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Abstract: This work addresses the relevant control system design issue for an acrylic acid plant through the
lens of plant-wide stochastic optimization control (S-PWOC). The S-PWOC framework involves stochastic
optimization methods. An evaluation comparison between the proposed S-PWOC model and two
conventional models, specifically the two-level identification method and the typical plant-wide decentralized
control structure, is performed. Despite the increasing computational demands associated with S-PWOC,
experimental results highlight its effectiveness in handling different forms of uncertainty. Notably, S-PWOC
demonstrates improvements in economic viability, control efficiency, and reduction of safety risks during plant
operations.
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1. Introduction

Chemical industries have had a significant impact on human lives through the production of
essential goods and services. Since the advent of automated control systems, decentralized
architecture has become the dominant approach to managing the complexity of controlling entire
chemical plants [1]. This architectural structure consists of multiple PID control loops responsible for
maintaining controlled variables at predetermined setpoints in each operating unit. These controllers
function autonomously, regulating their designated process segments without information exchange.
Implementing a traditional decentralized control structure necessitates an initial optimal process
design phase.

Although optimal operation is projected at the design-phase operating point, inevitable
disturbances and uncertainties can alter process conditions, potentially shifting the optimal operating
parameters. The failure to recognize the existence of disruptions and uncertainties can significantly
impact profitability and process safety. Therefore, managing uncertainty in the context of economic
optimization is a key challenge in process control today [2]. As a result, decisions made within a
robust plant-wide control (PWC) framework require careful consideration of uncertainties. Solutions
failing to mitigate uncertainty impacts can compromise economic efficiency and control effectiveness,
potentially resulting in unsafe and financially detrimental conditions [3].

This study proposes a comprehensive approach to solve the ship problem while considering
uncertainties, called Stochastic Plant-Wide Optimization Control (5-PWOC), this method builds on
previous research (Duque et al., 2021; Ochoa et al., 2010b), integrating the Economic viability and
process safety considerations to improve control system design. This framework addresses dynamic
stochastic real-time optimization (D-RTO), emphasizing economic profit as the primary control
objective.

The proposed method is being validated using the acrylic acid production process as a case
study. This choice is based on the paramount importance of this process in the chemical industry,
coupled with its inherent safety concerns, making it particularly suitable for evaluating the
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effectiveness of the proposed S-PWOC framework. Market forecasts project the global acrylic acid
industry to reach USD 20.19 billion by 2027. [6], due to the increasing demand for superabsorbents,
thus increasing production of acrylic acid worldwide. Notably, there is a growing demand for
superabsorbent polymers in applications such as adult urinary incontinence, water treatment
additives, and radioactively cured coatings, especially in low-cost economies, in emerging regions
such as the Asia-Pacific region, Central America and South America, are poised to increase demand
for acrylic acid (“ICIS.com web site,” 2023).

Forecasts predict a global production volume of 9 million tons by 2025, driven by the rise of
global industrialization and the expansion of acrylic acid applications in various sectors [8].
Therefore, coordinated research efforts targeting process control and optimization are required to
improve the economic viability of acrylic acid production in the face of inherent uncertainty. The
PWC formula accounts for three primary uncertainty sources: external disturbances, market
fluctuations, and model parameter variations.

The following sections of this manuscript are described as follows. Section 2 comprehensively
presents the theoretical foundations related to whole-process control (PWC) strategies and stochastic
optimization methods. Part 3 outlines the details of the process, describes the identified safety risks,
and explains the nuances of the Aspen Plus model specified to the acrylic acid (AA) process. In section
4, the Stochastic Plantwide Optimization Control (S-PWOC) method is implemented to control an
acrylic acid production plant. Section 5 attempts to compare the effectiveness of the proposed S-
PWOC approach to resolve the uncertainties associated with the decentralized PWC architecture and
the deterministic PWOC approach. Finally, Section 6 summarizes the conclusions drawn and
provides recommendations for future efforts.

2. Theoretical Background and Methods

This section summarizes the main areas explored in this work: plant-wide controls (PWCs) and
the application of stochastic optimization to reduce uncertainty.

2.1. Plantwide Control Methodologies

Economic and safety imperatives, coupled with increased mass and power integration, have
heightened the significance of plant-wide control (PWC) strategies in chemical plants [9]. This study
proposes a control structure design method that optimizes process economics, ensures safety, and
mitigates various uncertainty sources.

The PWC method designs a comprehensive plant control system, explicitly accounting for inter-
unit process interactions. [10]. The basic study of PWC was introduced by Buckley in 1964 [11], and
after the early 1990s many works emerged. These methods can be systematically classified into two
main approaches: approach-based and structure-based [10]. Classifications of control methods can
be based on approach or structure. Approach-based classifications include heuristic process-oriented,
mathematical model-oriented, optimization-based, and mixed methods. Structure-based
classifications comprise decentralized, distributed, centralized, and multi-layer control systems. [12]

Distributed model predictive control (MPC) systems use multiple MPCs to exchange
information to achieve control goals. There are two main architectures: communication-based and
collaboration-based. In the first, each MPC uses a local objective function. The exchange of
information facilitates coordination while still emphasizing local goals. The second modifies local
MPC objective function to incorporate system-wide control objectives. This promotes coordinated
optimization across all MPCs [13]. Another popular distributed architecture is multilayer
architecture. Here there is a hierarchy with at least two layers: The optimization layer, that performs
high-level calculations and sets general goals. The control layer executes control actions based on
directives from the optimization layer. Coordination between layers may or may not be implemented
[14]. Recent applications of this architecture can be found in the work of [15-20]. In contrast, single-
layer architecture uses a centralized approach. A single controller optimizes monitoring of goals,
economic objectives, or a combination of both [21]. Examples of this architecture can be found in the
work of [22-26].
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2.2. Stochastic Optimization

