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Abstract: This work addresses the relevant control system design issue for an acrylic acid plant through the 

lens of plant-wide stochastic optimization control (S-PWOC). The S-PWOC framework involves stochastic 

optimization methods. An evaluation comparison between the proposed S-PWOC model and two 

conventional models, specifically the two-level identification method and the typical plant-wide decentralized 

control structure, is performed. Despite the increasing computational demands associated with S-PWOC, 

experimental results highlight its effectiveness in handling different forms of uncertainty. Notably, S-PWOC 

demonstrates improvements in economic viability, control efficiency, and reduction of safety risks during plant 

operations.  
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1. Introduction 

Chemical industries have had a significant impact on human lives through the production of 

essential goods and services. Since the advent of automated control systems, decentralized 

architecture has become the dominant approach to managing the complexity of controlling entire 

chemical plants [1]. This architectural structure consists of multiple PID control loops responsible for 

maintaining controlled variables at predetermined setpoints in each operating unit. These controllers 

function autonomously, regulating their designated process segments without information exchange. 

Implementing a traditional decentralized control structure necessitates an initial optimal process 

design phase. 

Although optimal operation is projected at the design-phase operating point, inevitable 

disturbances and uncertainties can alter process conditions, potentially shifting the optimal operating 

parameters. The failure to recognize the existence of disruptions and uncertainties can significantly 

impact profitability and process safety. Therefore, managing uncertainty in the context of economic 

optimization is a key challenge in process control today [2]. As a result, decisions made within a 

robust plant-wide control (PWC) framework require careful consideration of uncertainties. Solutions 

failing to mitigate uncertainty impacts can compromise economic efficiency and control effectiveness, 

potentially resulting in unsafe and financially detrimental conditions [3]. 

This study proposes a comprehensive approach to solve the ship problem while considering 

uncertainties, called Stochastic Plant-Wide Optimization Control (S-PWOC), this method builds on 

previous research (Duque et al., 2021; Ochoa et al., 2010b), integrating the Economic viability and 

process safety considerations to improve control system design. This framework addresses dynamic 

stochastic real-time optimization (D-RTO), emphasizing economic profit as the primary control 

objective. 

The proposed method is being validated using the acrylic acid production process as a case 

study. This choice is based on the paramount importance of this process in the chemical industry, 

coupled with its inherent safety concerns, making it particularly suitable for evaluating the 
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effectiveness of the proposed S-PWOC framework. Market forecasts project the global acrylic acid 

industry to reach USD 20.19 billion by 2027. [6], due to the increasing demand for superabsorbents, 

thus increasing production of acrylic acid worldwide. Notably, there is a growing demand for 

superabsorbent polymers in applications such as adult urinary incontinence, water treatment 

additives, and radioactively cured coatings, especially in low-cost economies, in emerging regions 

such as the Asia-Pacific region, Central America and South America, are poised to increase demand 

for acrylic acid (“ICIS.com web site,” 2023). 

Forecasts predict a global production volume of 9 million tons by 2025, driven by the rise of 

global industrialization and the expansion of acrylic acid applications in various sectors [8]. 

Therefore, coordinated research efforts targeting process control and optimization are required to 

improve the economic viability of acrylic acid production in the face of inherent uncertainty. The 

PWC formula accounts for three primary uncertainty sources: external disturbances, market 

fluctuations, and model parameter variations. 

The following sections of this manuscript are described as follows. Section 2 comprehensively 

presents the theoretical foundations related to whole-process control (PWC) strategies and stochastic 

optimization methods. Part 3 outlines the details of the process, describes the identified safety risks, 

and explains the nuances of the Aspen Plus model specified to the acrylic acid (AA) process. In section 

4, the Stochastic Plantwide Optimization Control (S-PWOC) method is implemented to control an 

acrylic acid production plant. Section 5 attempts to compare the effectiveness of the proposed S-

PWOC approach to resolve the uncertainties associated with the decentralized PWC architecture and 

the deterministic PWOC approach. Finally, Section 6 summarizes the conclusions drawn and 

provides recommendations for future efforts. 

2. Theoretical Background and Methods 

This section summarizes the main areas explored in this work: plant-wide controls (PWCs) and 

the application of stochastic optimization to reduce uncertainty. 

2.1. Plantwide Control Methodologies 

Economic and safety imperatives, coupled with increased mass and power integration, have 

heightened the significance of plant-wide control (PWC) strategies in chemical plants [9]. This study 

proposes a control structure design method that optimizes process economics, ensures safety, and 

mitigates various uncertainty sources. 

The PWC method designs a comprehensive plant control system, explicitly accounting for inter-

unit process interactions. [10]. The basic study of PWC was introduced by Buckley in 1964 [11], and 

after the early 1990s many works emerged. These methods can be systematically classified into two 

main approaches: approach-based and structure-based [10]. Classifications of control methods can 

be based on approach or structure. Approach-based classifications include heuristic process-oriented, 

mathematical model-oriented, optimization-based, and mixed methods. Structure-based 

classifications comprise decentralized, distributed, centralized, and multi-layer control systems. [12] 

Distributed model predictive control (MPC) systems use multiple MPCs to exchange 

information to achieve control goals. There are two main architectures: communication-based and 

collaboration-based. In the first, each MPC uses a local objective function. The exchange of 

information facilitates coordination while still emphasizing local goals. The second modifies local 

MPC objective function to incorporate system-wide control objectives. This promotes coordinated 

optimization across all MPCs [13]. Another popular distributed architecture is multilayer 

architecture. Here there is a hierarchy with at least two layers: The optimization layer, that performs 

high-level calculations and sets general goals. The control layer executes control actions based on 

directives from the optimization layer. Coordination between layers may or may not be implemented 

[14]. Recent applications of this architecture can be found in the work of [15–20]. In contrast, single-

layer architecture uses a centralized approach. A single controller optimizes monitoring of goals, 

economic objectives, or a combination of both [21]. Examples of this architecture can be found in the 

work of [22–26]. 
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2.2. Stochastic Optimization 

George Box [27] posited that "all models are wrong, but some are useful," implying inherent 

model inconsistency and internal uncertainty in any modeling approach. Conservation equations in 

process modeling often rely on empirical parameters and material recycling, while interactions 

between process flows introduce uncertainties. These factors contribute to discrepancies between 

predicted and actual plant conditions. Additionally, fluctuations in raw material and product costs 

can significantly impact the process's profitability and economic viability [28]. When applying 

deterministic optimization solutions to real plants, inherent uncertainties can lead to suboptimal 

decision variables. This may result in lower-than-expected economic profitability or violation of 

critical process constraints. Consequently, incorporating uncertainty into optimization models is 

crucial for mitigating the effects of both known and unknown process perturbations in industrial 

applications. The S-PWOC framework introduced in this study distinguishes itself by incorporating 

multiple uncertainty sources within its optimization problem formulation. Certain significant 

stochastic programming applications in process optimization are constrained to operations involving 

no more than three units and solely address internal uncertainties. An example can be found in the 

Navia study [29]. The study conducts a comparative analysis of two-stage and random constraint 

optimization approaches for a hydrodesulfurization process comprising two fixed-bed reactors and 

a flash tank. The absence of recycle streams between process units minimizes operational disruptions 

and simplifies simulation models. Another example is the work of Lucia et al [3,30], which 

implemented a multistep NMPC strategy to optimize a semi-batch polymerization reactor. This study 

findings affirm the efficacy of multistage optimization in addressing model uncertainty. [31] 

advanced process engineering by applying random constraint optimization to a hydroformylation 

process comprising a CSTR reactor and a multiphase separator. In this study, the authors present the 

limitations of random constraint programming for application to large-scale systems and show that 

infeasible solutions can be found when the optimization problem formulation includes many random 

constraints. Stochastic constraint programming exhibits limitations in addressing large-scale systems. 

