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Article 

Optimizing Travel Distance in a Synchronized- 
Zone Order Picking System:  
A Mathematical Programming Approach 
Layal Al Nashmi  

Collage of Engineering, Alfaisal University, Riyadh, Saudi Arabia; layal.al.nashmi@gmail.com 

Abstract: This paper offers an integrated approach for correlated storage assignment strategy (CSAS) to 
optimize travel distance by considering item correlation, picking frequency, zoning, and slot constraints to 
improve operational efficiency in distribution centers. We simplify the mixed integer non-linear programming 
(MINLP) model and incorporate integrated heuristic procedures for faster convergence. We introduce positive 
and negative centroid deviations as techniques to guide the model convergence and explore different scenarios. 
In the second stage of item assignment, we prioritize items within zones using a ranking formula that is optimal 
for both single-item and multiple-item orders. By analyzing the distribution of correlated item across zones 
and the impact of their picking frequency on optimizing travel distance, we propose an improved CSAS that 
minimize travel distance by strategically placing items based on their proximity to the depot. Our model 
reduces trips in distant zones by prioritizing larger average order sizes, while maximizing trips for frequently 
ordered smaller lists in closer zones. This method significantly reduces travel distance by minimizing the need 
for pickers in distant zones to frequently travel to the depot. Simulation results show reductions of up to 36.75% 
for fitted data and 33.59% for recent data.  

Keywords: correlated storage assignment strategy; FlexSim; mathematical programming model; MINLP; order 
picking optimization; resource allocation; simulation; synchronized-zone; travel distance 

 

1. Introduction 

In an extensive review on recent order picking trends and research topics, Casella et al. (2023) 
analyzed 269 journal papers from 2007 to 2022, emphasizing the crucial importance of optimizing 
order picking in warehouses. The study addresses various topics related to storage allocation policies, 
including the lack of research on correlated storage assignment strategy (CSAS) as one of the 
identified gaps. This strategy involves grouping items based on their historical correlation in 
customer orders. Frazelle (1989) pioneered the use of combined probabilities of pairs of items 
occurring in the same order as an item allocation method to minimize total travel distance. This 
approach that involves grouping items into zones was referred to as correlated assignment strategy 
in the work of Frazelle and Sharp (1989). Subsequently, many heuristic algorithms for this strategy 
have been developed. However, there is still a lack of dedicated research on correlated storage 
assignment. The review by Casella et al. also examined routing policies and note that the routing 
planning can be considered as a special case of the traveling salesman problem (TSP), which is known 
to be NP-hard. Finding an optimal solution in polynomial-time for the TSP is not always feasible. 
Additionally, due to the requirement for real-time operational decisions for picker routings, 
researchers commonly employ heuristic and meta-heuristic approaches to efficiently find near-
optimal routing solutions. The review also highlights the interrelationship between routing and 
storage allocation policies. Optimal storage allocation is recognized as a key factor in routing 
optimization due to their dependence. Heuristic algorithms for routing problems were frequently 
proposed in conjunction with various storage assignment policies, particularly random storage; 
while meta-heuristic algorithms were commonly paired with random and class-based storage 
policies. The review also identified a lack of available exact or meta-heuristic algorithms for routing 
problems that specifically designed for correlated storage policy case studies. In contrast to the 
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routing problem, the storage assignment does not require a real-time solution, and an optimal 
solution is preferred over a near-optimal one, especially considering the impact that storage 
optimization can have on routing planning. Furthermore, an exact solution for the storage assignment 
is appropriate for relatively small problem size. However, incorporating travel distance assessments 
into the storage assignment model, as in routing models, presents considerable computational 
challenges. This is primarily due to the potential transformation of the storage assignment problem 
into NP-hard, unless the model is designed effectively. Despite these difficulties, it is crucial to 
consider the broader framework of warehouse strategies when addressing a particular problem in 
order to offer an integrated optimization. By adopting an integrated approach and carefully 
considering the effects of various aspects of warehouse operations, the optimization has the ability to 
significantly improve performance. While failing to account for the impact of other operations can 
have a negative effect on the system. Therefore, it is imperative to conduct a comprehensive 
evaluation of the interdependent consequences of combining strategies to ensure optimal outcomes. 
In the context of a multi-picker system, for example, concentrating highly correlated items in one 
zone may lead to congestion issues if dedicated zones are not implemented. Similarly, assigning all 
correlated items closer to the depot in one zone may negatively affect staff utilization and increase 
idle time in dedicated-zone systems. 

In this paper we introduce a new approach to minimizing travel distance in a distribution 
center's single-order, synchronized zone picking system. We present a model for implementing CSAS 
by taking into account the influence of achieved average order size as a key factor in minimizing 
travel distance. The mixed integer non-linear programming (MINLP) model specifically designed to 
offer multiple local optimal solutions by varying defined criteria. Additionally, we have developed a 
simulation-based model to evaluate the performance of various scenarios. Unlike other methods that 
rely on heuristic or meta-heuristic algorithms, we simplify the complexity of the MINLP problem and 
incorporate the integrated heuristic procedures within the MINLP solver to expedite the 
convergence. This approach reduces problem complexity and enables efficient exploration of the 
solution space. Furthermore, we have applied other techniques to simplify and optimize the 
convergence of the MINLP model. For instance, rather than optimizing travel distance by 
incorporating historical order demand of significant volume (order x item) to directly calculate the 
achieved average order size or total trips, we employed a correlation frequency matrix (item x item) 
and utilized the item picking frequency information available in that matrix. The simplified matrix 
not only provides significantly reduced memory usage, but also encompasses all the necessary 
information for minimizing total trips and influencing the average order size per zone indirectly. By 
employing this matrix, we were able to effectively minimize computational consumption while still 
achieving optimal outcomes. Those techniques have proven to be highly effective in expediting the 
convergence to achieve specific targets based on defined ratios, which can be extended to other 
optimization models such as resource allocations. The optimization model is designed to offer 
seamless integration with existing warehouse strategies. The model maximizes the overall zone 
correlation score while considering deviations from weighted centroids. To accurately measure 
deviations, we implemented two methods within our penalty term: Positive Centroid Deviation 
(PCD) and Negative Centroid Deviation (NCD). The model can achieve multiple local optimal 
solutions based on predefined zone ratios for correlation score and picking frequency. The main 
objective is to prioritize maximize the correlation score while minimizing the picking frequency for 
the zones farthest from the depot. This approach enables us to implement an item allocation strategy 
that increases the average order size for these distant zones. Conversely, we prioritize minimizing 
the correlation score and maximizing the picking frequency in the closest zones, resulting in frequent 
trips and shorter average order size. By considering the average order size as a key factor in our 
optimization model, we effectively minimize the travel distance and enhance operational efficiency. 
This ultimately leads to a significant reduction in overall travel time by decreasing the need for 
pickers in distant zones to frequently travel to the staging area. To evaluate the performance of our 
approach, we conducted simulations to test various scenarios in terms of total travel distance 
achieved. The results demonstrate significant performance improvements, with reductions in travel 
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distance of up to 36.75%, and a sustainable improvement of 33.59% reduction for recent data. This 
research contributes to the existing literature on order picking optimization and provides valuable 
insights into addressing the limitations associated with correlated strategies. By offering a simplified 
problem-specific approach, we aim to enhance order picking operations, improve efficiency, and 
shed light on the challenges involved in implementing such methodology. 

The paper is structured into six sections to effectively address the research objectives. The 
Literature Review (Section 2) summarizes related work. The Problem Settings (Section 3) offers a 
comprehensive understanding of the research framework. The Methodology (Section 4) includes a 
Simulation Model (Section 4.1) and a Mathematical Programming Model (Section 4.2). The 
Optimization Result Analysis (Section 5) highlights the outcomes and performance of proposed 
CSAS. Finally, the Conclusion (Section 6) summarizes key findings. 

