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Abstract: Chronic kidney disease (CKD) is a growing public health issue with significant morbidity and
mortality rates. Traditional diagnostics, with about 70% accuracy, often delay CKD detection, highlighting the
need for more efficient methods. Recent studies indicate a potential link between CKD and auditory health, yet
this relationship remains underexplored due to methodological challenges and the complexity of establishing
causality. Our research utilizes data spanning from 2000 to 2020 from the National Health and Nutrition
Examination Survey (NHANES), covering 12,392 participants, including 2,060 diagnosed with CKD. Through
meticulous analysis employing logistic regression and Mendelian randomization, we have unearthed novel
insights into the bi-directional associations between hearing impairment and CKD. Furthermore, we developed
and validated a machine learning model that surpasses traditional diagnostic approaches in terms of accuracy
and predictive power. These findings highlight the innovative integration of auditory examinations with
demographic data to enhance CKD detection. Our approach demonstrates the potential of machine learning in

transforming diagnostic methodologies, thus offering a significant advancement in the field of nephrology and
public health.

Keywords: chronic kidney disease; hearing; mendelian randomization; machine learning models;
predictions

1. Introduction

Chronic Kidney Disease (CKD) represents a significant global public health concern. The
prevalence of CKD is on an upward trajectory, exacerbated by demographic aging, escalating
environmental pollution, and shifts in lifestyle patterns. The Global Burden of Disease Consortium
predicts that CKD will become the top five leading diseases leading to life lost by 2040 [1]. Beyond
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its direct impact on renal function, CKD substantially elevates the risk of myriad complications;
notably, cardiovascular mortality rates in CKD patients are estimated to be 2 to 3 times higher than
in the general population [2], with hypertension prevalence ranging from 65% to 95% [3].
Furthermore, diabetes emerges as the etiology for half of all end-stage renal disease (ESRD) cases [4].
The current approach to the diagnosis of CKD predominantly encompasses traditional
methodologies, including but not limited to blood and urine analyses, as well as imaging procedures
(e.g., ultrasound, computed tomography [CT], magnetic resonance imaging [MRI]), renal biopsy, and
histopathological examination [5]. Nevertheless, it is observed that the precision of conventional
diagnostic practices for CKD typically hovers around the 70% mark [6]. The indistinct early
symptomatology of CKD significantly enhances the risk of misdiagnosis or delayed diagnosis,
underscoring the imperative for more streamlined, rapid, and efficacious diagnostic approaches [7].

The ancient Chinese medical book, Huangdi Neijing (Inner Canon of Yellow Emperor), posits that
“the kidney manifests in the ear,” suggesting a potential intimate link between ear health and kidney
function. The nexus between CKD and auditory anomalies has garnered scholarly attention since the
onset of the 20th century, with observational studies delving into the link between CKD and auditory
function. These studies report an increased prevalence of sensorineural hearing loss (SNHL) among
patients with CKD, a type of hearing loss directly related to damage within the inner ear or auditory
nerve [8-11]. However, research assessing the correlation between CKD and hearing loss has
primarily focused on hearing loss at different frequencies, with insufficient consideration of other
ear-related factors such as tympanic chamber measurements and otoscopic examinations. The
variability in study outcomes may be attributed to differences in hearing assessment methodologies
(pure-tone audiometry, threshold determination, surveys, etc.) and the influence of confounding
factors [12,13]. Current research predominantly scrutinizes the correlation between CKD and
auditory impairment without a unified stance on the sequential development of CKD and hearing
loss or establishing a definitive causal relationship. To delve deeper into this domain, it is imperative
to employ Mendelian randomization analysis to investigate the causal relationships between CKD-
related factors and hearing disorders. We investigate the causal relationships between other specified
disorders of kidney and ureter and age-related hearing impairment (MTAG), as well as the causality
between kidney injury molecule levels and MTAG. Molecular markers of kidney injury have been
identified as potential biomarkers for the diagnosis and prognosis of CKD, predicting the presence
of CKD [14], while other specified disorders of kidney and ureter are classified as subtypes of chronic
kidney disease [15].