Furthermore, the introduction of numerous random constraints into the optimization problem 

formulation frequently leads to infeasible solutions. Other important studies using stochastic 

programming for PSE applications are on planning energy-intensive processes using electricity prices 

as an external uncertainty source [32] and on endogenous production uncertainties for shale gas 

infrastructure planning [33]. Recent studies include using two-stage stochastic programming 

problems to deal with uncertainties under operating conditions [34–36]. Approaches a multiscale 

flexibility constraints and uncertainties in refinery hydrogen systems, considering the parameter 

uncertainties, and proposes a CCPO (Chance Constrained Policy Optimization) algorithm to ensure 

that a common random constraint on the photogeneration of phycocyanin is satisfied Sharma et al. 

[37]  used a multi-objective randomly constrained hierarchical optimization approach for 

production planning problems. 

Despite the recognition that uncertainties are one of the primary factors driving chemical 

processes away from expected optimal operation, no formal PWC methodology explicitly addressing 

uncertainties has been proposed, to the authors' knowledge. Managing these uncertainties within the 

context of constantly changing market conditions and stringent safety constraints remains a 

significant challenge in process control and optimization [38]. In a PWC approach, uncertainty 

management is crucial for effective decision-making. Neglecting to address uncertainties can degrade 

both economic performance and process control, potentially resulting in unsafe operations and 

financial losses. 

3. Acrylic Acid Process  

The S-PWOC methodology proposed in this work is implemented to the control of a complete 

Acrylic Acid (AA) production plant. Although there are multiple methods for producing AA, the 

most employed technology at a commercial scale is the partial oxidation of propylene [39]. The 

process is governed by the following reactions: 

Main reaction: 
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𝑅1:  𝐶3𝐻6 +
3

2
𝑂2   →  𝐶3𝐻4𝑂2 + 𝐻2𝑂 

Side reactions: 

𝑅2:  𝐶3𝐻6 +
5

2
𝑂2   →  𝐶2𝐻4𝑂2 + 𝐻2𝑂 + 𝐶𝑂2 

𝑅3:  𝐶3𝐻6 +
9

2
𝑂2   →  3𝐶𝑂2 + 3𝐻2𝑂 

Where the rate of each reaction i is: 

−𝑟𝑖 = 𝑘0𝑖 exp (
−𝐸𝐴𝑖

𝑅𝑇
) 𝑃𝑂2𝑃𝐶3𝐻6    (1) 

The production of acrylic acid consists of two primary phases: reaction and purification. During 

the reaction phase, propylene oxidation yields acrylic acid alongside byproducts including acetic 

acid, carbon dioxide, and water. The subsequent purification phase isolates and refines acrylic acid 

to achieve 99.5% mole fraction purity. Figure 1 presents the P&ID diagram for the AA process under 

consideration, which includes several control loops integral to the decentralized PWC architecture. 

This decentralized PWC architecture was developed based on Suo recommendations [40] and 

detailed process knowledge. 

The acrylic acid production plant consists of a reactor (R-101), a flash drum (T-101), an absorber 

(T-102), an azeotropic distillation column (T-103), and a rectification column (T-104). Propylene and 

air streams are fed into the reactor, where reactions R1, R2, and R3 occur. The effluent stream from 

the reactor (F5) is directed to the flash drum (V-101) for vapor-liquid separation. The gas stream 

exiting the flash drum (F7) is fed into the absorber (T-102), where AA and ACE are recovered using 

a solvent primarily composed of liquid water (F18). The effluent streams from the flash drum and 

absorber, primarily comprising acrylic acid (AA), acetic acid (ACE), and water, enter the azeotropic 

distillation column (T-103). Here, toluene serves as an organic solvent, exploiting the toluene-water 

azeotrope to extract water. The resulting liquid stream then proceeds to the rectification column (T-

104), where AA is separated as the bottom product and ACE as the distillate. 

 

Figure 1. P&ID Diagram for AA Production: Control loops highlighted in green represent the 

decentralized PWC structure. 

3.1. Process Modeling and Simulation 

The following section provides a detailed description of the Acrylic Acid (AA) Plant model 

implemented in Aspen. The NRTL-HOC framework was employed for phase equilibrium 

calculations, with parameters sourced from [40]. Air compression was conducted using a single-stage 

compressor, represented by the MCompr block. The reaction section, denoted as R-101, was modeled 
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with the RCSTR block. The kinetic expressions for reactions R1 through R3 were implemented using 

the power law form, with kinetic parameters sourced from [41]. 

A large heat exchanger is incorporated within the reactor to dissipate the substantial heat 

generated by the reactions. The separation section includes a flash drum, an absorber, an azeotropic 

distillation column, and a rectification column. The rectification column (T-103) was specified 

similarly to the absorber and azeotropic columns using the RadFrac block, but with both condenser 

and reboiler configurations. For the simulation, two tear streams were generated, and the Wegstein 

method was selected for recycle convergence. 

In the dynamic simulation, equipment such as valves and pumps are specified. The parameters 

required for dynamic simulation are detailed in Table 2 in the supporting information. After 

achieving steady-state simulation of the plant in Aspen Plus and inputting the necessary parameters 

for dynamic simulation, the files were exported to Aspen Dynamics. Basic P&ID controllers were 

added and tuned in accordance with the Tyreus-Luyben rules [42,43]. 

Parameters and simulation data for both steady-state and dynamic simulations are provided in 

the supporting information section. Nominal operating conditions for the AA plant were sourced 

from Suo et al. [40] and Turton et al. [39]. The flash separation process (V-101) was modeled using 

the Flash2 block, and the absorption process (T-101) was simulated using the RadFrac block, 

configured without specifying a condenser or reboiler. The azeotropic distillation column (T-102) is 

modeled using the RadFrac block, configured with a reboiler but no condenser. To achieve complete 

separation of water and toluene, a condenser (E-102) and a decanter (D-101) are necessary. The 

decanter is simulated using the H-Drum block, which has three specified outlets: one for the vapor 

stream and two for the aqueous and organic phases. 

3.2. Safety Risks during Plant Operation 

The successful implementation of the S-PWOC framework within the acrylic acid production 

plant necessitates a thorough identification and integration of safety risks into the stochastic 

programming formulation. A comprehensive analysis of the process, coupled with a review of 

pertinent literature on acrylic acid production, has highlighted two critical areas of concern with 

potentially significant impacts. 

The flammability limits of propylene in the presence of oxygen pose a significant risk. According 

to Turton et al. [39], it is crucial to keep oxygen levels below 5 mol% during the reaction stage to 

mitigate this hazard. 