2. Literature Review 

Casella et al. (2023) examine the topic of order picking to highlight emerging trends. Their 
analysis covers storage allocation policies, and emphasizes the lack of research on correlated storage 
assignment. Islam and Uddin (2023) provide another review to summarize techniques for solving 
correlated storage location assignment problems (CSLAP) that mostly expressed as NP-hard integer 
programming models. The authors review 60 publications and categorize solution methods as 
heuristic, meta-heuristic, and data mining approaches. This assignment method is found to be more 
effective in reducing travel distance compared to other storage allocation systems, as indicated by 
several studies including Zhang et al. (2019) and Lee et al. (2020). According to the review, the 
objective functions in these studies aim to minimize total travel distance (Wutthisirisart et al., 2015; 
Diaz, 2016; Xie et al., 2018; Krishnamoorthy & Roy, 2019; Zhang et al., 2019; Jiang et al. 2021; Li et al., 
2021; Yuan et al., 2021; Trindade et al., 2022), minimizing travel time (Mirzaei et al., 2021a, 2021b), 
and maximizing correlation between stock keeping units (SKUs) (Lee et al., 2020; Yang, 2022). De 
Koster et al. (2007) highlight the importance of zoning as an effective strategy for optimizing order 
picking processes. Zoning involves dividing the order picking area into specific zones and assigning 
dedicated pickers accordingly. The advantages of this approach include reduced travel distance for 
each picker, decreased traffic congestion, and enhanced familiarity with item locations. Two 
methods, progressive assembly (pick-and-pass) and synchronized picking, can be used to overcome 
the challenge of consolidating orders before shipping. Product properties such as size, weight, 
temperature requirements, and safety are considered for effective implementation of zoning. Mantel 
et al. (2007) introduces the Order Oriented Slotting (OOS) strategy, which aims to optimize item 
allocation for multi-item orders to minimize the travel distance. The authors classify slotting 
strategies into item-oriented such as the Cube per Order Index approach (COI), and order-oriented 
approaches such as OOS, with correlated storage lying in between. They note that OOS does not work 
well together with order batching and extensive zoning, and it performs best when an average order 
consists of a moderate number of SKUs to be picked. The author suggests implementing a method 
for storage assignment that is optimal for both frequent single-item orders and multi-item orders. 
Wutthisirisart et al. (2015) present a two-phased heuristic algorithm for relation-based item 
assignment to minimize the travel distance. The algorithm considers item correlation and order 
characteristics, such as order frequency and size, to allocate items. Zhang (2016) implements 
clustering-based algorithms using a correlation frequency matrix to optimize travel distance. Kuo et 
al. (2016) developed metaheuristic algorithms to implement the CSAS in a synchronized-zone order 
picking system. Their model minimizes the sum of item correlation frequencies across zones, aiming 
to reduce idle time and increase utilization rates by assigning highly correlated items to different 
zones, picked simultaneously by multi pickers. However, this approach increased workload and 
travel distance. The authors recommended further studies to balance the trade-off between utilization 
and workload. Diaz (2016) examines the impact of customer demand patterns and order clustering 
on warehouse order-picking operations. The author proposes a heuristic optimization approach that 
considers physical restrictions, such as non-uniform density SKUs. Xie et al. (2018) presents a bi-level 
optimization model with grouping constraints. Experimental results validate the effectiveness of the 
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model and the superiority of the tabu search method over random search. Krishnamoorthy & Roy 
(2019) introduce a storage assignment strategy that utilizes a top-k high utility itemset mining 
technique and a heuristic algorithm to assign items effectively. Zhang et al. (2019) present an integer 
programming model using heuristic and simulated annealing methods that considers item 
correlation. The study by Lee et al. (2020) introduces a correlated and traffic balanced storage 
assignment. It minimizes travel time and congestion by clustering items based on travel efficiency 
and traffic flow balance. Using multi-objective evolutionary algorithms, the authors identified 
clusters, followed by implementing an optimized assignment. In their case study, the model 
outperformed random, class-based, and correlated approaches. Jiang et al. (2021) implemented a 
storage strategy that allows product to be stored in multiple locations, taking into account their co-
occurrence in orders. The problem is formulated as an integer programming model to minimize the 
weighted sum of distances between products. The paper by Li et al. (2021) introduces a heuristic 
method that utilizes data mining to optimize order picking distance. It focuses on grouping similar 
items and considering nonuniform product weights. Yuan et al. (2021) present an optimization 
approach for storage assignment in a Robotic Mobile Fulfillment System (RMFS). Their method 
improves order picking efficiency by reducing pod visits, optimizing travel distance, and mitigating 
system congestion. Mirzaei et al. (2021b) propose an integrated cluster allocation method that 
incorporates product affinity and product turnover information to assign related products to the 
same storage location. This approach reduces retrieval time by up to 40% compared to conventional 
storage policies. The authors (2021a) propose a comprehensive approach that considers turnover 
frequency, product correlation, and inventory dispersion strategies to minimize order picking travel 
time in automated systems. They develop a mathematical model and heuristic method to allocate 
products to clusters and zones effectively. The test demonstrates that correlated dispersed 
assignment results in shorter travel times for larger order sets compared to random, turnover 
frequency-based, correlated assignment strategies. Trindade et al. (2022) proposed a heuristic 
approach for optimizing the storage location assignment in multi-aisle warehouses through product 
clustering. Their method addresses challenges related to non-uniform products and incorporates 
additional allocation criteria. The results demonstrated a potential reduction of travel distance by up 
to 15%. Yang (2022) examines the impact of storage assignment and order batching policies on order 
picking in RMFS. The author proposes using order and item similarity to batch orders and assign 
storage locations. Numerical tests reveal that weighted support count-based storage allocation 
combined with correlation-based order batching yields optimal performance. Adaloudis (2023) 
examines different methods for optimizing the storage assignment of autonomous mobile robot 
systems. Three optimization approaches are developed: correlation-based heuristic, product 
characteristic-based clustering, and surrogate-based genetic algorithm. A simulation model is 
employed to evaluate their effectiveness, with the clustering method based on product characteristics 
showing the most significant improvement. The surrogate-based genetic algorithm also demonstrates 
solid performance, while the correlation-based heuristic has the lowest performance among the three 
methods.  

Many authors follow a common approach in storage assignment policies by locating frequently 
accessed items near the depot. Buckow and Knust (2023) propose algorithms and optimization 
techniques to reduce travel distances in a high-bay warehouse with an automated storage and 
retrieval system (AS/RS) by rearrange the pallets based on their turnover rates within a limited 
reshuffling time. Yuan et al. (2023) present a three-stage method to optimize the storage allocation 
assignment of automated drug dispensing machines in smart pharmacies. The method considers the 
daily demand to enhance space utilization, drug grouping using the Jaccard similarity coefficient to 
preventing cross-machine picking, and allocation optimization based on demand frequency to reduce 
picking time. Other researchers have also addressed travel distance optimization by considering 
multiple problems simultaneously. Kim et al. (2020) present heuristic methods to optimize the item 
storage assignment to minimize travel distance for order pickers. The authors propose slot selection 
and frequent itemset grouping strategies based on association rule mining. The paper also introduces 
a flexible routing policy to further enhance the efficiency of the system. Zhang et al. (2024) propose a 
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joint optimization of item and pod storage assignment problems in robotic mobile fulfillment systems 
by considering the correlation frequency of items in purchase orders. Their main objective is to 
minimize the robots' travel distance and ensure workload balance to avoid congestion. Additionally, 
the authors developed a genetic algorithm to solve the mixed integer programming model. Wan et 
al. (2022) present an integrated optimization for order picking systems by addressing layout 
optimization, storage location assignment, and picker routing. The authors propose a three-
dimensional design for a fishbone layout, aiming to minimize the average distance between storage 
locations and the depot. They also establish storage location assignment models based on turnover 
and correlation storage policies and employ the TSP to plan picker routing. In order to solve the 
multiobjective optimization model, the authors design a cooperative optimization algorithm (COA) 
that improves the average optimal travel distance by 9% with consistency. They conclude that the 
fishbone layout can reduce picking distance by 10-15% without considering aisle congestion. Bolaños-
Zuñiga et al. (2020) propose a mathematical model to address the integrated Storage Location 
Assignment, Unique, Picker-Routing (SLAUPR) problem and minimize travel time. One crucial 
aspect of the SLAUPR model is the inclusion of precedence constraints. By considering these 
constraints, the model ensures that the picking sequence is optimized to handle heavier items while 
maintaining overall process efficiency. The authors highlight that this integrated optimization model 
distinguishes their work from previous research, which often focused on specific optimization factors 
or relied on heuristic methods. Computational experiments conducted for the case study demonstrate 
that the mathematical model produces optimal solutions for small and medium-sized instances but 
faces challenges with larger instances. Consequently, the paper suggests further research to tackle 
the problem's complexity and explore additional enhancements. A subsequent study conducted by 
Bolaños-Zuñiga et al. (2023) aimed to refine the SLAUPR model while addressing the computational 
challenges highlighted in the earlier case study involving 185 available storage locations (Bolaños-
Zuñiga et al., 2020). The authors introduce two formulations: SLAUPR_V2, which incorporates valid 
inequalities, and SLAUPR_V3, which incorporates single commodity flow constraints to eliminate 
sub-tours. Additionally, the authors developed an adaptive multi-start heuristic (AMH) that utilizes 
an evaluation function defined by the demand frequency and weight of products. This AMH serves 
as an approximation method to improve computation time for larger instances. The experimental 
results demonstrated the effectiveness of the proposed algorithm and models, with an increased 
number of feasible and optimal solutions. The average time required to obtain the feasible solutions 
is reduced to 117 seconds. Moreover, the product allocations suggested by the proposed heuristic 
resulted in a significant improvement of over 40% in picking times. 

The MINLP is a branch of mathematical optimization that involve continuous and integer 
variables, as well as non-linear relationships between these variables. Berthold (2014) emphasizes the 
necessity of MINLP models in addressing wide range of real-life applications, which possess inherent 
nonlinear characteristics. The author acknowledges the vital role of heuristic algorithms as integral 
components of advanced solvers for such problems. One of the commercial tools that includes solvers 
for MINLP problems is Lingo software. The specific details of how the solvers operate may vary 
depending on the version and specific settings used, including the option for the solver to decide. 
However, Lingo's solver takes a typical approach for solving MINLP problems that includes 
employing a branch-and-bound algorithm, which is a common technique used for solving MIP 
problems. During the branch-and-bound process, the solver may apply various heuristics to guide 
the search for feasible solutions and improve the efficiency of the algorithm (Lindo Systems Inc., 
2020). Tahami and Fakhravar (2022) highlight the advantages of combining heuristics with exact 
algorithms for solving optimization problems. They note that exact algorithms guarantee optimal 
solutions but can be limited by their problem-specific nature and high memory consumption. On the 
other hand, heuristics aim to find good approximate solutions in a reasonable amount of time, 
providing scalability and flexibility. The study also notes that most branch-and-bound approaches 
rely on heuristics for bounding, and many hybrid approaches are heuristic-based.  

This paper builds upon previous work in order picking optimization and aims to contribute to 
the existing research by addressing gaps in the field. We propose a new approach that minimizes 
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travel distance in a synchronized-zone, single-order picking system by considering the average order 
size as a key factor. We implemented the CSAS using a MINLP model that is solved by the Branch 
and Bound algorithm. In our study, we made several key findings and recommendations. Firstly, we 
propose optimizing item correlation across zone by offering flexibility in identifying multiple local 
optimal solutions based on predefined criteria. This approach aims to address different real-world 
case scenarios to fulfill their priorities in achieving balanced workload in terms of travel distance. 
Additionally, we address the problem of order splitting by decrease total trips to distant zones, while 
increasing frequently ordered smaller lists at closer zones. This is achieved by considering both the 
total zone correlation score and picking frequency to optimize the allocation of items. This approach 
effectively minimizes travel distance by prioritizing distant zones with larger average order sizes, 
thereby reducing order splitting and number of trips to the depot. Finally, we suggest implementing 
an optimal item ranking method for both single-item and multiple-item orders, taking into account 
the average order size of each item. By incorporating these strategies, the travel distance within the 
order picking system can be substantially minimized. This reduction will ultimately result in 
enhanced efficiency and productivity in warehouse operations. 

