) = (0,0)
which implies that V is an ACD code. [

Using the above classification for complementary duality, we now present necessary and sufficient
conditions for a separable [, 5,-additive skew constacyclic code to be ACD.

Theorem 31. Suppose V = 71y, (V) x 1,(V) is a separable F,B.-additive skew ®; — y-constacyclic code
having length (m,n), where v = Y5 €ja; € By for a; = £1. Assume that 77,,(V) = (f(x)) and 1,(V) =
(Y71 €igi(x)). Choose h(x),hi(x) such that x™ —1 = f(x)h(x) and x" — a; = h;(x)gi(x) for 1 <i <e.
Then V is an ACD code iff the following conditions hold:

1. gcd(f(x),h*gx)) =1, where gcd(f(x), h* (xg) denotes the greatest common divisor of f(x) and h*(x).
2. gerd(gi(x),h;(x)) = 1, where gcrd(gi(x), h;(x)) denotes the greatest common right divisor of g;(x)

1
and h? (x), for1 <i<e.

Proof. It can be verified by using Lemma 29, Theorems 12 and 24. [
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7. Examples

In the present section, we derive several LCD and quantum codes in support of our study. Most
of the codes are either MDS or near MDS. Moreover, a comparison is made between the resulting
quantum codes and the codes found in recent literature.

To obtain the Gray image of any skew constacyclic code over B, under ®, we consider the matrix

M = 1 ! 1l Notably, all linear codes over a finite field having parameters [n, k, d] satisfy the

Singleton bound, which is determined by d < n —k+ 1. If d = n — k+ 1, it is considered as an MDS
code; if d = n — k, it is considered as near MDS. In case of an [[n, k, d]]; quantum code, we have the
Singleton bound k 4+ 2d < n + 2. The quantum code satisfying the equality k + 2d = n + 2 is called as an
MDS code, and the code satisfying k + 2d = n is called a near MDS code. Now, we go through a few
examples of codes in detail.

Example 32. Take n = 12, e = 2. Consider the factorization of x'? — 1 over Fs, given by
12 -1 =(x 4+ 228 4+ 12007 4 3x0 + 1222% 420 + 103 + 1 x +4) (o3 + 322 + x4 1)
and take Vi = (x3 + 3x% + t" x + 1). Further, consider the factorization
12 -1 =(at 2280 1 ax® 4 1008 b a7 12200 a0 P P2 4 dx 110 (2 + £2)

and take Vy = (x + t2). Then V = €1V; @ €3V, is a cyclic code over Fsy + uFs and ®(V) is an LCD code
with the parameters [24,20,4]5 which is a near MDS code.

Example 33. Tuke n = 30, e = 2. Consider the factorization of x*° + 1 over Fq2 given by

3041 = 4 178x% 4 2020 4 1781 4 x?% £10x% + #1841 4 9x20 - 118419 4 1018 4 x16
+ 178x15 - 2xc 1 178513 1 312 4 10210+ #18%% 4+ 9x® 4 118x7 + 1040 + x* + 7843
422+ 8 + 1) (22 +t18x + 1)

and take V| = (x* + t'8x + 1). Further, consider the factorization

20 11 =(x20 4 171028 4 0 4 183426 | 4325 | (95,24 | gy23 | 107,22 | 5,21 4 119,20
10219 4 A1y18 4 gy17 4 23,16 4 7015 4 435,14 4 313 4 447,12 4 oo 11 4 45910
X7 1708 4 2x7 4 1800 dn® 4+ 1Pt 8% 4+ 1742 5 4+ 1) (x + 1)

and take Vo = (x +t). Then V = €1V @ €3V, is a skew negacyclic code over Fyy2 + ulFy,2 and the parameters
of ®(V) are [60,57,3]142. By using Theorem 19, we obtain a quantum code having the parameters [[60, 54, 3]];2
which is better than the code [[60,50,3]],42 given in [40].

Example 34. Take m = 48, n = 8, e = 2. Consider the factorization of x*® — 1 over F.» given by

x48 -1 :(x46 + t6x45 + t31x44 + t25x43 4 t10x42 + t19x41 + 6x40 + t28x39 4 t17x38 + t35x37+
t35x36 + t30x35 + t31x34 + t18x33 + t47x32 + t20x31 + t19x30 + t33x29 + t44x28—|—
t19x27 + tx26 + t29x25 + t13x24 + t20x23 + t10x22 + t23x21 +5x20 + t7x19 + t29x18+
t15x17 + t46x16 + t44x15 + t20x14 + t36x13 + t46x12 + t42x11 + t44x10 + t41x9 + t20x8

87 2106 4 11305 gt 11303 4 2 4 36y 4 177 (k2 + £30x 4 £49)
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and take f(x) = x% + t30x + t45. Further, consider the factorizations
W41 =(20 4 P04 4 1202 1 42 (2 4 £6)
and
B 1= + 1200 4+ 2%+ 120 1 a3 4 1202 o+ 112 (x - 112)

and take ¢1(x) = x* + 1% and g (x) = x + t12. Then, the code V given by Proposition 27 is a Foo (Fo + uF2 ) —
additive skew constacyclic code containing its dual. The Gray image ® (V) of the code V is a [64,59, 3], code
which contains its dual. Therefore, a quantum code having the parameters [[64,54, 3], is obtained by using
Theorem 28.