Secondly, the highly exothermic nature of acrylic acid polymerization poses another critical risk 

[40]. Acrylic acid tends to dimerize at temperatures exceeding 110°C, necessitating strict temperature 

controls at the bottoms of distillation columns to prevent incidents. 

To ensure the safe operation of the acrylic acid plant, these identified risks must be explicitly 

formulated as constraints within the S-PWOC framework as follows:  

𝑥𝑂2,5(𝑡0 + ∆𝑡𝑜𝑝𝑡 , 𝑢𝑃𝑊) < 0.05         [
𝑘𝑚𝑜𝑙

𝑘𝑚𝑜𝑙
]      (2)  

𝑇𝑅𝑒𝑏,20(𝑡0 + ∆𝑡𝑜𝑝𝑡 , 𝑢𝑃𝑊) < 110          [°𝐶]         (3) 

𝑇𝑅𝑒𝑏,24(𝑡0 + ∆𝑡𝑜𝑝𝑡 , 𝑢𝑃𝑊) < 110          [°𝐶]         (4) 

4. Stochastic Optimization of Acrylic Acid Production: Managing Uncertainties in Plantwide 

Control 

The proposed SPWOC approach is a framework that improves the PWOC methodology, 

proposed in [44] , by including explicitly different sources of uncertainty. The proposed S-PWOC 

framework is implemented for the acrylic acid process, described in Section 3. Finally, a comparison 

between the proposed S-PWOC, a deterministic P-WOC approach and a decentralized PWC structure 

is presented. The proposed Stochastic Plantwide Optimal Control (PWOC) methodology comprises 

six sequential steps, as illustrated in Figure 2. In the present work, design of step1 is achieved 

according with process knowledge. In several PWC methodologies process knowledge is important 

for taking decisions [1,9,45–50]. 
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Figure 2. Stages of the Stochastic-PWOC strategy. 

As follows, each stage of the S-PWOC framework is given, specifically applied to the Acrylic 

Acid process case study. The proposed steps provide a roadmap for formulating and addressing the 

resulting Stochastic The optimization problem aims to achieve a balanced integration of economic 

considerations and control objectives while ensuring the safe operation of the plant. The general 

approach illustrated in Figure 2 is applicable to various other applications. 

Stage 1. Selection of local and plantwide manipulated variables 

The local control strategy must ensure the safe operation of equipment during plant processes. 

Typically, these local control loops encompass level and pressure control objectives. The primary aim 

of this strategy is to maintain the controlled variables at their predefined set-points. To achieve this 

objective, local manipulated variables (𝑢𝑙𝑜𝑐) are selected based on process knowledge.  

Following the closure of local control loops, the remaining manipulated variables are identified 

as plantwide manipulated variables (𝑢𝑃𝑊). These plantwide manipulated variables serve as decision 

variables in the resulting stochastic programming problem formulation. Table 1 illustrates the pairing 

of local control loops and the plantwide manipulated variables employed to enhance the economic 

profitability of the process. This selection is grounded in process knowledge and aligns with the 

recommendations of Suo et al. [40] and Turton et al. [39]. 

Figure 3 visually distinguishes local control loops and plantwide manipulated variables, 

depicted in green and red respectively. Moreover, PI controllers were fine-tuned using Tyreus-

Luyben correlations to optimize control performance. 

Table 1. Selection of local and plantwide manipulated variables. 

Manipulated Variables at Local Level Manipulated variables at Plantwide level 
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Liquid flowrate (F8) for controlling liquid level 

in flash(V-101) 

Flowrate of air at reactor inlet (𝐹1) 

 

Liquid flowrate(F10) for controlling liquid level 

in absorber(T-101) 

Flowrate of propylene at reactor inlet (𝐹3) 

 

Liquid steam (F20) to control the liquid level in 

the azeotropic column (T-102) 

Steam flowrate at the reactor inlet (𝐹2) 

 

Liquid steam (F25) to control the liquid level in 

the rectification column(T-103) 

Reactor utility flowrate  (𝐹26) 

Liquid steam (F19) to control the liquid organic 

level in decanter(D-101) 

Heat exchanger E-101 utility fluid flowrate 

(𝐹27) 

Liquid steam (F17) to control  the liquid water 

level in decanter(D-101) 

Heat exchanger E-102 utility fluid flowrate 

(𝐹31) 

Liquid steam of distillate (F23) to control the 

liquid level for reflux drum (V-102) in 

rectification column 

Steam of aqueous phase recycled into the 

absorber column  (𝐹18) 

Vapor steam (F5) to control the pressure in the 

reactor (R-101) 

Steam of organic phase recycled into the 

azeotropic column  (𝐹16) 

Vapor steam (F7) to control the pressure in flash 

drum (V-101) 

Steam of utility fluid in the reboiler azeotropic 

column   (𝐹28) 

Vapor flowrate (F9) for controlling pressure in 

absorber (T-101) 

Reflux rate in the rectification column  (𝐹30) 

Vapor flowrate(F12) for controlling pressure in 

azeotropic column(T-102) 

Flowrate of utility fluid used in reboiler 

rectification column  (𝐹29) 

Utility fluid flowrate(F32) used in E-105 heat 

exchanger for controlling pressure in 

rectification column(T-103) 

 

Vapor flowrate(F14) for controlling pressure in 

decanter(D-101) 
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Figure 3. Local control loops implemented for acrylic acid production. Streams in red correspond to 

the streams used as plantwide manipulated variables. 

Stage 2. Uncertainty analysis 

In this stage, the effects of uncertainties in the plant are described and quantified. Three primary 

sources of uncertainty are identified: internal, external, and process uncertainty [31]. Internal 

uncertainty pertains to model errors arising from parameters derived from experimental data, such 

as kinetic constants, physical properties, and transfer coefficients. External uncertainties involve 

external events impacting the process performance, including fluctuations in the costs of raw 

materials and products, variations in environmental conditions, and inconsistencies in the quality of 

raw materials. Process uncertainties refer to disturbances within the process itself, such as variations 

in stream composition, temperatures, and pressures. To effectively identify the principal sources of 

uncertainty affecting a specific process, it is recommended to integrate process knowledge with a 

sensitivity analysis. 

The selected set of uncertain variables is incorporated into the S-PWOC scheme to derive optimal 

trajectories that mitigate the effects of uncertainty on the process. In the acrylic acid production 

process, the primary internal uncertainties are encapsulated in six key variables: the activation 

energies for the three reactions (𝐸𝐴1, 𝐸𝐴2, 𝐸𝐴3) and the pre-exponential kinetic factors (𝑘01, 𝑘02, 𝑘03). 

These parameters, derived from experimental studies, significantly influence both the molar 

production of acrylic acid (AA) and the economic objective function. 

External uncertainties that have a substantial impact on the economic objective function include 

the prices of acrylic acid, acetic acid, and propylene. These external factors are crucial as they directly 

affect the cost and profitability of the production process. By considering both internal and external 

uncertainties, the S-PWOC scheme enables the optimization of process trajectories, thereby 

enhancing the robustness and efficiency of acrylic acid production. 