3. Problem Settings 

The compatibility of operational policies significantly affects the performance of the order 
picking system. Therefore, when considering the scope of an optimization problem, it is important to 
address the combination of all related policies. This ensures that the proposed solution is applicable 
to similar systems and allows for further improvements in future related work. According to 
Goetschalckx and Ashayeri (1989), the complexity of an order picking system is influenced by both 
internal and external factors. Internal factors, such as information availability, warehouse 
dimensionality, routing, storage, batching, and zoning, contribute to this complexity. These factors 
can be categorized into two levels of decision-making. At the policy level, several decisions greatly 
impact order picking performance. These decisions encompass five key areas: storage assignment 
strategy, zoning, routing, batching, and order release mode. Le-Duc (2005) defines them as follows: 
Storage assignment strategy refers to the rules used to allocate products to specific storage locations, 
such as random, class-based, and dedicated storage assignments. Zoning involves dividing the order 
picking area into zones and assigning pickers to specific zones to reduce traffic congestion and travel 
distance, following either progressive or synchronized zoning approaches. Routing determines the 
sequence in which items are picked, utilizing methods like s-shape, return, mid-point, largest gap, 
combined, and optimal routing. Batching involves either picking orders individually or combining 
multiple orders in one tour, with approaches such as sort-while-pick employed when order splitting 
is not allowed. If order splitting is possible, sorting is done after the picking process is complete (pick-
and-sort). The order release mode consists of discrete (wave-picking) and continuous methods, where 
wave picking releases multiple orders with a common destination for picking in multiple warehouse 
areas. Typically, wave picking is combined with batch picking, and the next picking wave begins 
after the previous one is finished. 

In this case study, we optimize the travel distance in a pharmaceutical distribution center's 
synchronized-zone, single-order picking system by implementing the CSAS based on an item 
correlation matrix constructed from 15 months of historical data. The current order picking system 
relies on manual operations supported by a Warehouse Management System (WMS) and handheld 
devices, following a single-order method, synchronized zone picking policy (Figure 1), and return 
routing strategy (Figure 2). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2024 doi:10.20944/preprints202401.2218.v4

https://doi.org/10.20944/preprints202401.2218.v4


 7 

 

 
Figure 1. Zone Strategy. 

 

Figure 2. Return Routing. 

The existing storage assignment approach combines class-based and random assignments, fast-
moving (148) items are stored randomly in a block area closer to the depot, while slow-moving (211) 
items are placed further away (Figure 3). In order to optimize the storage allocation, the CSAS has 
been implemented along with the existing class-based method, replacing the random storage 
approach. To achieve this optimization, a MINLP model has been developed to minimize travel 
distance for each classed-based single-block storage area with a conventional layout (Block A & B). 
The model employs the solver’s integrated heuristics algorithms to better explore the solution space. 
To make the problem more manageable, each block in the warehouse has its own model using a 
simplified data-driven approach, in addition to following an efficient method that indirectly impacts 
the travel distance without calculating the actual distance from the depot. The model takes into 
account the number of items allocated in each zone and incorporates other defined criteria for 
balancing resource utilizations in terms of distance. By considering these constraints, the storage 
allocation is optimized according to the actual framework of the order picking system.  

 

Figure 3. The Distribution Center Layout. 
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Additionally, a simulation model has been developed using FlexSim to evaluate the 
performance of the proposed item storage assignment. This simulation model was designed to offer 
maximum flexibility by allowing the testing of various historical data sets and experimenting with 
different arrangements for item storage assignment.  

4. Methodology 

Designing an MINLP model to converge to optimal solution is challenging, especially when 
implementing precise constraints. This is primarily due to the presence of non-convexity, which leads 
to multiple local optimal solutions. Additionally, the complexity introduced by integer variables and 
nonlinear functions, along with the difficulties in satisfying constraints using approximation 
techniques. Moreover, the impracticality of exploring the entire search space due to high 
dimensionality which add to the computational demands of MINLP problems, making it harder to 
attain globally optimal solutions. To improve the efficiency of solving MINLP problems, several 
strategies can be employed. These include problem reformulation, variable fixing, decomposition 
techniques, preprocessing, and model simplification methods. Problem reformulation involves 
transforming the original MINLP problem into a more manageable form, such as a MILP problem or 
a convex optimization problem. By reformulating the problem, we can take advantage of existing 
algorithms and solvers that are better suited for faster computational times. Variable fixing is another 
useful strategy that involves identifying variables with known values and fixing them at those values. 
This reduces the search space and eliminates unnecessary computations. Decomposition techniques 
involve breaking down the MINLP problem into smaller subproblems, which can be solved 
independently. This allows for parallelization and the use of specialized solvers for each subproblem, 
leading to faster convergence.  Preprocessing and model simplification techniques enhance solver 
efficiency through the analysis of the problem structure and the elimination of redundancy. This 
reduces complexity and removes unnecessary constraints or variables, resulting in a more 
streamlined and tractable problem that improve solver performance. By employing these strategies, 
we can enhance computation speed, reduce complexity, and improve efficiency when solving MINLP 
problems.  

This paper introduces optimization techniques for storage allocation, incorporating the concept 
of weighted centroids as targets for each zone. By utilizing correlation score ratios and frequency 
ratios as coefficients, we have the ability to effectively influence the distribution of items among zones 
by satisfying specific criteria that directly impact the average order size. The incorporation of these 
weighted centroids is instrumental in driving convergence towards preferred outcomes and 
effectively addressing diverse scenarios. Consequently, this technique offers exceptional flexibility 
and adaptability, making it highly suitable for testing and validating different correlated storage 
arrangement. Additionally, we follow an efficient methodology by breaking down the process into 
sub-problems and employing separate models for the class-based blocks, A and B. Furthermore, we 
utilize the Branch-and-Bound algorithm, which is employed by Lingo's MINLP Solver, to narrow 
down the search for the local optimal solution. This algorithm reduces computational complexity and 
improves overall efficiency by partitioning the solution space and bounding the objective function 
value in each partition. To further enhance memory consumption, we import the correlation 
frequency matrix (item x item) directly into our model, eliminating the need to generate it from the 
order history data during runtime. This matrix allows us to evaluate different arrangements and 
assign items to zones based on defined correlation score and picking frequency. Unlike traditional 
methods that solely aim to maximize the total correlation score, our approach considers the impact 
of average order size. We control the distribution of items by defining the ratios of total correlation 
score and total picking frequency at each zone as key factors in optimizing the travel distance. Instead 
of relying on iterative processes and extensive calculations using a large volume of order history 
records to estimate the average order size, which can render the model infeasible, we incorporate the 
total picking frequency by summing the diagonal values available in the matrix for all items that are 
correlating with themselves. This significantly simplifies the process without compromising the 
model's accuracy. By evaluating the performance in terms of travel distance achieved for different 
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ratios of these key factors, we highlight the impact of the average size of newly generated orders or 
sub-orders across zones. This average is influenced by the proposed item allocation to zones within 
the model. It negatively correlates with the total picking frequency and positively correlates with the 
total correlation score. Therefore, higher ratio of correlation score and lower ratio of picking 
frequency indicate larger average order size. In this case study, we prioritize the placement of items 
based on these factors. Contrary to traditional methods that allocate items of higher correlation closer 
to the depot, we strategically place items that collectively achieve higher average order size in distant 
zones to minimize travel distance. This optimization approach ensures workload distribution based 
on distance, reducing the need for pickers assigned to further zones to frequently travel to drop items 
at the staging area. As a result, overall travel time for pickers is reduced, leading to improved 
efficiency. In mathematical modeling, we propose the utilization of the Positive Deviation (PD) 
measurement as an effective penalty for achieving a target in maximizing problems. This approach 
penalizes positive deviations and quantifies negative ones within feasible solutions. It facilitates 
rapid convergence towards maximizing the objective function to reach a specific target, while 
penalizing any deviation beyond that target. Similarly, the Negative Deviation (ND) measurement is 
an effective method for targets in minimizing problems. We use formulas for these measurements 
rather than functions or logical conditions to facilitate better convergence. The ND and PD are 
calculated to determine deviations from targeted weighted averages, referred to as centroids. These 
measurements quantify each state and guide the solver towards reaching targets rather than strictly 
penalizing all deviations. By incorporating both PD and ND in our penalty terms, we are able to 
achieve targeted centroids that exhibit a positive correlation. By utilizing the ND, we prevent the 
centroid from decreasing below the target and allow it to increase, while by utilizing the PD we 
discourage the centroid from increasing above the target and permit it to decrease. This approach 
yields better results by driving the convergence towards finding a local optimal solution that 
maximizes specific centroids while simultaneously minimizes others to distribute items that satisfies 
these specific criteria, which is opposing to their correlated relationship. By implementing ND and 
PD, we observed a significant improvement in convergence speed – approximately 3.5 times faster 
compared to using absolute deviation. The solving time is further influenced by the penalty 
parameter, which determines the balance between accuracy in achieving targets and allowing for 
deviations to maximize the overall correlation score. A higher penalty parameter promotes more 
accuracy, but requires more time to converge to the local optimal solution. Balancing this trade-off 
allows us to control the extent to which the deviation is permitted in maximizing the total score while 
still aiming for the desired ratios per zone. The main objective of the MINLP model is to propose item 
assignments across zones without explicitly ranking them within each zone. However, our research 
paper investigates different ranking methods and reveals that those based on the average order size 
of items within each zone have shown better results in optimizing travel distance. By prioritizing 
frequently ordered items that are less dependent on other items, the item ranking methods effectively 
minimize travel distance, resulting in a more efficient item storage assignment. We integrate all these 
strategies with the objective of minimizing memory consumption and computation time to achieve 
better optimization results. By doing so, we are able to achieve multiple local optimal solutions based 
on desired ratios in an average solving time of 14 minutes. To evaluate the effectiveness of our 
approach, we conducted a simulation-based model of the order picking system to compare the total 
travel distance achieved using our methodology against the current system statistics. The results 
demonstrated a remarkable improvement in performance, with reductions in travel distance of up to 
36.75%. To further validate our approach, we also evaluated the results of recent historical order data 
to test the sustainability of the optimization. The results showed significant reductions of up to 
33.59%. To sum up our methodology, we follow a systematic approach consisting of several steps 
(Figure 4).  
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Figure 4. Process Map. 

