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Abstract: Traditional Proportional Integral and Derivative (PID) controllers are often utilised in
industrial control applications due to their simplicity and ease of implementation. However, their
performance can be limited in complex, nonlinear, time-delayed systems, as well as in noisy feedback
loops. This study introduces Groupers and Moray Eels Optimization (GMEO) with Dual-Stream
Multi-Dependency Graph neural network (DMGNN) to optimize PID controller parameters
addressing main challenges like nonlinearity, dynamic adaptation to changing conditions, and robust
performance under variable operating conditions. The proposed system combines the GMEO
algorithm to optimize the PID gains and the DMGNN model to predict and locally adjust these
parameters, ensuring improved accuracy and responsiveness. By dynamically tuning the PID
parameters based on current system conditions, the system adapts to varying input voltages and load
changes, optimizing application performance. The proposed strategy is assessed and contrasted with
existing strategies on the MATLAB platform. The proposed system achieves a significantly reduced
settling time of 100 ms, ensuring rapid response and stability under varying load conditions.
Additionally, it minimizes overshoot to 1.5% and reduces the steady-state error to just 0.005V,
demonstrating superior accuracy and efficiency compared to existing methods. These improvements
demonstrate the system’s ability to deliver optimal performance while effectively adapting to
dynamic environments, showcasing its superiority over existing techniques.

Keywords: buck-boost converters; proportional integral derivative; schottky diode; error signal;
control signal; steady-state error; tuning methods

1. Introduction

The simplicity, convenience of use, and typically satisfactory performance of proportional-
integral-derivative (PID) controllers make them popular in industrial applications [1]. These
controllers are often employed in power electronic systems, such as DC-DC converters and inverters,
for voltage, current, and power regulation [2]. In particular, PID controllers are applied in buck-boost
converters to maintain stable output voltages despite varying input voltages or load conditions [3].
Buck-boost converters, which can adjust the input voltage according to the switching element's duty
cycle, are frequently seen in battery-operated devices, solar arrays, and uninterruptible power
supplies. However, the inherent nonlinearities and switching dynamics in buck-boost converters
present challenges for traditional PID control, particularly under time-varying or dynamic conditions
[4,5]. The traditional PID tuning methods like Ziegler-Nichols and Cohen-Koon, often yield
suboptimal results in these nonlinear systems, as they are designed for linear or time-invariant

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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conditions [6]. Consequently, conventional PID controllers, which are typically tuned for steady-state
performance [7], may fail to provide adequate transient response or stability in applications where
load or input voltage fluctuates [8]. Moreover, in the presence of high-frequency switching noise,
which is characteristic of buck-boost converters, improper PID tuning can lead to performance
degradation such as overshoot or instability [9]. The control process can become more complicated
when the system is subjected to fluctuating load conditions, making it crucial to adjust PID
parameters to maintain optimal performance [10]. Recent advancements have focused on adaptive
PID control strategies, which dynamically adjust the controller parameters to handle the system’s
nonlinearities and improve its robustness [11]. One approach is using optimization techniques like
particle swarm optimization or genetic algorithms, which fine-tune PID parameters to achieve better
performance in nonlinear and time-varying environments [12]. An additional promising strategy
involves incorporating artificial intelligence or machine learning models to dynamically adjust PID
gains, enhancing the controller's adaptability [13]. Despite these advancements, traditional PID
control still faces limitations in achieving optimal performance under highly dynamic and nonlinear
conditions [14].

In buck-boost converters, the PID controller must maintain a delicate balance between stability,
transient response, and steady-state accuracy, which is often challenging due to the varying dynamics
of the system [15]. A key challenge lies in selecting PID gains that remain effective across a variety of
operational circumstances, including different load levels and input voltages [16]. In order to enhance
the performance of PID controllers in buck-boost converters, current research is still investigating
hybrid and adaptive control techniques [17]. The importance of continuous adjustment and fine-
tuning of PID parameters becomes evident as the converter’s dynamic response must be matched
with external changes, requiring constant optimization [18]. High-frequency noise from the switching
operation of the converter can further complicate the controller’s performance, leading to higher
overshoot and instability unless properly addressed [19]. Therefore, more sophisticated approaches
that integrate global optimization and adaptive feedback mechanisms are crucial for improving the
overall stability and efficiency of PID-controlled buck-boost converters under dynamic conditions
[20].

2. Literature Review

In the literature, various research works are available based on PID controller optimization,
adaptive control strategies, and performance enhancement in buck-boost converters using different
methods and aspects. Few of these works are reviewed as follows.

