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Abstract: Background: Monitoring  the mobility of players during wheelchair  sports  is essential  to support 

coaches  in  their understanding of  the activity and  in  their  training programming. However,  the amount of 

information available from the monitoring tools, combined with a general approach to processing and a poor 

presentation of the data to the coaches, is not effective and remains unused. Thus, this study aimed to propose 

a  simple  and  efficient  algorithm  for  identifying  locomotor  tasks  (static,  forward/backward  propulsion, 

pivot/tight/wide rotation) during wheelchair movements based on wheelchair kinematic data. Methods: A total 

of 36 wheelchair tennis and badminton players participated, completing at least one of three proposed tests: 

the star test, the figure‐of‐eight test, and the forward‐backward test. Locomotor tasks were identified using a 

five steps procedure  including data reduction, symbolic approximation and pattern  logical search. Results: 

Using this method, 99% of locomotor tasks were properly identified for the star test, 95% for the figure‐of‐eight 

test and 100%  for  the  forward‐backward  test. Conclusion: This method appears  to be a valuable  tool  for a 

simple and clear identification and representation of locomotor tasks over extended periods of time. Future 

research  should  aim  at  applying  this method  to multiple  wheelchair  court  sports matches  or  daily  life 

declination. 
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1. Introduction 

Measuring  and monitoring wheelchair mobility  are  crucial  aspects both  in daily  life  and  in 

sports. In daily life, activity level serves as an indicator of the quality of life and the health status of a 

manual wheelchair user [1]. Studies have particularly examined long‐term mobility characteristics 

using accelerometers [2], data loggers [1], or even machine learning algorithms capable of classifying 

movements [3]. In Wheelchair Court Sports (WCS) like Wheelchair Basketball (WBas), Wheelchair 

Rugby  (WRug),  Wheelchair  Tennis  (WTen),  or  Wheelchair  Badminton  (WBad),  monitoring 

wheelchair mobility during matches and  training sessions can  lead  to a deeper understanding of 

game dynamics and of the athlete’s effort. Monitoring both external and internal loads aids in offering 

periodized  training prescription and  individualized  training programs, and  in preventing  fatigue 

and injuries [4]. Many studies have attempted to track the physical efforts exerted by WCS athletes 

during  a match using miniaturized data  loggers  [5], video  cameras  [6],    heart  rate monitors  [7], 

indoor wireless tracking systems [8],    or perceived efforts collected through Borg scales [9]. From 
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these  studies,  it  has  been  possible  to  describe  these  sports  as  intermittent  aerobic  exercises 

interspersed with brief periods of high‐intensity work [10–12]. High‐intensity activities are generally 

characterized by multidirectional movements involving rapid accelerations and high‐speed rotations 

[13,14], except  for WBad which predominantly  involves unidirectional movement  [15]. However, 

none of these studies have attempted to precisely describe the characteristics of each locomotor task, 

which  is necessary  to deeply understand  the activity. The use of data  loggers did not seem  to be 

effective  as  measurement  errors  were  revealed  at  high  speeds  [16].  New  workload  tracking 

techniques have emerged thanks to Global Positioning Systems (GPS) which provide quantification 

of  location,  volume,  intensity,  and  frequency  of  activities  performed  [17].  However, WCS  are 

primarily played indoors, where GPS is not reliable, and the dimensions of the courts are relatively 

small, so the level of detail and precision must be adjusted [16]. A new radio frequency‐based indoor 

tracking  system  (ITS)  has  recently  been  developed,  which  utilises  ultra‐wideband  signals  to 

communicate  with  compact  tags  worn  by  athletes,  providing  real‐time  analysis  on  movement 

parameters [8]. However, in practical terms, implementing the ITS necessitates extensive setup and 

calibration. Additionally,  as of now,  there have been no  reported data  regarding  acceleration or 

angular velocity using this system. Finally, activity patterns have been studied in WTen by defining 

physical variables such as effective playing time or total resting time and technical aspects such as 

the type of shot or the number of winning shots from videos [18,19]. However, this method requires 

a team of reviewers to manually note down each of those events, which is very labor intensive and 

time consuming. Therefore, all these tools did not seem relevant in describing locomotor tasks due to 

their reliability, cost, or time efficiency.     