We begin by constructing a simulation model and developing a mathematical programming 
model. Followed by formulating a storage location priority list and implement CSAS based on our 
optimization model utilizing an item ranking method that is optimal for both single-item and multi-
item orders. Through this process, we optimize the total travel distance and achieve desired workload 
balance among pickers in terms of distance versus frequency of trips.  

4.1. Simulation Model 

A simulation model was developed using FlexSim software to evaluate the performance of the 
order picking system under different scenarios. The model captured workload distribution, resource 
utilization, and travel distance performance. The first step in modeling involved building a virtual 
environment that closely represents the system's layout. This is done by scaling the 3D model based 
on the distribution center's floor plan to provide accurate travel distance statistics and precise 
placement of objects. The model includes a total of 13 racks, one transporter assigned at each of the 7 
zones\aisles, a queue for the depot\staging area, navigation networks, and a storage system to 
retrieve and assign items by slot address (Figure 5). 
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Figure 5. 3D Simulation Model. 

In order to capture the idle time caused by the picker's waiting time after completing the picking 
task for the day, we define a "zero" speed value for loading and unloading activities in the simulation 
model. Furthermore, we made the assumption that the volume of item picking would not interrupt 
the trip due to any capacity constraints. This allowed us to accurately reflect the optimization 
performance of the proposed item storage assignment. An essential step in designing our model is 
generating dynamic global tables from primary ones during the simulation runtime in order to 
incorporate the dynamic aspects of the system and enable experimentations (Figure 6). These tables 
contain order volumes, trip-related information, and item locations based on proposed item storage 
assignments.   

Address Table 

 
ItemPermutation Table OrderHistory Table 

  
Figure 6. Primary Global Tables. 

Another essential component is the design includes the creation of the process flow logic of the 
picking system that was defined by composing and coding the activity blocks within the simulation 
model (Figure 7).  
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Figure 7. Process Flow Logic. 

These activity blocks represent the sequence of actions and tasks performed in the system such 
as generating dynamic tables, assigning picking lists to pickers, finding item addresses, and 
terminating the simulation process. Accurately modeling the process flow enables the simulation of 
activates based on the dependencies of the model components. Finally, a statistics dashboard was 
constructed within the simulation model to measure and evaluate the performance of the picking 
system. The dashboard capture key performance indicators such as total travel distance and resource 
utilization (Figure 8).  

 
Figure 8. Simulation-Based Statistics (Current). 
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4.2. Mathematical Programming Model 

There are various ways to convey a problem statement and its solution when presenting an 
optimization model. The common approach is to express the problem using simplified math 
equations to provide a concise representation. However, in this section, we start with presenting the 
code in Lingo’s mathematical modeling language. This approach offers several advantages in terms 
of readability, usability, and the understanding of the potential impact of the problem formulation 
on the solver's performance. This allows us to include annotations, which can provide additional 
explanations as presented in “Model E: Lingo Optimization Code (Block A)”. An MINLP model is 
created for each single-block to maintaining the current class-based storage blocks for fast-moving 
and slow-moving items while implement the proposed CSAS. The optimization aims to maximize 
the total zone correlation score while penalizing deviations from weighted averages, referred to as 
centroids in this model. By defining centroids from achieved total correlation score and total picking 
frequency based on ratios, we can conduct scenario analysis to examine their influence on travel 
distance optimization. To better measure deviation from centroids and refine the objective function, 
we have introduced the utilization of PD and ND as a more effective alternative penalty terms for 
achieving targets. These measures aim to address the positive or negative sources of deviation, 
particularly to prohibit it from increasing beyond or below a target. The purpose of this approach is 
to quantify the feasible solution to allow for better comparison against other states while approaching 
the target from the opposite side of deviation. By incorporating deviation penalty terms, we can 
expedite convergence towards maximizing the objective function that ultimately achieves to higher 
total correlation score in addition to achieving specific targets.  

MODEL: 

SETS: 

ITEMS;  

AISLES / 1..3 /: SLOTS, D_SIGN_R, D_SIGN_P, CORR_SCORE_RATIO, PICKING_RATIO, R_CENTROID_COEF, 

P_CENTROID_COEF, R_CENTROID, P_CENTROID, R_D, P_D, TOTAL_ZONE_CORR_SCORE, TOTAL_ZONE_PICKING_COUNT;  

IXI(ITEMS,ITEMS): CORR_FREQ_MATRIX;  

AXI(AISLES,ITEMS): AISLE_SELECTED_ITEMS, AISLE_ITEM_SCORE; 

ENDSETS 

DATA: 

!IMPORT CORRELATION FREQUENCY MATRIX AND ITEMS ARRAY; 

ITEMS,CORR_FREQ_MATRIX= @OLE('C:\...\Block_A_Lingo_Optimization_ItemMatrix.xlsx','ITEMS', 'ITEM_ITEM');  

!EXPORT RANKING SCORE (SUM OF CORRELATION SCORE AND PICKING FREQUENCY); 

@OLE('C:\...\Block_A_Lingo_Optimization_ItemMatrix.xlsx','AISLE_ITEM_RANK')= @WRITEFOR(AXI(K,A): 

@SUM(ITEMS(B):  CORR_FREQ_MATRIX(A,B)* AISLE_SELECTED_ITEMS(K,A) * AISLE_SELECTED_ITEMS(K,B) )); 

D_SIGN_R = -1 -1 -1; !NCD FOR CORRELATION CENTROIDS; 

D_SIGN_P = +1 +1 +1; !PCD FOR PICKING FREQUENCY CENTROIDS; 

CORR_SCORE_RATIO = 3 2 1; !DEFINE CORRELATION SCORE RATIOS; 

PICKING_RATIO = 1 2 3; !DEFINE PICKING RATIOS; 

T_RATIO_UNITS = 6; 

SLOTS = 45 49 54; !AVAILABLE SLOTS AT ZONE 1, 2, 3; 

T_SLOTS = 148; !TOTAL NUMBER OF STORAGE SLOTS; 

N_AISLES = 3; !TOTAL NUMBER OF ZONES; 

t=10; !PENALTY PARAMETER; 

ENDDATA 
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!OBJECTIVE FUNCTION; 

MAX = @SUM(AISLES(K): TOTAL_ZONE_CORR_SCORE(K) +  ( ( ( R_D(K)/(t* R_D(K)+1)) - 1   ) *   R_D(K) )      +   

(((P_D(K)/(t*P_D(K)+1) )-1 ) *  (P_D(K) *  (TOTAL_SCORE /TOTAL_PICKS)  )  ) ) ;  

 

!ASSIGN SCORES TO ITEMS BY SUMMING ONLY FREQUENCIES OF ITEMS NEXT IN ORDER; 

@FOR(AISLES(K): @FOR (ITEMS(A): AISLE_ITEM_SCORE(K,A) = @SUM(ITEMS(B) | B #GT# A: CORR_FREQ_MATRIX(A,B)* 

AISLE_SELECTED_ITEMS(K,A) * AISLE_SELECTED_ITEMS(K,B) ))); 

@FOR (AISLES(K):  TOTAL_ZONE_CORR_SCORE(K) = @SUM(ITEMS(I): AISLE_ITEM_SCORE(K,I)) ); 

TOTAL_SCORE = @SUM(AISLES(K): TOTAL_ZONE_CORR_SCORE(K));  

!CALCULATE COEFFICIENTS FOR CORRELATION CENTROIDS ACCORDING TO SLOT RATIO & CORR_SCORE_RATIO;  

@FOR (AISLES(K): R_CENTROID_COEF(K) = ( (SLOTS(K)/T_SLOTS) + (CORR_SCORE_RATIO(K)/T_RATIO_UNITS) )/2 ); 

!CREATE TARGET CORRELATION SCORE CENTROIDS BASED ON COEFFICIENTS; 

@FOR (AISLES(K): R_CENTROID(K)= TOTAL_SCORE * R_CENTROID_COEF(K) ); 

 

!CENTROID DEVIATION FOR CORRELATION:  

(|X-CENTROID|+ (D_SIGN_R *(X-CENTROID)) )/2; 

@FOR (AISLES(K): R_D(K) = ( @ABS( TOTAL_ZONE_CORR_SCORE(K) - R_CENTROID(K)) + 

(D_SIGN_R(K)*(TOTAL_ZONE_CORR_SCORE(K) - R_CENTROID(K) )) ) /2 ); 

 

!SUM PICKING FREQUENCIES FOR SELECTED ITEMS PER ZONE; 

@FOR(AISLES(K): TOTAL_ZONE_PICKING_COUNT(K) =   

@SUM(ITEMS(A): AISLE_SELECTED_ITEMS(K,A)* CORR_FREQ_MATRIX(A,A))); 

TOTAL_PICKS = @SUM (AISLES(K): TOTAL_ZONE_PICKING_COUNT(K));  

!CALCULATE COEFFICIENTS FOR PICKING CENTROIDS ACCORDING TO SLOT RATIO & PICKING_RATIO; 

@FOR (AISLES(K): P_CENTROID_COEF(K) = (( (SLOTS(K)/T_SLOTS)  + (PICKING_RATIO(K)/T_RATIO_UNITS))/2) ); 

!CREATE TARGET PICKING FREQUENCY CENTROIDS BASED ON COEFFICIENTS; 

@FOR (AISLES(K): P_CENTROID(K)= TOTAL_PICKS * P_CENTROID_COEF(K)); 

!CENTROID DEVIATION FOR PICKING FREQUENCY:  

(|X-CENTROID|+ (D_SIGN_P *(X-CENTROID)) )/2; 

@FOR (AISLES(K): P_D(K) =( @ABS(TOTAL_ZONE_PICKING_COUNT(K) - P_CENTROID(K)) + (D_SIGN_P(K) * 

(TOTAL_ZONE_PICKING_COUNT(K) - P_CENTROID(K)) ) )  /2 ); 

 

@FOR (AXI(K,I): @BIN(AISLE_SELECTED_ITEMS(K,I))); !CONSTRAINT: BINARY VARIABLE; 

@FOR(ITEMS(I): @SUM(AISLES(K): AISLE_SELECTED_ITEMS(K,I)) = 1 ); !CONSTRAINT: ITEMS ASSIGNED TO ONE ZONE; 