Tables 2 and 3 present the results of a global sensitivity analysis for internal uncertainties, 

calculated using a normalized linear regression. The limit values for activation energies and pre-

exponential parameters were sourced from acrylic acid kinetic studies conducted by [51]. Table 4 

displays the results of the global sensitivity analysis for external uncertainties. The limit values for 

the prices of acrylic acid, propylene, and acetic acid were obtained from a chemicals market website 

(“ICIS.com web site,” 2023). Additionally, the temperature of air at the reactor inlet is considered as 

a process uncertainty, representing a disturbance. 

These three types of uncertainties—internal, external, and process—are utilized to evaluate the 

performance of the proposed S-PWOC framework. This comprehensive analysis enables a robust 

assessment of the framework's efficacy in mitigating the impact of uncertainties on the acrylic acid 

production process. 

Table 2. Global Sensitivity for internal uncertainties: activation energy parameters. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2024 doi:10.20944/preprints202409.0351.v1

https://doi.org/10.20944/preprints202409.0351.v1


 9 

 

Description 

EA1  

(kJ/kmol) 

Profit 

(USD/h) 

EA2 

(kJ/kmol) 

Profit 

(USD/h) 

EA3 

(kJ/kmol) 

Profit 

(USD/h) 

Lower Limit 13927,02 12300,00 16718,90 4537,30 18602,80 4664,50 

Nominal Value 15000,00 9248,20 20000,00 9248,20 25000,00 9248,20 

Upper Limit 16072,97 1186,70 23281,07 9769,20 30397,20 10680,54 

Average 15000,00 7578,30 19999,99 7851,57 24666,67 8197,75 

Slope -5,18   0,80   0,52   

Global 

sensitivity 

index 10,25   2,03   1,55   

Table 3. Global Sensitivity for internal uncertainties: kinetic constants parameters. 

Description 

k01  

(kJ/kmol. s) 

profit  

(USD/h) 

k02 

(kJ/kmol. s) 

profit 

(USD/h) 

k03  

(kJ/kmol. s) 

profit 

(USD/h) 

Lower Limit 3,09E-05 8679,82 1,72E-04 10591,45 0,04 11524,28 

Nominal 

Value 
4,42E-05 9248,20 2,45E-04 9248,20 0,05 9248,20 

Upper Limit 5,74E-05 11510,91 3,19E-04 10363,33 0,07 9475,43 

Average 4,42E-05 9812,98 2,45E-04 10067,66 0,05 10082,64 

Slope 106752654,31   -1513891,22   -67842,72   

Global 

sensitivity 

index 0,48   0,04   0,34   

Table 4. Global Sensitivity analysis for external uncertain parameters. 

Description 

AAprice 

(USD/kmol) 

Profit 

(USD/h) 

ACEprice 

(USD/kmol) 

Profit 

(USD/h) 

C3H6price 

(USD/kmol) 

Profit 

(USD/h) 

Lower Limit 121,233 4382,7 62,958 9094,6 38,9130 11402,5 

Nominal 

Value 
173 9248,2 89,94 9248,2 55,59 9248,2 
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Upper Limit 225,147 14222,5 116,922 9473,8 72,267 7166,2 

Average 173,216 9284,47 89,949 9272,20 55,59 9272,30 

Slope 0,02   1,81E-03   7,90E-03   

Global 

sensitivity 

index 0,25   0,01   0,13   

From the global sensitivity results for internal uncertain parameters (Tables 2 and 3) we can 

observe that the activation energy for the first reaction (𝐸𝐴1) presents the largest impact on the total 

economic profit. Similarly, Table 4 shows that the price of the acrylic acid (main product), has the 

highest impact on the profit objective function. Therefore, these two are considered in the set of 

random variables 𝛯. Uncertainty evolution is represented using lower, nominal an upper value, and 

decision variables counteract the effects of uncertainty in the considered interval. A robust horizon 

of two is considered for simplicity and reduction in computing time. This means branching the tree 

until stage two, afterwards constant values are considered for the uncertainties. This strategy is 

employed to avoid the exponential growth of the scenario tree with the prediction horizon. The main 

idea of this simplification is that due to the receding horizon nature of NMPC, modeling the far future 

very accurately is not critical because all the control inputs will be recomputed at the next sampling 

time [3]. 

Stage 3. Statement of objective function 

In this work, multistage programming is employed to handle uncertainties and formulate the 

corresponding Stochastic PWOC problem. Decision variables, states, and constraints are represented 

across multiple stages. At each decision stage, the objective function is maximized based on the values 

of the random variables 𝜉 ∈ 𝛯. Equation (5) defines the economic objective function for the acrylic 

acid production plant under conditions of uncertainty: 

𝜑 = ∑ 𝜔𝑖𝐽𝑖(𝑥𝑘+1
𝑗 , 𝑢𝑘

𝑗)

𝑛

𝑖=1

                                   (5) 

In this context, 𝜑 represents the expected economic objective function of the plant. The term 𝜔𝑖 

denotes the probability of occurrence for each scenario 𝑖, while 𝑛 is the total number of scenarios or 

leaf nodes considered. The cost associated with each scenario, 𝐽𝑖(𝑥𝑘+1
𝑗, 𝑢𝑘

𝑗), is defined by Equation 

(6): 

𝐽𝑖(𝑥𝑘+1
𝑗, 𝑢𝑘

𝑗) = ∑ 𝑤1
𝑗𝐹𝐴𝐴25,𝑘+1

𝑗 + 𝑤2
𝑗𝐹𝐴𝐶𝐸23,𝑘+1

𝑗

𝑁

𝑘=1

− 𝑤3
𝑗𝐹1,𝑘+1

𝑗 − 𝑤4
𝑗𝐹2,𝑘+1

𝑗−𝑤5
𝑗𝐹3,𝑘+1

𝑗    

− 𝑤6
𝑗𝐹19,𝑘+1

𝑗 − 𝑤7
𝑗𝐹26,𝑘+1

𝑗 − 𝑤8
𝑗𝐹27,𝑘+1

𝑗 − 𝑤9
𝑗𝐹28,𝑘+1

𝑗 − 𝑤10
𝑗𝐹29,𝑘+1

𝑗

− 𝑤11
𝑗𝐹31,𝑘+1

𝑗                                                                                                                               (6)     

In this formulation, 𝑤𝑖
𝑗  represents cost factors obtained from a chemicals market website 

(“ICIS.com web site,” 2023). The first and second terms in Equation (6) account to produce acrylic 

acid and acetic acid at stage 𝑘 + 1 for each scenario 𝑗. The subsequent three terms, weighted by 𝑤3, 

𝑤4, and 𝑤5, consider the costs of raw materials—air, propylene, and steam—at stage 𝑘 + 1 for each 

scenario 𝑗. 

The term weighted by 𝑤6 accounts for toluene makeup in the decanter at stage 𝑘 + 1 for each 

scenario 𝑗. Additionally, terms weighted by 𝑤7, 𝑤8, 𝑤9, 𝑤10, and 𝑤11 impose penalties for energy 

consumption associated with utility fluids in the reactor and heat exchangers E-101, E-103, E-106, E-

105, and E-102 at stage 𝑘 + 1 for each scenario 𝑗 The economic objective function for each scenario 

𝑖 is computed over a prediction horizon 𝑁. 