In the realm of epidemiological research, Mendelian randomization stands as a formidable
methodology, wherein genetic variability is leveraged to probe the causal linkage between risk
elements and specific health conditions [16]. The presence of confounders significantly impedes the
process of causal deduction within these studies. Conversely, genetic variants utilized in Mendelian
randomization investigations adhere to the principle of the stochastic allocation of alleles to progeny,
mirroring the methodology intrinsic to randomized controlled trials [17]. This technique effectively
mitigates the influence of confounding variables and the issue of reverse causality that are prevalent
in observational research, while also addressing concerns related to the representativeness and
applicability seen in randomized controlled experiments [18]. Consequently, the Mendelian
randomization methodology was employed in this investigation to assess the association between
factors related to chronic kidney disease and hearing impairment.

The investigation delved into the putative link between otologic indicators and CKD, further
scrutinizing the causative associations between subtypes of CKD and auditory impairment. With the
advent of information technology, an extensive compilation of clinical data has been amassed and
analyzed, furnishing novel insights for the prognostication and diagnosis of ailments. Notably, the
deployment of machine learning algorithms has manifested substantial benefits in enhancing
diagnostic precision and forecasting disease susceptibility through the adept handling of voluminous
linear and nonlinear datasets. Within the domain of CKD diagnosis, the precision of machine learning
models has been documented to range between 80 and 90%, markedly surpassing that of
conventional diagnostic techniques. Presently, an array of machine learning models, leveraging
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algorithms such as support vector machines, random forests, and artificial neural networks, are
employed in the prediction of CKD. The datasets for these models are typically sourced from IBM
Explorys, hospital records, and other repositories [19-23].

This investigation represents the inaugural effort to assess the prognostic utility of otologic
indicators for CKD. Employing multiple machine learning (ML) methodologies sourced from
NHANES, which encompassed 12,392 participants, a novel predictive model for early detection of
CKD based on auricular metrics was developed and validated. The predictive efficacy of this model
was juxtaposed with that of pre-existing models to underscore the enhanced accuracy afforded by
the ML algorithm, grounded in a data-driven otologic examination. It is anticipated that the fusion
of TCM principles with contemporary medical technologies will pave the way for novel strategies
and methodologies in the early detection of CKD, ameliorating patient outcomes, alleviating
suffering, and enhancing quality of life.

2. Materials and Methods

2.1. Data Sources

The NHANES, conducted by the United States National Health Statistics Service (NCHS),
represents a pivotal cross-sectional survey designed to amass data regarding the health and
nutritional status of the U.S. populace. This endeavor facilitates the acquisition of critical insights into
the health conditions prevalent within the nation, thereby underpinning the formulation of informed
policies by governmental entities. Endorsement of the NHANES survey protocol by the NCHS
Research Ethics Review Board was secured, accompanied by the provision of informed written
consent from all participants. Accessibility to the entire database
(https://wwwn.cdc.gov/nchs/nhanes/Default.aspx) has rendered the requirement for an ethics review
in our research exempt [24].

The cohort for this investigation was derived from NHANES dataset, covering the period from
2000 to 2020. Inclusion criteria mandated a diagnosis of CKD and the availability of comprehensive
otology examination data. Individuals lacking complete baseline demographic information or
missing audiological test results were systematically excluded (Figure 1). Following rigorous
selection criteria focused on extensive exposure assessment, a total of 12,392 participants were
incorporated into the final analysis. This meticulous approach ensured the integrity and relevance of
the data, which underpin further conclusions.

2.2. Statistical Analysis

In this study, a complex sampling design along with sampling weights, in alignment with the
guidelines for analysis set forth by NHANES, was meticulously applied to ensure that the findings
accurately reflect the demographic composition of the U.S. populace. This methodology facilitated
precise estimations of the prevalence of CKD and its associated health metrics within the general
population. For the initial data assessment, the Cochran-Mantel-Haenszel test was employed to
elucidate disparities in the distribution of categorical variables, namely sex, race, and citizenship
status, between individuals diagnosed with CKD and those without, while accommodating for
stratification effects. Moreover, differences in continuous variables such as age and the poverty index
between these groups were scrutinized using the ¢-test.

