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Abstract: Background: Monitoring the mobility of players during wheelchair sports is essential to support
coaches in their understanding of the activity and in their training programming. However, the amount of
information available from the monitoring tools, combined with a general approach to processing and a poor
presentation of the data to the coaches, is not effective and remains unused. Thus, this study aimed to propose
a simple and efficient algorithm for identifying locomotor tasks (static, forward/backward propulsion,
pivot/tight/wide rotation) during wheelchair movements based on wheelchair kinematic data. Methods: A total
of 36 wheelchair tennis and badminton players participated, completing at least one of three proposed tests:
the star test, the figure-of-eight test, and the forward-backward test. Locomotor tasks were identified using a
five steps procedure including data reduction, symbolic approximation and pattern logical search. Results:
Using this method, 99% of locomotor tasks were properly identified for the star test, 95% for the figure-of-eight
test and 100% for the forward-backward test. Conclusion: This method appears to be a valuable tool for a
simple and clear identification and representation of locomotor tasks over extended periods of time. Future
research should aim at applying this method to multiple wheelchair court sports matches or daily life
declination.

Keywords: method; monitoring; performance; paralympic

1. Introduction

Measuring and monitoring wheelchair mobility are crucial aspects both in daily life and in
sports. In daily life, activity level serves as an indicator of the quality of life and the health status of a
manual wheelchair user [1]. Studies have particularly examined long-term mobility characteristics
using accelerometers [2], data loggers [1], or even machine learning algorithms capable of classifying
movements [3]. In Wheelchair Court Sports (WCS) like Wheelchair Basketball (WBas), Wheelchair
Rugby (WRug), Wheelchair Tennis (WTen), or Wheelchair Badminton (WBad), monitoring
wheelchair mobility during matches and training sessions can lead to a deeper understanding of
game dynamics and of the athlete’s effort. Monitoring both external and internal loads aids in offering
periodized training prescription and individualized training programs, and in preventing fatigue
and injuries [4]. Many studies have attempted to track the physical efforts exerted by WCS athletes
during a match using miniaturized data loggers [5], video cameras [6], heart rate monitors [7],
indoor wireless tracking systems [8], or perceived efforts collected through Borg scales [9]. From
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these studies, it has been possible to describe these sports as intermittent aerobic exercises
interspersed with brief periods of high-intensity work [10-12]. High-intensity activities are generally
characterized by multidirectional movements involving rapid accelerations and high-speed rotations
[13,14], except for WBad which predominantly involves unidirectional movement [15]. However,
none of these studies have attempted to precisely describe the characteristics of each locomotor task,
which is necessary to deeply understand the activity. The use of data loggers did not seem to be
effective as measurement errors were revealed at high speeds [16]. New workload tracking
techniques have emerged thanks to Global Positioning Systems (GPS) which provide quantification
of location, volume, intensity, and frequency of activities performed [17]. However, WCS are
primarily played indoors, where GPS is not reliable, and the dimensions of the courts are relatively
small, so the level of detail and precision must be adjusted [16]. A new radio frequency-based indoor
tracking system (ITS) has recently been developed, which utilises ultra-wideband signals to
communicate with compact tags worn by athletes, providing real-time analysis on movement
parameters [8]. However, in practical terms, implementing the ITS necessitates extensive setup and
calibration. Additionally, as of now, there have been no reported data regarding acceleration or
angular velocity using this system. Finally, activity patterns have been studied in WTen by defining
physical variables such as effective playing time or total resting time and technical aspects such as
the type of shot or the number of winning shots from videos [18,19]. However, this method requires
a team of reviewers to manually note down each of those events, which is very labor intensive and
time consuming. Therefore, all these tools did not seem relevant in describing locomotor tasks due to
their reliability, cost, or time efficiency.