George Box [27] posited that "all models are wrong, but some are useful," implying inherent
model inconsistency and internal uncertainty in any modeling approach. Conservation equations in
process modeling often rely on empirical parameters and material recycling, while interactions
between process flows introduce uncertainties. These factors contribute to discrepancies between
predicted and actual plant conditions. Additionally, fluctuations in raw material and product costs
can significantly impact the process's profitability and economic viability [28]. When applying
deterministic optimization solutions to real plants, inherent uncertainties can lead to suboptimal
decision variables. This may result in lower-than-expected economic profitability or violation of
critical process constraints. Consequently, incorporating uncertainty into optimization models is
crucial for mitigating the effects of both known and unknown process perturbations in industrial
applications. The S-PWOC framework introduced in this study distinguishes itself by incorporating
multiple uncertainty sources within its optimization problem formulation. Certain significant
stochastic programming applications in process optimization are constrained to operations involving
no more than three units and solely address internal uncertainties. An example can be found in the
Navia study [29]. The study conducts a comparative analysis of two-stage and random constraint
optimization approaches for a hydrodesulfurization process comprising two fixed-bed reactors and
a flash tank. The absence of recycle streams between process units minimizes operational disruptions
and simplifies simulation models. Another example is the work of Lucia et al [3,30], which
implemented a multistep NMPC strategy to optimize a semi-batch polymerization reactor. This study
findings affirm the efficacy of multistage optimization in addressing model uncertainty. [31]
advanced process engineering by applying random constraint optimization to a hydroformylation
process comprising a CSTR reactor and a multiphase separator. In this study, the authors present the
limitations of random constraint programming for application to large-scale systems and show that
infeasible solutions can be found when the optimization problem formulation includes many random
constraints. Stochastic constraint programming exhibits limitations in addressing large-scale systems.
Furthermore, the introduction of numerous random constraints into the optimization problem
formulation frequently leads to infeasible solutions. Other important studies using stochastic
programming for PSE applications are on planning energy-intensive processes using electricity prices
as an external uncertainty source [32] and on endogenous production uncertainties for shale gas
infrastructure planning [33]. Recent studies include using two-stage stochastic programming
problems to deal with uncertainties under operating conditions [34-36]. Approaches a multiscale
flexibility constraints and uncertainties in refinery hydrogen systems, considering the parameter
uncertainties, and proposes a CCPO (Chance Constrained Policy Optimization) algorithm to ensure
that a common random constraint on the photogeneration of phycocyanin is satisfied Sharma et al.
[37] used a multi-objective randomly constrained hierarchical optimization approach for
production planning problems.

Despite the recognition that uncertainties are one of the primary factors driving chemical
processes away from expected optimal operation, no formal PWC methodology explicitly addressing
uncertainties has been proposed, to the authors' knowledge. Managing these uncertainties within the
context of constantly changing market conditions and stringent safety constraints remains a
significant challenge in process control and optimization [38]. In a PWC approach, uncertainty
management is crucial for effective decision-making. Neglecting to address uncertainties can degrade
both economic performance and process control, potentially resulting in unsafe operations and
financial losses.

3. Acrylic Acid Process

The S-PWOC methodology proposed in this work is implemented to the control of a complete
Acrylic Acid (AA) production plant. Although there are multiple methods for producing AA, the
most employed technology at a commercial scale is the partial oxidation of propylene [39]. The
process is governed by the following reactions:

Main reaction:
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3
R].: C3H6 + 502 g C3H402 + H20
Side reactions:

5
R2: C3H6 + 502 g C2H402 + H20 + COZ

9
R3: C3H6 + 502 d 3C02 + 3H20

Where the rate of each reaction i is:

_ —Ey;
—1; = ko exp (W) Po2Pespes (1)

The production of acrylic acid consists of two primary phases: reaction and purification. During
the reaction phase, propylene oxidation yields acrylic acid alongside byproducts including acetic
acid, carbon dioxide, and water. The subsequent purification phase isolates and refines acrylic acid
to achieve 99.5% mole fraction purity. Figure 1 presents the P&ID diagram for the AA process under
consideration, which includes several control loops integral to the decentralized PWC architecture.
This decentralized PWC architecture was developed based on Suo recommendations [40] and
detailed process knowledge.

The acrylic acid production plant consists of a reactor (R-101), a flash drum (T-101), an absorber
(T-102), an azeotropic distillation column (T-103), and a rectification column (T-104). Propylene and
air streams are fed into the reactor, where reactions R1, R2, and R3 occur. The effluent stream from
the reactor (F5) is directed to the flash drum (V-101) for vapor-liquid separation. The gas stream
exiting the flash drum (F7) is fed into the absorber (T-102), where AA and ACE are recovered using
a solvent primarily composed of liquid water (F18). The effluent streams from the flash drum and
absorber, primarily comprising acrylic acid (AA), acetic acid (ACE), and water, enter the azeotropic
distillation column (T-103). Here, toluene serves as an organic solvent, exploiting the toluene-water
azeotrope to extract water. The resulting liquid stream then proceeds to the rectification column (T-
104), where AA is separated as the bottom product and ACE as the distillate.

Figure 1. P&ID Diagram for AA Production: Control loops highlighted in green represent the
decentralized PWC structure.

3.1. Process Modeling and Simulation

The following section provides a detailed description of the Acrylic Acid (AA) Plant model
implemented in Aspen. The NRTL-HOC framework was employed for phase equilibrium
calculations, with parameters sourced from [40]. Air compression was conducted using a single-stage
compressor, represented by the MCompr block. The reaction section, denoted as R-101, was modeled
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with the RCSTR block. The kinetic expressions for reactions R1 through R3 were implemented using
the power law form, with kinetic parameters sourced from [41].

A large heat exchanger is incorporated within the reactor to dissipate the substantial heat
generated by the reactions. The separation section includes a flash drum, an absorber, an azeotropic
distillation column, and a rectification column. The rectification column (T-103) was specified
similarly to the absorber and azeotropic columns using the RadFrac block, but with both condenser
and reboiler configurations. For the simulation, two tear streams were generated, and the Wegstein
method was selected for recycle convergence.