Subsequently, logistic regression was applied to identify auditory test measures associated with
CKD. Multivariate logistic regression analysis was employed to ascertain the factors correlated with
CKD. This methodology facilitated the discovery of specific variables significantly associated with
an increased risk of CKD, allowing for the isolation of these effects from other confounding factors.
Through this analytical approach, factors that maintained a significant association with CKD risk
were identified, with the provision of corresponding odds ratios (ORs) and their 95% confidence
intervals (Cls), thereby enhancing the accuracy and relevance of the study’s outcomes.

Furthermore, Pearson’s correlation analysis was applied across 37 variables within the CKD
dataset to quantify the extent of their influence on the condition’s presence or absence, with the
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correlation coefficients indicating the degree of association. This comprehensive analysis
underscored the intricate interplay between various factors and CKD, thereby contributing to a
deeper understanding of its epidemiology.
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Figure 1. Participant selection flowchart.
2.3. Mendelian Randomization Analysis

2.3.1. Data Sources

Genome-wide association studies (GWAS) have collated data on hearing impairment, various
kidney and ureteral diseases, and kidney injury at the molecular level through the MRC IEU
OpenGWAS data infrastructure [25]. This research predominantly utilized exposure and outcome
data derived from the UK Biobank (http://www.nealelab.is/uk-biobank) and FinnGen Biobank
(https://www .finngen.fi/fi). Exposure data included 330,759 cases from the UK Biobank [26].
Outcome data included 1301 cases from the UK Biobank [27] and 424 cases alongside 217,185 controls
from the FinnGen Biobank. (Supplementary Table S1) Ethical clearance was secured for each
component study prior to conducting the Mendelian Randomization (MR) Analysis. The UK
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Biobank, a forward-looking study, encompasses over half a million UK residents aged 40 to 69 at
enrollment (2006-2010), and has amassed genome-wide genotyping and phenotypic data on a broad
spectrum of traits.

2.3.2. Instrumental Variables

In this analysis, three sets of GWAS summary data for exposures were extracted (Supplementary
Table S1). Single nucleotide polymorphisms (SNPs) within the designated loci, exhibiting significance
levels of 5 x 10-%, were selected as instrumental variables. A fundamental principle of Mendelian
Randomization (MR) dictates the absence of linkage disequilibrium (LD) among the chosen
instrumental variables to preclude the emergence of biased outcomes. Accordingly, to evaluate LD
among SNPs, cluster processing was undertaken with a stringent threshold (R? < 0.001 and a cluster
distance of 10,000 kb), ensuring the reliability and integrity of the instrumental variables employed
in this study.

2.3.3. Hypotheses

This two-sample Mendelian Randomization (MR) study is predicated on three foundational
assumptions to mitigate bias. Firstly, the genetic instruments employed exhibit significant
associations with the exposure. Secondly, the instrumental variables are not correlated with
confounders influencing both exposure and outcome, ensuring their independence. Lastly, the
instrumental variables exert influence on the outcomes solely via the exposure pathway, indicating
the absence of horizontal pleiotropy wherein the instrumental variables would have effects on the
outcomes that are not mediated through exposure [28].

2.3.4. Data Analysis

A variety of analytical techniques were employed to explore potential causal inferences,
encompassing inverse variance weighting (IVW) [29], MR-Egger, weighted mode [30], weighted
median [31], and simple mode [32]. In scenarios devoid of horizontal pleiotropy, IVW findings were
deemed robust [33]. Heterogeneity was assessed utilizing the “mr_heterogeneity’ function within the
“TwoSampleMR” R package, applying Cochran’s Q test for the IVW method and MR-Egger
regression. Horizontal pleiotropy was examined through the “mr_pleiotropy_test” function, also in
the “TwoSampleMR” package, leveraging the MR-Egger approach. MR-Egger regression was then
used to estimate the impact of pleiotropy, providing more reliable causal estimates after adjusting for
pleiotropy under the presumption of no measurement errors and instrument strength being
independent of direct effects [34]. Should MR-Egger indicate pleiotropy, MR-PRESSO [35] was
employed to adjust for outliers. Leave-one-out analysis determined the causal influence of individual
SNPs. The F-statistic was calculated to ascertain the presence of weak instrument bias within the

chosen instrumental variables, with F > 10 suggesting the absence of such bias, thereby reinforcing
R?%(N-2)
—R2 ’/

the hypothesis of association. The formula for the F-statisticis F = where ‘N’ represents the

sample size of the exposure, and ‘R? denotes the proportion of exposure variation explained by the
instrumental variable [36].