New  technological  advancements  have  enabled  the  development  of  smaller,  lighter,  and 

wireless Inertial Measurement Units (IMUs). In recent years, they have become accessible to research 

teams worldwide and sports federations staff, making in field experiments feasible and providing 

more  ecological  results.  Their  use  in WCS  is  now well‐defined  and  reported  to  be  reliable  for 

assessing wheelchair kinematics  [20]. Their ability  to gather a multitude of data about  linear and 

rotational speed and acceleration performance is established. The three‐sensor IMU configuration, 

which provides more robust measurements for linear and non‐linear movements [20], has been used 

in numerous studies. For example, it has been employed to validate field tests for profiling purposes 

in WTen  [21],  to  profile  players’  performances  during  structured  field  tests  [22]  or  to  explore 

wheelchair configurations effectiveness  [23,24]. During WCS matches,  three  IMUs have also been 

used to identify the characteristics of the main movements [14,25]. However, the proposed method 

did not provide information on the frequency and intensity of the different movements performed 

or on the number, duration, and distance of sprints and rotations, which are all data that are now 

essential  to  enable  coaches  and  physical  trainers  to  rely  on  evidence‐based  information  in  their 

approach and training programming [26]. Although that many data are required to achieve this goal, 

a massive data collection and a poor translation of this data can be hindrance for coaches. The vast 

range of data provided by these tools, as well as the way sports scientists present this data, may not 

seem relevant to coaches in practice and training contexts without a simplified method [27]. Amidst 

the wealth of information in sports, the integration of data exploration techniques and principles into 

time series analysis has spawned the concept known as Time Series Data Mining  [28]. Among all 

techniques,  the Symbolic Aggregate Approximation  (SAX) has been developed  to  transform  time 

series data into symbolic form and to reduce the dimensionality of time series data by discretizing 

the original data  into a collection of symbolic string alphabets [29]. This method has notably been 

used for human action recognition [30] but has not been applied to wheelchair movements.   

This study aimed to propose a simple and efficient method, based on logical search on several 

signals simultaneously, for detecting locomotor tasks and assessing, in a second time, their intensity 

during WCS matches, catering to coaches and sports scientists. The method developed also aimed to 

clearly  represent  each  detected  locomotor  task.  This  method  was  applied  in  this  study  on 

standardized WCS tests necessitating several and known  locomotor tasks. The hypothesis posited 

that the method would accurately identify all locomotor tasks. 

2. Methods 
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Participants   

Collecting data on tests with wheelchair badminton players and tennis players was approved 

by  the  National  Ethics  Committee  for  Research  in  the  Physical  Activity  and  Sports  Sciences 

(CERSTAPS, IRB00012476‐2021‐11‐06‐274 and CERSTAPS n° IRB00012476‐2021‐31‐03‐97). A total of 

36 wheelchair athletes, eighteen international wheelchair tennis players (twelve men and six women) 

and eighteen national wheelchair badminton players (eleven men and seven women) participated in 

this study. Among the wheelchair tennis players, thirteen competed in the Open division and five in 

the Quad division. The Open division, separated into a male and a female division, is comprised of 

players with a permanent lower limb impairment. Athletes with a permanent  impairment in both 

upper and lower limbs compete in the Quad division, where men and women compete together [31]. 

Among wheelchair badminton players, eleven competed in in the wheelchair 1 category (WH1) and 

seven  in  the wheelchair 2 category  (WH2). The WH1 category corresponds  to manual wheelchair 

users with abdominal and lower limb paralysis, while the WH2 category corresponds to users with 

abdominal  capabilities  and  lower  limb paralysis with partial  sensation and who may  sometimes 

move in a vertical position using crutches or prostheses but only practice the sport in a wheelchair 

[32]. Participants’ characteristics are summarized in Table 1.   

Table 1. Participants’ characteristics, mean (SD). 