In the dynamic simulation, equipment such as valves and pumps are specified. The parameters
required for dynamic simulation are detailed in Table 2 in the supporting information. After
achieving steady-state simulation of the plant in Aspen Plus and inputting the necessary parameters
for dynamic simulation, the files were exported to Aspen Dynamics. Basic P&ID controllers were
added and tuned in accordance with the Tyreus-Luyben rules [42,43].

Parameters and simulation data for both steady-state and dynamic simulations are provided in
the supporting information section. Nominal operating conditions for the AA plant were sourced
from Suo et al. [40] and Turton et al. [39]. The flash separation process (V-101) was modeled using
the Flash2 block, and the absorption process (T-101) was simulated using the RadFrac block,
configured without specifying a condenser or reboiler. The azeotropic distillation column (T-102) is
modeled using the RadFrac block, configured with a reboiler but no condenser. To achieve complete
separation of water and toluene, a condenser (E-102) and a decanter (D-101) are necessary. The
decanter is simulated using the H-Drum block, which has three specified outlets: one for the vapor
stream and two for the aqueous and organic phases.

3.2. Safety Risks during Plant Operation

The successful implementation of the S-PWOC framework within the acrylic acid production
plant necessitates a thorough identification and integration of safety risks into the stochastic
programming formulation. A comprehensive analysis of the process, coupled with a review of
pertinent literature on acrylic acid production, has highlighted two critical areas of concern with
potentially significant impacts.

The flammability limits of propylene in the presence of oxygen pose a significant risk. According
to Turton et al. [39], it is crucial to keep oxygen levels below 5 mol% during the reaction stage to
mitigate this hazard.

Secondly, the highly exothermic nature of acrylic acid polymerization poses another critical risk
[40]. Acrylic acid tends to dimerize at temperatures exceeding 110°C, necessitating strict temperature
controls at the bottoms of distillation columns to prevent incidents.

To ensure the safe operation of the acrylic acid plant, these identified risks must be explicitly
formulated as constraints within the S-PWOC framework as follows:

Xo2,5(to + Atope Uy ) < 005 [222] - (2)

kmol

TReb,ZO(tO + Atypt, uPW) <110 [°C] 3)
TReb,24-(t0 + Atope, uPW) <110 [°C] €))

4. Stochastic Optimization of Acrylic Acid Production: Managing Uncertainties in Plantwide
Control

The proposed SPWOC approach is a framework that improves the PWOC methodology,
proposed in [44] , by including explicitly different sources of uncertainty. The proposed S-PWOC
framework is implemented for the acrylic acid process, described in Section 3. Finally, a comparison
between the proposed S-PWOC, a deterministic P-WOC approach and a decentralized PWC structure
is presented. The proposed Stochastic Plantwide Optimal Control (PWOC) methodology comprises
six sequential steps, as illustrated in Figure 2. In the present work, design of stepl is achieved
according with process knowledge. In several PWC methodologies process knowledge is important
for taking decisions [1,9,45-50].
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Figure 2. Stages of the Stochastic-PWOC strategy.

As follows, each stage of the S-PWOC framework is given, specifically applied to the Acrylic
Acid process case study. The proposed steps provide a roadmap for formulating and addressing the
resulting Stochastic The optimization problem aims to achieve a balanced integration of economic
considerations and control objectives while ensuring the safe operation of the plant. The general
approach illustrated in Figure 2 is applicable to various other applications.

Stage 1. Selection of local and plantwide manipulated variables

The local control strategy must ensure the safe operation of equipment during plant processes.
Typically, these local control loops encompass level and pressure control objectives. The primary aim
of this strategy is to maintain the controlled variables at their predefined set-points. To achieve this
objective, local manipulated variables (u,,.) are selected based on process knowledge.

Following the closure of local control loops, the remaining manipulated variables are identified
as plantwide manipulated variables (upy,). These plantwide manipulated variables serve as decision
variables in the resulting stochastic programming problem formulation. Table 1 illustrates the pairing
of local control loops and the plantwide manipulated variables employed to enhance the economic
profitability of the process. This selection is grounded in process knowledge and aligns with the
recommendations of Suo et al. [40] and Turton et al. [39].

Figure 3 visually distinguishes local control loops and plantwide manipulated variables,
depicted in green and red respectively. Moreover, PI controllers were fine-tuned using Tyreus-
Luyben correlations to optimize control performance.

Table 1. Selection of local and plantwide manipulated variables.

Manipulated Variables at Local Level Manipulated variables at Plantwide level
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Figure 3. Local control loops implemented for acrylic acid production. Streams in red correspond to
the streams used as plantwide manipulated variables.

Stage 2. Uncertainty analysis

In this stage, the effects of uncertainties in the plant are described and quantified. Three primary
sources of uncertainty are identified: internal, external, and process uncertainty [31]. Internal
uncertainty pertains to model errors arising from parameters derived from experimental data, such
as kinetic constants, physical properties, and transfer coefficients. External uncertainties involve
external events impacting the process performance, including fluctuations in the costs of raw
materials and products, variations in environmental conditions, and inconsistencies in the quality of
raw materials. Process uncertainties refer to disturbances within the process itself, such as variations
in stream composition, temperatures, and pressures. To effectively identify the principal sources of
uncertainty affecting a specific process, it is recommended to integrate process knowledge with a
sensitivity analysis.

The selected set of uncertain variables is incorporated into the S-PWOC scheme to derive optimal
trajectories that mitigate the effects of uncertainty on the process. In the acrylic acid production
process, the primary internal uncertainties are encapsulated in six key variables: the activation
energies for the three reactions (E41, Exp, Es3) and the pre-exponential kinetic factors (kgq, Koz, ko3)-
These parameters, derived from experimental studies, significantly influence both the molar
production of acrylic acid (AA) and the economic objective function.

External uncertainties that have a substantial impact on the economic objective function include
the prices of acrylic acid, acetic acid, and propylene. These external factors are crucial as they directly
affect the cost and profitability of the production process. By considering both internal and external
uncertainties, the S-PWOC scheme enables the optimization of process trajectories, thereby
enhancing the robustness and efficiency of acrylic acid production.