Stage 4. Identification of safety risks during plant operation 
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The incorporation safety risks as constraints in the S-PWOC formulation is essential to ensure 

the safe operation of the process during multistage economic optimization. This objective is achieved 

by imposing limitations on states and manipulated plant-wide variables, thereby balancing economic 

performance, control, and process safety. For the acrylic acid process, these constraints must be 

satisfied across all scenarios within the S-PWOC framework. 

𝑥𝑂2,𝑘
𝑗 < 0.05                      [

𝑘𝑚𝑜𝑙

𝑘𝑚𝑜𝑙
]                                                                                             (7) 

𝑇𝑅𝑒𝑏20,𝑘
𝑗 < 110                  [°𝐶]                                                                                                  (8) 

𝑇𝑅𝑒𝑏24,𝑘
𝑗 < 110                  [°𝐶]                                                                                                  (9) 

The first constraint aims to prevent a reactor explosion, which could occur if the oxygen 

composition exceeds 5% by mole. The second and third constraints limit the bottom temperatures in 

the azeotropic and rectification columns to prevent acrylic acid polymerization. Constraints (7) to (9) 

must be satisfied when solving the S-PWOC formulation at stage 𝑘 k for each scenario 𝑗. 

Stage 5. Design of PWC architecture 

The performance of the proposed S-PWOC approach is compared against a deterministic PWOC 

and a typical decentralized PWC structure to assess the impact of incorporating uncertainties in a 

PWC formulation. Although achieving a robust solution increases computational time demands, the 

resulting improvement in economic profitability justifies this trade-off. Robust optimization, such as 

min-max NMPC, is another strategy for handling uncertainties; however, it was not selected due to 

its tendency to yield conservative solutions by optimizing for the worst-case scenario [30]. 

For the implementation of the S-PWOC, a two-layer PWC structure was employed instead of a 

single-layer structure. This choice is based on the proven stability of the two-layer structure in 

rejecting disturbances [52] and its ability to satisfy constraints across all scenarios, leveraging the 

nature of multistage NMPC [3,30] 

To manage various sources of uncertainties and ensure a balance between economic 

performance, control, and safe operation, the use of a multilayer architecture is recommended at this 

stage. The formulation of a multilayer stochastic programming problem that includes diverse sources 

of uncertainty, such as model mismatches, market conditions, and process disturbances, is a novel 

approach from a PWC perspective.  

Until now, stochastic programming approaches have primarily been applied within single-layer 

control architectures and have focused solely on addressing model mismatches in chemical processes 

[3,30,53–56]. The general implementation scheme proposed involves two main layers: the 

optimization layer and the control layer. In the optimization layer, a Dynamic Real-Time 

Optimization (D-RTO) problem under uncertainties is solved to maximize the economic profitability 

of the process. 

The optimization layer provides optimal plant-wide manipulated variables and state 

trajectories, which are then sent as set-points to the regulatory control layer. This regulatory control 

layer comprises a multistage Nonlinear Model Predictive Control (NMPC) system, which predicts 

future process operations and tracks the set points provided by the optimization layer. The optimal 

decision variables determined by the multistage NMPC are subsequently applied to the actual plant. 

The Dynamic Real-Time Optimization (D-RTO) problem solved in the optimization layer is defined 

by Equation (10): 

max
𝑢𝑘

𝑗(𝑜𝑝𝑡) ⦡(𝑗,𝑘)∈𝐼
∑ 𝑤𝑖𝐽𝑖(𝑥𝑘+1

𝑗 , 𝑢𝑘
𝑗)

𝑛

𝑖=1

 

𝑠. 𝑡𝑜.  𝑥𝑘+1
𝑗 = 𝑓(𝑥𝑘

𝑝(𝑗), 𝑢𝑘
𝑗 , 𝜉𝑘

𝑟(𝑗)
) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘
𝑗 ≤ 𝑢𝑚𝑎𝑥 

𝐹25,𝑘
𝑗 ≥ 70.96             [

𝑘𝑚𝑜𝑙

ℎ
] 

𝑥𝐴𝐴25,𝑘
𝑗 ≥ 0.995         [

𝑘𝑚𝑜𝑙

𝑘𝑚𝑜𝑙
]                                                           (10) 

𝑥𝑂2−5,𝑘
𝑗 < 0.05           [

𝑘𝑚𝑜𝑙

ℎ
] 

𝑇𝑅𝑒𝑏20,𝑘
𝑗 < 110             [°𝐶]  
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𝑇𝑅𝑒𝑏24,𝑘
𝑗 < 110             [°𝐶]  

𝑢𝑘
𝑗 = 𝑢𝑘

𝑙    𝑖𝑓  𝑥𝑘
𝑝(𝑗) = 𝑥𝑘

𝑝(𝑙) 

The vector 𝑢𝑘
𝑗(𝑜𝑝𝑡) is the solution to the D-RTO problem, providing optimal decision variables 

for each scenario 𝑗. The cost function for each scenario, 𝐽𝑖 , represents the economic profit of the 

process and is defined by Equation (6). Each state 𝑥𝑘+1
𝑗 depends on the previous state 𝑥𝑘

𝑝(𝑗), the 

control decision variable 𝑢𝑘
𝑗, and the realization 𝑟 of the uncertainty 𝜉𝑘

𝑟(𝑗). 

The second constraint delineates the search space for decision variables during optimization. 

The third constraint, for 𝐹25,𝑘
𝑗, is a productivity requirement. The fourth constraint, for (𝑥𝐴𝐴25,𝑘

𝑗), 

ensures the required product purity of acrylic acid. From the fifth to the last constraint, safety risks 

for plant operation must be satisfied. The final constraint is the non-anticipative constraint, which 

stipulates that states with the same parent node must share identical decision variable profiles. 

min
𝑢𝑘

𝑗(𝑁𝑀𝑃𝐶) ⦡(𝑗,𝑘)∈𝐼
∑ 𝜔𝑖𝐽𝑇𝑟𝑎𝑐𝑘𝑖

𝑛

𝑖=1

 

𝑠. 𝑡𝑜.  𝑥𝑘+1
𝑗 = 𝑓(𝑥𝑘

𝑝(𝑗), 𝑢𝑘
𝑗 , 𝜉𝑘

𝑟(𝑗)
) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘
𝑗 ≤ 𝑢𝑚𝑎𝑥 

𝐹25,𝑘
𝑗 ≥ 70.96                 [

𝑘𝑚𝑜𝑙

ℎ
] 

𝑥𝐴𝐴25,𝑘
𝑗 ≥ 0.995            [

𝑘𝑚𝑜𝑙

𝑘𝑚𝑜𝑙
]                                                                                    (11) 

𝑥𝑂2−5,𝑘
𝑗 < 0.05              [

𝑘𝑚𝑜𝑙

𝑘𝑚𝑜𝑙
]  

𝑇𝑅𝑒𝑏20,𝑘
𝑗 < 110               [°𝐶]  

𝑇𝑅𝑒𝑏24,𝑘
𝑗 < 110               [°𝐶]   

𝑢𝑘
𝑗(𝑁𝑀𝑃𝐶)(𝑡0) = 𝑢𝑘

𝑗(𝑜𝑝𝑡) 

In the multistage NMPC layer, the optimization problem formulation is given by Equation (11). 