Sangeetha et al. [21] suggested a hybrid technique for fractional-order proportional integral
derivative (FOPID) controller performance analysis of buck converters. Capuchin Search Algorithm
(CapSA) and the Golden Jackal Optimisation (GJO) were integrated into this hybrid technique. The
Capuchin Search Algorithm was used to improve the Golden Jackal Optimization's update
behaviour, resulting in the improved GJO (IGJO) approach. Because power converters were
nonlinear, they are difficult to regulate, and there was a constant quest for efficient and effective
controllers. Recently, it has been demonstrated that fractional-order controllers are more efficient in
power electronic systems. The best design for a fractional-order PID controller for the buck converter
was found using the IGJO approach.

Warrier et al. [22] presented a complex-order PI controller for DC-DC buck and boost converter
control that combines a complex-order integrator. Four parameters in the intricate PID controller
require adjustment. The Metaheuristic Cohort Intelligence method was used to optimize the design
of the complex-order PI controller. The outcomes were contrasted with those of a PID controller of
fractional order. It was found that the complex PI controller was more resilient to changes in
parameters and offered a better response than the FOPID controller.

Nanyan et al. [23] presented an improved Sine Cosine Algorithm (ISCA) for the optimization of
a DC-DC buck converter using a PID controller. The restrictions of the conventional Sine Cosine
Algorithm (SCA) were addressed through two separate modifications, leading to a synergistic use of
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nonlinear equations in the instrumental mechanism to revise the average location. The first
modification tackled the issue of local optima by introducing an instrumental function to revise the
average location. The second change applied a nonlinear equation to the algorithm's reducing
position-updating mechanism, coordinating the traditional SCA's disproportional exploration and
exploitation phases.

Ghamari et al. [24] designed a Lyapunov-based model reference PID controller for a DC/DC buck
converter using their approach. For more dependable functioning, the parameters must be returned,
and the PID approach is unsuitable for real-world applications due to a variety of disruptions. To
solve this, the PID approach used an adaptive mechanism based on the Lyapunov definition, which
improved the system's stability and resilience to a range of shocks. The system was also handled as
a "black-box," which removes the requirement for precise mathematical modelling and eases
installation and computing load. As a contemporary adaptive algorithm, the Lyapunov notion may
provide optimum solutions more quickly while maintaining dependable stability and accuracy.

Garcia-Chavez et al. [25] suggested a reliable technique that makes use of a sliding mode
controller and many proportional-integral loops. Experimental validation confirms the resilience
and a formal proof of asymptotic stability was given. The study shows that the needed smooth
voltage signals may be delivered to the motor by properly managing the power electronic converter.

Omer et al. [26] suggested a DC-DC boost converter and a PV module with an adjustable
Machine Learning Gradient Boosting (MLGB) controller. By capturing input/output signals and
emulating a PI controller, the raw dataset was produced. Each feature's dynamic behaviour, inter-
feature dependability, and relevance to the model output were explained by data pre-processing that
included feature engineering and Shapley Additive Explanations (SHAP) values. The Cat Boost
technique was used to create the model, and cross-validation was used to adjust the
hyperparameters.

AAltbawi et al. [27] have investigated the use of the Fractional-Order Proportional Integral
Derivative (FOPID) controller in the Automatic Voltage Regulator (AVR) optimum design,considering
its better control qualities and more adjustable tuning options in comparison to the traditional PID
regulator. Since the FOPID has two additional tuning parameters (4 and £) compared to the
conventional PID, its tuning process is more complex. A self-regulated off-line optimal tuning method
based on the Gradient-Based Optimization (GBO) algorithm was adopted in the study. The chosen
Fitness Function (FF), which was chosen as the Integral Time Absolute Error (ITAE) in this research,
was minimised to produce the best FOPID benefits. Table 1 displays the Summary of research work.

Table 1. The Summary of Research Work.

Authors Methodology Advantages Limitations
Improved Golden  Efficient in power  Nonlinear nature of

ackal Optimization electronic systems, ower converters,
Sangeetha et al. [21] J P Y p

(IGJO) for PID improved fractional- complexity in
control order control controller tuning
Higher parameter
Cohort Intelligence complexity,
M tt
Warrier et al. [22] Algorithm for PID ore robus (? . challenging for
parameter variations .
control practical
implementation

Improved Sine Limited to specific

Better local optima

Cosine Algorithm . types of systems, less
Nanyan et al. [23] (ISCA) for PID handlmg, enhanced efficient for highly
PID tuning .
control nonlinear systems

Lyapunov-based Improved stability, May not work
Ghamari et al. [24] model reference PID robustness under efficiently for rapid
control disturbances dynamic changes
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controller with

[25] multiple PID loops aga.ins‘t parameter = maintaining multiple
variations PID loops
Machine Learning Not inherently

Dynamic adaptation,

Gradient Boosting- adaptive for fast-
O t al. [26 d d f
mer et al. [26] based (MLGB) recuces nee. o changing conditions
manual tuning . ..
controller without retraining
More complex tuning
I d tuni duet
AAltbawi et al. [27]  FOPID controller mp'n?\(e uning proc.e's 5 querto
flexibility additional
parameters