New technological advancements have enabled the development of smaller, lighter, and
wireless Inertial Measurement Units (IMUs). In recent years, they have become accessible to research
teams worldwide and sports federations staff, making in field experiments feasible and providing
more ecological results. Their use in WCS is now well-defined and reported to be reliable for
assessing wheelchair kinematics [20]. Their ability to gather a multitude of data about linear and
rotational speed and acceleration performance is established. The three-sensor IMU configuration,
which provides more robust measurements for linear and non-linear movements [20], has been used
in numerous studies. For example, it has been employed to validate field tests for profiling purposes
in WTen [21], to profile players’ performances during structured field tests [22] or to explore
wheelchair configurations effectiveness [23,24]. During WCS matches, three IMUs have also been
used to identify the characteristics of the main movements [14,25]. However, the proposed method
did not provide information on the frequency and intensity of the different movements performed
or on the number, duration, and distance of sprints and rotations, which are all data that are now
essential to enable coaches and physical trainers to rely on evidence-based information in their
approach and training programming [26]. Although that many data are required to achieve this goal,
a massive data collection and a poor translation of this data can be hindrance for coaches. The vast
range of data provided by these tools, as well as the way sports scientists present this data, may not
seem relevant to coaches in practice and training contexts without a simplified method [27]. Amidst
the wealth of information in sports, the integration of data exploration techniques and principles into
time series analysis has spawned the concept known as Time Series Data Mining [28]. Among all
techniques, the Symbolic Aggregate Approximation (SAX) has been developed to transform time
series data into symbolic form and to reduce the dimensionality of time series data by discretizing
the original data into a collection of symbolic string alphabets [29]. This method has notably been
used for human action recognition [30] but has not been applied to wheelchair movements.

This study aimed to propose a simple and efficient method, based on logical search on several
signals simultaneously, for detecting locomotor tasks and assessing, in a second time, their intensity
during WCS matches, catering to coaches and sports scientists. The method developed also aimed to
clearly represent each detected locomotor task. This method was applied in this study on
standardized WCS tests necessitating several and known locomotor tasks. The hypothesis posited
that the method would accurately identify all locomotor tasks.

2. Methods
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Participants

Collecting data on tests with wheelchair badminton players and tennis players was approved
by the National Ethics Committee for Research in the Physical Activity and Sports Sciences
(CERSTAPS, IRB00012476-2021-11-06-274 and CERSTAPS n° IRB00012476-2021-31-03-97). A total of
36 wheelchair athletes, eighteen international wheelchair tennis players (twelve men and six women)
and eighteen national wheelchair badminton players (eleven men and seven women) participated in
this study. Among the wheelchair tennis players, thirteen competed in the Open division and five in
the Quad division. The Open division, separated into a male and a female division, is comprised of
players with a permanent lower limb impairment. Athletes with a permanent impairment in both
upper and lower limbs compete in the Quad division, where men and women compete together [31].
Among wheelchair badminton players, eleven competed in in the wheelchair 1 category (WH1) and
seven in the wheelchair 2 category (WH2). The WHI category corresponds to manual wheelchair
users with abdominal and lower limb paralysis, while the WH2 category corresponds to users with
abdominal capabilities and lower limb paralysis with partial sensation and who may sometimes
move in a vertical position using crutches or prostheses but only practice the sport in a wheelchair
[32]. Participants’ characteristics are summarized in Table 1.

Table 1. Participants’ characteristics, mean (SD).

Wheelchair tennis Wheelchair badminton
o Total Open Quad WH1 WH2
Characteristics
(n=36) (m=8/f=5) (m=4/f=1) (m=7/f=4) (m=4/f=3)

Age (years) 40 (9.5) 36.2 (11.1) 44 (5.8) 43.9 (6.1) 40 (10.9)

Mass (kg) 66.7 (13) 66.7 (16.9) 69.4 (11.5) 69 (10) 61 (9.9)

Years of training 9.2 (6.5) 12.3 (8) Unknown 7(2.7) 7.1 (5.3)
Protocols

The data used in this article were collected during WBad French championships and WTen
training sessions. The tests presented below were therefore chosen by the staff for their relevance in
evaluating player performance with respect to the characteristics of the respective disciplines. These
tests were also chosen for this study because they are standardized and well-known, plus they consist
of various locomotor tasks that arise during WCS. After being informed of the protocol, signing a
written inform consent form and performing a warm-up, participant completed one of the three
mobility tests proposed in this study: the star test, the figure-of-eight test or the forward-backward
test. All tests were performed as fast as possible and are depicted in Figure 2 The star test consisted
of 5 long back-and-forth displacements with alternative turns on spot of 180° and 120°. The outcome
of this test was the time to perform the test. The figure-of-eight test consisted of performing a course
by crossing directions and making 2 turns on the spot separated by five meters (allowing
straightforward displacement between turns) for one minute. The forward-backward test consisted
of forward and backward propulsion in a straight line over a distance of three meters for one minute.
The outcome of these two tests was the number of eight or forward-backward completed. Participants
used their own wheelchairs, and all tests were conducted with the tennis or badminton racket in
dominant hand.