Tables 2 and 3 present the results of a global sensitivity analysis for internal uncertainties,
calculated using a normalized linear regression. The limit values for activation energies and pre-
exponential parameters were sourced from acrylic acid kinetic studies conducted by [51]. Table 4
displays the results of the global sensitivity analysis for external uncertainties. The limit values for
the prices of acrylic acid, propylene, and acetic acid were obtained from a chemicals market website
(“ICIS.com web site,” 2023). Additionally, the temperature of air at the reactor inlet is considered as
a process uncertainty, representing a disturbance.

These three types of uncertainties—internal, external, and process—are utilized to evaluate the
performance of the proposed S-PWOC framework. This comprehensive analysis enables a robust
assessment of the framework's efficacy in mitigating the impact of uncertainties on the acrylic acid
production process.

Table 2. Global Sensitivity for internal uncertainties: activation energy parameters.
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Ea1 Profit Ea2 Profit Eas Profit
Description (kJ/kmol)  (USD/h) (kJ/kmol) (USD/h) (kJ/kmol) (USD/h)
Lower Limit 13927,02 12300,00 16718,90 4537,30 18602,80 4664,50
Nominal Value  15000,00 9248,20 20000,00 9248,20 25000,00 9248,20
Upper Limit 16072,97 1186,70 23281,07 9769,20 30397,20 10680,54
Average 15000,00 7578,30 19999,99 7851,57 24666,67 8197,75
Slope -5,18 0,80 0,52
Global
sensitivity
index 10,25 2,03 1,55
Table 3. Global Sensitivity for internal uncertainties: kinetic constants parameters.
kot profit ko2 profit kos profit
Description  (kJ/kmol.s) (USD/h) (kJ/kmol.s) (USD/h) (kJ/kmol. s) (USD/h)
Lower Limit 3,09E-05 8679,82 1,72E-04 10591,45 0,04 11524,28
Nominal
4,42E-05 9248,20 2,45E-04 9248,20 0,05 9248,20
Value
Upper Limit 5,74E-05 11510,91 3,19E-04 10363,33 0,07 9475,43
Average 4,42E-05 9812,98 2,45E-04 10067,66 0,05 10082,64
Slope 106752654,31 -1513891,22 -67842,72
Global
sensitivity
index 0,48 0,04 0,34
Table 4. Global Sensitivity analysis for external uncertain parameters.
AAprice Profit ACEprice Profit CsHsprice Profit
Description  (USD/kmol) (USD/h) (USD/kmol) (USD/h) (USD/kmol) (USD/h)
Lower Limit 121,233 4382,7 62,958 9094,6 38,9130 11402,5
Nominal
173 9248,2 89,94 9248,2 55,59 9248,2

Value
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10
Upper Limit 225,147 142225 116,922 9473,8 72,267 7166,2
Average 173,216 9284,47 89,949 9272,20 55,59 9272,30
Slope 0,02 1,81E-03 7,90E-03
Global
sensitivity
index 0,25 0,01 0,13

From the global sensitivity results for internal uncertain parameters (Tables 2 and 3) we can
observe that the activation energy for the first reaction (E4;) presents the largest impact on the total
economic profit. Similarly, Table 4 shows that the price of the acrylic acid (main product), has the
highest impact on the profit objective function. Therefore, these two are considered in the set of
random variables Z. Uncertainty evolution is represented using lower, nominal an upper value, and
decision variables counteract the effects of uncertainty in the considered interval. A robust horizon
of two is considered for simplicity and reduction in computing time. This means branching the tree
until stage two, afterwards constant values are considered for the uncertainties. This strategy is
employed to avoid the exponential growth of the scenario tree with the prediction horizon. The main
idea of this simplification is that due to the receding horizon nature of NMPC, modeling the far future
very accurately is not critical because all the control inputs will be recomputed at the next sampling
time [3].

Stage 3. Statement of objective function

In this work, multistage programming is employed to handle uncertainties and formulate the
corresponding Stochastic PWOC problem. Decision variables, states, and constraints are represented
across multiple stages. At each decision stage, the objective function is maximized based on the values
of the random variables ¢ € Z. Equation (5) defines the economic objective function for the acrylic
acid production plant under conditions of uncertainty:

n

0= oGt u) (5)

i=1

In this context, ¢ represents the expected economic objective function of the plant. The term w;
denotes the probability of occurrence for each scenario i, while n is the total number of scenarios or

leaf nodes considered. The cost associated with each scenario, J;(x417,u;”), is defined by Equation

(6):
N
j i — j j j Jj_ j J_ j J_ j Jj
JiCpesr? ) = Z W1JFAA25,k+1 + Wz]FACE23,k+1 W3]F1,k+1 W4JF2,k+1 WSJFS,k+1
k=1
_ j j_ j Jj_ j Jj_ j Jj_ j Jj
W6]F19,k+1 W7}F26,k+1 Wgl Fa7 141 W9JF28,k+1 W10]F29,k+1
_ j Jj
W11JF31,k+1 (6)

In this formulation, w;/ represents cost factors obtained from a chemicals market website
(“ICIS.com web site,” 2023). The first and second terms in Equation (6) account to produce acrylic
acid and acetic acid at stage k + 1 for each scenario j. The subsequent three terms, weighted by ws,
w,, and ws, consider the costs of raw materials —air, propylene, and steam—at stage k + 1 for each
scenario j.

The term weighted by wg accounts for toluene makeup in the decanter at stage k + 1 for each
scenario j. Additionally, terms weighted by w,, wg, wg, wy,, and wy; impose penalties for energy
consumption associated with utility fluids in the reactor and heat exchangers E-101, E-103, E-106, E-
105, and E-102 at stage k + 1 for each scenario j The economic objective function for each scenario
i is computed over a prediction horizon N.