The generic review of recent research highlights various optimization techniques designed to
enhance the control systems' performance, particularly in Buck-Boost converters, by optimizing PID
controllers for better stability, efficiency, and dynamic adaptation under varying load conditions. The
existing techniques include Improved Golden Jackal Optimization (IGJO) optimized PID, Improved
Sine Cosine Algorithm (ISCA) optimized PID, Cohort Intelligence Algorithm (CTA) optimized PID,
and Lyapunov-based adaptive PID (L-based adaptive PID). The IGJO Optimized PID suffers from
slow convergence, high overshoot, higher steady-state error, and sensitivity to initial conditions,
making it less suitable for precision-critical applications. It also struggles to maintain stability in
systems with significant variations in load or input, reducing its reliability in dynamic environments.
The ISCA Optimized PID faces challenges with response speed and precision, and its optimization
process can be computationally expensive, limiting scalability for larger or more complex systems.
Additionally, it may not handle nonlinearities effectively. The CTA Optimized PID has limited
adaptation to highly dynamic conditions, resulting in slower adjustments in unpredictable systems,
and reduced robustness under external disturbances, leading to performance degradation. The L-
based Adaptive PID relies on Lyapunov functions, limiting its application to specific system types. It
also exhibits slower adaptation in dynamic environments, higher computational complexity, and
reduced effectiveness in nonlinear systems, making it less practical for fast-changing or highly
nonlinear applications. Very few approach-based studies are offered in the literature to deal with this
problem; these issues and disadvantages served as the impetus for this study work.

The proposed GMEO-DMGNN method was chosen due to its unique ability to address the
complex optimization challenges in PID controllers for buck-boost converters. This combination
overcomes existing drawbacks by offering better adaptability, faster convergence, and enhanced
stability compared to conventional methods. Advantages include improved stability, reduced
overshoot, minimized steady-state error, and faster settling times under varying loads. The novelty
lies in integrating the GMEO with the DMGNN model for fine-tuning PID parameters, ensuring
superior performance. The method works by leveraging GMEO for global search and DMGNN for
localized fine-tuning of PID parameters, enhancing efficiency in dynamic systems. Compared to
existing techniques, the GMEO-DMGNN method ensures better adaptability, responsiveness, and
optimal performance in buck-boost converters under changing conditions, making it a more robust
and efficient solution.

The following are the paper's primary contributions:

e The system combines GMEO's global optimization with DMGNN's local fine-tuning to
dynamically adjust PID parameters based on system conditions, ensuring rapid adaptation to
varying input voltages and load changes.

e The approach effectively handles nonlinearity and noise in feedback loops, offering robust
performance in complex and nonlinear systems, which enhances the stability and efficiency of
the converter.
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e  The method enhances system adaptability, allowing the PID controller to function optimally
across a wide range of operating conditions, improving long-term system reliability.

e By integrating GMEO and DMGNN, the system significantly reduces settling time to 100 ms,
ensuring faster system response and improved performance under dynamic operational
conditions.

The rest of the document is arranged as follows: Part 2 clarifies the configuration for
Optimizing PID Controllers in Buck-Boost Converters. Part 3 discusses the hardware description.
Part 4 discusses the proposed GMEO-DMGNN. The results and discussion are clarified in Part 5,
and Part 6 contains the conclusions.

3. Configuration for Optimizing PID Controllers in Buck-Boost Converters

Figure 1 illustrates the block diagram for optimizing PID controllers in buck-boost converters. It
shows that the reference voltage is compared with the output voltage through a feedback loop to
regulate the system. Subtracting from Vr creates the error signal, which is then sent to the PID
controller. Based on the error signal, the PID controller modifies the control signal u(t), which is then
utilised to regulate the buck-boost converter's output voltage Vou. The proposed GMEO-DMGNN
method is integrated with the PID controller to enhance its performance by optimizing the PID
parameters. The error signal and the control signal are dynamically adjusted through the GMEO-
DMGNN method, which fine-tunes the PID parameters for optimal performance under varying load
conditions. The integration of GMEO-DMGNN helps improve the system’s stability and efficiency,
ensuring that the output voltage is maintained at the desired set point while adapting to dynamic
changes. The GMEO-DMGNN method, works by continually fine-tuning the PID parameters,
allowing the system to adapt to these changing conditions. As a result, the system is able to maintain
a steady output voltage (Vou) that is as close as possible to the reference voltage (Vrwf), while also
improving the overall stability, efficiency, and performance of the converter. Through this method,
the proposed system not only ensures precise voltage regulation but also reduces overshoot,
improves settling time, and enhances system robustness under various operating scenarios.

GMEO-DMGNN

Vit Buck-Boost Vo
ontroller Converter

Figure 1. Block diagram of optimizing PID controllers in buck-boost converters.