Regarding the number of participants with respect to each test, the star test was performed by
12 WTen players, the figure-of-eight test was performed by 10 WTen players and the forward-
backward test was performed by the 18 WBad players. Some wheelchair tennis players performed
both tests (star and figure-of-eight) on different days.
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Equipment

Personal wheelchairs were equipped with three dimensional (x, y, and z-axis) Inertial
Measurement Units (IMUs) measuring linear acceleration, angular velocity and magnetic field
orientation (WheelPerf System, AtoutNovation, Versailles, France, 128 Hz). The IMUs were placed
on the wheelchair’s frame (at the midpoint between both rear wheel centre) and on each rear wheel
hub. Each acquisition was filmed using the tablet connected to the IMUs. The video recording served
as a support in case of errors or questions for understanding the algorithm’s results.

Data Processing

IMUs data, more especially gyroscope data, were processed using the method extensively
detailed in Poulet et al. study, [33], initially based on the equations described in the studies by Pansiot
et al. [34] and Fuss [35]. Following this processing, four main variables were prioritized and were
utilized in the method presented below:

e The absolute value of the angular velocity (abs(8)) of the wheelchair around the vertical axis [
in °/s], determined from the frame IMU.

e  The wheelchair linear velocity (V) [in m/s] (more especially, the velocity of the midpoint
between both rear wheels centres), determined from IMU on both rear wheels (obtained under
the assumption that both rear wheels are rolling without slipping on ground).

e  The absolute value of wheelchair linear velocity (abs(V,)) [in m/s]

e  The wheelchair curvature radius (R), expressed in the MWC coordinate system and align with
the line passing through both rear wheels centres under the condition of rolling without slipping
of both rear wheel), [in m] from the following equation (Eq. 1) based on linear and angular
velocities. R is the distance between the center of the wheelchair frame and the point around
which the wheelchair rotates.

R = (E) 1)

Symbolic Time Series Analysis

The idea of the following algorithm was to provide a symbolic representation of a displacement
highlighting the different locomotor tasks that were performed. The different locomotor tasks sought
were as follows: static phase, forward propulsion, backward propulsion, pivot rotation, tight
rotation, wide rotation. Rotations were recorded on both the right and left sides. These locomotor
tasks were selected because they are the most commonly encountered during daily or sports
locomotion. The objective of the algorithm was to go from 4 synchronized times series (abs(8), V,
abs(V;) and R) to a symbolic time series of the locomotion tasks. For that purpose, the algorithm
consists of 5 steps.

Step 1: data reduction

After processing and highlighting the four variables mentioned above, time series (T) was
transformed into segments using Piecewise Aggregate Approximation (PAA), wherein the length n
of T was divided into w equal-sized “frames” [36]. In this study, a PAA segment was set every 25
values, and the mean value of the data falling within each segment was retained. A vector
comprising these mean values became the data-reduced representation (Figure 1). The objectives of
this step were to reduce the size of the signal and to decrease the fickleness of the identified situations.
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Figure 1. An example of time series converted to PAA segments.

Step 2: Symbolic Aggregate approximation (SAX)

After reducing T, the previously calculated mean values for each PAA segment were replaced
by an alphabetic value equal to a, b, c or d, based on predetermined thresholds specified in Table 2,
transforming the four previous signals in string vectors (SAX signals). These thresholds were
arbitrarily tuned based on the previous knowledge of the research team.

Table 2. A summary of the thresholds used to replace the PAA segment values into classes from
labeled a, b, c or d.

a b C
abs(V,) (m/s) <0.05 0.05<v<0.5 >0.5
V, (m/s) <-0.05 -0.05<v<0.05 >0.05
abs(0) (°/s) <40 > 40
R (m) <0.2 02< R<05 >0.5

Step 3: logical search for locomotion task.

From the four signals transformed into SAX signals, combinations of letters, between the signals
were sought to define the different locomotor tasks. As described in Table 3, logical patterns were
used to identify the different locomotor tasks, and these tasks were detected when the combination
of value series matched one of the identified locomotor tasks. Thus, for example, the pattern for the
static phase was constructed from the signals of abs(V,) and abs(6). If the abs(V,) series contained
“b” (i.e. abs(V,) < 0.05) and the abs(@) series also contained “b” (i.e. abs(f) < 40) at the same
index, it meant that the athlete was neither moving forward nor turning, and therefore was in a static
phase. The same logical analysis has been adopted for patterns definitions for all locomotor tasks to
be detected.

