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Abstract: Traditional Proportional Integral and Derivative (PID) controllers are often utilised in 

industrial control applications due to their simplicity and ease of implementation. However, their 

performance can be limited in complex, nonlinear, time-delayed systems, as well as in noisy feedback 

loops. This study introduces Groupers and Moray Eels Optimization (GMEO) with Dual-Stream 

Multi-Dependency Graph neural network (DMGNN) to optimize PID controller parameters 

addressing main challenges like nonlinearity, dynamic adaptation to changing conditions, and robust 

performance under variable operating conditions. The proposed system combines the GMEO 

algorithm to optimize the PID gains and the DMGNN model to predict and locally adjust these 

parameters, ensuring improved accuracy and responsiveness. By dynamically tuning the PID 

parameters based on current system conditions, the system adapts to varying input voltages and load 

changes, optimizing application performance. The proposed strategy is assessed and contrasted with 

existing strategies on the MATLAB platform. The proposed system achieves a significantly reduced 

settling time of 100 ms, ensuring rapid response and stability under varying load conditions. 

Additionally, it minimizes overshoot to 1.5% and reduces the steady-state error to just 0.005V, 

demonstrating superior accuracy and efficiency compared to existing methods. These improvements 

demonstrate the system’s ability to deliver optimal performance while effectively adapting to 

dynamic environments, showcasing its superiority over existing techniques.  

Keywords: buck-boost converters; proportional integral derivative; schottky diode; error signal; 

control signal; steady-state error; tuning methods 

 

1. Introduction 

The simplicity, convenience of use, and typically satisfactory performance of proportional-

integral-derivative (PID) controllers make them popular in industrial applications [1]. These 

controllers are often employed in power electronic systems, such as DC-DC converters and inverters, 

for voltage, current, and power regulation [2]. In particular, PID controllers are applied in buck-boost 

converters to maintain stable output voltages despite varying input voltages or load conditions [3]. 

Buck-boost converters, which can adjust the input voltage according to the switching element's duty 

cycle, are frequently seen in battery-operated devices, solar arrays, and uninterruptible power 

supplies. However, the inherent nonlinearities and switching dynamics in buck-boost converters 

present challenges for traditional PID control, particularly under time-varying or dynamic conditions 

[4,5]. The traditional PID tuning methods like Ziegler-Nichols and Cohen-Koon, often yield 

suboptimal results in these nonlinear systems, as they are designed for linear or time-invariant 
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conditions [6]. Consequently, conventional PID controllers, which are typically tuned for steady-state 

performance [7], may fail to provide adequate transient response or stability in applications where 

load or input voltage fluctuates [8]. Moreover, in the presence of high-frequency switching noise, 

which is characteristic of buck-boost converters, improper PID tuning can lead to performance 

degradation such as overshoot or instability [9]. The control process can become more complicated 

when the system is subjected to fluctuating load conditions, making it crucial to adjust PID 

parameters to maintain optimal performance [10]. Recent advancements have focused on adaptive 

PID control strategies, which dynamically adjust the controller parameters to handle the system’s 

nonlinearities and improve its robustness [11]. One approach is using optimization techniques like 

particle swarm optimization or genetic algorithms, which fine-tune PID parameters to achieve better 

performance in nonlinear and time-varying environments [12]. An additional promising strategy 

involves incorporating artificial intelligence or machine learning models to dynamically adjust PID 

gains, enhancing the controller's adaptability [13]. Despite these advancements, traditional PID 

control still faces limitations in achieving optimal performance under highly dynamic and nonlinear 

conditions [14]. 

In buck-boost converters, the PID controller must maintain a delicate balance between stability, 

transient response, and steady-state accuracy, which is often challenging due to the varying dynamics 

of the system [15]. A key challenge lies in selecting PID gains that remain effective across a variety of 

operational circumstances, including different load levels and input voltages [16]. In order to enhance 

the performance of PID controllers in buck-boost converters, current research is still investigating 

hybrid and adaptive control techniques [17]. The importance of continuous adjustment and fine-

tuning of PID parameters becomes evident as the converter’s dynamic response must be matched 

with external changes, requiring constant optimization [18]. High-frequency noise from the switching 

operation of the converter can further complicate the controller’s performance, leading to higher 

overshoot and instability unless properly addressed [19]. Therefore, more sophisticated approaches 

that integrate global optimization and adaptive feedback mechanisms are crucial for improving the 

overall stability and efficiency of PID-controlled buck-boost converters under dynamic conditions 

[20]. 

2. Literature Review 

In the literature, various research works are available based on PID controller optimization, 

adaptive control strategies, and performance enhancement in buck-boost converters using different 

methods and aspects. Few of these works are reviewed as follows. 

Sangeetha et al. [21] suggested a hybrid technique for fractional-order proportional integral 

derivative (FOPID) controller performance analysis of buck converters.  Capuchin Search Algorithm 

(CapSA) and the Golden Jackal Optimisation (GJO) were integrated into this hybrid technique. The 

Capuchin Search Algorithm was used to improve the Golden Jackal Optimization's update 

behaviour, resulting in the improved GJO (IGJO) approach.  Because power converters were 

nonlinear, they are difficult to regulate, and there was a constant quest for efficient and effective 

controllers.  Recently, it has been demonstrated that fractional-order controllers are more efficient in 

power electronic systems.  The best design for a fractional-order PID controller for the buck converter 

was found using the IGJO approach. 

