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Abstract: In the study of materials and macromolecules by first-principle methods, the bond order
is a useful tool to represent molecules, bulk materials and interfaces in terms of simple chemical
concepts. Despite the availability of several methods to compute the bond order, most applications
have been limited to small systems because a high spatial resolution of the wave function and
an all-electron representation of the electron density are typically required. Both limitations are
critical for large-scale atomistic calculations, even within approximate density-functional theory
(DFT) approaches. In this work we describe our methodology to quickly compute delocalization
indices for all atomic pairs, while keeping the same representation of the wave function used in most
compute-intensive DFT calculations on high-performance computing equipments. We describe our
implementation into a post-processing tool, designed to work with Quantum ESPRESSO, a popular
open-source DFT package. In this way we recover a description in terms of covalent bonds from a
representation of wave function containing no explicit information about atomic types and positions.

Keywords: delocalization index; bond order; density-functional theory; high-performance comput-
ing.

1. Introduction

The calculation of the ground-state electron density in extended atomic system is
important in order to understand and guide the design of properties and functions of
materials and molecular assemblies. A method providing an excellent compromise between
computational cost and accuracy of the results is density-functional theory (DFT), in
which the electron density is represented in terms of effective one-electron Kohn-Sham
(KS) states [1]. DFT equations are frequently solved by expanding KS states into plane
waves (PW), embedded in the periodic representation of the sample of atoms. Atoms
are represented by means of the respective frozen atomic cores, via the pseudo-potential
approach, and the frozen cores act on a completely delocalized representation of valence
electrons. Such representation is natural for periodic systems such as crystalline solids,
but can be applied to liquid and disordered materials as well using large super-cells and
periodic boundary conditions, as in first-principle molecular dynamics simulations [2].
With these approximations, the calculation of the ground-state electron density can be
performed on high-performance computers for systems in the order of a thousand atoms.
This corresponds to a super-cell size of about 2 nm side, affordable to first-principle
molecular dynamics.
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The calculation of the various quantities describing the covalent bond order is a very
useful tool for analysing first-principle results in terms of simple chemical concepts. The
importance of routine calculation of such quantities has been recently stressed [3]. In the
following we will focus on the delocalization indices (DI) [4]

In DFT calculations using PWs, chemical bonds can not be easily identified: in fact the
PW basis set used to represent the electron density and KS states is delocalized and does
not explicitly depend upon atomic coordinates. As a consequence, the calculation of Dls is
traditionally based on localized, atom-centred basis sets and all-electron wave functions.
While highly accurate, such approach is limited to isolated and relatively small molecules.
Interesting alternative analyses of wave function and related properties are based on fuzzy
atoms [5,6], ring current [7], and on Wannier functions [8,9]. These techniques however are
limited to aromaticity or suffer from some arbitrariness, and require demanding additional
calculations to those leading to the original wave function.

A few calculations of the bond order based on DFT calculations and PWs are known [9,
10]. Both applications are limited to a few tens of atoms because they require post-
processing steps on high-resolution wave function and charge density. In the first case [10],
projector-augmented waves are used. For the largest-size application shown in this paper, a
real-space representation of the electron density requires a grid of about 216 points per side,
close to the limits of popular analysis codes like DGrid [11] or Critic [12]. In the second
case [9], the limitation due to the large size of the real-space grid is circumvented by the
additional use of maximally localized Wannier functions to optimize the compute-intensive
grid-based integration.

In this work we describe a straight application that circumvents the numerical prob-
lems described above with no change in electron density representation. Our work extends
the implementation of the method for computing DIs, previously applied to small isolated
molecules [13], for all atomic pairs in an extended system. We provide the related software
as a post-processing tool for usage within the Quantum ESPRESSO (QE) distribution [14,15]:
an integrated suite of open-source computer codes for electronic-structure calculations and
materials modeling at the nanoscale. As an example of application, we consider models of
CO-coated Pt nano-clusters. Our implementation allows to quickly compute Dls in super-
cells containing up to 120 heavy atoms. The post-processing tools added to QE measure the
number of electrons shared between any pair of atoms, directly from the ground state wave
function represented on the basis of plane-waves and pseudo-potentials. The analysis is
integrated with the quantum theory of atoms in molecules proposed by R. Bader [16,17]
and implemented in the code developed by the group of G. Henkelman [18,19].

This work aims at describing the implementation of the method, while a deeper
analysis of DIs and their possible correlation with stability conditions and electronic
properties will be the subject of further studies.