Step 4: temporal and special symbolic representation

As soon as the combination of signals matched one of the predefined patterns (Table 3), a letter
representing the detected locomotor task was assigned in a new field. The letters were defined as
follows: ‘A’ for the static phase, ‘B’ for forward straight-line movement, ‘C’ for backward straight-
line movement, ‘D’ for pivot rotation, ‘E’ for tight rotation, and ‘F” for wide rotation. Thus, the final
resulting signal was then composed solely of those letters representing the wheelchair user’s activity.
For a clearer representation of locomotor tasks, each letter was then associated with a color for
graphical representation as described in Table 3. The different colors used were as follows:

- A (static): red
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- B (forward propulsion): green
- C(backward propulsion): yellow
- D (pivot rotation): pink
- E (tight rotation): cyan
- F (wide rotation): blue
The representation with colors, as described in figure 2, allowed for a more visual and simplified
description of the performed locomotor tasks.

Table 3. identification of locomotor tasks based on signal combination (step 3) and assignment of a
letter and color to each locomotor task (step 4).

Forward Backward Tight
Static . . Pivot rotation .
propulsion propulsion rotation
abs(V,) bbb ddd ddd
abs(6) bbb bbb bbb ccce CEE
Vy ccc aaa
R bbb ccc
AAA BB B DDD FEFF

Step 5: actual task feature extraction.

Finally, once all locomotor tasks were detected, a final processing step was implemented to
reduce the variability of actions. This involved instructing the algorithm, after obtaining the final total
activity, that if one segment of a locomotor task was surrounded by several segments of another
locomotor task, it would become that locomotor task in order to create a single and unified action.
For example, if the algorithm detected multiple consecutive segments of straight lines but one wide
turn segment was found in the middle of them, then the wide turn would be transformed into a
straight line. After finishing the processing, we could analyze the locomotor tasks by pulling out the
key kinematics data from the IMUs. This data describes how intense the action was, from the
beginning of the task to the end.

3. Results

Since the chosen tests were standardized tests with precise and known trajectories, the following
locomotor tasks: forward propulsion, backward propulsion, and rotations were counted using the
algorithm. These counts were then compared with the number of round trips on the forward-
backward test, or the number of laps counted on the figure-of-eight test on the day of
experimentation. The following locomotor tasks: pivot rotation, tight rotation and wide rotation were
all grouped together in the rotations category because it was impossible to differentiate them visually
on the day of the experiment. The algorithm provided us with details on the athlete’s strategy during
the tests. Table 4, summarizing the number of locomotor tasks inferred on the day of experimentation
and detected by the algorithm for each test, demonstrates that locomotor tasks were accurately
identified by the SAX algorithm, as indicated by the low coefficient of variation (maximum 3.6 % for
figure-of-eight test). These findings were further supported by the graphical representation of
locomotor activity and wheelchair trajectory across the three tests conducted (Figure 3). However,
for one out of the 10 athletes recorded during the figure-of-eight test, 20 straight lines and 19 rotations
were carried out, whereas the SAX algorithm only detected 12 straight lines and 12 rotations (Figure
3). This represents a reduction of no less than 40% in detected locomotor tasks by the SAX algorithm.
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Table 4. A summary of the number of locomotor tasks counted both through observations and

detected by the SAX method across the three tests, mean (SD).

Tests Figure-of-eight test Star test FP-BP test
FP Rotations FP Rotations FP BP
Observations 20 (1.3) 19 (1.6) 10 9 12 (1.8) 11 (1.9)
SAX method 19 (2.7) 19 (3.0) 10 (0.6) 9(0.3) 12 (1.8) 11 (1.9)
CV (%) 3.6 3.4 1.2 0.7 0 0

Note. FP: Forward Propulsion, BP: Backward Propulsion, CV: Coefficient of Variation.
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Figure 2. Identification of locomotor tasks and representation of trajectories (on the right) from the
three field tests conducted (A: forward-backward test; B: star test; C: figure-of-eight test). Each color
is associated with locomotor tasks (green: forward propulsion; yellow: backward propulsion; red:
static phase; blue: wide rotation). On the bottom part, colors are depicted on the chassis yaw angular
velocity signals. In the graph representing the locomotor tasks of the figure-of-eight test, the frame
composed of dashed lines is used to represent left turns (positive values), and the frame composed of
dots is used to represent right turns (negative values).
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Figure 3. Representation of the locomotor tasks detected using the SAX algorithm for the athlete with
an asynchronous propulsion during the figure-of-eight test. The colors are depicted on the chassis
yaw angular velocity signal that exhibited alternance of positive and negative values meaning that
the turning direction changed during the full recognized wide rotation task.