Warrier et al. [22] presented a complex-order PI controller for DC–DC buck and boost converter 

control that combines a complex-order integrator.  Four parameters in the intricate PID controller 

require adjustment. The Metaheuristic Cohort Intelligence method was used to optimize the design 

of the complex-order PI controller.  The outcomes were contrasted with those of a PID controller of 

fractional order.  It was found that the complex PI controller was more resilient to changes in 

parameters and offered a better response than the FOPID controller. 

Nanyan et al. [23] presented an improved Sine Cosine Algorithm (ISCA) for the optimization of 

a DC-DC buck converter using a PID controller. The restrictions of the conventional Sine Cosine 

Algorithm (SCA) were addressed through two separate modifications, leading to a synergistic use of 
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nonlinear equations in the instrumental mechanism to revise the average location. The first 

modification tackled the issue of local optima by introducing an instrumental function to revise the 

average location. The second change applied a nonlinear equation to the algorithm's reducing 

position-updating mechanism, coordinating the traditional SCA's disproportional exploration and 

exploitation phases. 

Ghamari et al. [24] designed a Lyapunov-based model reference PID controller for a DC/DC buck 

converter using their approach. For more dependable functioning, the parameters must be returned, 

and the PID approach is unsuitable for real-world applications due to a variety of disruptions.  To 

solve this, the PID approach used an adaptive mechanism based on the Lyapunov definition, which 

improved the system's stability and resilience to a range of shocks.  The system was also handled as 

a "black-box," which removes the requirement for precise mathematical modelling and eases 

installation and computing load.  As a contemporary adaptive algorithm, the Lyapunov notion may 

provide optimum solutions more quickly while maintaining dependable stability and accuracy. 

Garcia-Chavez et al. [25] suggested a reliable technique that makes use of a sliding mode 

controller and many proportional-integral loops.  Experimental validation confirms the resilience 

and a formal proof of asymptotic stability was given.  The study shows that the needed smooth 

voltage signals may be delivered to the motor by properly managing the power electronic converter. 

Omer et al. [26]  suggested a DC-DC boost converter and a PV module with an adjustable 

Machine Learning Gradient Boosting (MLGB) controller.  By capturing input/output signals and 

emulating a PI controller, the raw dataset was produced.  Each feature's dynamic behaviour, inter-

feature dependability, and relevance to the model output were explained by data pre-processing that 

included feature engineering and Shapley Additive Explanations (SHAP) values.  The Cat Boost 

technique was used to create the model, and cross-validation was used to adjust the 

hyperparameters. 

AAltbawi et al. [27] have investigated the use of the Fractional-Order Proportional Integral 

Derivative (FOPID) controller in the Automatic Voltage Regulator (AVR) optimum design,considering 

its better control qualities and more adjustable tuning options in comparison to the traditional PID 

regulator. Since the FOPID has two additional tuning parameters (µ and ʎ) compared to the 

conventional PID, its tuning process is more complex. A self-regulated off-line optimal tuning method 

based on the Gradient-Based Optimization (GBO) algorithm was adopted in the study. The chosen 

Fitness Function (FF), which was chosen as the Integral Time Absolute Error (ITAE) in this research, 

was minimised to produce the best FOPID benefits. Table 1 displays the Summary of research work. 

Table 1. The Summary of Research Work. 

Authors Methodology Advantages Limitations 

Sangeetha et al. [21] 

Improved Golden 

Jackal Optimization 

(IGJO) for PID 

control 

Efficient in power 

electronic systems, 

improved fractional-

order control 

Nonlinear nature of 

power converters, 

complexity in 

controller tuning 

Warrier et al. [22] 

Cohort Intelligence 

Algorithm for PID 

control 

More robust to 

parameter variations 

Higher parameter 

complexity, 

challenging for 

practical 

implementation 

Nanyan et al. [23] 

Improved Sine 

Cosine Algorithm 

(ISCA) for PID 

control 

Better local optima 

handling, enhanced 

PID tuning 

Limited to specific 

types of systems, less 

efficient for highly 

nonlinear systems 

Ghamari et al. [24] 

Lyapunov-based 

model reference PID 

control 

Improved stability, 

robustness under 

disturbances 

May not work 

efficiently for rapid 

dynamic changes 
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Garcia-Chavez et al. 