    Wheelchair tennis  Wheelchair badminton 

Characteristics 
Total   

(n = 36) 

Open   

(m = 8 / f = 5) 

Quad   

(m = 4 / f = 1) 

WH1 

  (m = 7 / f = 4) 

WH2   

(m = 4 / f = 3) 

Age (years)  40 (9.5)  36.2 (11.1)  44 (5.8)  43.9 (6.1)  40 (10.9) 

Mass (kg)  66.7 (13)  66.7 (16.9)  69.4 (11.5)  69 (10)  61 (9.9) 

Years of training  9.2 (6.5)  12.3 (8)  Unknown  7 (2.7)  7.1 (5.3) 

Protocols 

The data used  in  this article were  collected during WBad French  championships and WTen 

training sessions. The tests presented below were therefore chosen by the staff for their relevance in 

evaluating player performance with respect to the characteristics of the respective disciplines. These 

tests were also chosen for this study because they are standardized and well‐known, plus they consist 

of various locomotor tasks that arise during WCS. After being informed of the protocol, signing a 

written  inform  consent  form and performing a warm‐up, participant  completed one of  the  three 

mobility tests proposed in this study: the star test, the figure‐of‐eight test or the forward‐backward 

test. All tests were performed as fast as possible and are depicted in Figure 2 The star test consisted 

of 5 long back‐and‐forth displacements with alternative turns on spot of 180° and 120°. The outcome 

of this test was the time to perform the test. The figure‐of‐eight test consisted of performing a course 

by  crossing  directions  and  making  2  turns  on  the  spot  separated  by  five  meters  (allowing 

straightforward displacement between turns) for one minute. The forward‐backward test consisted 

of forward and backward propulsion in a straight line over a distance of three meters for one minute. 

The outcome of these two tests was the number of eight or forward‐backward completed. Participants 

used  their own wheelchairs, and all  tests were conducted with  the  tennis or badminton racket  in 

dominant hand. 

Regarding the number of participants with respect to each test, the star test was performed by 

12 WTen  players,  the  figure‐of‐eight  test was  performed  by  10 WTen  players  and  the  forward‐

backward test was performed by the 18 WBad players. Some wheelchair tennis players performed 

both tests (star and figure‐of‐eight) on different days.   
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Equipment 

Personal  wheelchairs  were  equipped  with  three  dimensional  (x,  y,  and  z‐axis)  Inertial 

Measurement  Units  (IMUs)  measuring  linear  acceleration,  angular  velocity  and  magnetic  field 

orientation (WheelPerf System, AtoutNovation, Versailles, France, 128 Hz). The IMUs were placed 

on the wheelchair’s frame (at the midpoint between both rear wheel centre) and on each rear wheel 

hub. Each acquisition was filmed using the tablet connected to the IMUs. The video recording served 

as a support in case of errors or questions for understanding the algorithm’s results. 

Data Processing   

IMUs  data, more  especially  gyroscope  data, were  processed  using  the method  extensively 

detailed in Poulet et al. study, [33], initially based on the equations described in the studies by Pansiot 

et al. [34] and Fuss [35]. Following this processing, four main variables were prioritized and were 

utilized in the method presented below: 

 The absolute value of the angular velocity (𝑎𝑏𝑠ሺ𝜃ሶሻ) of the wheelchair around the vertical axis [ 

in °/s], determined from the frame IMU. 

 The wheelchair  linear  velocity  (𝑉௫ )  [in m/s]  (more  especially,  the  velocity  of  the midpoint 

between both rear wheels centres), determined from IMU on both rear wheels (obtained under 

the assumption that both rear wheels are rolling without slipping on ground). 

 The absolute value of wheelchair linear velocity (𝑎𝑏𝑠ሺ𝑉௫ሻ) [in m/s] 

 The wheelchair curvature radius (𝑅), expressed in the MWC coordinate system and align with 

the line passing through both rear wheels centres under the condition of rolling without slipping 

of both  rear wheel),  [in m]  from  the  following equation  (Eq. 1) based on  linear and angular 

velocities. R is the distance between the center of the wheelchair frame and the point around 

which the wheelchair rotates.   

𝑅 ൌ  ൬
𝑉௫
𝜃ሶ
൰  (1)

Symbolic Time Series Analysis   

The idea of the following algorithm was to provide a symbolic representation of a displacement 

highlighting the different locomotor tasks that were performed. The different locomotor tasks sought 

were  as  follows:  static  phase,  forward  propulsion,  backward  propulsion,  pivot  rotation,  tight 

rotation, wide rotation. Rotations were recorded on both the right and left sides. These locomotor 

tasks  were  selected  because  they  are  the  most  commonly  encountered  during  daily  or  sports 

locomotion. The objective of the algorithm was to go from 4 synchronized times series (𝑎𝑏𝑠ሺ𝜃ሶሻ,  𝑉௫, 
𝑎𝑏𝑠ሺ𝑉௫ሻ  and  𝑅) to a symbolic time series of the locomotion tasks. For that purpose, the algorithm 

consists of 5 steps. 