3.1. Modelling of Buck-Boost Converter

A buck-boost converter is a type of DC-DC converter that integrates the fundamental principles
of both bucks and boost converters in one circuit [28]. This converter may produce either a higher or
lower output voltage than the input voltage.

Assuming the converter operates in boost mode with ideal efficiency, the best value for the load
resistor R, can be determined using the energy balance principle.
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Vi,
R = P 1)

The boost converter's voltage gain equation while it operates in continuous conduction mode
(CCM) may be used to determine the duty cycle, while the energy balance concept is used to calculate
the load resistor.

V,

max

P max

D 2)

where V, the input voltage is given, the duty cycle Dp ., is then calculated. Once the duty cycle

has been established, the inductor is made to restrict the input current ripple Al | ..

Ve XD

P max
x fs )

L=
Al

L_Pmax

where the current ripple Al and the switching frequency fS are established, the input

L_Pmax
inductor's inductance is then calculated. The following formula may be used to determine the input

capacitor, C, :

Al L _Pmax
Cin = AV o x fs @
in_ Pmax
With AV, . is the minimum output voltage.The output capacitor is givenin  eqn (5)
I xD
o ®
max x s

With AV, is the maximum output voltage. Figure 2 This ensures a comprehensive and

accurate representation of the converter's performance under varying load conditions.

IIII D [lll.ll

S| T
]

ICim Cuut

Vout load

Figure 2. Buck-Boost Converter.
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3.2. Modelling of PID controller

A feedback control loop is used by a PID controller to make clear linkages between the system
variables, minimise the impact of disturbances, and guide the system towards the desired state [29].

The error at timet, represented by €,, is sent into the controller. The discrepancy between the

measured and reference values is known as this error. The action applied to the system or plant is

represented by the PID controller's output, @, . The integral gain K, multiplied by the error's

K
integral,the proportional gain = P multiplied by the error magnitude, and the derivative gain K

multiplied by the error's derivative are the three terms that make up the control signal, or actuation.
Some of these terms may be set to zero.

t de
a=K.e +K,|edt+K, —* (6)
t p-t i J.O t d dt
The control signal & , which is the total of the P, I, and D terms, is returned by the PID controller.

K
Figure 3 In this case, P for proportional gain, K, stands for derivative gain and K for integral

gain.

Figure 3. PID process controller.

4. Hardware Description

Buck-boost converter is developed with suitable properties before incorporating optimization
techniques into a PID controller. The converter can handle the desired input and output voltages,
loads and switching frequencies, certain characteristics and factor values are given in Table 2. An
essential part of a buck-boost converter, the inductor (L)is responsible for both storing and
transferring energy.

Table 2. The system specifications.

Parameters Values
Input Voltage Range (Vin) 5V to 15V
Output Voltage (Vou) 12V
Maximum Output Current (Iout) 2A
Switching Frequency (fs) 100 Khz
Duty Cycle (D) 0.2t00.8

The value of the inductor has significant effects on the converter's performance and efficiency.
The inductor's value has a major impact on the converter's performance and efficiency.The eqn 7 is
used to get the inductance value.


https://doi.org/10.20944/preprints202503.0849.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 March 2025

L= Lvin (1_ D)J

f.A, ?)

Here, | indicates the highest output current that can pass through the inductor, usually set
between 20% and 40% of the total allowable ripple current. Assuming (for 40% ripple)
Al =0.41,,L will be given by eqn 8.

L |15V (1-0.6) |
100Khz0.4x 2A

~150pH (8)

The selected value of L is 150 uH. An output capacitor is required to lessen voltage ripple at
the buck-boost converter's output. This helps stabilise the output by reducing voltage swings and
removing high-frequency switching noise. Using the eqn 10, the capacitance value is determined
based on the permitted ripple voltage, switching frequency and inductor ripple current.

Al,

C ———L %125
=gt A 2 )

The output voltage remains stable with the correct capacitance, ensuring reliable converter
performance. In a low-side switching setup, a MOSFET (e.g., IRF540N, 100V, 33A) handles the
maximum input voltage and current. A Schottky diode (1N5822) is selected for its fast recovery time
and high current handling with minimal forward voltage drop. The LM5118 IC controls Pulse Width
Modulation (PWM) switching and feedback. Resistors set the output and reference voltages and feed
back to the control loop. After initial tuning via simulation or testing, optimization techniques and
ML models adjust the PID constants to enhance efficiency.

_VOS _ Vin (1_ D)
*" D, (LCS?)+(RCs)+1

(10)

S

The parameters for K, K; and K should be found using Ziegler-Nichols technique and

then refined by simulation to finalize the PID design. Furthermore, machine learning techniques are
used to dynamically alter these parameters to guarantee ideal performance under various operating
circumstances.To maintain the output voltage with as few errors as possible, the ML-enhanced PID
controller adjusts the gain depending on data, such as changes in input voltage or load.