2. Computing electron sharing
2.1. Delocalization indices

The equation for the delocalization index J between each atom pair is well known [4]
and involves the integral, in the space spanned by each of the atomic basins, of the overlap
between all pairs of different KS states:

5(A, B) = 22 [ni,zxnj,/x + Tli"gl’ljlﬂ]si,]'(A)Si’]'(B) , (1)
ij

where i and j run over all the occupied KS states, S; ;(A) are overlap integrals of the i-th
and j-th KS states, integrated within the region of space identified as the basin of atom A.
The numbers ; , are the occupations of each spin orbital. The latter occupations can be
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fractional for metallic systems, or for molecular systems with a degenerate ground state.
The localization indices A are defined as

AA) =Y [nianj + nipnjplSii(A)>. )
i,j

The crucial quantities for the calculation of DIs are the overlap integrals S; ;:

Q) = [ 6w @, @)

where the 1;’s are the KS states and () indicates the integration basin for the chosen atom.
KS states in periodic systems are in general Bloch states and are characterised by a wave
vector k in addition to the band index. For large super-cells, however, we may limit to the
I (k=0) point only. In such a case, the ;(¥) functions are real and the complex conjugate
can be dropped. In the following we postpone the identification of the basins to Secs.4.2
and 4.3 and focus on the calculation of the integrand in Eq. 3.

2.2. Ultra-soft pseudo-potentials

Many DEFT calculations based on PWs employ ultra-soft pseudo-potentials for their
computational efficiency [20]. In the ultra-soft pseudo-potential scheme, the charge density
is given by the following expression:

p(7) = Z(WJZ |2 +ZZQIm,y 1/)1|,Bl,y><18mu|¢’l>> 4)

Im Y

where the ¢;’s are represented as linear combinations of PWs, (...) is the scalar product
in Dirac notation, ﬁy is the atomic position for the p-th atom, the gj,,, functions are
augmentation charges, and the p;, functions (projectors) define the non-local part of the
pseudo-potential. KS states are subject to a generalized normalization condition of the

form:
Wilolyy) = [ v @i 07+ L Qo9 (Bl ) = 5, ©)
m p
where
le,;t = /qlm,y(?)d? (6)

It is important to notice both augmentation charges g;,,, and projectors f; ,, are short-range

functions, centred around atom y at site ﬁy.
Overlap integrals S; ; in the ultra-soft pseudo-potential framework can be recast under
the form:

5,00 = [ (9 (y(7) + i85 7)) 7, )

where the augmentation contribution is written as

Pz,] ZZ‘?Im,y ¢1|ﬁl,y><ﬁm}l|‘/’]> 8)
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In practice, plane-wave components ;(G) are computed up to a suitable kinetic
energy cut-off Ey. KS states and their products ¢; ¢; are quickly and easily computed on a
discrete real-space grid of points via Fast Fourier transform (FFT). The integral becomes a
sum over grid points belonging to the basin of each atom. We remark that it is customary
and convenient to use a denser real-space grid for the augmentation terms than the one
used to compute the products of KS orbitals. The latter must contain PWs up to a larger
kinetic energy cut-off, E; = 4E,,, while the “dense” grid contains PWs up to an even larger
cut-off, typically E; = 8 + 12E,,.
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The evaluation of the augmentation term, Eq. 8, is the time-consuming step. The
typical way (implemented in QE) to deal with augmentation charges is to compute them in
G-space:

P (7 Z}%Sé )eic”. )

G-space components are in turn written as

=

ﬁgs qumu G.R” <1Pi|,31,;4><5m41

Im M

;). (10)

The calculation of Eq. 10 is straightforward: the scalar product between § functions and
1 KS states in the PW basis set reduces to a matrix-matrix multiplication, while qlm,y (é)
and B ,(G G) are atomic functions in Fourier space and are easily computed. ﬁus( ) is then
transformed back to real space (on the dense grid) using inverse FFT and added to Eq. 7.

This algorithm was used in [13] and is mathematically exact for a given PW basis
set, but it is also computationally heavy. The number of needed floating-point operations
is (’)(MznpNathW), where M is the number of KS states, n, the number of projectors
per atoms, Nyt the number of atoms, Npyy the number of plane waves. Apart from 1, a
number ~ O(10) depending upon the atomic species, all other factors grow linearly with
the size of the super-cell. The computational workload thus grows as the fourth power of
the super-cell size. For super-cells containing more than a few tens of atoms, the calculation
becomes much heavier than the solution of DFT equations.