[25] 

Sliding mode 

controller with 

multiple PID loops 

Asymptotic stability, 

robust performance 

against parameter 

variations 

Increased complexity 

in tuning and 

maintaining multiple 

PID loops 

Omer et al. [26] 

Machine Learning 

Gradient Boosting-

based (MLGB) 

controller 

Dynamic adaptation, 

reduces need for 

manual tuning 

Not inherently 

adaptive for fast-

changing conditions 

without retraining 

AAltbawi et al. [27] FOPID controller 
Improved tuning 

flexibility 

More complex tuning 

process due to 

additional 

parameters 

The generic review of recent research highlights various optimization techniques designed to 

enhance the control systems' performance, particularly in Buck-Boost converters, by optimizing PID 

controllers for better stability, efficiency, and dynamic adaptation under varying load conditions. The 

existing techniques include Improved Golden Jackal Optimization (IGJO) optimized PID, Improved 

Sine Cosine Algorithm (ISCA) optimized PID, Cohort Intelligence Algorithm (CTA) optimized PID, 

and Lyapunov-based adaptive PID (L-based adaptive PID). The IGJO Optimized PID suffers from 

slow convergence, high overshoot, higher steady-state error, and sensitivity to initial conditions, 

making it less suitable for precision-critical applications. It also struggles to maintain stability in 

systems with significant variations in load or input, reducing its reliability in dynamic environments. 

The ISCA Optimized PID faces challenges with response speed and precision, and its optimization 

process can be computationally expensive, limiting scalability for larger or more complex systems. 

Additionally, it may not handle nonlinearities effectively. The CTA Optimized PID has limited 

adaptation to highly dynamic conditions, resulting in slower adjustments in unpredictable systems, 

and reduced robustness under external disturbances, leading to performance degradation. The L-

based Adaptive PID relies on Lyapunov functions, limiting its application to specific system types. It 

also exhibits slower adaptation in dynamic environments, higher computational complexity, and 

reduced effectiveness in nonlinear systems, making it less practical for fast-changing or highly 

nonlinear applications. Very few approach-based studies are offered in the literature to deal with this 

problem; these issues and disadvantages served as the impetus for this study work. 

The proposed GMEO-DMGNN method was chosen due to its unique ability to address the 

complex optimization challenges in PID controllers for buck-boost converters. This combination 

overcomes existing drawbacks by offering better adaptability, faster convergence, and enhanced 

stability compared to conventional methods. Advantages include improved stability, reduced 

overshoot, minimized steady-state error, and faster settling times under varying loads. The novelty 

lies in integrating the GMEO with the DMGNN model for fine-tuning PID parameters, ensuring 

superior performance. The method works by leveraging GMEO for global search and DMGNN for 

localized fine-tuning of PID parameters, enhancing efficiency in dynamic systems. Compared to 

existing techniques, the GMEO-DMGNN method ensures better adaptability, responsiveness, and 

optimal performance in buck-boost converters under changing conditions, making it a more robust 

and efficient solution. 

The following are the paper's primary contributions: 

• The system combines GMEO's global optimization with DMGNN's local fine-tuning to 

dynamically adjust PID parameters based on system conditions, ensuring rapid adaptation to 

varying input voltages and load changes. 

• The approach effectively handles nonlinearity and noise in feedback loops, offering robust 

performance in complex and nonlinear systems, which enhances the stability and efficiency of 

the converter. 
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• The method enhances system adaptability, allowing the PID controller to function optimally 

across a wide range of operating conditions, improving long-term system reliability. 

• By integrating GMEO and DMGNN, the system significantly reduces settling time to 100 ms, 

ensuring faster system response and improved performance under dynamic operational 

conditions. 

The rest of the document is arranged as follows:  Part 2 clarifies the configuration for 

Optimizing PID Controllers in Buck-Boost Converters. Part 3 discusses the hardware description. 

Part 4 discusses the proposed GMEO-DMGNN. The results and discussion are clarified in Part 5, 

and Part 6 contains the conclusions. 

3. Configuration for Optimizing PID Controllers in Buck-Boost Converters  

Figure 1 illustrates the block diagram for optimizing PID controllers in buck-boost converters. It 

shows that the reference voltage is compared with the output voltage through a feedback loop to 

regulate the system. Subtracting from Vref creates the error signal, which is then sent to the PID 

controller. Based on the error signal, the PID controller modifies the control signal u(t), which is then 

utilised to regulate the buck-boost converter's output voltage Vout. The proposed GMEO-DMGNN 

method is integrated with the PID controller to enhance its performance by optimizing the PID 

parameters. The error signal and the control signal are dynamically adjusted through the GMEO-

DMGNN method, which fine-tunes the PID parameters for optimal performance under varying load 

conditions. The integration of GMEO-DMGNN helps improve the system’s stability and efficiency, 

ensuring that the output voltage is maintained at the desired set point while adapting to dynamic 

changes. The GMEO-DMGNN method, works by continually fine-tuning the PID parameters, 

allowing the system to adapt to these changing conditions. As a result, the system is able to maintain 

a steady output voltage (Vout) that is as close as possible to the reference voltage (Vref), while also 

improving the overall stability, efficiency, and performance of the converter. Through this method, 

the proposed system not only ensures precise voltage regulation but also reduces overshoot, 

improves settling time, and enhances system robustness under various operating scenarios. 

 

Figure 1. Block diagram of optimizing PID controllers in buck-boost converters. 

3.1. Modelling of Buck-Boost Converter 

A buck-boost converter is a type of DC-DC converter that integrates the fundamental principles 

of both bucks and boost converters in one circuit [28]. This converter may produce either a higher or 

lower output voltage than the input voltage. 