Stage 4. Identification of safety risks during plant operation
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The incorporation safety risks as constraints in the S-PWOC formulation is essential to ensure
the safe operation of the process during multistage economic optimization. This objective is achieved
by imposing limitations on states and manipulated plant-wide variables, thereby balancing economic
performance, control, and process safety. For the acrylic acid process, these constraints must be
satisfied across all scenarios within the S-PWOC framework.

. kmol
X024’ < 0.05 [kmol] @)
TRebZO,k]_ <110 [°C] ®
Treb2ax’ < 110 [°C] €©))

The first constraint aims to prevent a reactor explosion, which could occur if the oxygen
composition exceeds 5% by mole. The second and third constraints limit the bottom temperatures in
the azeotropic and rectification columns to prevent acrylic acid polymerization. Constraints (7) to (9)
must be satisfied when solving the S-PWOC formulation at stage k k for each scenario j.
Stage 5. Design of PWC architecture
The performance of the proposed S-PWOC approach is compared against a deterministic PWOC
and a typical decentralized PWC structure to assess the impact of incorporating uncertainties in a
PWC formulation. Although achieving a robust solution increases computational time demands, the
resulting improvement in economic profitability justifies this trade-off. Robust optimization, such as
min-max NMPC, is another strategy for handling uncertainties; however, it was not selected due to
its tendency to yield conservative solutions by optimizing for the worst-case scenario [30].
For the implementation of the S-PWOC, a two-layer PWC structure was employed instead of a
single-layer structure. This choice is based on the proven stability of the two-layer structure in
rejecting disturbances [52] and its ability to satisfy constraints across all scenarios, leveraging the
nature of multistage NMPC [3,30]
To manage various sources of uncertainties and ensure a balance between economic
performance, control, and safe operation, the use of a multilayer architecture is recommended at this
stage. The formulation of a multilayer stochastic programming problem that includes diverse sources
of uncertainty, such as model mismatches, market conditions, and process disturbances, is a novel
approach from a PWC perspective.
Until now, stochastic programming approaches have primarily been applied within single-layer
control architectures and have focused solely on addressing model mismatches in chemical processes
[3,30,53-56]. The general implementation scheme proposed involves two main layers: the
optimization layer and the control layer. In the optimization layer, a Dynamic Real-Time
Optimization (D-RTO) problem under uncertainties is solved to maximize the economic profitability
of the process.
The optimization layer provides optimal plant-wide manipulated variables and state
trajectories, which are then sent as set-points to the regulatory control layer. This regulatory control
layer comprises a multistage Nonlinear Model Predictive Control (NMPC) system, which predicts
future process operations and tracks the set points provided by the optimization layer. The optimal
decision variables determined by the multistage NMPC are subsequently applied to the actual plant.
The Dynamic Real-Time Optimization (D-RTO) problem solved in the optimization layer is defined
by Equation (10):
n

T S Z U HETIERTIEY
i=

5.£0. Xpeqy) = f(xkp(j)'ukj'fkr(j))

Umin < uk} < Umax

) kmol
Fys5,’ =70.96 [ ]
) kmol
Xaazs,’ = 0.995 [kmol (10)
) kmol
Xo2-5%’ < 0.05 [ -

Trebz0x’ < 110 [°C]
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Trepzar’ < 110 [°C]
W) = w if P9 = x, PO

The vector w,’(opt) is the solution to the D-RTO problem, providing optimal decision variables
for each scenario j. The cost function for each scenario, J;, represents the economic profit of the
process and is defined by Equation (6). Each state x,,,/ depends on the previous state x,7"), the
control decision variable u,/, and the realization r of the uncertainty & 9.

The second constraint delineates the search space for decision variables during optimization.
The third constraint, for Fzslkj , is a productivity requirement. The fourth constraint, for (x, A25,kj ),
ensures the required product purity of acrylic acid. From the fifth to the last constraint, safety risks
for plant operation must be satisfied. The final constraint is the non-anticipative constraint, which
stipulates that states with the same parent node must share identical decision variable profiles.

n
. min i E wiJTracki
ud (NMPC) %(j, k)€l & 4
=
j — j i ¢ ()
S.to. Xp4q’ —f(xkp(J),ukf,fk )

Umin < uk] < Umax

) kmol
Fysi’ = 7096 —]
) kmol
Xaazsk’ = 0.995 [kmol (11)
) kmol
Trevzox’ < 110 [°C]
Trebzax’ < 110 [°C]

we/ (NMPC)(t) = w’ (opt)

In the multistage NMPC layer, the optimization problem formulation is given by Equation (11).
Here, w; represents the probability of occurrence for each scenario, x4’ is the vector of predicted
states at stage k + 1, and the constraints hold the same meanings as in Equation (10), except for the
last one. The final constraint assigns the initial conditions for the decision variables of the NMPC
layer to the optimal profiles w,/(opt) calculated by the optimization layer. The cost function for each
scenario, Jrrqcri, Tepresents a tracking objective function that penalizes deviations of state variables
from their optimal values calculated in the optimization layer, as well as penalizes control
movements to ensure smooth operation.

N
. : : 2 i i 2
Jrrackt = ) 0! = Typ)? + Ra[Fri? = Fy 0p0)] + Ro[Fot = Py (0pt)]
k=1

+Rs[Fy” — Fskj(opt)]z + Ry[Foei” — Fzskj(opt)]z + Rg[Fo7i” — F27kj(0pt)]2

+Rg[Fiei’ — F1skj(0Pt)]2 + Ry [Fiei’ — F16kj(0pt)]2 + Rg[Fogr” — Fzskj(opt)]z

+Ro[Fs01” — Fsokj(OPt)]Z + Ryo[Faor” — F29kj(0Pt)]2 + Ry [Fsn — F31kj(0Pt)]2

+P,(AFu?) + Py (8Fy”)" + Pa(8Fs)) + Pu(AFg))” + Ps(BFy0 ) +Ps(AF i)’
+Py(8F67)" + Po(BFo0)” + Po(BFs0)” + Pro(AFz0))” + Py (AFs1i)” (12)

As delineated in equation (12), penalization terms are implemented to address deviations of both
temperature and plantwide manipulated variables from their optimal values, as determined by the
optimization layer. The plantwide manipulated variables, previously defined in stage 2, encompass
the following parameters:

The volumetric flow rate of air, (F;);

The mass flow rate of propylene, (F;);

The mass flow rate of steam, (F;);

The flow rate of utility fluid circulated through the reactor jacket, (Fy);

The flow rate of utility fluid utilized in heat exchangers E-101 and E-102, (F,;, F51);
The flow rate of recycled water introduced into the absorber column, (Fyg);

The flow rate of organic phase recycled into the azeotropic column, (Fs);

P NGO

The flow rate of utility fluid employed in the reboiler of the azeotropic column, (Fy); and
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9. The reflux ratio in the rectification column, (Fj3).