2.3. Faster algorithm

In order to obtain a faster algorithm, one needs to exploit the short-range character of
augmentation charges and of projectors in real space. By computing Eq. 7 in real space,
instead of going through reciprocal space, one might gain a rather large factor: the ratio
between the total number of grid points and the number of grid points for which the
augmentation charges are nonzero. While actually available in QE, such algorithm is rather
complex and not well suited for parallel execution.

Here we present an even simpler algorithm that increases the speed of the calculation
while exploiting existing parallelization schemes (see Sec.4.4). The price to pay is that the
calculation of Eq. 7 is no longer exact, but the results are still very close to exact ones, as
shown in the reported application (see Sec. 3).

We first compute O;, where O is defined in Eq.5, and bring it to real space using FFT.
Both operations are already present in QE and can be easily re-used. We then compute

)= [ 91 ®)(0w) (). @)

Such quantity differs from overlap integrals S; ;(Q) as defined in Eq.7. In fact,

5w—‘/@ﬁ%7+2% F)Bip(F MWWMW%O (12)
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Since however both g(7 — ﬁy) and B(7 — Ey) are short-range and centred around an atom,
the integral over the atomic basin (2 includes only the core region of the atom in (). Under
the hypothesis that the core region is completely included into the atomic basin, and
remembering Eq.6, one realises from Egs.12 and 13 that S~i,]- >~ Sjj.

The calculation of DIs with the algorithm sketched above is much faster and easier to
code than the exact calculation of the previous Section. The number of needed floating-
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point operations is O(Mn,NaNpy ) for Ogp;, O(MNpyy log Npy ) for the FFTs, O(M?Npyy)
for Eq.11, and grows no faster than the cube of the super-cell size.

3. Applications to an extended system with unusual bonds

We choose a paradigmatic extended system as a test for applying the DI equation. The
system has been chosen in the frame of CO-metal clusters, since they present different types
of bonds shared by isolated clusters and extended, up to periodic, systems [21,22]. We
built models of a CO-isolated Pt nano-clusters, composed by a number of planar Pt3(CO)s
clusters stacked in the direction of the Pt3 plane of each cluster. The general molecular
formula of these clusters is [Pt3(CO)6]n2_ (n = 1-10), where n is the number of layers,
containing a single [Pt3(CO)g] unit, that the cluster consists of. These individual units stack
on top of one another and arrange into a trigonal prismatic fashion along a pseudo-Cs axis.
What is observed with increasing # is a lengthening molecular wire of repeating molecular
units. It has been found that at low nuclearity, n < 4, the cluster always crystallizes
adopting ionic 0-D packings, with the anions and cations separated by normal van der
Waals contacts. On the other hand, for n > 5, the oligomers tend to self-assemble and can
form infinite nano-wires [23-25]. For this reason we modelled the series of compounds
[Ptg(CO)6]n2_ withn = 1,2,4,8. The n = 1 case represents the monomer; the n = 2,4
cases represent isolated oligomers; the n = 8 case represents the infinite nano-wire. The
compounds have been minimized in a routinely used DFT model, starting with a super-cell
of 2 nmx 2 nmx2.56 nm, with variable L, in the latter case (see Sec. 4.1). We computed the
DIs for all atom pairs in the series.

Systems are composed by 15, 30, 60, and 120 atoms, respectively, with 46, 91, 181, and
363 filled KS states, respectively. The number of points in the real-space representation of
density and KS states is 192 x192x243. All calculations were performed with QE v.6.6. The
minimal energy configuration obtained for the infinite nano-wire is displayed in Fig. 1.
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Figure 1. Structure of infinite nano-wire [Pt3(CO)6]82‘ in a periodic cell, drawn in blue. The energy
is minimized with no counterions and the total charge g4 =-2. The nano-wire direction is along the z
axis (blue). Pt, C and O atoms are represented as ochre, gray and red spheres, respectively. Atomic
and bond radii are arbitrary. Bonds are drawn when the distance between atoms is shorter than 2.1 A.
The VMD program [26] is used for all molecular drawings.