Assuming the converter operates in boost mode with ideal efficiency, the best value for the load 

resistor LR  can be determined using the energy balance principle. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 March 2025 doi:10.20944/preprints202503.0849.v1

https://doi.org/10.20944/preprints202503.0849.v1


 6 of 18 

 

max

2

max

P

V
RL =  (1) 

The boost converter's voltage gain equation while it operates in continuous conduction mode 

(CCM) may be used to determine the duty cycle, while the energy balance concept is used to calculate 

the load resistor. 

maxmax

max
max

P

P
VV

V
D

+
=  (2) 

where maxV the input voltage is given, the duty cycle maxPD is then calculated. Once the duty cycle 

has been established, the inductor is made to restrict the input current ripple max_ PLI
. 

fsI

DV
L

PL

PP




=

max_

maxmax  (3) 

where the current ripple max_ PLI  and the switching frequency fs are established, the input 

inductor's inductance is then calculated. The following formula may be used to determine the input 

capacitor, inC : 

fsV

I
C

Pin

PL

in



=

max_

max_
 (4) 

With max_ PinV is the minimum output voltage.The output capacitor is given in   eqn (5) 

fsV

DI
C P

out



=

max

maxmax  (5) 

With maxV  is the maximum output voltage. Figure 2 This ensures a comprehensive and 

accurate representation of the converter's performance under varying load conditions. 

 

Figure 2. Buck-Boost Converter. 
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3.2. Modelling of PID controller 

A feedback control loop is used by a PID controller to make clear linkages between the system 

variables, minimise the impact of disturbances, and guide the system towards the desired state [29]. 

The error at time t , represented by te , is sent into the controller.  The discrepancy between the 

measured and reference values is known as this error.  The action applied to the system or plant is 

represented by the PID controller's output, ta . The integral gain iK multiplied by the error's 

integral,the proportional gain pK
multiplied by the error magnitude, and the derivative gain dK

multiplied by the error's derivative are the three terms that make up the control signal, or actuation. 

Some of these terms may be set to zero. 

dt

de
KdteKeKa t

d

t

titpt ++= 0  (6) 

The control signal ta
, which is the total of the P, I, and D terms, is returned by the PID controller.  

Figure 3 In this case, pK
for proportional gain, dK stands for derivative gain and iK for integral 

gain. 

tP
eKP

dteKI
t

ti 0

dt

de
KD

t

d

t
e

t
a

 

Figure 3. PID process controller. 

4. Hardware Description 

Buck-boost converter is developed with suitable properties before incorporating optimization 

techniques into a PID controller. The converter can handle the desired input and output voltages, 

loads and switching frequencies, certain characteristics and factor values are given in Table 2. An 

essential part of a buck-boost converter, the inductor (L)is responsible for both storing and 

transferring energy.  

Table 2. The system specifications. 

Parameters Values 

Input Voltage Range (Vin ) 5V to 15V 

Output Voltage (Vout) 12V 

Maximum Output Current (Iout) 2A 

Switching Frequency (fs) 100 Khz 

Duty Cycle (D) 0.2 to 0.8 

The value of the inductor has significant effects on the converter's performance and efficiency.  

The inductor's value has a major impact on the converter's performance and efficiency.The eqn 7 is 

used to get the inductance value. 
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 

Ls

in

f

DV
L



−
=

)1(
 (7) 

Here , 
LI  indicates the highest output current that can pass through the inductor, usually set 

between 20% and 40% of the total allowable ripple current. Assuming (for 40% ripple) 

LII OutL 4.0=  will be given by eqn 8.          

 
H

AKhz

V
L 150

24.0100

)6.01(15




−
=  (8) 

The selected value of L  is 150 µH. An output capacitor is required to lessen voltage ripple at 

the buck-boost converter's output. This helps stabilise the output by reducing voltage swings and 

removing high-frequency switching noise. Using the eqn 10, the capacitance value is determined 

based on the permitted ripple voltage, switching frequency and inductor ripple current. 

f
f

I
C

outs

L
out 25.1

.8





=  (9) 

The output voltage remains stable with the correct capacitance, ensuring reliable converter 

performance. In a low-side switching setup, a MOSFET (e.g., IRF540N, 100V, 33A) handles the 

maximum input voltage and current. A Schottky diode (1N5822) is selected for its fast recovery time 

and high current handling with minimal forward voltage drop. The LM5118 IC controls Pulse Width 

Modulation (PWM) switching and feedback. Resistors set the output and reference voltages and feed 

back to the control loop. After initial tuning via simulation or testing, optimization techniques and 

ML models adjust the PID constants to enhance efficiency. 

1)..()..(

)1(
2 ++

−
==

sCRSCL

DV

D

V
G in

s

OS
s

 (10) 

The parameters for dK , iK  and 
 pK should be found using Ziegler-Nichols technique and 

then refined by simulation to finalize the PID design. Furthermore, machine learning techniques are 

used to dynamically alter these parameters to guarantee ideal performance under various operating 

circumstances.To maintain the output voltage with as few errors as possible, the ML-enhanced PID 

controller adjusts the gain depending on data, such as changes in input voltage or load. 