@FOR (AISLES(K): @SUM(ITEMS(I): AISLE_SELECTED_ITEMS(K,I))= SLOTS(K)); !CONSTRAINT: TOTAL ITEMS ASSIGNED 

= AVAILABLE SLOTS; 

END 

 

MODEL E: LINGO OPTIMIZATION CODE (BLOCK A) 

 
In mathematical programming models, the positive or negative deviation is commonly defined 

through logical conditions, or employing functions that determine the maximum or minimum value 
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between the deviation result and the zero value since, to the best of our knowledge, there is no 
standard formula available to measure this deviation. However, when dealing with optimization 
problems, the solvers translate the formulation into a mathematical representation. Therefore, to 
facilitate the calculation of these deviations and promote better convergence, we have employed the 
following simple formulas that enable the quantification of positive centroid deviation (PCD) and 
negative centroid deviation (NCD) for achieved score (x) and a targeted centroid (C): 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥,𝐶𝐶) =
|𝑥𝑥 − 𝐶𝐶| + (𝑥𝑥 − 𝐶𝐶)

2
        [1] 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥,𝐶𝐶) =
|𝑥𝑥 − 𝐶𝐶| − (𝑥𝑥 − 𝐶𝐶)

2
        [2] 

To further refine our model, we incorporate a derivative-based deviation penalty term (P) that 
penalizes the deviations for each zone. The penalty parameter (t) adjusts the weight of the penalty 
term, striking a balance between maximizing the total correlation score and enforcing the desired 
weighted centroids per zone. We calculate the penalty (P) as a function of D, where (D) represents 
the PCD or NCD and (t) denotes the penalty parameter as presented in equation [3]: 

𝑃𝑃(𝐷𝐷) = 𝐷𝐷 ⋅ �
𝐷𝐷

𝑡𝑡 ⋅ 𝐷𝐷 + 1
− 1�                   [3] 

By setting (t) to 10, the penalty approaches (− 9
10

 D) for larger deviations, resulting in higher 
accuracy for targeted ratios compared to setting (t) to 2, and the model converges in less solving time 
compared to using the absolute deviation measure. On the other hand, if we set (t) to 2, the solving 
time decreases and the objective function achieves higher correlation scores as the penalty term 
approaches (−1

2
 D) due to reduced penalization. Although it may seem that the term � D

t⋅D+1
− 1�  can 

be replaced by a fixed percentage, it actually plays a crucial role in expediting convergence. For 
instance, when solving one of the proposed scenarios in Model B with (t) set to 2, the solving time is 
10 minutes and 53 seconds. However, replacing the term with (−1

2
 ) increases the solving time to 27 

minutes and 5 seconds, which is 2.5 times slower. It's important to note that both solutions are 
identical, but the difference in solving time demonstrates the formulation impact of the penalty term 
on the solver’s performance. Overall, incorporating the penalty term with an appropriate penalty 
parameter allows us to fine-tune the model's performance, achieving targets while optimizing solving 
time. 

In this section, we introduce Model E, which has been developed to assess the effectiveness of 
implementing CSAS in optimizing travel distance within an order picking system that utilizes a 
zoning strategy. The model incorporates weighting coefficients to guide convergence towards 
targeted correlation scores and picking frequencies. By adjusting the ratios of targeted centroids, the 
model enables customization of item correlation distribution across zones, effectively balancing 
workload according to different desired customizations. The primary objective of the model is to 
achieve various local optimal solutions based on these defined coefficients, maximizing item 
correlation per zone and consequently increasing the average order size. To further increase the 
average order size in distant zones, we propose reducing the total picking frequency of items in these 
zones. This can be achieved by prioritizing the placement of items that collectively exhibit higher 
correlation and lower picking frequency in distant zones. Such approach effectively reduces travel 
distance by minimizing the need for frequent travel to the depot, thereby optimizing the picker's 
travel distance.  In the result section, we present several scenarios to analyze the model's 
performance by testing different parameter configurations. For instance, in a system with three zones 
where the first zone is the furthest from the depot, setting the correlation score ratio for the 
coefficients to 3:2:1 and the picking frequency ratio to 1:2:3, as in scenario fourteen, enables the model 
to find a local optimal solution that satisfies these criteria. This leads to larger average order sizes in 
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distant zones, ultimately minimizing travel distance. To quantify deviations from the targeted 
centroids, the presented models employ penalization using either the PCD or the NCD. In Model E, 
NCD is applied for all correlation centroids, while PCD is applied for all picking frequency centroids. 
This arrangement allows correlation scores to surpass the defined centroids, but restricts picking 
frequency centroids from exceeding their targets. However, it's important to note that setting extreme 
ratios and unattainable centroids may render this configuration unachievable. In such cases, when 
extreme targets are set, the model penalizes multiple targets and leans towards maximizing the total 
correlation score. 

Here is the mathematical representation of Model B, D, and E:   

MAXIMIZE  Z = �𝐶𝐶𝑘𝑘 +
𝑛𝑛

𝑘𝑘=1

 𝑋𝑋𝑘𝑘 + 𝑌𝑌𝑘𝑘                                                                          [4] 

Subject to: 

𝑆𝑆𝑎𝑎𝑎𝑎   ∈  {0,1},                                      ∀ 1 ≤ a ≤ m , 1 ≤ k ≤ n                        [5] 

�𝑆𝑆𝑎𝑎𝑎𝑎

𝑛𝑛

𝑘𝑘=1

  = 1,                                                              ∀ 1 ≤ a ≤ m                        [6] 

�𝑆𝑆𝑎𝑎𝑎𝑎

𝑚𝑚

𝑎𝑎=1

  = 𝐿𝐿𝑘𝑘 ,                                                             ∀ 1 ≤ k ≤ n                        [7] 

𝐿𝐿𝑘𝑘  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑘𝑘.   
where: 

𝐶𝐶𝑘𝑘 = � � (𝑇𝑇𝑎𝑎𝑎𝑎 ⋅ 𝑆𝑆𝑎𝑎𝑎𝑎 ⋅ 𝑆𝑆𝑏𝑏𝑏𝑏)
𝑚𝑚

𝑎𝑎<𝑏𝑏≤𝑚𝑚

,                            ∀ 1 ≤ k ≤ n                        [8]
𝑚𝑚

𝑎𝑎=1

 

𝑇𝑇𝑎𝑎𝑎𝑎  𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏.   

𝑆𝑆𝑎𝑎𝑎𝑎 = �1, 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑘𝑘
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                                           [9] 

𝑋𝑋𝑘𝑘 = �𝑅𝑅𝑘𝑘 ⋅ �
𝑅𝑅𝑘𝑘

𝑡𝑡 ⋅ 𝑅𝑅𝑘𝑘 + 1
− 1�� ,                                ∀ 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛                     [10] 

𝑌𝑌𝑘𝑘 = �𝐹𝐹𝑘𝑘 ⋅ �
𝐹𝐹𝑘𝑘

𝑡𝑡 ⋅ 𝐹𝐹𝑘𝑘 + 1
− 1� ⋅  �

∑ (𝐶𝐶𝑘𝑘)𝑛𝑛
𝑘𝑘=1

∑ (𝑃𝑃𝑘𝑘)𝑛𝑛
𝑘𝑘=1

�� ,      ∀ 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛                     [11] 

𝑡𝑡 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 10 𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝐸𝐸). 

R𝑘𝑘 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝐶𝐶𝐶𝐶𝑘𝑘) 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐶𝐶𝑘𝑘) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑘𝑘 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 [12] 𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑘𝑘:  

𝑅𝑅𝑘𝑘 =
|𝐶𝐶𝑘𝑘 − 𝐶𝐶𝐶𝐶𝑘𝑘| + ( 𝑖𝑖𝑘𝑘 ⋅  (𝐶𝐶𝑘𝑘 − 𝐶𝐶𝐶𝐶𝑘𝑘))

2
                                                               [12] 

𝑖𝑖𝑘𝑘   =  �−1, 𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝑘𝑘  𝑖𝑖𝑖𝑖 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑘𝑘 
+1, 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝑘𝑘 𝑖𝑖𝑖𝑖 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑘𝑘                    [13] 
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𝐶𝐶𝐶𝐶𝑘𝑘 =  ��𝐶𝐶𝑘𝑘

𝑛𝑛

𝑘𝑘=1

� ⋅ 𝑒𝑒𝑘𝑘                                                                                                 [14] 

e𝑘𝑘  𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝐶𝐶𝐶𝐶𝑘𝑘) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑘𝑘.   

𝐹𝐹𝑘𝑘 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑃𝑃𝑃𝑃𝑘𝑘)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑃𝑃𝑘𝑘) 𝑎𝑎𝑎𝑎𝑎𝑎  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗𝑘𝑘 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 [15]  𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑘𝑘:  

𝐹𝐹𝑘𝑘   =    
|𝑃𝑃𝑘𝑘 − 𝑃𝑃𝑃𝑃𝑘𝑘| + ( 𝑗𝑗𝑘𝑘 ⋅  (𝑃𝑃𝑘𝑘 − 𝑃𝑃𝐶𝐶𝑘𝑘))

2
                                                           [15] 

𝑃𝑃𝑘𝑘   =  �(𝑇𝑇𝑎𝑎𝑎𝑎 ⋅ 𝑆𝑆𝑎𝑎𝑎𝑎) ,                                                ∀ 1 ≤ k ≤ n                     [16]
𝑚𝑚

𝑎𝑎=1

 

𝑇𝑇𝑎𝑎𝑎𝑎  𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎   

𝑗𝑗𝑘𝑘    = �−1, 𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃𝐶𝐶𝑘𝑘 𝑖𝑖𝑖𝑖 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑘𝑘 
+1, 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃𝐶𝐶𝑘𝑘 𝑖𝑖𝑖𝑖 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑘𝑘 ,                   [17] 

𝑃𝑃𝐶𝐶𝑘𝑘 =  ��𝑃𝑃𝑘𝑘

𝑛𝑛

𝑘𝑘=1

� ⋅ ℎ𝑘𝑘                                                                                                [18] 

h𝑘𝑘 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑃𝑃𝑃𝑃𝑘𝑘)𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑘𝑘   