The values of DI for the monomer, the isolated (n =2,4) oligomers and for the infinite
(n =8) nano-wire are reported in Table 1 for the pairs of atoms that are shared among all
monomers and for the additional Pt-Pt pairs where Pt are the closest atoms of different
monomers. The values are averaged over the equivalent bonds, and atoms in each bond are
labelled, for the monomer, as in Fig. 2. According to the analysis of PW-based calculation
of DI reported in the previous application to simple molecules [13], the error on DI, with
this type of approximations, is 0.1 units. Therefore, the message of Table 1 is that 3 covalent
bonds appear between Pt atoms belonging to different stacks (Pt1-Pt16), with minimal
change in the covalent bond distribution among each stack involved in the interaction
between Pt3 planes. The availability of electrons shared between different planes is due to
the removal of electrons when planes are stacked one over each other. The major change
within each assembled monomer is the decrease of DI for Pt-Ct pairs, from 1.5 in the
isolated monomer to 1.3 in the nano-wire. This point will be discussed in more detail
below.
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Table 1: DIs for types of atomic pairs as indicated in Fig. 2. Ptl indicates Pt of the displayed
monomer, while Pt16 indicates the closest Pt atom of the nearby monomer in the stack.
These values are obtained with no counterions, using the minimal energy configurations
obtained with total charge g = —2 in all cases.

pair type n
1 2 4 8

Pt1-Ct 1 15 14 1.3 1.3
Pt1-Ot 2 025 024 023 0.22
Pt1-Cb 3 0.88 085 0.81 0.78
Pt1-Ob 4 0.16 0.16 0.15 0.14
Pt1-Pt1 5 055 048 047 046
Pt1-Ptl6 6 - 035 034 0.28
Ct-Ot 7 1.6 1.6 1.6 1.6
Cb-Ob 8 1.5 1.5 1.5 1.6

Og

7

2 Cp
1
X 4 O
Ob 1 5 Ptl .................. b5

Figure 2. Atom indices within each Pt3(CO)¢ stack, used throughout the description of DIs. Indices
of other stacks in dimers and in the nano-wire are incremented by 15, the number of atoms in each
stack. Pair type 6 involve Pt atoms of different Pt3 stacks.

As for computational resources and performance: with the original algorithm of Sec.
2.2, the calculation of DIs for the infinite nano-wire model (120 atoms) takes 37 hours of
wall-time running over 144 nodes with 3 tasks per node (because of memory limits). The
total number of tasks is 432 and is matched in this particular case by the number of KS
states (359 states with occupation 2, 4 states with fractional occupation, 69 empty states),
allowing an ideal distribution of one state per task. The new algorithm presented in Sec.
2.3 for the same model takes only 43 s of wall-time running over 16 nodes with 27 tasks
per node. The total number of parallel tasks is therefore the same as in the the original
algorithm, but more tasks can share the same memory on each node. The performance
of the new algorithm is thus much better and may allow an almost real-time on-the-fly
calculation.
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The price paid for the greater computational efficiency of the new algorithm is shown
in Fig. 3 for the monomer. The DI values calculated with the new algorithm (y axis) are
compared to those obtained with the original algorithm (x axis). Different colors identify
different groups of theoretically equivalent bonds, according to the scheme in Fig. 2. The
deviation between the two sets of results is within the DI error (0.1). The largest error
is shown in the dispersion of DIs corresponding to bonds that are in theory identical by
symmetry, irrespective of the algorithm used. This is particularly evident for pairs Ct-Ot
and Cb-Ob, that change by 0.4 units (gray and brown circles). This unexpected variation
is concentrated at the periphery of the cluster. The reason of this deviation is the low
definition of atomic basins in the region of space where the electron density is low and flat,
i.e where there are no atoms. This region can be in theory assigned to an additional vacuum
basin, but such correction will be included in a further study. A better understanding of
this issue is discussed below for dimers.

1.8
1.6 @

©)

1.4

1.2

New DI

0.8
0.6
0.4

0 02040608 1 121416 18 2
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Figure 3. Comparison between DI in the monomer computed with the original (x axis) and the new
algorithm (y axis). Different colors are used for atom pairs indicated in Fig. 2: black - Pt1-Ct (pair
type 1); red - Pt1-Ot (pair type 2); blue - Pt1-Cb (pair type 3); green - Pt1-Ob (pair type 4); orange -
Pt1-Ptl (pair type 5); brown - Ct-Ot (pair type 7); gray - Cb-Ob (pair type 8).