5. ProposedGMEO-DMGNN Method for Enhancing PID Control in Buck-Boost 

Converters 

This section outlines the integration of a Dual-Stream Multi-Dependency Graph Neural 

Network (DMGNN) with the Groupers and Moray Eels (GMEO) for optimizing PID controller 

parameters. GMEO is used to optimize PID gains (Ki, Kp, Kd), while the Dual-Stream Multi-

Dependency Graph Neural Network (DMGNN) predicts and locally adjusts these parameters to 

enhance performance. GMEO explores large solution spaces, maintains diversity to avoid local 

optima, and handles nonlinear systems to improve PID controller performance by enhancing 

stability, reducing overshoot, and optimizing response time. DMGNN further refines optimization 

by capturing complex dependencies and learning both global and local patterns, which accelerates 

convergence and improves performance in dynamic systems like buck-boost converters. The 

combination of GMEO's global search with DMGNN’s local adjustments optimizes PID parameters 

more efficiently, improving system stability, response time, and adaptability while ensuring faster 

convergence in complex, dynamic systems. 
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5.1. Optimization Using Groupers and Moray Eels (GMEO)  

In this section, the GMEO is described [30] and utilized to optimize the controller parameters of 

PID gains, such as Kp, Ki, and Kd. The GMEO algorithm offers a robust global search mechanism, 

efficiently optimizing PID parameters to enhance performance in nonlinear, dynamic systems, 

ensuring improved stability, faster response, and better adaptability in buck-boost converters.It 

improves the PID controller’s ability to adapt to varying system conditions, reducing overshoot, 

settling time, and steady-state error, while enhancing overall system stability and performance in 

buck-boost converters.GMEO was chosen for its ability to effectively handle the complexities of 

nonlinear, dynamic systems by offering a balanced global search approach, optimizing PID 

parameters for improved control and performance in buck-boost converters. 

Step 1: Initialization 

Set the input variables to first values. In this instance, the input variables are the PID parameters, 

which arerepresented as dK
, pK and  iK  . 

Step 2: Random Generation 

In matrix form, the input variables were  generated at random. 

















=

m

m

m

kkk

kkk

kkk

q

,32,31,3

,22,21,2

,12,11,1

...............

............

.............

 (11) 

where, q indicates the random generation and k indicates the system parameters, m    indicates the  

count of decision variables. 

Step 3: Fitness Function 

The fitness was evaluated which was described by, 

)min( JF =  (12) 

dt    J
0=
T

tet  (13) 

where, J refers Integral of Time-Weighted Absolute Error (ITAE), t  specifies the time variable and te  

specifies the error signal at time t . 

Step 4: Primary Search (PS) Phase 

GMEO agents explore the search space for optimal PID controller parameters (Kp, Ki, Kd), 

mimicking the zigzag swimming pattern of groupers hunting prey. This random exploration ensures 

thorough coverage of the solution space, aiming to find the optimal controller gains that minimize 

performance errors like transient response, steady-state error, and overshoot. 

..D..........1,2,3,....jN,..........1,2,3.....

    i),low-(upperrandlowX jjj

initial

ij

==

+=
 (14) 

Here, 
initial

ijX  specifies the  first location of ith  search agent of jth  dimension ,

   low  and  upper jj
 are the search space's upper and lower bounds, D  specifies  the  overall 

count of dimensions, N  specifies  the number of search agents, and rand  specifies  a random 

vector that follows a uniform distribution, with values ranging from 0 to 1. 

Step 5: PairAssociation (PA) Phase 

In this phase, the best-performing agents (groupers) collaborate with other high-quality agents 

(moray eels) to improve search efficiency. This cooperative interaction enhances the exploration of 

promising regions in the solution space. By leveraging the strengths of both agents, the search process 
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becomes more targeted, accelerating convergence toward the optimal PID parameters. The agents 

dynamically adjust their positions based on the most promising solutions, ensuring a balance 

between global exploration and local refinement for improved accuracy in optimizing the PID 

controller. 

Step 6: Encirclingor Extended Search (ES) Phase 

Agents refine their search by adaptively adjusting their positions toward promising regions. 

This phase enhances local exploration, allowing agents to dynamically focus on areas with higher 

potential for optimal PID parameters. The cooperative movement mimics the coordinated behavior 

of groupers and moray eels, ensuring a balance between exploitation and exploration. This adaptive 

search approach improves the likelihood of finding the global optimum and helps avoid premature 

convergence. 

)(cmj gmjEmjgmj XX
dis

L
X −+=

 
(15) 

where, mjc the coordinates of the mth prey in each dimension, gmjX   specifies the location of a 

grouper; EmjX is the location of an eel, L is the separation between the prey and the grouper, and 

dis  is the distance between the grouper and the eel. 

Step 7: Attackingand Catching Phase 

Agents converge on the best solution by intensifying the search around the optimal PID gains. 