In Tables 1 and 2, we present LCD and quantum codes obtained from skew ®; — «y-constacyclic
code V = (€141(x) + €292(x)) over By, respectively. In both the tables, the first column represents the
length of the code V, and the second column represents (a1, ) such that v = eja1 + €xap. The third
column represents the polynomials g1 (x), g2(x) such that V is generated by €147 (x) + €282(x) while
the parameters of ® (V) are presented in the fourth column. In Table 2, the parameters of the quantum
codes obtained from the code ®(V) (using Theorem 19) are presented in the fifth column. In the sixth
column, the comparison of these obtained codes is made with the known quantum codes that have
been reported recently in the literature.

Table 1. LCD codes obtained from skew ®; — y-constacyclic code V over B;.

n (a1, 22) 21(x), g2(x) (V) Remark
8 (1,1) 21, 21 [16,14,2]55 near MDS
12 (1,1) 11131, 21 [24,20,4]55 near MDS
12 (1,1) 21, 21 [24,22,2]55 near MDS
8 (1,1) 6101, 31 [16,13,4]49 MDS

12 (1,1) £B1224221, 131 [24,20,4]49 near MDS
12 (1,1) 21, 1 [24,22,2]121 near MDS
12 (1,1) 154811, 91 [24,20,4] 121 near MDS
20 (1,1) 51541, 791 [40,36,4]121 near MDS

Table 2. Quantum codes obtained from dual containing skew ®; — y-constacyclic code over B;.

n (aq,a7) 1(x), g2(x) (V) [len,k,> d]]; | Existing/Remark
8 (-1,1) t01, t21 [16,13,3] [[16,10,3]]5 —

8 (—-1,1) t301, t1 [16,13,3] [[16,10,3]]= -

30 (—1,-1) 1131, #4421 [60, 56, 3] [[60,52,3]]5 —

48 (1,1) 2171, 10t1 (96,91, 4] [[96,86,4]]s2 | [[96,84,4]]52[41]

8 (—1,1) t°01, t121 [16,13, 3] [[16,10,3]] -

48 (—1,1) t3t1, t0t171 (96,91, 4] [[96,86,4]]» | [[96,84,4]]2[41]

8 (-1,1) t6°11, 1301 [16,13,4] [[16,10,4]];12 MDS

30 (—1,-1) 1481, 11 [60,57,3] [[60,54,3]]112 | [[60,50,3]]112[40]
30 (—1,-1) 11181, 1204331 [60, 56, 4] [[60,52,4]]112 | [[60,50,3]]112[40]

Further, we obtain quantum codes from F;3;-additive skew ®; — y-constacyclic codes having
length (m, n) where v = e1a1 + €x0p. In Table 3, we tabulate a1, ap, the polynomials f(x),g1(x), g2(x)
such that 71, (V) = (f(x)) and 7, (V) = (T~ €;;(x)) where f(x)|x™ — 1 and g;(x) is a right divisor
of x" — a; for i = 1,2. The parameters of the code ¥ (V) are presented in the fifth column, whereas the
parameters of the derived quantum codes are presented in the sixth column by using Theorem 28.
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Table 3. Quantum codes obtained from [, B,-additive skew ©; — y-constacyclic codes.

(m,n) (1,a1,7) f(x) 81(x), & (x) Y(V) [en, k, > d]],
(24,30) (1,-1,-1) 1234111 1131, 21 [84,78,3] [[84,72,3]]=
(48,30) (1,-1,-1) 121181 1131, #4121 [108,101,3] | [[108,94,3]]s
(24,48) (1,1,1) 17181 £71, 10t1 [120,112,4] | [[120,104,4]]5
(48,8) (1,-1,1) 454301 t°01, 121 (64,59, 3] [[64,54,3]]2
(24,28) (1,-1,1) 1411 304341, 12451 80, 74,3] [[80,68,3]]2
(24,48) (1,-1,1) 13641341 341, t0t171 [120,112,4] | [[120,104,4]]»
(40,30) (1,-1,-1) 754471 1181, #11 (100,95, 3] [[100, 90, 3]]172
(40,30) (1,-1,-1) £03¢2111 1181, 1904331 (100,93, 4] [[100, 86, 4]]1;2

Remark: In the tables, the polynomials are represented by their coefficients in increasing powers of x.
For instance, t?>t!11 represents the polynomial 23 + t!1x + x2, where ¢ is the primitive element of the
corresponding field F.

8. Conclusions

In this article, we have investigated skew @; — y-constacyclic codes over the ring B,, and obtained
requirements for these codes to be LCD for some specific values of «y. Further, we have obtained
requirements for a skew constacyclic code over B, to satisfy the dual containing property, motivated
by the CSS construction for quantum codes. We also defined a duality-preserving Gray map. This
yielded several (MDS/near MDS) LCD codes and new quantum codes over finite fields. Moreover, we
have also considered additive skew constacyclic codes, and obtained conditions for complementary
duality and dual containing property.
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