3.1. Dimers

We performed calculation of DIs and of charge integrated within the atomic basins
connected by DIs, for the same configuration of the dimer obtained by energy minimization
with total charge g = —2. The same configuration is then used with total number of
electrons decreased by 2 (¢ = 0) and increased by 2 (7 = —4). The difference of atomic
charge using as reference the most charged state (7 = —4) is displayed in Fig. 4. Assuming
that g = —2 is the optimal charge to stabilize the monomer, the approach between two
monomers keeping their respective charge is destabilized by the electrostatic repulsion.
Therefore, the oxidation of the dimer upon the assembling process is required to reduce
repulsion while keeping enough electrons to be possibly shared within each assembled
monomer as in the isolated monomer. On the other hand, the oxidation can perturb the
stability of each monomer because electrons can be partially removed by covalent bonds
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that are essential to seal the monomeric cluster. These bonds are Pt-Pt bonds, but also the
C-O bonds that keep the isolating layer made of CO molecules. As a compromise between
these effects, the ideal electron removal should not perturb the distribution of electrons
compared to the monomer. In Fig. 4 we observe that removal of 2 electrons has a very
low effect on the charge distribution (black circles). Exceptions are a few oxygen atoms of
type Ob and Ot, belonging to the outer shell of the molecule. The removal of 2 electrons
from the highly charged dimer occurs almost entirely from the extreme spines, where
the negative charge is accumulated before oxidation. The further removal of 2 electrons
(g =0) has a more dramatic effect, with a spreading of charge perturbation over the entire
molecular scaffold (red circles). By observing the change in molecular geometry upon
energy minimization (Fig. 5), it can be noticed that O terminal atoms (Ot and Ob) increase
the relative distance when the O atoms of O-O pairs belong to different facing monomer.
Conversely, Pt atoms become closer, strengthening the covalent nature of a little Pt cluster
isolated by CO bound molecules. The latter CO ligands, being highly polarized, tend to
repel each other while keeping the Pt cluster isolated.

01 e

0.05 o

O LOOY QT YO T VOO OVOLLO T OO T YVOODLD U

—0.05 50 © 05 Q00 Y og O 5@ 0 ©

_01 O] ) ©)
_015 o [©)
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_Obzg 0
_035 [©) [6)
-04
—0.45 -

Aqg (|e])

Atomic basin

monomer 1 monomer 2

Figure 4. Difference in charge integrated over each atomic basin (x axis) in dimer by changing the
total charge after two monomers are assembled. Reference is ¢ = —4; ¢ = —2 (black circles); g =0
(red circles)
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Figure 5. Geometry of dimer with charge 4 = —2 before (top) and after energy (bottom) minimization.

The comparison of DIs of isolated monomers and of assembled dimers, following the
change of total charge represented in Fig. 4, is displayed in Fig. 6, where the top panel
displays the values for the isolated monomer with charge 4 = —2. The bond types 10 and
11 are long-range pairs intra-monomer and inter-monomer, respectively. These types of
bonds become significantly populated when the total charge of dimer achieves the value
q = —2(C). The dimer with charge zero (B) displays a pattern of DIs similar to the isolate
monomer (A), but a significant decrease of DI(Pt-Ct) is observed: 1.2 compared to 1.4 in the
isolated monomer. Also DI(Pt-Cb) and DI(Pt-Ob) decrease. This effect indicates that the
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electrons shared within the Pt core of the molecule is perturbed by the release of 4 electrons
from the assembled dimer, with a partial compensation due to the appearance of DI(Pt1-
Pt16), that are electrons shared between Pt belonging to different facing monomers. The
recovery of values of DI(Pt-Ct), DI(Pt-Cb), and DI(Pt-Ob) corresponding to the monomer
when the negative charge of dimer becomes -2 (panel C) indicates that bonds around Pt are
restored, with no significant change of DI(Pt1-Pt16), thus showing a change of the local Pt
environment compared to the isolated monomer. It must be noticed that the reduction of
the molecule is also distributed over the terminal C-O bonds (bond types 10 and 11), but we
remind that electrons shared by these terminal atoms are mostly in the vacuum. Therefore,
we argue that the 2-electron oxidation of the dimer (panels C and D) represents a state
with intra-monomer bonds similar to the isolated monomer, with part of excess electrons
shared by Pt-Pt bonds connecting different facing monomers, and the remind of excess
electrons pushed as far as possible away from the molecule. The large values of DIs for
pairs of type 10 (intra-monomer, up to 1.2) when charge is -2 (panel D) indicates that there
are no ways to share excess electrons away from monomers (Pt1-Pt16 and bond types 11).
This is an indication that for small oligomers when the total charge is negative (-2 and -4)
electron density is compressed in separated stacks, with no relaxation of electron-electron
repulsion. The addition of a positive hole like a Mg atom, keeping the total charge zero
(panel E) shows that the consequent change of electron density gradient allows a better
definition of the region where the excess of electrons is spread. The many DIs of types
10 and 11 disappear and no electron sharing between CO and Mg is measured. On the
other hand, it can be noticed that DI(Pt-Ct) becomes 1.2, showing that the dimer becomes
similar to that with charge zero (panel B). This effect is due to the low extent of charge
separation between the dimer and Mg, typical of DFT calculation with approximated
electron exchange functional.