This phase improves convergence accuracy by gradually reducing the search radius, ensuring precise 

identification of the optimal controller parameters. The shrinking mechanism enables a finer search 

around the most promising solution, refining the PID gains for better system performance. This stage 

also helps to reduce the steady-state error and enhances system stability by continuously updating 

the solution based on the best-performing agents. 

iR−=+ )1(R 1i   (16) 

where 1-AB..........1,2,3,....i = and  is a shrinking ratio and R  refers the radius. 

Step 8: Termination Criteria 

The procedure ends if the answer is ideal; if not, it goes back to step 3 for fitness assessments 

and keeps processing the next steps until the best answer is discovered. Thus, GMEO effectively 

optimized the controller parameters of PID gains. The flowchart of GMEO is shown in Figure 4. 

5.2. Dual-Stream Multi-Dependency Graph Neural Network (DMGNN) 

In this section, the prediction using Dual-Stream Multi-Dependency Graph Neural Network 

(DMGNN) is discussed [31]. DMGNN enhances optimization by efficiently predicting and adjusting 

PID parameters, capturing complex dependencies in dynamic systems. It was chosen for its ability to 

model both global and local patterns through its dual-stream architecture, making it well-suited for 

optimizing PID parameters in nonlinear and time-sensitive systems like buck-boost converters. This 

capability ensures faster convergence and significantly improves performance.  

)(),( 2

1

2

1

XWDADAXGCN
−−

= 
 

(17) 

where 
,
the trainable weight matrix for feature transformation specified by 

= j ijij AD
and W . 

DMGNN captures the complex dependencies and relationships between the PID parameters and the 

system's dynamic behavior. Its dual-stream architecture learns both global patterns (long-range 

dependencies) and local patterns (short-range dependencies) between the system states, improving 

PID parameter adjustment. 

332211 ))tanh()(( bWbFWbFWsigmAWs +++=  (18) 
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Figure 4. Flowchart of GMEO. 

Here,the learnable transformation matrix and bias is specified by W and b , correspondingly, 

while sigm  indicates the sigmoid  function. The DMGNN refines the parameters Kp, Ki, and Kd 

by adjusting them locally, ensuring that the PID controller performs optimally under different load 

conditions and varying operational environments. 

T

ss AWsigmAWsigmMAM )()()1( −+=   (19) 

],[))1(max( 21 FFAW
d

AWAFM
softF s

k

s −+


=   (20) 

where, a pre-defined hyper-parameter and reduce to 0 as the training proceeds is specified by ,

is the pre-defined hyper parameter, the features from the two branches is specified by )(1 FFUBF =

and )(2 FGABF = , and the concatenation operation is specified by ][, . The adjusted PID 

parameters are used to control the buck-boost converter, ensuring that the system’s output voltage is 

maintained at the desired set point while adapting dynamically to load variations. 
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where F   and jy  variables related to the system's performance and state respectively while

hazardf  represents the computation process of hazard rates. DMGNNdynamically adjusts the  ideal 

PID parameters Kp, Ki, and Kd based on system conditions by learning both global and local patterns 

in the system’s behavior. 

6. Result and Discussion 

The proposed method's performance is demonstrated in this section using the results of the 

simulation.  The GMEO-DMGNN approach for buck-boost converter PID controller optimisation 

was proposed in this study.  Using the MATLAB environment, the proposed method is assessed and 

contrasted with other current methods. The proposed method's simulation is shown below. 

Figure 5 depicts the voltage response over time using the IGJO optimized PID controller The 

voltage reaches a peak of approximately 13.6V, overshooting the setpoint by around 1.4V. It then 

takes about 1000 ms to settle within a 0.2V band around the setpoint. The larger overshoot and 

prolonged oscillations highlight a key drawback, leading to a less stable and slower response. Figure 

6 depicts the voltage response over time using the ISCA optimized PID controller. The voltage rapidly 

increases, reaching a peak of approximately 13.2V within the first second, with an overshoot of 1.2V. 

The system then settles in about 500 ms, although the settling time is relatively high, the overshoot 

of 1.2V suggests that further optimization could improve system stability and reduce peak voltage. 

Figure 7 depicts the voltage response over time using the CTA optimized PID controller. The initial 

voltage rise shows a peak of 13.6V, with a substantial overshoot of 1.6V above the set point. After the 

peak, the voltage begins to oscillate but stabilizes within approximately 200ms. However, the 

significant overshoot and the time taken to stabilize highlight a drawback of the CTA optimized PID 

system, as it results in slower settling and takes longer to reach steady-state performance. 

Figure 8 illustrates the voltage response over time using the L-Based Adaptive PID. Initially, the 

voltage rises quickly, peaking at around 13.3V, with an overshoot of 1.3V above the set point. After 

the peak, the voltage starts to oscillate, but these oscillations dampen over a period of about 150ms, 

allowing the system to settle around the set point, with the persistence of oscillations leading to a 

slower stabilization process that takes several seconds to fully settle. 