5. ProposedGMEO-DMGNN Method for Enhancing PID Control in Buck-Boost
Converters

This section outlines the integration of a Dual-Stream Multi-Dependency Graph Neural
Network (DMGNN) with the Groupers and Moray Eels (GMEO) for optimizing PID controller
parameters. GMEO is used to optimize PID gains (Ki, Kp, Kd), while the Dual-Stream Multi-
Dependency Graph Neural Network (DMGNN) predicts and locally adjusts these parameters to
enhance performance. GMEO explores large solution spaces, maintains diversity to avoid local
optima, and handles nonlinear systems to improve PID controller performance by enhancing
stability, reducing overshoot, and optimizing response time. DMGNN further refines optimization
by capturing complex dependencies and learning both global and local patterns, which accelerates
convergence and improves performance in dynamic systems like buck-boost converters. The
combination of GMEO's global search with DMGNN’s local adjustments optimizes PID parameters
more efficiently, improving system stability, response time, and adaptability while ensuring faster
convergence in complex, dynamic systems.
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5.1. Optimization Using Groupers and Moray Eels (GMEO)

In this section, the GMEO is described [30] and utilized to optimize the controller parameters of
PID gains, such as Kp, Ki, and Ka. The GMEO algorithm offers a robust global search mechanism,
efficiently optimizing PID parameters to enhance performance in nonlinear, dynamic systems,
ensuring improved stability, faster response, and better adaptability in buck-boost converters.It
improves the PID controller’s ability to adapt to varying system conditions, reducing overshoot,
settling time, and steady-state error, while enhancing overall system stability and performance in
buck-boost converters. GMEO was chosen for its ability to effectively handle the complexities of
nonlinear, dynamic systems by offering a balanced global search approach, optimizing PID
parameters for improved control and performance in buck-boost converters.

Step 1: Initialization

Set the input variables to first values. In this instance, the input variables are the PID parameters,

which arerepresented as K; K pand K, .

Step 2: Random Generation
In matrix form, the input variables were generated at random.

Ky Ky e, Kym
q=|Kyy Kpp e Ky m (11)
Koz Ko oo Ksm

where, ( indicates the random generation and K indicates the system parameters,M  indicates the

count of decision variables.
Step 3: Fitness Function
The fitness was evaluated which was described by,

F=min(J) (12)

J= jOTt|et t (13)

where, J refers Integral of Time-Weighted Absolute Error (ITAE), t specifies the time variable and €,

specifies the error signal at time t.

Step 4: Primary Search (PS) Phase

GMEO agents explore the search space for optimal PID controller parameters (Kp, Ki, Ka),
mimicking the zigzag swimming pattern of groupers hunting prey. This random exploration ensures
thorough coverage of the solution space, aiming to find the optimal controller gains that minimize
performance errors like transient response, steady-state error, and overshoot.

X" = low ; + rand - (upper; - low ;), i ”

Here, X:J-nmal specifies the first location of Ith search agent of jth dimension ,

upper; and low
are the search space's upper and lower bounds, D specifies the overall

count of dimensions, N specifies the number of search agents, and rand specifies a random
vector that follows a uniform distribution, with values ranging from 0 to 1.

Step 5: PairAssociation (PA) Phase

In this phase, the best-performing agents (groupers) collaborate with other high-quality agents
(moray eels) to improve search efficiency. This cooperative interaction enhances the exploration of
promising regions in the solution space. By leveraging the strengths of both agents, the search process
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becomes more targeted, accelerating convergence toward the optimal PID parameters. The agents
dynamically adjust their positions based on the most promising solutions, ensuring a balance
between global exploration and local refinement for improved accuracy in optimizing the PID
controller.

Step 6: Encirclingor Extended Search (ES) Phase

Agents refine their search by adaptively adjusting their positions toward promising regions.
This phase enhances local exploration, allowing agents to dynamically focus on areas with higher
potential for optimal PID parameters. The cooperative movement mimics the coordinated behavior
of groupers and moray eels, ensuring a balance between exploitation and exploration. This adaptive
search approach improves the likelihood of finding the global optimum and helps avoid premature
convergence.

Co= X, +t(x

mj omi " s X gmj) (15)

Emj

where, C;the coordinates of the mth prey in each dimension, X gmj Specifies the location of a

]
grouper; X em;jis the location of an eel, L is the separation between the prey and the grouper, and
dis is the distance between the grouper and the eel.

Step 7: Attackingand Catching Phase

Agents converge on the best solution by intensifying the search around the optimal PID gains.
This phase improves convergence accuracy by gradually reducing the search radius, ensuring precise
identification of the optimal controller parameters. The shrinking mechanism enables a finer search
around the most promising solution, refining the PID gains for better system performance. This stage
also helps to reduce the steady-state error and enhances system stability by continuously updating
the solution based on the best-performing agents.