Additionally, to ensure smooth solutions, penalizations for movements of decision variables
between stages k

k and k+lare incorporated into the NMPC. The tuning parameters employed in the tracking
objective function are as follows: Q; =1; Ry = 0.05; R, = 0.05; R; = 0.05; R, = 0.05; Rs =
0.05; R, = 0.05; R, = 0.05; Rg = 0.05; Ry = 0.05; Ry, = 0.05; Ry; = 0.05; P, = 0.01; P, = 0.01; P; =
0.01; P, = 0.01; P; = 0.01; P, = 0.01; P, = 0.01; Py = 0.01; P, = 0.01; P,, = 0.01.

The actual plant is modeled by the dynamic nonlinear process developed in Aspen Dynamics.
This study exclusively conducts simulation analyses, assuming a fully observable process.

Stage 6. Solution of the Stochastic-PWOC problem

The optimization problems delineated by equations (10) and (11) are solved utilizing a
sequential approach. In both the optimization and regulatory layers, the decision variables undergo
discretization through the application of a polynomial piecewise constant approximation.

To emulate realistic industrial conditions, the nominal operating parameters reported by [40] ,
were adopted as initial conditions. It is important to note that while the results may exhibit sensitivity
to the chosen starting point, the employed metaheuristic algorithm for solving the optimization
problem offers a significant advantage. By virtue of its stochastic nature, this algorithm facilitates the
exploration of an expansive region within the domain of manipulated variables. Consequently, as
elucidated by [57], this approach enhances the likelihood of identifying a near-global optimum
solution.

The nonlinear dynamic model of the process, utilized for predicting future plant behavior and
evaluating the efficacy of both optimization and regulatory layers, was developed using Aspen
Dynamics, as elaborated in Section 3. The integration between this process model and the MATLAB
optimization toolbox is facilitated through the AM Simulation Block in Simulink.

The seamless interconnection between Aspen Dynamics and MATLAB for addressing stochastic
programming problems represents a significant advancement in PWOC, particularly when a
rigorous dynamic nonlinear model of the process is requisite. This integration methodology enables
a more comprehensive and accurate representation of complex industrial processes.

The operational workflow involves the transmission of discretized decision variables from
MATLAB to the Aspen Dynamics model via the AM Simulation Block. This transfer mechanism
allows for the subsequent evaluation of system states and the objective function within the high-
fidelity Aspen Dynamics environment.

Here's a revised version of the text:

The bidirectional communication between the process model and optimization routine is crucial
for iterative refinement. Specifically, state variables and model outputs are transmitted back to the
MATLAB-based optimization algorithm. This feedback loop continues until a predetermined
stopping criterion is satisfied, ensuring convergence to an optimal solution.

The optimization layer operates with a prediction horizon of 25 hours, a parameter chosen to
balance computational efficiency with forecast accuracy. The optimization routine is invoked at
regular intervals of 0.5 hours, providing frequent updates to the control strategy. Additionally, the
system is designed to trigger an optimization call if the economic objective function experiences a
decrease below a specified tolerance threshold.

The multistage Nonlinear Model Predictive Control (NMPC) layer operates with a prediction
horizon of 2 hours, a parameter carefully selected to balance computational load with control
performance. This layer is activated on a periodic basis every 0.2 hours, ensuring frequent updates to
the control actions.

Furthermore, the system incorporates an event-triggered mechanism: the NMPC algorithm is
also invoked when the controlled variables deviate from their optimal setpoints beyond a predefined
tolerance. This dual activation strategy, combining time-based and deviation-based triggers, enables
the control system to maintain tight regulation under normal operating conditions while also
responding swiftly to significant process disturbances or setpoint changes.

5. S-PWOC for the Acrylic Acid Process: Results and Discussion


https://doi.org/10.20944/preprints202409.0351.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 September 2024 d0i:10.20944/preprints202409.0351.v1

14

This section presents a comparative analysis of the proposed Stochastic PWOC approach against
two alternative methodologies: the deterministic PWOC and the conventional PWC structure
illustrated in Figure 1. The study evaluates three distinct scenarios, each addressing a specific type of
uncertainty. Case 1 focuses on known process uncertainty, specifically the air temperature
disturbance. Case 2 examines the impact of an unknown internal uncertainty, specifically a model
parameter variation. Case 3 focuses on an unknown external uncertainty, namely fluctuations in the
cost of the main product.

Case 1: Air temperature disturbance as known process uncertainty.

To assess the performance of three PWC architectures: Stochastic PWOC, Deterministic PWOC,
and decentralized PWC, a process disturbance is introduced, a 10°C increase in air temperature at 0.4
hours. For clarity in subsequent figures, a consistent color scheme is employed: black denotes
Stochastic PWOC results, blue represents Deterministic PWOC, and red indicates decentralized PWC
outcomes.

Figure 4 illustrates the system response to known process uncertainty, depicting key process
variables: air and propylene feeding profiles, reactor oxygen molar composition, reactor temperature,
acrylic acid flowrate, and its molar composition at the rectification column bottoms. The Stochastic
PWOC approach demonstrates optimal control by adjusting air flowrate (F1) upwards and propylene
flowrate (F3) downwards, enhancing acrylic acid production (FAA-25). Notably, all control structures
maintain the reactor's oxygen molar fraction (XO2-5) below 5% mol/mol, ensuring safe operation and
mitigating explosion risks.