2.4. Construction of Machine Learning Model

Initially, data from NHANES underwent a cleaning process to extract relevant feature indicators
and predictors. This process involved segregating features into continuous and categorical variables,
applying one-hot encoding to categorical variables, and scaling continuous variables for
normalization [37].

Within the Python (Version 3.8) programming environment, the Scikit-learn library [38] was
utilized to construct nine machine learning models: Support Vector Machine (SVM), Random Forest
Classifier (RF), Logistic Regression Classifier (LR), Gradient Boosting Classifier (GB), K-Nearest
Neighbors Classifier (KNN), Light Gradient Boosting Machine (LGBM), CatBoost (CATB), Decision
Tree (DT), and AdaBoost (AD). Hyperparameter optimization for these models was conducted using
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GridSearchCV, a method that combines grid search with cross-validation, to identify and store each
model’s optimal settings. This optimization process employed a ten-fold cross-validation approach
to assess model performance, ultimately selecting the combination of parameters that exhibited the
best performance.

Following the principle of random stratified sampling, the dataset was partitioned into a training
set and a test set in an 8:2 ratio. Subsequently, nine machine learning models were trained using this
data partitioning.

2.5. Evaluation of Machine Learning Models

Utilizing the optimized parameters, the models were trained, and their performance metrics
were computed, including the generation and comparison of classification reports and confusion
matrices [39]. Precision, recall, accuracy, F1 score, and the area under the receiver operating
characteristic (ROC) curve (AUC) served as the evaluation criteria for the machine learning models
[40]. Additional analyses, such as precision-recall, decision boundary analysis, and Bootstrap ROC
analysis, were conducted to further assess model performance [39].

The Shapley Additive exPlanation (SHAP), a framework introduced by Lundberg and Lee [41]
for elucidating machine learning predictions, offers a novel approach to interpreting various complex
models, providing interpretable insights that has been substantiated in prior research [42]. In our
study, SHAP values were employed to highlight critical features for the prediction of early-stage
CKD, facilitating an examination of the pivotal factors that influence outcome predictions. This
analysis delineated the impact of each significant feature on the predictive performance of the final
machine learning model, enhancing our understanding of the model’s decision-making process.

2.6. Creation of Interactive Web Interface

A web application was developed to provide online access to our novel prediction model,
utilizing the “shiny” R package as the foundational framework. The application can be accessed at
https://guanmiao.shinyapps.io/machinelearningckd88/. Furthermore, the input variables were
quantified. (Supplementary Table S2)

3. Results

3.1. Baseline Characteristics

A cohort comprising 12,392 individuals was recruited, with an average age of 43.3 years; among
these, 2,060 were diagnosed with CKD while 10,332 were not, as summarized in Table 1. Preliminary
analysis of the baseline data revealed that the mean age of patients with CKD was significantly
greater compared to those without CKD, with the majority of participants being non-Hispanic white.
Regarding gender distribution, the non-CKD group exhibited a balanced ratio of male to female
participants, whereas the CKD group had a predominance of female patients. Furthermore, notable
disparities were observed between the CKD and non-CKD groups in terms of demographic
characteristics, including economic status, race, citizenship, level of education, and household size,
with all differences achieving statistical significance (P < 0.05).

Table 1. Demographic information analysis.

Variable No (N =10,332) Yes (N = 2,060) P value
age 41.50 (40.94,42.05) 52.09 (50.67,53.51) <0.0001
poverty 3.03 (2.94,3.13) 2.71 (2.59,2.84) <0.0001
sex <0.0001
Female 5300 (51.13) 1158 (59.72)
Male 5032 (48.87) 902 (40.28)
ethl <0.001

Mexican American 2067 (8.84) 342 (8.07)
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Non-Hispanic Black
Non-Hispanic White
Other Hispanic
Other Race including multi-racial
Country_of_birth
Born Elsewhere
Born in 50 U.S. states or Washington
DC
Born in 50 U.S. States or Washington
DC
Born in Mexico
Born in Other Non-Spanish Speaking
Country
Born in Other Spanish Speaking
Country
Others
citizenship
Citizen by birth or naturalization
Not a citizen of the U.S.
household_size
1