Figure 9 depicts the performance comparison of different control strategies. It compares the 

performance of various PID control strategies, including IGJO Optimized PID, ISCA Optimized PID, 

CTA Optimized PID, L-Based Adaptive PID, and the proposed GMEO-DMGNN method. Each 

strategy shows an initial overshoot followed by oscillations before stabilizing. The IGJO Optimized 

PID controller reaches a peak of approximately 13.6V, overshooting the set point by around 1.4V and 

takes about 1000 ms to settle within a 0.2V band around the set point. ISCA Optimized PID reaches 

a peak of 13.2V, with a similar overshoot of 1.2V, and settles in about 500 ms seconds. CTA Optimized 

PID shows a peak of 13.6V, with a substantial overshoot of 1.6V, and takes approximately 200 ms to 

stabilize. L-Based Adaptive PID peaks at around 13.3V with an overshoot of 1.3V, settling in about 

150ms. The proposed GMEO-DMGNN method shows a peak of 12.9V, with a more controlled 

overshoot of 1.1V, and settles within approximately 100 ms, demonstrating faster convergence and 

less oscillation. Therefore, the GMEO-DMGNN method outperforms the other techniques, providing 

a more stable, faster, and more efficient response for controlling buck-boost converters.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 March 2025 doi:10.20944/preprints202503.0849.v1

https://doi.org/10.20944/preprints202503.0849.v1


 13 of 18 

 

 

Figure 5. Performance evaluation of IGJO Optimized PID controller. 

 

Figure 6. Performance evaluation ofISCA Optimized PID controller. 

 

Figure 7. Performance evaluation of CTA optimized PID controller. 
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Figure 8. Performance evaluation of L-based adaptive PID. 

 

Figure 9. Performance comparison of various control strategies. 

The Table 3 compares the performance of various PID optimization methods based on settling 

time, overshoot, and steady-state error. The IGJO Optimized PID method has the longest settling time 

at 1000 ms, with a significant overshoot of 25% and a steady-state error of 0.15V, indicating slower 

stabilization and moderate accuracy. With a settling time of 500 ms, a 15% decrease in overshoot, and 

a lower steady-state error of 0.05V, the ISCA Optimised PID approach performs better in terms of 

stability and accuracy. The CTA Optimized PID method performs even better, with a settling time of 

200 ms, a further reduced overshoot of 5%, and a steady-state error of 0.02V, showing faster 

convergence and enhanced precision. The L-Based Adaptive PID method offers the fastest settling 

time at 150 ms, with a minimal overshoot of 3% and an almost negligible steady-state error of 0.01V, 

making it highly stable and precise. Finally, the GMEO-DMGNN (Proposed) method outperforms all 

others with the fastest settling time of 100 ms, the smallest overshoot of 1.5%, and the lowest steady-

state error of 0.005V, providing superior performance in terms of speed, accuracy, and stability. 

Therefore, the GMEO-DMGNN method stands out as the most efficient and reliable optimization 

technique for PID controllers. Table 4 presents a comparison of statistical values between the 

proposed and existing methods. The proposed method achieves the highest mean value of 4.9876x10-

7and the highest standard deviation (SD) of 6.9452 x10-12, surpassing the performance of the existing 

systems. This indicates that the proposed method offers superior variability and greater adaptability 

in comparison. 

Table 5 compares the Comparison of ITAE, ISE. The proposed system achieves an ITAE of 

2.09998998 x10-13, an ISE of 1.19052756 x10-6. In comparison, existing methods show higher ITAE and 
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ISE values, with the IGJO Optimized PID achieving an ITAE of 2.39850000 x10-13and an ISE of 

2.73120000 x10-6, the ISCA Optimized PID yielding an ITAE of 2.36580000 x10-13and an ISE of 

2.62490000 x10-6, the CTA Optimized PID showing an ITAE of 2.96550000 x10-13and an ISE of 

3.52110000 x10-6, and the L-based Adaptive PID resulting in an ITAE of 2.9 x10-13and an ISE of 

2.43120000 x10-6. These results highlight the enhanced accuracy and prediction capability of the 

GMEO-DMGNN method compared to other systems. 

Table 3. Performance Comparison of PID tuning methods. 

Methods Settling Time (ms) Overshoot (%) Steady-State Error (V) 

IGJO Optimized PID 1000 ms 25% 0.15 V 

ISCA Optimized PID 500 ms 15% 0.05 V 

CTA optimized PID 200 ms 5% 0.02 V 

L-based adaptive PID 150 ms 3% 0.01 V 

GMEO-DMGNN (Proposed) 100 ms 1.5% 0.005V 

Table 4. The statistical performance comparison of proposed with existing techniques. 

Methods Mean Standard Deviation 

IGJO Optimized PID 4.9876x10-7 6.9452 x10-12 

ISCA Optimized PID 3.2344 x10-7 5.4322 x10-12 

CTA optimized PID 3.9087 x10-7 4.3322 x10-12 

L-based adaptive PID 3.2890 x10-7 5.9880 x10-12 

GMEO-DMGNN (Proposed) 4.0345 x10-7 5.4333 x10-12 

Comparison of efficiency between the proposed and existing methods is displayed in Table 6. 

The proposed method achieves the highest efficiency at 98.5%, showcasing its ability to deliver 

optimal solutions quickly and effectively. The IGJO Optimized PID method follows with an efficiency 

of 82%, indicating slightly lower effectiveness. The ISCA Optimized PID method achieves an 

efficiency of 89%, while the CTA Optimized PID method has an efficiency of 89.6%. The L-Based 

Adaptive PID reaches an efficiency of 91%. Overall, the proposed method stands out for its superior 

efficiency, making it the most effective solution for optimal performance. 