The objective function in equation [4] aims to maximize the sum of item correlation score (𝐶𝐶𝑘𝑘) 
for each zone (𝑘𝑘) , while considering deviation penalty terms (𝑋𝑋𝑘𝑘)  and  (𝑌𝑌𝑘𝑘) , calculated using 
equations [10] and [11] respectively. For every zone (k), the deviations (𝑅𝑅𝑘𝑘) and (𝐹𝐹𝑘𝑘) in the penalty 
terms are calculated by equations [12] and [15] for the achieved item correlation score (𝐶𝐶𝑘𝑘) and the 
picking frequency (𝑃𝑃𝑘𝑘). These penalty terms account for the zone's correlation centroid (𝐶𝐶𝐶𝐶𝑘𝑘) and 
picking centroid (𝑃𝑃𝑃𝑃𝑘𝑘), based on the deviation types  (𝑖𝑖𝑘𝑘) and  (𝑗𝑗𝑘𝑘) that are defined for each zone. 
These terms are formulated using acceleration convergence technique, with a penalty parameter (𝑡𝑡) 
set to 10 in Model E, resulting in approximately 90% penalization for each deviation. The decision 
variables (𝑆𝑆𝑎𝑎𝑎𝑎)  in equation [5] are binary constraints representing the assignment of each item (𝑎𝑎) 
to a zone (𝑘𝑘) as in equation [9]. We ensure that the sum of (𝑆𝑆𝑎𝑎𝑎𝑎) for all zones (𝑘𝑘) is equal to 1 for 
every item (𝑎𝑎), restricting each item to be located in only one zone. This constraint is expressed in 
equation [6].  Furthermore, the sum of (𝑆𝑆𝑎𝑎𝑎𝑎)  for all items is constrained by the value of 𝐿𝐿𝑘𝑘 for each 
zone (𝑘𝑘), as indicated in equation [7]. It should be noted that in the "E" model, the exported result 
for "Aisle_Item_Rank" is a combination of the item's correlation score and its picking frequency. This 
approach, referred to as method A, which was used initially for item ranking within zones. However, 
the presented results in Table 1 for scenarios under Model E demonstrate the incorporation of method 
C. This method takes into account the average order size that is calculated from the order history 
data. Furthermore, an acceleration technique, which was previously used by Kuo et al. (2016) in their 
model, is incorporated in this model. This technique involves calculating the item correlation only 
once for two correlated items, resulting in a more efficient computation process. As a result, the total 
zone correlation score achieved in the model represents half of the actual zone correlation score, as 
shown in Table 1. In this paper, however, the item correlation used in formulas for item ranking is 
defined as the sum of correlation frequencies for all items located in that particular zone. 
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# MODEL RANK BLOCK 
SOLVING 

TIME 
ZONE 

SCORE 
RATIO 

PICKING 
RATIO 

SLOT 
RATIO 

SCORE WEIGHTING 
COEFFICIENT 

PICKING WEIGHTING 
COEFFICIENT 

SCORE 
ACHEIVED 

AVERAGE 
SCORE 

PICKING 
ACHIEVED 

AVERAGE 
PICKING 

SCORE 
CENTROID 

PICKING 
CENTROID 

SCORE CENTROID'S 
ABSOLUTE DEVIATION 

PICKING CENTROID'S 
ABSOLUTE DEVIATION 

PENALTY 
OBJECTIVE 
FUNCTION 

DISTANCE % 
DISTANCE  

(NEW DATA) 
% 

1 A A A 00:46:34 

1 55 10 45 0.43 0.20 38,817 30,258 13,539 14,123 38,762.52 8,559.68 54.476 4,979.317 

(10,830.23) 79,942.77 1,283,018.00 34.09% 392,416.40 31.97% 2 30 30 49 0.32 0.32 28,481  13,287  28,642.56 13,369.14 161.561 82.137 

3 15 60 54 0.26 0.48 23,475  15,543  23,367.91 20,440.18 107.086 4,897.180 

 100  148   90,773  42,369  90,773 42,369 323.123 9,958.634 (10,830.23)      

                         

#  MODEL RANK BLOCK 
SOLVING 

TIME 
ZONE 

SCORE 
RATIO 

PICKING 
RATIO 

SLOT 
RATIO 

SCORE WEIGHTING 
COEFFICIENT 

PICKING WEIGHTING 
COEFFICIENT 

SCORE 
ACHEIVED 

AVERAGE 
SCORE 

PICKING 
ACHIEVED 

AVERAGE 
PICKING 

SCORE 
CENTROID 

PICKING 
CENTROID 

SCORE CENTROID'S 
POSITIVE DEVIATION 

PICKING CENTROID'S 
POSITIVE DEVIATION 

PENALTY 
OBJECTIVE 
FUNCTION 

DISTANCE % 
DISTANCE  

(NEW DATA) 
% 

2 

B A 

A 

00:10:53 

1 55 10 45 0.43 0.20 41,300 31,529 13,908 14,123 40,391.63 8,559.68 908.368 5,348.317 

(6,478.33) 88,109.67 1,276,568.10 34.43% 391,744.60 32.09% 2 30 30 49 0.32 0.32 29,953  13,245  29,846.35 13,369.14 106.651 - 

3 15 60 54 0.26 0.48 23,335  15,216  24,350.02 20,440.18 - - 

 100 100 148   94,588  42,369  94,588 42,369 1,015.019 5,348.317 (6,478.33)      

3 00:10:09 

1 15 10 45 0.23 0.20 15,955 34,055 11,238 14,123 23,193.99 8,559.68 - 2,678.317 

(7,789.69) 94,374.31 1,294,600.40 33.50% 402,337.70 30.25% 2 30 30 49 0.32 0.32 32,341  14,149  32,236.88 13,369.14 104.116 779.863 

3 55 60 54 0.46 0.48 53,868  16,982  46,733.13 20,440.18 7,134.873 - 

 100 100 148   102,164  42,369  102,164 42,369 7,238.989 3,458.180 (7,789.69)      

4 00:10:21 

1 15 60 45 0.23 0.45 21,933 32,277 14,435 14,123 21,983.03 19,151.93 - - 

(5,483.46) 91,346.54 1,312,898.70 32.56% 398,908.10 30.84% 2 30 30 49 0.32 0.32 30,739  13,401  30,553.79 13,369.14 185.209 31.863 

3 55 10 54 0.46 0.23 44,158  14,533  44,293.18 9,847.93 - 4,685.070 

 100 100 148   96,830  42,369  96,830 42,369 185.209 4,716.933 (5,483.46)      

5 00:11:00 

1 60 10 45 0.45 0.20 42,939 31,714 14,250 14,123 43,007.21 8,559.68 - 5,690.317 

(6,452.12) 88,690.88 1,281,217.00 34.19% 393,721.00 31.74% 2 30 30 49 0.32 0.32 30,003  13,386  30,021.47 13,369.14 - 16.863 

3 10 60 54 0.23 0.48 22,201  14,733  22,114.32 20,440.18 86.681 - 

 100 100 148   95,143  42,369  95,143 42,369 86.681 5,707.180 (6,452.12)      

6 00:13:27 

1 60 60 45 0.45 0.45 53,349 31,963 17,010 14,123 43,343.97 19,151.93 10,005.032 - 

(7,543.86) 88,344.14 1,310,631.90 32.68% 404,561.00 29.86% 2 30 30 49 0.32 0.32 20,018  13,452  30,256.55 13,369.14 - 82.863 

3 10 10 54 0.23 0.23 22,521  11,907  22,287.48 9,847.93 233.519 2,059.070 

 100 100 148   95,888  42,369  95,888 42,369 10,238.551 2,141.933 (7,543.86)      

7 B 00:34:26 

4 3 40 22 0.07 0.25 219 13,961 851 8,225 3,748.82 8,294.91 - - 

(8,090.83) 47,751.17 - - - - 
5 20 37 63 0.25 0.33 15,594  11,062  13,920.80 10,997.78 1,673.198 64.223 

6 37 20 68 0.35 0.26 21,201  11,401  19,329.01 8,591.16 1,871.993 2,809.839 

7 40 3 58 0.34 0.15 18,828  9,585  18,843.37 5,015.15 - 4,569.851 

 100 100 211   55,842  32,899  55,842  3,545.191 7,443.914 (8,090.83)      

8 

C A 

A 00:10:33 

1 - - - - - 15,993 35,171 11,247 - 35,171.00 - - - 

20,941.25 126,454.25 1,338,979.20 31.22% 419,513.30 27.27% 2 - - - - - 12,467  8,631  35,171.00 - - - 

3 - - - - - 77,053  22,491  35,171.00 - 41,882.000 - 

 -  -   105,513  42,369  105,513  41,882.000  20,941.25      

9 B 00:02:42 

4 - - - - - 283 15,098 798 - 15,097.50 - - - 

14,091.25 74,481.25 - - - - 
5 - - - - - 19,493  13,697  15,097.50 - 4,395.500 - 

6 - - - - - 38,884  14,744  15,097.50 - 23,786.500 - 

7 - - - - - 1,730  3,660  15,097.50 - - - 

 -  -   60,390  32,899  60,390  28,182.000  14,091.25      

10 

D 

A 

A 

00:16:39 

1 55 10 45 0.43 0.20 39,879 31,150 13,502 14,123 39,906.10 8,559.68 - 4,942.317 

(10,047.63) 83,403.37 1,274,332.30 34.54% 391,792.80 32.08% 2 30 30 49 0.32 0.32 29,720  13,383  29,487.58 13,369.14 232.421 13.863 

3 15 60 54 0.26 0.48 23,852  15,484  24,057.32 20,440.18 - - 

 100 100 148   93,451  42,369  93,451 42,369 232.421 4,956.180 (10,047.63)      

11 B 00:16:39 

1 55 10 45 0.43 0.20 39,879 31,150 13,502 14,123 39,906.10 8,559.68 - 4,942.317 

(10,047.63) 83,403.37 1,236,815.80 36.47% 384,451.30 33.35% 2 30 30 49 0.32 0.32 29,720  13,383  29,487.58 13,369.14 232.421 13.863 