In summary, the analysis of DIs along with the dimer formation process shows that
there is significant electron sharing between Pt atoms belonging to nearby monomers
also when charge is zero (panel B of Fig. 6), but with two more electrons the Pt-C bonds
become similar to the monomer still allowing the sharing of electrons to nearby Pt atoms
of different monomers.
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Figure 6. DI (y axis) for different atom pairs (see list below and Fig. 2) for the isolated monomer (A)
and for the dimer along with the increase of negative charge, from g =0 (B), g = —2 (C), g = —4 (D).
Panels B-D are computed for the geometry obtained minimizing the energy with charge -2. Panel
E is with the addition of Mg far from molecule (total charge zero). List of atom pairs: 1 - Pt1-Ct; 2 -
Pt1-Ot; 3 - Pt1-Cb; 4 - Pt1-Ob; 5 - Pt1-Pt1; 6 - Pt1-Pt16; 7 - Ct-Ot; 8 - Cb-Ob; 10 - different from above,
but intra-monomer; 11 - as in 10, but inter-monomer.

3.2. Nano-wire

As for the extended nano-wire, we computed the DIs for several snapshots along with
the variable-cell energy minimization in the presence of mobile cations like Na*. When
Na atoms are far from the nano-wire, the charge integrated over the Na atomic basins is
close to 1, showing that in this case the charge separation is correctly modelled. When the
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Na cations become free to move, they rapidly approach the negatively charged nano-wire.
This process is displayed in Fig. 7, where the evolution of some geometrical parameters is
reported along with the variable-cell energy minimization. The first 50 points of the energy
minimization were performed with Na atoms fixed in space. The minimal distance between
the Na atoms and the nano-wire (O atoms) is larger than 5 A. At the beginning (conf. zero),
the structure of the nano-wire is that of the minimal energy configuration obtained with
cell charge -2 and with fixed cell sides. Keeping the Na position fixed while allowing the
cell side relaxation, the reduction of nano-wire periodicity is the major structural change
(panels A and C, black curve): all the Pt-Pt inter-monomer distances regularly adapt to the
neutrality of the cell. The release of constraints acting on Na atoms (point 50) allows Na to
reach the nano-wire and, when the minimal Na-O distance achieves 5 A, the energy starts
decreasing rapidly. After the first encounter between Na and O atoms (point 80), a slow
settling of interactions between Na and O atoms occurs. The final collected configuration
(point 150) is displayed in Fig. 8. The corresponding evolution of the Pt-Pt inter-monomer
minimal distances are displayed in Fig. 7C. This plot shows that the interactions between
Na and the nano-wire significantly affect the distance between the stack of monomer
Pt3 planes. The regular inter-monomer distance displayed by configuration 50 is altered
and slowly settled to a range of values 3.1+-3.25 A (configuration 150). This effect clearly
shows that the approach of small cations towards the nano-wire modifies the regular
inter-monomer distance, introducing a little structural defect. We are now in the position
to monitor the effect of such defects on the electron sharing between Pt3 stacks.
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Figure 7. Evolution of geometrical parameters of the nano-wire along with the variable-cell energy
minimization. The first 50 configurations are obtained with Na atoms fixed in space. Panel A - cell
length along the z direction (L, left axis) and total energy (E, right axis, zero is for the initial value);
circles emphasize the configurations analyzed in Fig. 9; panel B - distances between the two Na atoms
and the closest O atoms of the nano-wire (the monomer number is indicated within brackets); panel
C - inter-monomer shortest Pt distances.
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Figure 8. Final configuration (conf. 150 in Fig. 7). Na atoms are displayed as blue spheres. The
shortest distances between Na and O atoms in the nano-wire are displayed. For clarity, bonds are
drawn when distance between atoms in the pair are shorter than 1.6 A.