Here, 𝜔𝑖 represents the probability of occurrence for each scenario, 𝑥𝑘+1
𝑗 is the vector of predicted 

states at stage 𝑘 + 1, and the constraints hold the same meanings as in Equation (10), except for the 

last one. The final constraint assigns the initial conditions for the decision variables of the NMPC 

layer to the optimal profiles 𝑢𝑘
𝑗(𝑜𝑝𝑡) calculated by the optimization layer. The cost function for each 

scenario, 𝐽𝑇𝑟𝑎𝑐𝑘𝑖 , represents a tracking objective function that penalizes deviations of state variables 

from their optimal values calculated in the optimization layer, as well as penalizes control 

movements to ensure smooth operation. 

𝐽𝑇𝑟𝑎𝑐𝑘𝑖 = ∑ 𝑄1(𝑇𝑘+1
𝑗 − 𝑇𝑠𝑝)2

𝑁

𝑘=1

+ 𝑅1[𝐹1𝑘
𝑗 − 𝐹1𝑘

𝑗(𝑜𝑝𝑡)]
2

+ 𝑅2[𝐹2𝑘
𝑗 − 𝐹2𝑘

𝑗(𝑜𝑝𝑡)]
2
 

+𝑅3[𝐹3𝑘
𝑗 − 𝐹3𝑘

𝑗(𝑜𝑝𝑡)]
2

+ 𝑅4[𝐹26𝑘
𝑗 − 𝐹26𝑘

𝑗(𝑜𝑝𝑡)]
2

 + 𝑅5[𝐹27𝑘
𝑗 − 𝐹27𝑘

𝑗(𝑜𝑝𝑡)]
2

      

+𝑅6[𝐹18𝑘
𝑗 − 𝐹18𝑘

𝑗(𝑜𝑝𝑡)]
2

+ 𝑅7[𝐹16𝑘
𝑗 − 𝐹16𝑘

𝑗(𝑜𝑝𝑡)]
2

+ 𝑅8[𝐹28𝑘
𝑗 − 𝐹28𝑘

𝑗(𝑜𝑝𝑡)]
2

      

+𝑅9[𝐹30𝑘
𝑗 − 𝐹30𝑘

𝑗(𝑜𝑝𝑡)]
2

+ 𝑅10[𝐹29𝑘
𝑗 − 𝐹29𝑘

𝑗(𝑜𝑝𝑡)]
2

+ 𝑅11[𝐹31𝑘
𝑗 − 𝐹31𝑘

𝑗(𝑜𝑝𝑡)]
2

  

+𝑃1(∆𝐹1𝑘
𝑗)

2
+ 𝑃2(∆𝐹2𝑘

𝑗)
2

  + 𝑃3(∆𝐹3𝑘
𝑗)

2
+ 𝑃4(∆𝐹26𝑘

𝑗)
2

+ 𝑃5(∆𝐹27𝑘
𝑗)

2
+𝑃6(∆𝐹18𝑘

𝑗)
2
 

 +𝑃7(∆𝐹16𝑘
𝑗)

2
+ 𝑃8(∆𝐹28𝑘

𝑗)
2

+ 𝑃9(∆𝐹30𝑘
𝑗)

2
+ 𝑃10(∆𝐹29𝑘

𝑗)
2

+ 𝑃11(∆𝐹31𝑘
𝑗)

2
                            (12) 

As delineated in equation (12), penalization terms are implemented to address deviations of both 

temperature and plantwide manipulated variables from their optimal values, as determined by the 

optimization layer. The plantwide manipulated variables, previously defined in stage 2, encompass 

the following parameters: 

1. The volumetric flow rate of air, (𝐹1); 

2. The mass flow rate of propylene, (𝐹2); 

3. The mass flow rate of steam, (𝐹3); 

4. The flow rate of utility fluid circulated through the reactor jacket, (𝐹26); 

5. The flow rate of utility fluid utilized in heat exchangers E-101 and E-102, (𝐹27, 𝐹31); 

6. The flow rate of recycled water introduced into the absorber column, (𝐹18); 

7. The flow rate of organic phase recycled into the azeotropic column, (𝐹16); 

8. The flow rate of utility fluid employed in the reboiler of the azeotropic column, (𝐹28); and 
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9. The reflux ratio in the rectification column, (𝐹30). 

Additionally, to ensure smooth solutions, penalizations for movements of decision variables 

between stages 𝑘 

k and 𝑘+1are incorporated into the NMPC. The tuning parameters employed in the tracking 

objective function are as follows: 𝑄1 = 1; 𝑅1 = 0.05; 𝑅2 = 0.05;  𝑅3 = 0.05;  𝑅4 = 0.05;  𝑅5 =

0.05;  𝑅6 = 0.05;  𝑅7 = 0.05; 𝑅8 = 0.05; 𝑅9 = 0.05; 𝑅10 = 0.05; 𝑅11 = 0.05; 𝑃1 = 0.01; 𝑃2 = 0.01;  𝑃3 =

0.01; 𝑃4 = 0.01; 𝑃5 = 0.01;  𝑃6 = 0.01;  𝑃7 = 0.01;  𝑃8 = 0.01;  𝑃9 = 0.01; 𝑃10 = 0.01. 

The actual plant is modeled by the dynamic nonlinear process developed in Aspen Dynamics. 

This study exclusively conducts simulation analyses, assuming a fully observable process. 

Stage 6. Solution of the Stochastic-PWOC problem 

The optimization problems delineated by equations (10) and (11) are solved utilizing a 

sequential approach. In both the optimization and regulatory layers, the decision variables undergo 

discretization through the application of a polynomial piecewise constant approximation. 

To emulate realistic industrial conditions, the nominal operating parameters reported by [40] , 

were adopted as initial conditions. It is important to note that while the results may exhibit sensitivity 

to the chosen starting point, the employed metaheuristic algorithm for solving the optimization 

problem offers a significant advantage. By virtue of its stochastic nature, this algorithm facilitates the 

exploration of an expansive region within the domain of manipulated variables. Consequently, as 

elucidated by [57], this approach enhances the likelihood of identifying a near-global optimum 

solution. 

The nonlinear dynamic model of the process, utilized for predicting future plant behavior and 

evaluating the efficacy of both optimization and regulatory layers, was developed using Aspen 

Dynamics, as elaborated in Section 3. The integration between this process model and the MATLAB 

optimization toolbox is facilitated through the AM Simulation Block in Simulink. 

The seamless interconnection between Aspen Dynamics and MATLAB for addressing stochastic 

programming problems represents a significant advancement in PWOC, particularly when a 

rigorous dynamic nonlinear model of the process is requisite. This integration methodology enables 

a more comprehensive and accurate representation of complex industrial processes. 

The operational workflow involves the transmission of discretized decision variables from 

MATLAB to the Aspen Dynamics model via the AM Simulation Block. This transfer mechanism 

allows for the subsequent evaluation of system states and the objective function within the high-

fidelity Aspen Dynamics environment. 