Step 1: data reduction 

After  processing  and  highlighting  the  four  variables mentioned  above,  time  series  (𝑇) was 

transformed into segments using Piecewise Aggregate Approximation (PAA), wherein the length  𝑛 
of  𝑇  was divided into  𝑤  equal‐sized “frames” [36]. In this study, a PAA segment was set every 25 

values,  and  the mean  value  of  the  data  falling  within  each  segment  was  retained.    A  vector 

comprising these mean values became the data‐reduced representation (Figure 1). The objectives of 

this step were to reduce the size of the signal and to decrease the fickleness of the identified situations.   
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Figure 1. An example of time series converted to PAA segments. 

Step 2: Symbolic Aggregate approximation (SAX) 

After reducing  𝑇, the previously calculated mean values for each PAA segment were replaced 

by an alphabetic value equal to a, b, c or d, based on predetermined thresholds specified in Table 2, 

transforming  the  four  previous  signals  in  string  vectors  (SAX  signals).  These  thresholds  were 

arbitrarily tuned based on the previous knowledge of the research team. 

Table 2. A summary of  the  thresholds used  to  replace  the PAA segment values  into classes  from 

labeled a, b, c or d. 

  a  b  c  d 

𝒂𝒃𝒔ሺ𝑽𝒙ሻ  (m/s)    ≤ 0.05  0.05 < v < 0.5  ≥ 0.5 

𝑽𝒙  (m/s)  ≤ ‐0.05  ‐0.05 < v < 0.05  ≥ 0.05   

𝒂𝒃𝒔ሺ𝜽ሶ ሻ  (°/s)    < 40  > 40   

𝑹  (m)    ≤ 0.2  0.2 <  𝑅 < 0.5  ≥ 0.5 

Step 3: logical search for locomotion task. 

From the four signals transformed into SAX signals, combinations of letters, between the signals 

were sought to define the different locomotor tasks. As described in Table 3, logical patterns were 

used to identify the different locomotor tasks, and these tasks were detected when the combination 

of value series matched one of the identified locomotor tasks. Thus, for example, the pattern for the 

static phase was constructed from the signals of  𝑎𝑏𝑠ሺ𝑉௫ሻ and  𝑎𝑏𝑠ሺ𝜃ሶሻ. If the  𝑎𝑏𝑠ሺ𝑉௫ሻ  series contained 
“b”  (i.e.  𝑎𝑏𝑠ሺ𝑉௫ሻ  < 0.05)  and  the  𝑎𝑏𝑠ሺ𝜃ሶሻ  series also  contained  “b”  (i.e.  𝑎𝑏𝑠ሺ𝜃ሶሻ  <  40) at  the  same 

index, it meant that the athlete was neither moving forward nor turning, and therefore was in a static 

phase. The same logical analysis has been adopted for patterns definitions for all locomotor tasks to 

be detected. 

Step 4: temporal and special symbolic representation 

As soon as the combination of signals matched one of the predefined patterns (Table 3), a letter 

representing the detected  locomotor task was assigned  in a new field. The  letters were defined as 

follows: ‘A’ for the static phase, ‘B’ for forward straight‐line movement, ‘C’ for backward straight‐

line movement, ‘D’ for pivot rotation, ‘E’ for tight rotation, and ‘F’ for wide rotation. Thus, the final 

resulting signal was then composed solely of those letters representing the wheelchair user’s activity. 

For  a  clearer  representation  of  locomotor  tasks,  each  letter was  then  associated with  a  color  for 

graphical representation as described in Table 3. The different colors used were as follows:   

- A (static): red 
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- B (forward propulsion): green   

- C (backward propulsion): yellow   

- D (pivot rotation): pink   

- E (tight rotation): cyan   
- F (wide rotation): blue 

The representation with colors, as described in figure 2, allowed for a more visual and simplified 

description of the performed locomotor tasks. 

Table 3. identification of locomotor tasks based on signal combination (step 3) and assignment of a 

letter and color to each locomotor task (step 4). 

  Static 
Forward 

propulsion 

Backward 

propulsion 
Pivot rotation 

Tight 

rotation 

Wide 

rotation 

𝒂𝒃𝒔ሺ𝑽𝒙ሻ  b b b  d d d  d d d       

𝒂𝒃𝒔ሺ𝜽ሶ ሻ  b b b  b b b  b b b  c c c  c c c  c c c 

𝑽𝒙    c c c  a a a       

𝑹        b b b  c c c  d d d 

  A A A  B B B  C C C  D D D  E E E  F F F 

Step 5: actual task feature extraction. 