3 15 60 54 0.26 0.48 23,852  15,484  24,057.32 20,440.18 - - 

 100 100 148   93,451  42,369  93,451 42,369 232.421 4,956.180 (10,047.63)      

12 C 00:16:39 

1 55 10 45 0.43 0.20 39,879 31,150 13,502 14,123 39,906.10 8,559.68 - 4,942.317 

(10,047.63) 83,403.37 1,234,298.00 36.60% 383,964.00 33.43% 2 30 30 49 0.32 0.32 29,720  13,383  29,487.58 13,369.14 232.421 13.863 

3 15 60 54 0.26 0.48 23,852  15,484  24,057.32 20,440.18 - - 

 100 100 148   93,451  42,369  93,451 42,369 232.421 4,956.180 (10,047.63)      

                         

#  MODEL RANK BLOCK 
SOLVING 

TIME 
ZONE 

SCORE 
RATIO 

PICKING 
RATIO 

SLOT 
RATIO 

SCORE WEIGHTING 
COEFFICIENT 

PICKING WEIGHTING 
COEFFICIENT 

SCORE 
ACHEIVED 

AVERAGE 
SCORE 

PICKING 
ACHIEVED 

AVERAGE 
PICKING 

SCORE 
CENTROID 

PICKING 
CENTROID 

SCORE CENTROID'S 
NEGATIVE DEVIATION 

PICKING CENTROID'S 
POSITIVE DEVIATION 

PENALTY 
OBJECTIVE 
FUNCTION 

DISTANCE % 
DISTANCE  

(NEW DATA) 
% 

13 

E C A 

00:13:24 

1 6.0 1.0 45 0.44 0.20 41,699 31,644 13,942 14,123 41,555.66 8,458.80 - 5,483.195 (11,400.10) 

83,531.90 1,236,983.20 36.46% 386,142.10 33.06% 2 3.5 3.5 49 0.33 0.33 31,156  13,818  31,537.09 14,075.29 381.095 -  

3 1.0 6.0 54 0.23 0.47 22,077  14,609  21,839.25 19,834.91 - -  

 10.5 10.5 148   94,932  42,369  94,932 42,369 381.095 5,483.195 (11,400.10)      

14 00:11:34 

1 3.0 1.0 45 0.40 0.24 36,874 30,856 12,844 14,123 37,215.24 9,971.98 341.240 2,872.017 (5,954.53) 

86,614.47 1,232,731.30 36.68% 383,165.70 33.57% 2 2.0 2.0 49 0.33 0.33 30,883  13,579  30,752.09 14,075.29 - -  

3 1.0 3.0 54 0.27 0.43 24,812  15,946  24,601.67 18,321.73 - -  

 6.0 6.0 148   92,569  42,369  92,569 42,369 341.240 2,872.017 (5,954.53)      

15 00:30:02 

1 2.0 1.0 45 0.37 0.26 34,238 30,608 12,271 14,123 34,365.44 11,148.90 127.437 1,122.100 (3,907.80) 

87,917.20 1,231,419.70 36.75% 383,065.60 33.59% 2 1.5 1.5 49 0.33 0.33 32,415  14,018  30,504.93 14,075.29 - -  

3 1.0 2.0 54 0.29 0.40 25,172  16,080  26,954.64 17,144.81 1,782.636 -  

 4.5 4.5 148   91,825  42,369  91,825 42,369 1,910.073 1,122.100 (3,907.80)      

16 00:09:58 

1 2.0 1.0 45 0.32 0.24 26,602 28,920 10,761 14,123 27,650.18 9,971.98 1,048.184 789.017 (2,541.47) 

84,219.53 1,237,804.40 36.42% 384,243.30 33.39% 2 2.0 2.0 49 0.33 0.33 29,979  13,261  28,822.63 14,075.29 - -  

3 2.0 3.0 54 0.35 0.43 30,180  18,347  30,288.19 18,321.73 108.187 25.270  

 6.0 6.0 148   86,761  42,369  86,761 42,369 1,156.370 814.287 (2,541.47)      

Table 1. Optimization Result: Branch and Bound Solver Type. 
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5. Optimization Result Analysis 

In this section, we present a comprehensive analysis of our integer, non-linear model, which 
incorporates the branch-and-bound solver. Since sensitivity analysis methods are not suitable due to 
the absence of continuous variables, the use of heuristic procedures including the solution sensitive 
to the solver configurations, we have adopted a scenario analysis approach to explore the behavior 
of our model under different parameter variations, as shown in Table 1. Our model is designed to 
find multiple solutions based on specific parameter values. These parameters effectively guide the 
model towards convergence, with the assistance of penalty terms that further contribute to defining 
the optimal local solution. Therefore, to evaluate the performance and robustness of our model, we 
conducted a scenario analysis by varying these parameters. The analysis provides insights into the 
impact of these variations on the travel distance performance and overall efficiency. By exploring 
multiple configurations and scenarios, we aim to enhance our understanding of the key factors 
influencing the travel distance optimization for real-world applications. In Figure 9, we summarize 
the configurations of 16 scenarios across models A to E, providing an overview of the type of 
deviation and value of the penalty parameter used in each scenario.  The summary provided in 
Table 1 presents a comprehensive overview of the optimization results for each of these scenarios. It 
showcases the performance on fitted data as well as recent data. By validating the optimization 
process against both datasets, we can determine the effectiveness and sustainability of the model. 

 

 
Figure 9. Summary of Scenarios. 

The results demonstrate the performance achieved for these various scenarios in terms of travel 
distance (simulation results), optimization solving time, and the influence of defined ratios for 
achieved total picking frequency and total score on the travel distance optimization. The 
mathematical model suggests assignments for items within zones without explicitly prioritizing 
them. However, our research paper explores different approaches to ranking items. The following 
list represents the ranking methods that we implemented within our scenarios: 
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 Ranking Method A is the sum of item correlation (𝐶𝐶𝑘𝑘𝑘𝑘) and item picking frequency (𝑃𝑃𝑘𝑘𝑘𝑘)  
for item (𝑎𝑎) in a particular zone (𝑘𝑘): 

𝑅𝑅𝑘𝑘𝑘𝑘 =       𝐶𝐶𝑘𝑘𝑘𝑘  +  𝑃𝑃𝑘𝑘𝑘𝑘                                                                                [19] 

 Ranking Method B involves calculating equation [20] for ranking an item (a) in a particular 
zone (k): 

𝑅𝑅𝑘𝑘𝑘𝑘  =
 (𝑃𝑃𝑘𝑘𝑘𝑘)2

𝐶𝐶𝑘𝑘𝑘𝑘  +  𝑃𝑃𝑘𝑘𝑘𝑘
                                                                                   [20] 

 Ranking Method C for an item (𝑎𝑎) involves calculating equation [21] for all orders (𝑤𝑤) in 
the order history binary matrix ( 𝑂𝑂𝑤𝑤𝑤𝑤) to determine the order size in the newly generated 
suborders with the optimization selection (𝑆𝑆𝑏𝑏𝑏𝑏)  of all items denoted by (𝑏𝑏)  in a particular 
zone (𝑘𝑘):     

𝑅𝑅𝑘𝑘𝑘𝑘 =  ��
1

∑ ( 𝑂𝑂𝑤𝑤𝑤𝑤 ⋅  𝑂𝑂𝑤𝑤𝑤𝑤 ⋅  𝑆𝑆𝑎𝑎𝑎𝑎 ⋅ 𝑆𝑆𝑏𝑏𝑏𝑏)𝑚𝑚
𝑏𝑏=1

�  ,     𝑂𝑂𝑤𝑤𝑤𝑤 ,  𝑂𝑂𝑤𝑤𝑤𝑤 , 𝑆𝑆𝑎𝑎𝑎𝑎 , 𝑆𝑆𝑏𝑏𝑏𝑏   ∈  {0,1}         [21]
𝑖𝑖

𝑤𝑤=1

 

It's important to note that method B for item ranking takes a similar approach as method C in 
optimizing item placement by using an efficient calculation in terms of computation time. Both 
methods determine the item rank based on frequency and item order size. It’s worth noting that the 
value resulting from dividing the sum of total item correlation score and item frequency of picking 
by item frequency of picking is equivalent to the item average order size as presented in equation 
[22]: 

Item Average Order Size𝑘𝑘𝑘𝑘  =       
𝐶𝐶𝑘𝑘𝑘𝑘  +  𝑃𝑃𝑘𝑘𝑘𝑘

𝑃𝑃𝑘𝑘𝑘𝑘
                                                               [22] 

Therefore, the ranking formula used for method B can be seamlessly integrated into 
optimization models and provides an efficient alternative to the optimal item ranking approach 
employed by method C. By prioritizing frequently requested items with little to no correlation with 
other items, the item ranking for method B and C places them closer to the depot, thereby minimizing 
travel distance. This strategy proves advantageous compared to scenarios where these items are 
placed further away, beyond other correlated items with the same total picking frequency. For 
example, let's consider 100 orders of size one for item A and 100 orders of size three for items B, C, 
and D. Moving item A further from slot number one to slot number four would increase the distance 
by 300 distance units (assuming one slot equals one distance unit). On the other hand, moving items 
B, C, and D closer by one slot would collectively decrease the distance by 100 distance units because 
these items are picked together for each order in one trip. Hence, item A must be prioritized over 
other items of higher average order size unless they achieve higher picking frequency that 
compensates for the difference, specifically ≥ 300 orders for B, C, and D. Therefore, calculating item 
ranking based on the average order size proves to be more effective in optimizing item placement. In 
the following specifications, we provide details for all models in Figure 10: 

• Model A: Scenario no. one (Block A) implements Absolute Centroid Deviation (ACD) to penalize 
the objective function with a penalty parameter (t) of 2, and item ranking method A. In order to 
compare the performance result with scenario no. two (Model B – Block A), the optimization for 
this scenario was combined with the optimization selection of items for scenario no. seven 
(Model B – Block B) 
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• Model B: The scenarios under this model implement PCD to penalize the objective function for 
all centroids, using a penalty parameter (t) of 2, and item ranking method A. This model includes 
a set of 6 scenarios with variations of ratios as shown in Table 1. Scenario no. two achieved better 
result in terms of travel distance optimization compared to other scenarios under the same 
model. It has the same ratios as scenario no. one (Model A). In comparison, the results in Table 
1 demonstrate that scenario no. two is 4.5 times faster in terms of solving time, achieved higher 
total correlation scores, and slightly better travel distance optimization. All scenarios (Block A) 
in this model are combined with the optimization selection of items for scenario no. seven 
(Model B – Block B).  