Riy=0-m)*R (16)

wherel1 =1,2,3,...c........ AB-land s is a shrinking ratioand R refers the radius.

Step 8: Termination Criteria

The procedure ends if the answer is ideal; if not, it goes back to step 3 for fitness assessments
and keeps processing the next steps until the best answer is discovered. Thus, GMEO effectively
optimized the controller parameters of PID gains. The flowchart of GMEO is shown in Figure 4.

5.2. Dual-Stream Multi-Dependency Graph Neural Network (DMGNN)

In this section, the prediction using Dual-Stream Multi-Dependency Graph Neural Network
(DMGNN) is discussed [31]. DMGNN enhances optimization by efficiently predicting and adjusting
PID parameters, capturing complex dependencies in dynamic systems. It was chosen for its ability to
model both global and local patterns through its dual-stream architecture, making it well-suited for
optimizing PID parameters in nonlinear and time-sensitive systems like buck-boost converters. This
capability ensures faster convergence and significantly improves performance.

_1__ 1
GCN(X,A)=35(D 2AD 2XW) (17)

Dy :Zj Aij and W.

where the trainable weight matrix for feature transformation specified by

DMGNN captures the complex dependencies and relationships between the PID parameters and the
system's dynamic behavior. Its dual-stream architecture learns both global patterns (long-range
dependencies) and local patterns (short-range dependencies) between the system states, improving
PID parameter adjustment.

AW, = (sigm(W,F +b,) - tanh(W, F +b, ))W, + b, (18)
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Initialize the input parameters such as
K, KK,

!

Random Generation

/' Fitess Evalution

F =min J)

Primary Search (PS) Phase

Y
Pair Association (PA)
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Figure 4. Flowchart of GMEO.

Here, the learnable transformation matrix and bias is specified by W and b , correspondingly,
while sigm indicates the Singid function. The DMGNN refines the parameters Kp, Ki, and Ka

by adjusting them locally, ensuring that the PID controller performs optimally under different load
conditions and varying operational environments.

MAM = o + (1— a) - sigm(AW, ) x sigm(AW, )" (19)

AFM x AW,
N

where, a pre-defined hyper-parameter and reduce to 0 as the training proceeds is specified by & ,

F, = FUB(F)

F = softmax( +(1-p)AW,) x[F,, F,] (20)

is the pre-defined hyper parameter, the features from the two branches is specified by

and 2 =GAB(F)

parameters are used to control the buck-boost converter, ensuring that the system’s output voltage is

, and the concatenation operation is specified by [] . The adjusted PID

maintained at the desired set point while adapting dynamically to load variations.
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Yij
forn (Y F)) =[] @ fraara(i F))) (21)
i=0

where F and Y; variables related to the system's performance and state respectively while

fiazarg TEpresents the computation process of hazard rates. DMGNNdynamically adjusts the ideal

PID parameters Kp, Ki, and Kabased on system conditions by learning both global and local patterns
in the system’s behavior.

6. Result and Discussion

The proposed method's performance is demonstrated in this section using the results of the
simulation. The GMEO-DMGNN approach for buck-boost converter PID controller optimisation
was proposed in this study. Using the MATLAB environment, the proposed method is assessed and
contrasted with other current methods. The proposed method's simulation is shown below.

Figure 5 depicts the voltage response over time using the IGJO optimized PID controller The
voltage reaches a peak of approximately 13.6V, overshooting the setpoint by around 1.4V. It then
takes about 1000 ms to settle within a 0.2V band around the setpoint. The larger overshoot and
prolonged oscillations highlight a key drawback, leading to a less stable and slower response. Figure
6 depicts the voltage response over time using the ISCA optimized PID controller. The voltage rapidly
increases, reaching a peak of approximately 13.2V within the first second, with an overshoot of 1.2V.
The system then settles in about 500 ms, although the settling time is relatively high, the overshoot
of 1.2V suggests that further optimization could improve system stability and reduce peak voltage.
Figure 7 depicts the voltage response over time using the CTA optimized PID controller. The initial
voltage rise shows a peak of 13.6V, with a substantial overshoot of 1.6V above the set point. After the
peak, the voltage begins to oscillate but stabilizes within approximately 200ms. However, the
significant overshoot and the time taken to stabilize highlight a drawback of the CTA optimized PID
system, as it results in slower settling and takes longer to reach steady-state performance.

Figure 8 illustrates the voltage response over time using the L-Based Adaptive PID. Initially, the
voltage rises quickly, peaking at around 13.3V, with an overshoot of 1.3V above the set point. After
the peak, the voltage starts to oscillate, but these oscillations dampen over a period of about 150ms,
allowing the system to settle around the set point, with the persistence of oscillations leading to a
slower stabilization process that takes several seconds to fully settle.