The Stochastic PWOC achieves the lowest reactor temperature (Tr), significantly enhancing the
main reaction's selectivity. This optimization leads to increased acrylic acid production in the reactor,
consequently improving the process economic profitability. All control structures exhibit satisfactory
performance, with Stochastic and Deterministic PWOC approaches effectively tracking optimal
temperature trajectories, while decentralized PWC maintains its predefined setpoint. Notably, all
control structures consistently meet the acrylic acid molar fraction specification in the rectification
column bottoms (XAA-25 > 0.995 mol/mol) throughout the entire time horizon.

Figure 5 illustrates key process indicators under known disturbances: economic profitability,
azeotropic and rectification column bottom temperatures, and toluene makeup in the decanter. Table
5 reveals that the Stochastic PWOC approach achieves the highest cumulative profitability (1.7166
x10% USD), establishing it as the most economically advantageous control scheme among those
evaluated.

The Deterministic PWOC approach ranks second in economic performance, achieving a
cumulative profitability of 1.6274x10> USD. In contrast, the decentralized PWC control structure
exhibits the least favorable economic outcome, with a cumulative profitability of 1.4158 x10> USD.

All analyzed control structures successfully maintain bottoms temperature constraints for both
azeotropic and rectification columns throughout the entire time horizon, effectively preventing
acrylic acid polymerization. Notably, the Stochastic PWOC achieves a significant reduction in toluene
makeup (F1), strategically minimizing raw material costs and thereby enhancing overall economic
profitability.
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Figure 4. presents a comparative analysis of three (PWC) structures —Stochastic PWOC (black),
Deterministic PWOC (blue), and Decentralized PWC (red) —under known process disturbance (Case
1). The figure illustrates six key process variables: air flowrate (top-left), propylene flowrate (top-
right), reactor outlet oxygen molar fraction (middle-left), reactor temperature (middle-right),
rectification column bottoms acrylic acid flowrate (bottom-left), and rectification column bottoms

acrylic acid molar fraction (bottom-right).
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Figure 5. Comparison of the different PWC structures for the known process disturbance (Case 1):
SPWOC (black), Deterministic PWOC (blue) and Decentralized PWC (red). Economic objective
function (top-left), bottom temperature in azeotropic column (top-right), bottom temperature in
rectification column (bottom-left), and toluene make up in decanter (bottom-right).

Table 5. Cumulative Profitability Comparison.

Tested Architecture. Cumulative Profitability (USD)
Stochastic PWOC approach 1.7166 x10°
Deterministic PWOC approach 1.6274 x10°
Decentralized PWC approach 1.4158 x10°

Case 2: Uncertainty related to a model parameter (activation energy Eai): unknown internal
uncertainty

Figure 6 illustrates key process parameters and outputs under conditions of unknown internal
uncertainty. The figure presents: feeding profiles for air and propylene, oxygen molar composition
in the reactor, reactor temperature, acrylic acid flowrate, acrylic acid composition at the bottom of the
rectification column. These variables are shown to demonstrate system behavior in response to
unknown internal uncertainties. The deterministic PWOC approach disregards uncertainty
evolution, solving the optimization problem with a fixed nominal value for activation energy (E,;).

The decentralized PWC approach, like its deterministic counterpart, ignores uncertainty
evolution, focusing solely on maintaining controller variables at their set-points. In contrast, the
Stochastic PWOC approach models uncertainty evolution using a scenario tree representation, with
the optimization problem solved via equations (10)-(11).
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The uncertainty in the simulated plant model is revealed after 0.4 hours, with extreme values
from the scenario tree used to evaluate the performance of the analyzed control structures. The worst-
case scenario, characterized by maximum activation energy (Ea1), leads to lower economic
profitability, while the best-case scenario, with minimum Eai, results in higher economic
profitability.

The Stochastic PWOC approach employed a strategy of increasing air flowrate (Fi) while
reducing propylene flowrate (Fs) to an optimal ratio. This method aimed to cool the reactor
temperature (Tr) and enhance acrylic acid production (Faazs). In the best-case scenario, the
Deterministic PWOC approach leads to safety constraint violations for reactor operation. Specifically,
between 3-5 hours, the oxygen molar fraction in the reactor (Xozs) exceeds the 5% safety threshold.

This behavior is characteristic of deterministic approaches, which assume complete knowledge
of model parameters. Such assumptions can lead to safety violations when uncertainties are present
in the actual system. known [58-60]. When the optimizer of the model deviates from the actual plant
conditions, constraint violations may arise [30]. However, all analyzed control structures maintain
the molar fraction specification of acrylic acid in the rectification column bottoms (Xa25>0.995
mol/mol).

Figure 6 illustrates the reactor temperature dynamics for the analyzed control structures. The
decentralized control structure exhibits good performance in both best-case and worst-case scenarios.
The Stochastic PWOC structure demonstrates reliable tracking of optimal temperature trajectories set
by the optimization layer. In contrast, the Deterministic PWOC structure shows poor control
performance in both extreme scenarios.

Figure 7 depicts four key performance indicators under conditions of unknown internal
uncertainty: Economic profitability, bottom temperature in the azeotropic column, bottom
temperature in the rectification column, toluene makeup in the decanter

Table 6. Comparative Analysis of Cumulative Profitability.