Finally, once all  locomotor  tasks were detected, a  final processing  step was  implemented  to 

reduce the variability of actions. This involved instructing the algorithm, after obtaining the final total 

activity,  that  if one segment of a  locomotor  task was surrounded by several segments of another 

locomotor task, it would become that locomotor task in order to create a single and unified action. 

For example, if the algorithm detected multiple consecutive segments of straight lines but one wide 

turn segment was  found  in  the middle of  them,  then  the wide  turn would be  transformed  into a 

straight line. After finishing the processing, we could analyze the locomotor tasks by pulling out the 

key  kinematics  data  from  the  IMUs.  This  data  describes  how  intense  the  action was,  from  the 

beginning of the task to the end.   

3. Results 

Since the chosen tests were standardized tests with precise and known trajectories, the following 

locomotor tasks: forward propulsion, backward propulsion, and rotations were counted using the 

algorithm.  These  counts were  then  compared with  the  number  of  round  trips  on  the  forward‐

backward  test,  or  the  number  of  laps  counted  on  the  figure‐of‐eight  test  on  the  day  of 

experimentation. The following locomotor tasks: pivot rotation, tight rotation and wide rotation were 

all grouped together in the rotations category because it was impossible to differentiate them visually 

on the day of the experiment. The algorithm provided us with details on the athlete’s strategy during 

the tests. Table 4, summarizing the number of locomotor tasks inferred on the day of experimentation 

and  detected  by  the  algorithm  for  each  test,  demonstrates  that  locomotor  tasks were  accurately 

identified by the SAX algorithm, as indicated by the low coefficient of variation (maximum 3.6 % for 

figure‐of‐eight  test).  These  findings  were  further  supported  by  the  graphical  representation  of 

locomotor activity and wheelchair trajectory across the three tests conducted (Figure 3). However, 

for one out of the 10 athletes recorded during the figure‐of‐eight test, 20 straight lines and 19 rotations 

were carried out, whereas the SAX algorithm only detected 12 straight lines and 12 rotations (Figure 

3). This represents a reduction of no less than 40% in detected locomotor tasks by the SAX algorithm.   
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Table  4. A  summary  of  the  number  of  locomotor  tasks  counted  both  through  observations  and 

detected by the SAX method across the three tests, mean (SD). 

Tests  Figure‐of‐eight test  Star test  FP‐BP test 
  FP  Rotations  FP  Rotations  FP  BP   

 Observations  20 (1.3)  19 (1.6)  10    9    12 (1.8)  11 (1.9) 

SAX method  19 (2.7)  19 (3.0)  10 (0.6)  9 (0.3)  12 (1.8)  11 (1.9) 

CV (%)  3.6  3.4  1.2  0.7  0  0 

Note. FP: Forward Propulsion, BP: Backward Propulsion, CV: Coefficient of Variation. 

 

Figure 2. Identification of locomotor tasks and representation of trajectories (on the right) from the 

three field tests conducted (A: forward‐backward test; B: star test; C: figure‐of‐eight test). Each color 

is associated with  locomotor  tasks  (green:  forward propulsion; yellow: backward propulsion;  red: 

static phase; blue: wide rotation). On the bottom part, colors are depicted on the chassis yaw angular 

velocity signals. In the graph representing the locomotor tasks of the figure‐of‐eight test, the frame 

composed of dashed lines is used to represent left turns (positive values), and the frame composed of 

dots is used to represent right turns (negative values). 
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Figure 3. Representation of the locomotor tasks detected using the SAX algorithm for the athlete with 

an asynchronous propulsion during the figure‐of‐eight test. The colors are depicted on the chassis 

yaw angular velocity signal that exhibited alternance of positive and negative values meaning that 

the turning direction changed during the full recognized wide rotation task. 