Figure 9 depicts the performance comparison of different control strategies. It compares the
performance of various PID control strategies, including IGJO Optimized PID, ISCA Optimized PID,
CTA Optimized PID, L-Based Adaptive PID, and the proposed GMEO-DMGNN method. Each
strategy shows an initial overshoot followed by oscillations before stabilizing. The IGJO Optimized
PID controller reaches a peak of approximately 13.6V, overshooting the set point by around 1.4V and
takes about 1000 ms to settle within a 0.2V band around the set point. ISCA Optimized PID reaches
a peak of 13.2V, with a similar overshoot of 1.2V, and settles in about 500 ms seconds. CTA Optimized
PID shows a peak of 13.6V, with a substantial overshoot of 1.6V, and takes approximately 200 ms to
stabilize. L-Based Adaptive PID peaks at around 13.3V with an overshoot of 1.3V, settling in about
150ms. The proposed GMEO-DMGNN method shows a peak of 12.9V, with a more controlled
overshoot of 1.1V, and settles within approximately 100 ms, demonstrating faster convergence and
less oscillation. Therefore, the GMEO-DMGNN method outperforms the other techniques, providing
a more stable, faster, and more efficient response for controlling buck-boost converters.
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The Table 3 compares the performance of various PID optimization methods based on settling
time, overshoot, and steady-state error. The IGJO Optimized PID method has the longest settling time
at 1000 ms, with a significant overshoot of 25% and a steady-state error of 0.15V, indicating slower
stabilization and moderate accuracy. With a settling time of 500 ms, a 15% decrease in overshoot, and
a lower steady-state error of 0.05V, the ISCA Optimised PID approach performs better in terms of
stability and accuracy. The CTA Optimized PID method performs even better, with a settling time of
200 ms, a further reduced overshoot of 5%, and a steady-state error of 0.02V, showing faster
convergence and enhanced precision. The L-Based Adaptive PID method offers the fastest settling
time at 150 ms, with a minimal overshoot of 3% and an almost negligible steady-state error of 0.01V,
making it highly stable and precise. Finally, the GMEO-DMGNN (Proposed) method outperforms all
others with the fastest settling time of 100 ms, the smallest overshoot of 1.5%, and the lowest steady-
state error of 0.005V, providing superior performance in terms of speed, accuracy, and stability.
Therefore, the GMEO-DMGNN method stands out as the most efficient and reliable optimization
technique for PID controllers. Table 4 presents a comparison of statistical values between the
proposed and existing methods. The proposed method achieves the highest mean value of 4.9876x10-
7and the highest standard deviation (SD) of 6.9452 x10-2, surpassing the performance of the existing
systems. This indicates that the proposed method offers superior variability and greater adaptability
in comparison.

Table 5 compares the Comparison of ITAE, ISE. The proposed system achieves an ITAE of
2.09998998 x10-13, an ISE of 1.19052756 x10-¢. In comparison, existing methods show higher ITAE and
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ISE values, with the IGJO Optimized PID achieving an ITAE of 2.39850000 x10-*and an ISE of
2.73120000 x10¢, the ISCA Optimized PID yielding an ITAE of 2.36580000 x10-*%and an ISE of
2.62490000 x106, the CTA Optimized PID showing an ITAE of 2.96550000 x10-%and an ISE of
3.52110000 x10¢, and the L-based Adaptive PID resulting in an ITAE of 2.9 x10-%and an ISE of
2.43120000 x10. These results highlight the enhanced accuracy and prediction capability of the
GMEO-DMGNN method compared to other systems.

Table 3. Performance Comparison of PID tuning methods.

Methods Settling Time (ms) Overshoot (%) Steady-State Error (V)
IGJO Optimized PID 1000 ms 25% 015V
ISCA Optimized PID 500 ms 15% 0.05V
CTA optimized PID 200 ms 5% 002V
L-based adaptive PID 150 ms 3% 0.01V
GMEO-DMGNN (Proposed) 100 ms 1.5% 0.005V

Table 4. The statistical performance comparison of proposed with existing techniques.

Methods Mean Standard Deviation
IGJO Optimized PID 4.9876x107 6.9452 x10-12
ISCA Optimized PID 3.2344 x107 5.4322 x10-12
CTA optimized PID 3.9087 x10-7 4.3322 x10-12
L-based adaptive PID 3.2890 x10-7 5.9880 x10-12
GMEO-DMGNN (Proposed) 4.0345 x107 5.4333 x10-12

Comparison of efficiency between the proposed and existing methods is displayed in Table 6.
The proposed method achieves the highest efficiency at 98.5%, showecasing its ability to deliver
optimal solutions quickly and effectively. The IGJO Optimized PID method follows with an efficiency
of 82%, indicating slightly lower effectiveness. The ISCA Optimized PID method achieves an
efficiency of 89%, while the CTA Optimized PID method has an efficiency of 89.6%. The L-Based
Adaptive PID reaches an efficiency of 91%. Overall, the proposed method stands out for its superior
efficiency, making it the most effective solution for optimal performance.