• Model C: This model utilizes Positive Mean Deviation (PMD) for the correlation score centroids 
to incentivize the objective function and maximize the total correlation. The penalty term’s sign 
is reversed, and the model does not impose any restrictions through ratios. The centroids in this 
model represent the mean, and the item ranking method A is used. Two scenarios are presented 
in Table 1 for Block A and Block B. The performance result presented for scenario no. eight (Block 
A) represents the combination of both. It is worth noting that scenario no. two (Model B) 
outperforms scenario no. eight in terms of travel distance optimization, despite the decrease in 
the overall item correlation achieved. This can be attributed to the process of order splitting that 
is resulting in a greater number of trips when the optimization of item assignment is solely based 
on item correlation frequency. 

• Model D: This model applies PCD to penalize the objective function with a penalty parameter 
(t) of 10, and item ranking method A. Compared to scenario no. two (Model B), which utilizes a 
penalty parameter of 2, scenario no. ten achieves a slightly better travel distance optimization 
and closer results to the targeted centroids. However, it is slower and achieves a lower total 
correlation score. The results for scenario no. ten are combined with the optimization selection 
of items for scenario no. seven (Model B - Block B). Additionally, scenarios no. eleven (item 
ranking method B) and no. twelve (item ranking method C) outperform scenario no. ten in terms 
of travel distance optimization. 

• Model E: The scenarios under this model combines NCD for correlation score centroids and PCD 
for picking frequency centroids to penalize the objective function with a penalty parameter (t) 
of 10, and item ranking method C. The results for the four scenarios (Model E - Block A) that 
implement different defined ratios are combined with the optimization selection of items for 
scenario no. seven (Model B - Block B). This model aims to better guide the convergence toward 
the targeted centroids for correlation scores and picking frequency, which are positively 
correlated. While the correlation scores can increase beyond the targeted centroids by penalizing 
only negative deviations, the picking frequency can be distributed across zones to minimize the 
total deviation by avoiding exceeding the defined targeted centroids. Despite our attempt to 
implement the model with the same ratios as scenario no. one to compare the results, the 
optimization process did not reach a local optimal solution within several hours before 
terminating the process. However, a feasible solution was obtained within few minutes. Finding 
the local optimal solution for these ratios appears to be challenging in this model. However, the 
feasible solution, which was not included in results, closely achieved the targets for correlation 
scores. 
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Among the evaluated scenarios, scenario no. fifteen in model "E" stands out with a remarkable 
reduction of 36.75% compared to the current system, as in Figure 10. The choice of correlation score 
and picking frequency ratios in this scenario are specifically defined to optimize the travel distance 
for a system of three zones. This is achieved by prioritizing higher average order sizes in distant zones 
resulting in fewer trips for zones located farther away from the depot. 

 
Figure 10. Simulation-based Statistics for Scenario no. 15 

This scenario utilizes correlation score ratios of 2:1.5:1, which means that 44.44% of the high-
correlation items are located in the first zone (furthest zone), 33.33% on moderately correlated items, 
and 22.22% on low-correlation items. In addition, the picking frequency ratios of 1:1.5:2 is 
implemented to determine the priority of item selection based on their frequency. This ratio implies 
that 22.22% of the emphasis is on low-frequency items are located in the first zone (furthest zone), 
33.33% on moderately frequent items, and a significant 44.44% on high-frequency items. It is 
important to highlight that the weighting coefficients for these ratios have been appropriately 
adjusted based on the item slots available for each zone to moderate targets accordingly, as presented 
in Lingo's code (Model E – Block A). By combining these ratios, model "E" aims to achieve several 
objectives. Firstly, it encourages larger average order size by prioritizing high-correlated items to 
low-frequency items in distant zones. This reduces the number of required trips, resulting in 
improved efficiency. Secondly, the model seeks to increase the number of trips for items with low 
correlation in the closest zones to the depot. This strategy helps in minimizing order splitting and 
optimizing the overall picking process in terms of travel distance. To evaluate scenario no. fifteen, we 
analyzed a recent order history spanning 148 days, which resulted in a reduction percentage of 
33.59%. This indicates that the model has been effective in achieving sustainability. It is important to 
note that while the correlation score can dynamically increase to achieve the desired targets, the total 
picking frequency for all items remains constant. Furthermore, the model has shown solid results 
and provided insights for optimizing the travel distance; however, it is still considered in the 
experimental stage. The ratios proposed in this case study may not be optimal for scenarios with 
imbalanced slot distributions across zones. For instance, the ratios presented for scenario no. seven 
(Model B - Block B) specifically address the shortage of available slots in zone no. four, which is the 
closest to the depot. Despite attempts to optimize travel distance by using ratios such as 1:2:3:4 for 
the correlation score and 4:3:2:1 for the picking frequency, the results did not surpass the selected 
ratios presented in Table 1 for scenario no. seven. This was the case even after considering slot 
availability and adjusting the weighting coefficients for all zones. This because attempting to assign 
correlated items in zone no. four, which only has approximately a third of the available slots 
compared to any other zone in block B, would cause order splitting and additional trips to other 
zones. On the other hand, reducing the correlation score to the minimum value and increasing 
picking frequency for zone no. four allowed for larger average order sizes in distant zones that had 
enough slots to accommodate different combinations of correlated items that are frequently found in 
customer orders. Ultimately, this approach reduced the overall number of trips required. Therefore, 
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it is recommended to place the most frequently ordered single-items in the zones closest to the depot, 
especially when there are fewer available slots.  

6. Conclusion 

In this paper, we employ a methodology to demonstrate that maximizing the correlation among 
items to optimize the storage assignment is not the only factor in order to minimize the travel 
distance. We have successfully implemented the CSAS by adopting an approach that aligns with the 
zoning system and incorporating an item ranking method that accommodates both single-item and 
multi-item orders within each zone. Our approach highlights the importance of considering the 
average order size based on distance from depot as a crucial factor, surpassing the sole reliance on 
maximizing the total item correlation per zone. By doing so, we are able to achieve better results in 
terms of travel distance optimization by minimizing trips in distant zones and decreasing order 
splitting. Additionally, our methodology offers flexibility to customize the assignment of correlated 
items based on real-world scenarios, ensuring adaptability and practicality in diverse operational 
contexts. It is crucial to acknowledge the challenges associated with achieving specific item 
distribution based on correlation and frequency. We initially attempted to incorporate distance-based 
soft constraints in our MINLP model to prioritize the placement of high-correlation to lower picking 
frequency items in distant zones. This involved assigning lower reward factors for placing such items 
for nearby zones in the objective function, while increasing the reward for their placement in distant 
zones. However, the model overcompensates and does not converge according to our targets. 
Furthermore, in our proposed model, defining ratios posed initial difficulties in achieving the desired 
outcome, particularly when dealing with extreme reverse ratios. That was mainly due to the positive 
correlation between the correlation score and picking frequency, coupled with the preference for 
maximizing the total correlation score rather than enforcing desired weighted centroids per zone. To 
address these challenges, we have implemented PCD and NCD penalty terms. These penalties aim 
to address the positive or negative sources of deviation, particularly to prohibit it from increasing 
beyond or below a target. It is important to note that the solution obtained by the solver is highly 
dependent on various configurations, such as type of derivatives used and other selected heuristic 
procedures. As a result, the solutions can vary in terms of solving time and the achieved objective 
function. 

In this study, we evaluate sixteen scenarios under five optimization models (Models A to E) for 
implementing the CSAS. Our models are evaluated based on factors such as travel distance, total 
correlation score, and item picking frequency in order to optimize the order picking process. Scenario 
no. fifteen found to be the most effective, achieving a reduction of 36.75% compared to the current 
system. It prioritizes high-correlation items and low-frequency items in distant zones, promoting 
larger order sizes and reducing travel distance for these zones in contrast to closer ones. The 
presented results validate the effectiveness of the optimization models using both fitted and new 
datasets. The proposed approach for implementing the CSAS minimizes the travel distance by 
penalizing the objective function with the use of PCD and NCD penalty terms and a parameter of 10, 
ranking items based on their average order size using method C, and finally prioritizing higher ratios 
of correlation score to picking frequency for distant zones. For ranking items within zones, method 
C is found to be the most optimal. However, method B, which also considers the item average order 
size, is more efficient in terms of computation time. Both methods can be applied as a direct approach 
for optimizing the travel distance in a single-zone order picking system. Therefore, we recommend 
further research to test this proposed approach, providing insights into its advantages in terms of 
computational efficiency and optimality for both single and batch order picking systems. 
Additionally, we recommend further analysis for optimizing the travel distance using different 
datasets to address scenarios with imbalanced slot distributions across zones in a multi-zone system. 
Our proposed model considers the impact of higher correlation scores to lower picking frequencies 
while aiming to achieve larger average order sizes in order to prioritize the placement of these items 
in distant zones. This methodology is achieved by explicitly defining ratios of the proposed targets. 
With additional analysis to investigate imbalanced slot distribution using different datasets, this 
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model can be improved to incorporate dynamic convergence techniques without the explicit need to 
define these ratios. The model could be developed to dynamically adjust the weighted centroids, 
taking into account their respective impacts on selecting items that collectively achieve larger order 
sizes, while considering the slot availability ratio at each zone to minimize order splitting. By 
adjusting the weights of the coefficients during the optimization process based on each case scenario, 
the model can adapt to different conditions and find an optimal solution for different datasets. It is 
also recommended to develop a model that follows a direct approach in evaluating the impact of 
order splitting while assigning correlated items across zones. Overall, this paper provides 
recommendations for optimizing order picking operations and highlights effective strategies for item 
placement. By adopting these strategies, the order fulfillment can be enhanced, leading to improved 
efficiency and cost savings. Furthermore, the techniques employed in our approach have the 
potential to be applied in various areas such as distributing resources, algorithms and mathematical 
models. 
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