The pattern of DIs for different pair types is displayed in Fig. 9 for several snapshots
along with the variable cell relaxation. The selected snapshots are indicated as circles in
Fig. 7A. In panel A, corresponding to the negatively charged nano-wire separated from
the two Na cations, we notice that no DIs are measured for pair types 10 and 11 (see Fig.
6C). This confirms the requirement of avoiding the assignment of space points to atoms
in regions of space where electron density is low and flat. This can be easily done with
counterions. We notice here that DI(Pt-Ct) is lower in the nano-wire (1.2) than in the
monomer (1.5) (see Table 1 and Fig. 6A). The electron sharing of the nano-wire is similar to
the dimer when the total charge is zero (Fig. 6B), because of the spreading of the excess
negative charge of the nano-wire among 8 monomers. When Na atoms become close to CO
ligands, a significant electron sharing appears involving Na basins (panel B), even if the
charge assigned to Na atoms is still approximately 1 (0.95) and this value is maintained
during the following Na settling around the CO ligand atoms. The charges integrated
over atomic basins do not change appreciably, especially when summed over monomers.
This indicates that the charge distribution is not affected by the interactions between the
negatively charged wire and the positively charged counterions. The largest DI occurs for
Na-Ob pairs (up to 0.6, panel B), while the largest value for Na-Ot pair is 0.3. The electrons
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shared between Na and Ob atoms are extracted by Pt-Pt pairs (pair types 5 and 6) where
the perturbation of symmetry becomes evident after the first Na-O encounter (panels C-D).
However, the effect on electron sharing within the nano-wire of the Na-O interactions at the
periphery is extremely small, showing that the CO insulating effect is particularly strong.

DI

(A)

DI
@

(B)

DI
-

©)

DI
-

1 2 3 4 5 6 7 8 9 10 11 12
Pair type
(D) yp

Figure 9. DI (y axis) for different atom pairs (see list below and Fig. 2) along with the approach of Na
towards the molecule: (A) initial configuration (conf. 30 in Fig 7); (B) first-encounter configuration
(conf. 100 in Fig. 7); (C) minimal energy configuration (conf. 148 in Fig. 7); (D) settled configuration
(conf. 150 in Fig. 7 and Fig. 8). List of atom pairs: 1 - Pt1-Ct; 2 - Pt1-Ot; 3 - Pt1-Cb; 4 - Pt1-Ob; 5 -
Pt1-Pt1; 6 - Pt1-Ptl6; 7 - Ct-Ot; 8 - Cb-Ob; 10 - different from above, but intra-monomer; 11 - as in 10,
but inter-monomer; 12 - Na-molecule.
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4. Materials and Methods
4.1. Ground-state electron density and energy minimization

The ground-state electron density was computed by using Vanderbilt ultra-soft
pseudo-potentials [27] and the PBE exchange-correlation functional [28]. Electronic wave
function was expanded in plane waves up to an energy cut-off E;, = 30 Ry, while a cut-off
E; = 250 Ry was used for the expansion of the augmented charge density in the proximity
of the atoms, as required in the ultra-soft pseudo-potential scheme (see 2.2. Periodic bound-
ary conditions were applied in the three direction of space. The Pt3 plane was always
initially parallel to the cell xy plane and cell side Ly = L, =2 nm. L, was initially set to
2.48 nm. All calculations were performed under spin-restricted conditions, i.e., with each
Kohn-Sham orbital filled with two electrons of opposite spin. A gaussian spreading of KS
occupation was used to prevent problems in self-consistency convergence. The energy was
minimized using a tolerance of 10~ Ry. The energy and atomic forces are corrected for the
effects of cells with net charge different from zero [29,30].

DFT-D3 dispersion interactions [31] were included for energy and force calculations
in order to correct for the lack of such interactions in the PBE approximation to DFT.
The energy minimization was performed with the Broyden-Fletcher-Goldfarb-Shanno
algorithm until all force components were smaller than 10~ Ry /bohr. In the variable-cell
energy minimization, only L, was allowed to relax, while Ly and L, were kept fixed to 2
nm. The number of steps required by energy minimization did not exceed 150.

4.2. Including all electrons

The frozen-core contribution of every atom is added to the valence electron density
in the real-space representation. This is needed because in a pseudo-potential framework
the charge density, which is also pseudized, is very small in the region close to the nucleus
and may cause the atomic basin identification algorithms of Sec.4.4 to fail. Since we don’t
need an accurate all-electron charge density reconstruction, we have resorted to a simple
method, implemented as a new option of the QE post-processing tools. The charge of each
frozen core is built according to the Zener-Slater approximation of isolated atoms [32,33].
The radial part of each one-electron effective state is:

R(r) = Ror™ Vexp [—(Z—s) ] ) (14)

n*ag
where 7 is the distance from the nucleus, 4¢ is the Bohr radius, Z is the atomic number, s
and n* are screening parameters, and Ry is a normalization constant. The parameters are
tabulated in textbooks [34]. The charge assigned to each grid point in the dense real-space
representation of valence electron density is augmented by the frozen core charge, averaged
over a sub-grid of 16x16x16 regularly spaced points in a cube surrounding each grid
point. Only points within the core radius of each pseudo-potential (in the range of 3 bohr)
contribute. This procedure allows a smooth spreading of core charge among the cells in the
dense-grid representation of electron density. The correctness of integrals of the all-electron
density in all cases was checked to be within 1%.