4. Discussion 

The objective of this study was to propose a simple and convenient method for detecting and 

representing  locomotor  tasks and  their  intensity using gyroscope data  from  inertial measurement 

units. We hypothesized that the proposed method would accurately identify all searched locomotor 

tasks: static; forward and backward propulsions; and pivot, thigh and wide rotations. The evaluation 

described in this article demonstrates that the use of IMU gyroscope data coupled with the proposed 

algorithm allows for an accurate determination of the locomotor tasks performed. This method has 

notably been applied to a battery of tests carried out at very high intensity by national‐level WTen 

and WBad  athletes.    Based  on  the  proposed  thresholds,  all  recordings  were  encompassed  by 

locomotor tasks corresponding to the algorithm’s instructions. For each test, a comparison between 

the number of locomotor tasks deduced from the number of round trips or laps completed on the 

tests and the number of locomotor tasks defined by the algorithm validates the method employed. 

This comparison revealed an average similarity of 99 % between the two methods for the star test, of 

100 % for the forward‐backward test and of 95% for the figure‐of‐eight test. The visual application of 

locomotor tasks on the trajectory of the course (Figure 2) also reinforces the validity of the employed 

method.   

The  analysis  technique  utilized  to  measure  wheelchair  movement  in  this  study,  and  the 

validation performed, presents several advantages and  limitations when  juxtaposed with existing 

methods for monitoring wheelchair activity. The proposed algorithm could complement the overall 

analysis conducted during matches using the IMUs installed on the wheelchair [14,25] by providing 

a detailed  and  representative description of  each movement performed.  Information  such  as  the 

number  of  sprints,  their  duration,  the  distance  covered,  and  the  type  of  rotations  seems  to  be 

essentials elements for coaches in understanding the activity. Other studies have also characterized 

on‐field mobility  intensity during matches based on arbitrary speed zones  [5,37]. However,  these 

processing methods  do  not  provide  a  precise  description  of  locomotor  tasks  or  their  evolution 

throughout  the match.  The  proposed method  could  thus  be  employed  to  comprehend mobility 

characteristics throughout a match, as well as movement strategies depending on score evolution, 

fatigue,  or  other  factors. Another  advantage  of  the proposed methodology  is  its  applicability  to 

various  situations, whether  in  everyday  life  or  in  sports,  provided  that  the  thresholds  used  are 

validated. Indeed, additional signals derived for the same initial IMU signals can be included and the 

algorithm’s  thresholds could be adjusted  in order  to accommodate different applications, such as 

monitoring mobility  in daily  life or  tracking mobility during confrontational sports  like WRug or 

WBas. Future research using this method for detecting locomotor tasks are thus encourage to provide 
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details – as supplementary material for instance ‐ on segment length (PAA step), signals used, applied 

threshold (SAX step) and pattern recognition for tasks identification. 

In the present study, for one out of the ten recordings of the figure‐of‐eight test, the algorithm 

detected 40% fewer locomotor tasks. This result can be explained by the different propulsion mode 

used by the athlete. Indeed, this athlete adopted an asynchronous propulsion mode (i.e., alternating 

propulsions  between  left  and  right wheels),  leading  to  frame  rotation  around  its  vertical  axis. 

Consequently, although the locomotor task was expected as a straight line in our test, the algorithm 

detected wide rotations. A more detailed analysis (based on the video data) reveals that the actual 

trajectory of the wheelchair athlete is less straightforward between rotation as expected in the test. In 

wheelchair  sports,  some  athletes  favor  asynchronous  propulsion  and  coaches  could  potentially 

wanted  some  propulsion  segment  performed  in  asynchronous  mode  being  classified  as 

straightforward  rather  that alternative  left/right wide  rotations.  In  this case, additional correction 

steps could easily be applied both by including the angular velocity direction as an input signal and 

defining a threshold of maximal global rotation per push, for instance.   

Despite these limitations, this article provided evidence of the feasibility of analyzing mobility 

characteristics from gyroscopic data and the proposed algorithm. Even if tuned manually based on 

team experience that can be seen as a limitation, the proposed thresholds appear to already work in 

the  context of  standardized  tests. Hence, both  the  signals  and  thresholds proposed  in  this  study 

already provide a foundation and they can be adjusted for a better specificity of the algorithm to a 

specific use of the wheelchair or for a greater refinement  in task type detection. Furthermore, this 

method provides a simple and clear  representation  for coaching staff  in activity analysis. Finally, 

future  research  applying  this  processing  method  to  WCS  matches  could  lead  to  a  better 

understanding  of  mobility  characteristics.  Daily  life  declination  could  also  be  envisaged  for 

locomotor task monitoring in addition of current methodologies. 
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