4. Discussion

The objective of this study was to propose a simple and convenient method for detecting and
representing locomotor tasks and their intensity using gyroscope data from inertial measurement
units. We hypothesized that the proposed method would accurately identify all searched locomotor
tasks: static; forward and backward propulsions; and pivot, thigh and wide rotations. The evaluation
described in this article demonstrates that the use of IMU gyroscope data coupled with the proposed
algorithm allows for an accurate determination of the locomotor tasks performed. This method has
notably been applied to a battery of tests carried out at very high intensity by national-level WTen
and WBad athletes. Based on the proposed thresholds, all recordings were encompassed by
locomotor tasks corresponding to the algorithm’s instructions. For each test, a comparison between
the number of locomotor tasks deduced from the number of round trips or laps completed on the
tests and the number of locomotor tasks defined by the algorithm validates the method employed.
This comparison revealed an average similarity of 99 % between the two methods for the star test, of
100 % for the forward-backward test and of 95% for the figure-of-eight test. The visual application of
locomotor tasks on the trajectory of the course (Figure 2) also reinforces the validity of the employed
method.

The analysis technique utilized to measure wheelchair movement in this study, and the
validation performed, presents several advantages and limitations when juxtaposed with existing
methods for monitoring wheelchair activity. The proposed algorithm could complement the overall
analysis conducted during matches using the IMUs installed on the wheelchair [14,25] by providing
a detailed and representative description of each movement performed. Information such as the
number of sprints, their duration, the distance covered, and the type of rotations seems to be
essentials elements for coaches in understanding the activity. Other studies have also characterized
on-field mobility intensity during matches based on arbitrary speed zones [5,37]. However, these
processing methods do not provide a precise description of locomotor tasks or their evolution
throughout the match. The proposed method could thus be employed to comprehend mobility
characteristics throughout a match, as well as movement strategies depending on score evolution,
fatigue, or other factors. Another advantage of the proposed methodology is its applicability to
various situations, whether in everyday life or in sports, provided that the thresholds used are
validated. Indeed, additional signals derived for the same initial IMU signals can be included and the
algorithm’s thresholds could be adjusted in order to accommodate different applications, such as
monitoring mobility in daily life or tracking mobility during confrontational sports like WRug or
WBas. Future research using this method for detecting locomotor tasks are thus encourage to provide
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details — as supplementary material for instance - on segment length (PAA step), signals used, applied
threshold (SAX step) and pattern recognition for tasks identification.

In the present study, for one out of the ten recordings of the figure-of-eight test, the algorithm
detected 40% fewer locomotor tasks. This result can be explained by the different propulsion mode
used by the athlete. Indeed, this athlete adopted an asynchronous propulsion mode (i.e., alternating
propulsions between left and right wheels), leading to frame rotation around its vertical axis.
Consequently, although the locomotor task was expected as a straight line in our test, the algorithm
detected wide rotations. A more detailed analysis (based on the video data) reveals that the actual
trajectory of the wheelchair athlete is less straightforward between rotation as expected in the test. In
wheelchair sports, some athletes favor asynchronous propulsion and coaches could potentially
wanted some propulsion segment performed in asynchronous mode being classified as
straightforward rather that alternative left/right wide rotations. In this case, additional correction
steps could easily be applied both by including the angular velocity direction as an input signal and
defining a threshold of maximal global rotation per push, for instance.

Despite these limitations, this article provided evidence of the feasibility of analyzing mobility
characteristics from gyroscopic data and the proposed algorithm. Even if tuned manually based on
team experience that can be seen as a limitation, the proposed thresholds appear to already work in
the context of standardized tests. Hence, both the signals and thresholds proposed in this study
already provide a foundation and they can be adjusted for a better specificity of the algorithm to a
specific use of the wheelchair or for a greater refinement in task type detection. Furthermore, this
method provides a simple and clear representation for coaching staff in activity analysis. Finally,
future research applying this processing method to WCS matches could lead to a better
understanding of mobility characteristics. Daily life declination could also be envisaged for
locomotor task monitoring in addition of current methodologies.
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