Here's a revised version of the text: 

The bidirectional communication between the process model and optimization routine is crucial 

for iterative refinement. Specifically, state variables and model outputs are transmitted back to the 

MATLAB-based optimization algorithm. This feedback loop continues until a predetermined 

stopping criterion is satisfied, ensuring convergence to an optimal solution. 

The optimization layer operates with a prediction horizon of 25 hours, a parameter chosen to 

balance computational efficiency with forecast accuracy. The optimization routine is invoked at 

regular intervals of 0.5 hours, providing frequent updates to the control strategy. Additionally, the 

system is designed to trigger an optimization call if the economic objective function experiences a 

decrease below a specified tolerance threshold. 

The multistage Nonlinear Model Predictive Control (NMPC) layer operates with a prediction 

horizon of 2 hours, a parameter carefully selected to balance computational load with control 

performance. This layer is activated on a periodic basis every 0.2 hours, ensuring frequent updates to 

the control actions. 

Furthermore, the system incorporates an event-triggered mechanism: the NMPC algorithm is 

also invoked when the controlled variables deviate from their optimal setpoints beyond a predefined 

tolerance. This dual activation strategy, combining time-based and deviation-based triggers, enables 

the control system to maintain tight regulation under normal operating conditions while also 

responding swiftly to significant process disturbances or setpoint changes. 

5. S-PWOC for the Acrylic Acid Process: Results and Discussion 
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This section presents a comparative analysis of the proposed Stochastic PWOC approach against 

two alternative methodologies: the deterministic PWOC and the conventional PWC structure 

illustrated in Figure 1. The study evaluates three distinct scenarios, each addressing a specific type of 

uncertainty. Case 1 focuses on known process uncertainty, specifically the air temperature 

disturbance. Case 2 examines the impact of an unknown internal uncertainty, specifically a model 

parameter variation. Case 3 focuses on an unknown external uncertainty, namely fluctuations in the 

cost of the main product. 

Case 1: Air temperature disturbance as known process uncertainty. 

To assess the performance of three PWC architectures: Stochastic PWOC, Deterministic PWOC, 

and decentralized PWC, a process disturbance is introduced, a 10°C increase in air temperature at 0.4 

hours. For clarity in subsequent figures, a consistent color scheme is employed: black denotes 

Stochastic PWOC results, blue represents Deterministic PWOC, and red indicates decentralized PWC 

outcomes. 

Figure 4 illustrates the system response to known process uncertainty, depicting key process 

variables: air and propylene feeding profiles, reactor oxygen molar composition, reactor temperature, 

acrylic acid flowrate, and its molar composition at the rectification column bottoms. The Stochastic 

PWOC approach demonstrates optimal control by adjusting air flowrate (F1) upwards and propylene 

flowrate (F3) downwards, enhancing acrylic acid production (FAA-25). Notably, all control structures 

maintain the reactor's oxygen molar fraction (XO2-5) below 5% mol/mol, ensuring safe operation and 

mitigating explosion risks. 

The Stochastic PWOC achieves the lowest reactor temperature (TR), significantly enhancing the 

main reaction's selectivity. This optimization leads to increased acrylic acid production in the reactor, 

consequently improving the process economic profitability. All control structures exhibit satisfactory 

performance, with Stochastic and Deterministic PWOC approaches effectively tracking optimal 

temperature trajectories, while decentralized PWC maintains its predefined setpoint. Notably, all 

control structures consistently meet the acrylic acid molar fraction specification in the rectification 

column bottoms (XAA-25 > 0.995 mol/mol) throughout the entire time horizon. 

Figure 5 illustrates key process indicators under known disturbances: economic profitability, 

azeotropic and rectification column bottom temperatures, and toluene makeup in the decanter. Table 

5 reveals that the Stochastic PWOC approach achieves the highest cumulative profitability (1.7166 

x105 USD), establishing it as the most economically advantageous control scheme among those 

evaluated. 

The Deterministic PWOC approach ranks second in economic performance, achieving a 

cumulative profitability of 1.6274x105 USD. In contrast, the decentralized PWC control structure 

exhibits the least favorable economic outcome, with a cumulative profitability of 1.4158 x105 USD. 

All analyzed control structures successfully maintain bottoms temperature constraints for both 

azeotropic and rectification columns throughout the entire time horizon, effectively preventing 

acrylic acid polymerization. Notably, the Stochastic PWOC achieves a significant reduction in toluene 

makeup (F19), strategically minimizing raw material costs and thereby enhancing overall economic 

profitability. 
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Figure 4. presents a comparative analysis of three (PWC) structures—Stochastic PWOC (black), 

Deterministic PWOC (blue), and Decentralized PWC (red)—under known process disturbance (Case 

1). The figure illustrates six key process variables: air flowrate (top-left), propylene flowrate (top-

right), reactor outlet oxygen molar fraction (middle-left), reactor temperature (middle-right), 

rectification column bottoms acrylic acid flowrate (bottom-left), and rectification column bottoms 

acrylic acid molar fraction (bottom-right). 
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Figure 5. Comparison of the different PWC structures for the known process disturbance (Case 1): 

SPWOC (black), Deterministic PWOC (blue) and Decentralized PWC (red). Economic objective 

function (top-left), bottom temperature in azeotropic column (top-right), bottom temperature in 

rectification column (bottom-left), and toluene make up in decanter (bottom-right). 

Table 5. Cumulative Profitability Comparison. 

Tested Architecture. Cumulative Profitability (USD) 

Stochastic PWOC approach 1.7166 x105 

Deterministic PWOC approach 1.6274 x105 

Decentralized PWC approach 1.4158 x105 

Case 2: Uncertainty related to a model parameter (activation energy EA1): unknown internal 

uncertainty  

Figure 6 illustrates key process parameters and outputs under conditions of unknown internal 

uncertainty. The figure presents: feeding profiles for air and propylene, oxygen molar composition 

in the reactor, reactor temperature, acrylic acid flowrate, acrylic acid composition at the bottom of the 

rectification column. These variables are shown to demonstrate system behavior in response to 

unknown internal uncertainties. The deterministic PWOC approach disregards uncertainty 

evolution, solving the optimization problem with a fixed nominal value for activation energy  (𝐸𝐴1). 

The decentralized PWC approach, like its deterministic counterpart, ignores uncertainty 

evolution, focusing solely on maintaining controller variables at their set-points. In contrast, the 

Stochastic PWOC approach models uncertainty evolution using a scenario tree representation, with 

the optimization problem solved via equations (10)-(11). 
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The uncertainty in the simulated plant model is revealed after 0.4 hours, with extreme values 

from the scenario tree used to evaluate the performance of the analyzed control structures. The worst-

case scenario, characterized by maximum activation energy (EA1), leads to lower economic 

profitability, while the best-case scenario, with minimum   EA1, results in higher economic 

profitability. 

The Stochastic PWOC approach employed a strategy of increasing air flowrate (F1) while 

reducing propylene flowrate (F3) to an optimal ratio. This method aimed to cool the reactor 

temperature (TR) and enhance acrylic acid production (FAA-25). In the best-case scenario, the 

Deterministic PWOC approach leads to safety constraint violations for reactor operation. Specifically, 

between 3-5 hours, the oxygen molar fraction in the reactor (XO2-5) exceeds the 5% safety threshold. 