4.3. Atomic basins identification

Approximated all-electron densities were analysed with the approach known as
quantum theory of atoms in molecules [16,17]. The method assigns the set of points in
space confined within the surfaces of zero flux of the electron density gradient to the atom
within the respective surface. This analysis was performed with the algorithm initially
proposed by Sanville et al. [18]. The version 1.03 of the code was used in this work. Once
the atomic basins () were identified, the integral for each DI in Eq. 3 was computed simply
by summing over the set of elementary cubic volumes identified by each of the atomic
basin (). Therefore, the implementation of Eq. 3 requires the simple collection of 3-D grids
of the valence electron density and of the set of KS molecular orbitals representing it, in
whatever representation.
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The electron density was collected in real space on the dense 3-D grid used in PW
calculations with ultra-soft pseudo-potentials. The final 3-D representation of electron
density has a finite-element side that depends upon the energy cut-off E;. For the E; = 250
Ry cut-off we used, the finite-element side is about 10 pm. By increasing E;, a finer real-
space grid is obtained. The convergence of Eq. 3 can thus be assessed by increasing the
resolution of electron density. In all cases, the valence electron density was complemented
with the core electron density by the procedure described above.

4.4. Parallelization

The calculation of DIs requires a large amount of memory, since the real-space repre-
sentation of all valence KS states must be kept in memory for the calculation of overlap
integrals in the different atomic basins. This memory requirement limits the size of sys-
tems for which the calculations of DIs is possible, even with high-performance computing
hardware. With the parallelization scheme of QE, we could perform the calculation of DIs
for 120 atoms, without storing the KS states on disk, a strong limitation of our previous
post-processing code [13].

QE has several ways to distribute tasks in parallel architectures. Products, scalar
products, sums over the Gand7? grids, as well as three-dimensionals FFTs, can be easily
parallelized using the available “plane-wave” parallelization of QE.

For the calculation of DIs it is convenient to resort to "band parallelization", where
groups of KS states are managed by independent computational tasks (the index i of KS
states 1; is distributed). In order to exploit band parallelization without replicating arrays
over all processors, we resort to the following algorithm.

The N processors are divided into 7, “band groups” of N /n;, processors each. Initially,
each band group contains M, = M/n;, KS states ¢; (from i = (i, — 1)M}, + 1 to i = i, M,
for band group 7). The 7 and G components of all needed arrays are distributed across the
processors inside each band group.

pf‘]s is first computed for i,j = (i, — 1)M;, + 1,. .., i, M,. The FFTs, products and scalar
products are parallelized inside each band group and the various contributions to the
integrals are summed.

Band group i, then sends a copy of §; to band group i, — 1, receives the copy sent
from processor i, 4+ 1 (odd numbered processes send first, receive later; even-numbered
processes receive first, send later).

It is now possible to compute p:‘]s fori = (i, —1)My +1,...,i;M, and j = i, M}, +
1,..., (ip + 1) M,. The procedure is iterated until each band group has a complete slice of
pl”]s for all values of j. The partial results for each band group are then collected to yield the
final result.

5. Conclusions

The concept of covalent bond is here fully recovered by properly analyzing density-
functional theory calculations performed in a basis set that does not depend upon atomic
positions and type. This is the case of plane waves, frequently used for condensed phases
with periodic boundary conditions. Delocalization indices, measuring electron sharing
between any pair of atoms, can thus be computed in extended systems made of more
than one hundred of atoms. Our method takes profit of the short-range character of
augmentation charge and of the double-grid method to compute the required overlap
integrals in a quick and effective way. The new method to compute delocalization index
is applied to a Pt nano-wire isolated by CO molecules, where different extents of electron
sharing are observed, like charge polarization of CO ligands and metal-metal bonding.

The algorithm is fast, reliable, and is provided as a routine tool within the Quantum
ESPRESSO open-source package, to better understand electron distribution in complex
materials.
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