Tested Architecture Cumulative Profitability (USD)
Stochastic PWOC approach 1.6243x103
Deterministic PWOC approach 1.6259x105

best case- scenario

Deterministic PWOC approach 1.5966x10°
worst-case scenario

Decentralized Control 1.4139x10°
worst-case scenario

Decentralized Control 1.4198x10°

best-case scenario
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Figure 6. Comparison of the different PWC structures for the unknown internal uncertainty (Case 2):
SPWOC (black), Deterministic PWOC (blue and green) and Decentralized PWC (red and magenta).
Air flowrate (top-left), propylene flowrate (top-right), oxygen molar fraction at reactor outlet (middle-
left), reactor temperature (middle-right), acrylic acid flowrate at bottoms rectification column
(bottom-left) and acrylic acid molar fraction at bottoms rectification column (bottom-right).
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Figure 7. Comparison of the different PWC structures for the unknown internal uncertainty (Case 2):
SPWOC (black), Deterministic PWOC (blue and green) and Decentralized PWC (red and magenta).
Economic objective function (top-left), bottoms temperature in azeotropic column (top-right), bottoms
temperature in rectification column (bottom-left), and toluene make up in decanter (bottom-right).

Case 3: Uncertainty in the acrylic acid price: unknown external uncertainty

Figures 8 and 9 compare the performance of the Stochastic PWOC approach against the
Deterministic PWOC approach and decentralized PWC structure when an unknown disturbance in
acrylic acid price affects the process. The uncertainty in the simulated plant model is revealed after
0.4 hours. Extreme values from the scenario tree are then used to evaluate the performance of the
analyzed control structures. The worst-case scenario, characterized by minimum acrylic acid price,
results in lower economic profitability. Conversely, the best-case scenario, with maximum acrylic
acid price, leads to higher economic profitability. The safety constraint for reactor oxygen molar
composition, Xozs <5%mol/mol, was consistently met across the entire time horizon by all three
analyzed PWC structures. Unlike model mismatches, market condition uncertainties did not impair
constraint fulfillment in the deterministic approach. Both deterministic and stochastic PWOC
approaches demonstrated effective reactor temperature control, accurately tracking optimal
temperature trajectories. The deterministic PWOC approach achieves optimal state tracking
performance because market conditions do not influence process state variables, and the optimizer
calculates appropriate decision variables based on nominal model conditions. In the decentralized
control structure, utility fluid flowrate remains constant as market disturbances do not affect process
states, thus maintaining reactor temperature at its predefined steady-state value. The Deterministic
PWOC (best-case scenario) and Stochastic PWOC approaches yield higher cumulative acrylic acid
production (FAA-25), significantly enhancing the process economic profitability. Deterministic
PWOC (worst-case) and decentralized PWC structures yield the lowest cumulative acrylic acid
production, demonstrating their inability to mitigate negative market disturbances that adversely
affect process profitability. However, all analyzed control structures maintain product specification
(XAA-25) throughout the entire time horizon. Figure 9 illustrates economic profitability, bottoms
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temperatures in azeotropic and rectification columns, and toluene makeup in the decanter under
unknown external uncertainty. All control structures maintain bottoms temperatures below 110°C
throughout the time horizon, ensuring safety constraints are met and preventing acrylic acid
polymerization. The Stochastic PWOC structure achieves lower toluene makeup (F19), enhancing
economic profitability. Table 7 reveals cumulative profitability rankings: Deterministic PWOC (best-
case) leads at 1.7391x105 USD, followed by Stochastic PWOC (1.5855x105 USD), decentralized control
(best-case) at 1.5080x105 USD, Deterministic PWOC (worst-case) at 8.2747x10¢* USD, and
decentralized control (worst-case) at 7.0264x10* USD.

Table 7. Cumulative Profitability Comparison.

Tested Architecture. Cumulative Profitability (USD)
Stochastic PWOC approach 1.5855x105
Deterministic PWOC approach 8.2747x104

worst-case scenario

Deterministic PWOC approach 1.7391x10°
best-case scenario

Decentralized Control 7.0264x104
worst-case scenario

Decentralized Control 1.5080x103

best-case scenario

Decentralized Control-worst case scenario
Decentralized Control-best case scenario

Stochastic PWOC
Deterministic PWOC-worst case scenario
Deterministic PWOC-best case scenario

£ 1400 < 1267 L
° ©
124 1
£ 1350 g
\_,F [32] L
L 1300 —| w122
: : : ; 120 ' : - ;
0 5 10 15 20 0 5 10 15 20
—~ time(h) i time(h)
S 0.03} 3200
e T
~ ~ |
g © 300 IFJ“
x VUzr | o |
o i . |
><8 , , , , 280! : , : ,
0 5 10 15 20 0 5 10 15 20
N time(h) S . time(h)
< IS
3 <
€ 100¢ @}% °
X
< £ 0.998f
2 %
< 80f <
w : : : ' 2£0.996
0 5 10 15 20 X 0 5 10 15 20

time(h) time(h)


https://doi.org/10.20944/preprints202409.0351.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 September 2024 d0i:10.20944/preprints202409.0351.v1

21

Figure 8. Comparison of the different PWC structures for the unknown external uncertainty, acrylic
acid price (Case 3): SPWOC (black), Deterministic PWOC (blue and green) and Decentralized PWC
(red and magenta). Air flowrate (top-left), propylene flowrate (top-right), oxygen molar fraction at
reactor outlet (middle-left), reactor temperature (middle-right), acrylic acid flowrate at bottoms
rectification column (bottom-left) and acrylic acid molar fraction at bottoms rectification column
(bottom-right).
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Figure 9. Comparison of the different PWC structures for the unknown external uncertainty, acrylic
acid price (Case 3): SPWOC (black), Deterministic PWOC (blue and green) and Decentralized PWC
(red and magenta). Economic objective function (top-left), bottoms temperature in azeotropic column
(top-right), bottoms temperature in rectification column (bottom-left), and toluene make up in
decanter (bottom-right).

6. Conclusions

The proposed Stochastic-Plantwide Optimizing Control (S-PWOC) methodology effectively
manages uncertainties in acrylic acid plant control. Simulations demonstrate its superior
performance in handling process, internal, and external uncertainties compared to Deterministic
PWOC and decentralized control structures. S-PWOC achieves higher profitability, better state
trajectory tracking, and ensures safe operation across all scenarios. However, its main limitation is
increased computational time, particularly with numerous uncertain variables or complex scenario
trees, potentially hindering real-time application. Parallel computing may mitigate this drawback.
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