The Table 7 compares the optimal PID controller parameters Ky, Ki, Ka for different methods.
The proposed GMEO-DMGNN method has the highest K; at 8.52, Ki at 34.01, and a relatively higher
Kaat0.33, making it more responsive and adaptive compared to existing methods. In comparison,
other methods like IGJO, ISCA, CTA, and L-based Adaptive PID have lower PID values, making
them less efficient in handling dynamic load conditions. The GMEO-DMGNN method stands out for
its superior performance and adaptability in optimizing buck-boost converter operation.

Table 5. Comparison of Time-Weighted Absolute Error (ITAE), Integral of Squared Error (ISE).

Methods ITAE ISE
IGJO Optimized PID 2.39850000 x10-13 2.73120000x10-6
ISCA Optimized PID 2.36580000 x10-13 2.62490000x10-¢
CTA optimized PID 2.96550000 x10-13 3.52110000x10-¢
L-based adaptive PID 2.90000000 x10-13 2.43120000x10-¢
GMEO-DMGNN (Proposed)  2.09998998 x10-13 1.19052756 x10-¢

Table 6. Comparison of efficiency of proposed and existing techniques.

Methods Efficiency (%)
IGJO Optimized PID 82%
ISCA Optimized PID 89%

CTA optimized PID 89.6%
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L-based adaptive PID 91%
GMEO-DMGNN (Proposed) 98.5%

Table 7. Optimal parameters of PID controller.

Methods Optimal K, Optimal Ki Optimal K4
IGJO Optimized PID 8.01 31.2 0.11
ISCA Optimized PID 7.32 30.32 0.12
CTA optimized PID 7.99 32.31 0.30
L-based adaptive PID 6.43 33..21 0.21
GMEO-DMGNN (Proposed) 8.52 34.01 0.33

6.1. Discussion

The GMEO-DMGNN approach focuses on optimizing PID controller parameters in buck-boost
converters, enhancing their performance under dynamic load conditions. By combining the global
optimization capabilities of GMEO with the localized adjustment strengths of DMGNN, the approach
effectively fine-tunes PID controller parameters for improved performance in buck-boost converters.
The integration of both methods ensures more accurate optimization of PID parameters, enhancing
system stability, responsiveness, and overall performance under dynamic conditions.This combined
framework offers a more robust and efficient solution for optimizing PID parameters, resulting in
improved adaptability, faster convergence, and better control performance in buck-boost
converters.The proposed method consistently outperformed existing PID optimization techniques,
achieving the fastest settling time of 100 ms, the lowest overshoot of 1.5%, minimal steady-state error
of 0.005 V, and the highest efficiency at 98.5%. It also demonstrated superior statistical values with a
mean of 4.9876x10-7and a standard deviation 0f6.9452 x10-12, along with the lowest error integrals,
including an ITAE of 2.09998998 x10-13and an ISE of 1.19052756 x10-6. This result demonstrates that
the proposed GMEO-DMGNN system provides superior performance, exhibiting enhanced speed,
accuracy, stability, and efficiency compared to existing PID optimization techniques. This finding
indicates the GMEO-DMGNN method's comprehensive superiority in PID optimization, achieved
through a combination of optimized performance metrics and enhanced hardware utilization,
specifically the highest capacitance.

7. Conclusions

The proposed GMEO-DMGNN approach has been introduced to address the limitations of
traditional PID controllers in buck-boost converters. In this study, the GMEO-DMGNN combines the
global search capabilities of GMEO with the local adjustment strengths of DMGNN to optimize PID
controller parameters. Additionally, this method is highly adaptable to dynamic load conditions,
maintaining consistent performance across varying operational environments. Unlike conventional
methods that may struggle with nonlinearities or varying conditions, the GMEO-DMGNN approach
provides enhanced robustness and adaptability. The proposed method demonstrates superior
performance, achieving a settling time of 100 ms, 1.5% overshoot, and a steady-state error of 0.005 V.
This approach outperforms existing methods by offering better adaptability, stability, and efficiency
in dynamic and nonlinear environments, making it a robust solution for optimizing PID controllers
in buck-boost converters. It also achieves a high efficiency of 98.5% ensuring optimal performance
while maintaining system stability under varying conditions. The proposed system reduces the ITAE
t02.09998998 x 10-13 and ISE to 1.19052756 x 10-6highlights the proposed system's superior efficiency
in reducing error and improving control performance. Overall, the proposed GMEO-DMGNN
approach significantly improves the performance of PID controllers in buck-boost converters,
offering enhanced stability, efficiency, and adaptability under dynamic and nonlinear conditions.
Future work could explore the scalability of the approach to different converter topologies, such as
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multi-phase or bidirectional converters, to enhance its applicability in broader power electronic

systems.
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