The Table 7 compares the optimal PID controller parameters Kp, Ki, Kd for different methods. 

The proposed GMEO-DMGNN method has the highest Kp at 8.52, Ki at 34.01, and a relatively higher 

Kdat0.33, making it more responsive and adaptive compared to existing methods. In comparison, 

other methods like IGJO, ISCA, CTA, and L-based Adaptive PID have lower PID values, making 

them less efficient in handling dynamic load conditions. The GMEO-DMGNN method stands out for 

its superior performance and adaptability in optimizing buck-boost converter operation. 

Table 5. Comparison of Time-Weighted Absolute Error (ITAE), Integral of Squared Error (ISE). 

Methods ITAE ISE 

IGJO Optimized PID 2.39850000 x10-13 2.73120000x10-6 

ISCA Optimized PID 2.36580000 x10-13 2.62490000x10-6 

CTA optimized PID 2.96550000 x10-13 3.52110000x10-6 

L-based adaptive PID 2.90000000 x10-13 2.43120000x10-6 

GMEO-DMGNN (Proposed) 2.09998998 x10-13 1.19052756 x10-6 

Table 6. Comparison of efficiency of proposed and existing techniques. 

Methods Efficiency (%) 

IGJO Optimized PID 82% 

ISCA Optimized PID 89% 

CTA optimized PID 89.6% 
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L-based adaptive PID 91% 

GMEO-DMGNN (Proposed) 98.5% 

Table 7. Optimal parameters of PID controller. 

Methods Optimal Kp Optimal Ki Optimal Kd 

IGJO Optimized PID 8.01 31.2 0.11 

ISCA Optimized PID 7.32 30.32 0.12 

CTA optimized PID 7.99 32.31 0.30 

L-based adaptive PID 6.43 33..21 0.21 

GMEO-DMGNN (Proposed) 8.52 34.01 0.33 

6.1. Discussion 

The GMEO-DMGNN approach focuses on optimizing PID controller parameters in buck-boost 

converters, enhancing their performance under dynamic load conditions. By combining the global 

optimization capabilities of GMEO with the localized adjustment strengths of DMGNN, the approach 

effectively fine-tunes PID controller parameters for improved performance in buck-boost converters. 

The integration of both methods ensures more accurate optimization of PID parameters, enhancing 

system stability, responsiveness, and overall performance under dynamic conditions.This combined 

framework offers a more robust and efficient solution for optimizing PID parameters, resulting in 

improved adaptability, faster convergence, and better control performance in buck-boost 

converters.The proposed method consistently outperformed existing PID optimization techniques, 

achieving the fastest settling time of 100 ms, the lowest overshoot of 1.5%, minimal steady-state error 

of 0.005 V, and the highest efficiency at 98.5%. It also demonstrated superior statistical values with a 

mean of 4.9876x10-7and a standard deviation of6.9452 x10-12, along with the lowest error integrals, 

including an ITAE of 2.09998998 x10-13and an ISE of 1.19052756 x10-6. This result demonstrates that 

the proposed GMEO-DMGNN system provides superior performance, exhibiting enhanced speed, 

accuracy, stability, and efficiency compared to existing PID optimization techniques. This finding 

indicates the GMEO-DMGNN method's comprehensive superiority in PID optimization, achieved 

through a combination of optimized performance metrics and enhanced hardware utilization, 

specifically the highest capacitance. 

7. Conclusions 

The proposed GMEO-DMGNN approach has been introduced to address the limitations of 

traditional PID controllers in buck-boost converters. In this study, the GMEO-DMGNN combines the 

global search capabilities of GMEO with the local adjustment strengths of DMGNN to optimize PID 

controller parameters. Additionally, this method is highly adaptable to dynamic load conditions, 

maintaining consistent performance across varying operational environments. Unlike conventional 

methods that may struggle with nonlinearities or varying conditions, the GMEO-DMGNN approach 

provides enhanced robustness and adaptability. The proposed method demonstrates superior 

performance, achieving a settling time of 100 ms, 1.5% overshoot, and a steady-state error of 0.005 V. 

This approach outperforms existing methods by offering better adaptability, stability, and efficiency 

in dynamic and nonlinear environments, making it a robust solution for optimizing PID controllers 

in buck-boost converters. It also achieves a high efficiency of 98.5% ensuring optimal performance 

while maintaining system stability under varying conditions. The proposed system reduces the ITAE 

to 2.09998998 x 10-13 and ISE to 1.19052756 x 10-6highlights the proposed system's superior efficiency 

in reducing error and improving control performance. Overall, the proposed GMEO-DMGNN 

approach significantly improves the performance of PID controllers in buck-boost converters, 

offering enhanced stability, efficiency, and adaptability under dynamic and nonlinear conditions. 

Future work could explore the scalability of the approach to different converter topologies, such as 
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multi-phase or bidirectional converters, to enhance its applicability in broader power electronic 

systems. 
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