This behavior is characteristic of deterministic approaches, which assume complete knowledge 

of model parameters. Such assumptions can lead to safety violations when uncertainties are present 

in the actual system. known [58–60]. When the optimizer of the model deviates from the actual plant 

conditions, constraint violations may arise [30]. However, all analyzed control structures maintain 

the molar fraction specification of acrylic acid in the rectification column bottoms (XAA25>0.995 

mol/mol). 

Figure 6 illustrates the reactor temperature dynamics for the analyzed control structures. The 

decentralized control structure exhibits good performance in both best-case and worst-case scenarios. 

The Stochastic PWOC structure demonstrates reliable tracking of optimal temperature trajectories set 

by the optimization layer. In contrast, the Deterministic PWOC structure shows poor control 

performance in both extreme scenarios. 

Figure 7 depicts four key performance indicators under conditions of unknown internal 

uncertainty: Economic profitability, bottom temperature in the azeotropic column, bottom 

temperature in the rectification column, toluene makeup in the decanter 

Table 6. Comparative Analysis of Cumulative Profitability. 

Tested Architecture Cumulative Profitability (USD) 

Stochastic PWOC approach 1.6243x105 

Deterministic PWOC approach 

best case- scenario 

1.6259x105 

Deterministic PWOC approach 

worst-case scenario 

1.5966x105 

Decentralized Control 

worst-case  scenario 

1.4139x105 

Decentralized Control 

best-case  scenario 

1.4198x105 
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Figure 6. Comparison of the different PWC structures for the unknown internal uncertainty (Case 2): 

SPWOC (black), Deterministic PWOC (blue and green) and Decentralized PWC (red and magenta). 

Air flowrate (top-left), propylene flowrate (top-right), oxygen molar fraction at reactor outlet (middle-

left), reactor temperature (middle-right), acrylic acid flowrate at bottoms rectification column 

(bottom-left) and acrylic acid molar fraction at bottoms rectification column (bottom-right). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2024 doi:10.20944/preprints202409.0351.v1

https://doi.org/10.20944/preprints202409.0351.v1


 19 

 

 

Figure 7. Comparison of the different PWC structures for the unknown internal uncertainty (Case 2): 

SPWOC (black), Deterministic PWOC (blue and green) and Decentralized PWC (red and magenta). 

Economic objective function (top-left), bottoms temperature in azeotropic column (top-right), bottoms 

temperature in rectification column (bottom-left), and toluene make up in decanter (bottom-right). 

Case 3: Uncertainty in the acrylic acid price: unknown external uncertainty 

Figures 8 and 9 compare the performance of the Stochastic PWOC approach against the 

Deterministic PWOC approach and decentralized PWC structure when an unknown disturbance in 

acrylic acid price affects the process. The uncertainty in the simulated plant model is revealed after 

0.4 hours. Extreme values from the scenario tree are then used to evaluate the performance of the 

analyzed control structures. The worst-case scenario, characterized by minimum acrylic acid price, 

results in lower economic profitability. Conversely, the best-case scenario, with maximum acrylic 

acid price, leads to higher economic profitability. The safety constraint for reactor oxygen molar 

composition, XO2-5 <5%mol/mol, was consistently met across the entire time horizon by all three 

analyzed PWC structures. Unlike model mismatches, market condition uncertainties did not impair 

constraint fulfillment in the deterministic approach. Both deterministic and stochastic PWOC 

approaches demonstrated effective reactor temperature control, accurately tracking optimal 

temperature trajectories. The deterministic PWOC approach achieves optimal state tracking 

performance because market conditions do not influence process state variables, and the optimizer 

calculates appropriate decision variables based on nominal model conditions. In the decentralized 

control structure, utility fluid flowrate remains constant as market disturbances do not affect process 

states, thus maintaining reactor temperature at its predefined steady-state value. The Deterministic 

PWOC (best-case scenario) and Stochastic PWOC approaches yield higher cumulative acrylic acid 

production (FAA-25), significantly enhancing the process economic profitability. Deterministic 

PWOC (worst-case) and decentralized PWC structures yield the lowest cumulative acrylic acid 

production, demonstrating their inability to mitigate negative market disturbances that adversely 

affect process profitability. However, all analyzed control structures maintain product specification 

(XAA-25) throughout the entire time horizon. Figure 9 illustrates economic profitability, bottoms 
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temperatures in azeotropic and rectification columns, and toluene makeup in the decanter under 

unknown external uncertainty. All control structures maintain bottoms temperatures below 110°C 

throughout the time horizon, ensuring safety constraints are met and preventing acrylic acid 

polymerization. The Stochastic PWOC structure achieves lower toluene makeup (F19), enhancing 

economic profitability. Table 7 reveals cumulative profitability rankings: Deterministic PWOC (best-

case) leads at 1.7391x105 USD, followed by Stochastic PWOC (1.5855x105 USD), decentralized control 

(best-case) at 1.5080x105 USD, Deterministic PWOC (worst-case) at 8.2747x104 USD, and 

decentralized control (worst-case) at 7.0264x104 USD. 

Table 7. Cumulative Profitability Comparison. 

Tested Architecture. Cumulative Profitability (USD) 

Stochastic PWOC approach 1.5855x105 

Deterministic PWOC approach 

worst-case scenario 

8.2747x104 

Deterministic PWOC approach 

best-case scenario 

1.7391x105 

Decentralized Control 

worst-case scenario 

7.0264x104 

Decentralized Control 

best-case scenario 

1.5080x105 
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Figure 8. Comparison of the different PWC structures for the unknown external uncertainty, acrylic 

acid price (Case 3): SPWOC (black), Deterministic PWOC (blue and green) and Decentralized PWC 

(red and magenta). Air flowrate (top-left), propylene flowrate (top-right), oxygen molar fraction at 

reactor outlet (middle-left), reactor temperature (middle-right), acrylic acid flowrate at bottoms 

rectification column (bottom-left) and acrylic acid molar fraction at bottoms rectification column 

(bottom-right). 

 

Figure 9. Comparison of the different PWC structures for the unknown external uncertainty, acrylic 

acid price (Case 3): SPWOC (black), Deterministic PWOC (blue and green) and Decentralized PWC 

(red and magenta). Economic objective function (top-left), bottoms temperature in azeotropic column 

(top-right), bottoms temperature in rectification column (bottom-left), and toluene make up in 

decanter (bottom-right). 

6. Conclusions 

The proposed Stochastic-Plantwide Optimizing Control (S-PWOC) methodology effectively 

manages uncertainties in acrylic acid plant control. Simulations demonstrate its superior 

performance in handling process, internal, and external uncertainties compared to Deterministic 

PWOC and decentralized control structures. S-PWOC achieves higher profitability, better state 

trajectory tracking, and ensures safe operation across all scenarios. However, its main limitation is 

increased computational time, particularly with numerous uncertain variables or complex scenario 

trees, potentially hindering real-time application. Parallel computing may mitigate this drawback. 
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