Q1 = W N

6
7 or more people in the Household
9-11th grade (Includes 12th grade with
no diploma)
9-11th Grade (Includes 12th grade
with no diploma)
9th grade
9th Grade
College graduate or above
College Graduate or above
GED or equivalent
GED or Equivalent
High School Grad/GED or Equivalent
High school graduate
High School Graduate
High school graduate/GED or
equivalent
Less Than 5th Grade
Less than 9th grade
Less Than 9th Grade
More than high school
Never attended / kindergarten only
Some college or AA degree
Some College or AA degree

2166 (9.97)
4134 (68.92)
855 (5.87)
1110 (6.41)

350 (4.82)
3467 (39.08)

4173 (44.61)
611 (2.55)
67 (0.41)

44 (0.15)
1620 (8.39)

8779 (90.36)
1553 (9.64)

961 (10.05)
2619 (31.08)
1887 (19.01)
2025 (20.19)
1408 (11.15)
691 (4.44)
741 (4.08)

505 (3.44)

539 (4.86)

66 (0.41)
192 (0.73)
1313 (15.90)
798 (12.75)
2 (0.01)
16 (0.06)
817 (11.23)
69 (0.46)
136 (0.60)

971 (8.77)

0 (0.00)
377 (1.88)
443 (2.54)
153 (0.78)

0 (0.00)

1379 (14.07)
980 (14.35)

533 (14.23)
878 (66.30)
138 (5.02)
169 (6.38)
0.01
59 (4.68)

687 (37.44)

981 (48.81)
81 (1.53)
24 (0.80)

16 (0.32)

212 (6.42)
<0.0001
1868 (94.10)
192 (5.90)
<0.0001
377 (16.54)
661 (37.90)
295 (14.61)
282 (13.67)
236 (10.28)
108 (3.89)
101 (3.11)

114 (4.39)

169 (7.90)

6 (0.16)
31 (1.13)
149 (11.29)
122 (8.21)
0 (0.00)
2 (0.05)
207 (12.22)
8 (0.25)
15 (0.54)

193 (9.42)

1(0.02)
80 (2.21)
170 (5.41)
23 (0.83)

9 (0.40)

232 (11.32)
196 (13.07)

In the self-reported data (Table 2), 84.1% of participants indicated either no perceived difference
in hearing between their ears or were unaware of any disparity. The analysis of otoscopic screening
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data revealed a statistically significant variation in the incidence of excessive cerumen between the
left and right ears among individuals with and without CKD, and the proportion of patients with
cerumen excess in the CKD group was higher than that in the non-CKD group. Furthermore,
significant discrepancies were noted in the outcomes of normal otoscopic examinations between the
two groups (P<0.05), with a greater proportion of individuals in the non-CKD group exhibiting
normal otoscopic findings compared to those in the CKD group.

Table 2. Analysis of otological status indicators.

Variable Total No Yes P value
self_reported_better_ear 0.03
no / don’t know 10422 (84.1) 8766 (83.73) 1656 (80.76)
yes, left ear 832 (6.71) 656 (7.10) 176 (8.82)
yes, right ear 1138 (9.18) 910 (9.17) 228 (10.42)
excessive_cerumen_left ear <0.0001
no 10971 (88.53) 9227 (90.88) 1744 (86.56)
yes 1421(11.47) 1105 (9.12) 316 (13.44)
impacted_cerumen_left_ear 0.03
no 12089 (97.55) 10072 (97.56) 2017 (98.53)
yes 303 (2.45) 260 (2.44) 43 (1.47)
otoscopy_left_ear 0.002
no 1798 (14.51) 1423 (12.13) 375 (15.94)
yes 10594 (85.49) 8909 (87.87) 1685 (84.06)
collapsing_ear_canals_left_ear 0.11
no 12305 (99.3) 10271 (99.29) 2034 (98.84)
yes 87 (0.7) 61(0.71) 26 (1.16)
normal_otoscopy_right_ear <0.0001
no 1957 (15.79) 1550 (13.45) 407 (18.61)
yes 10435 (84.21) 8782 (86.55) 1653 (81.39)
excessive_cerumen_right_ear <0.0001
no 10862 (87.65) 9131 (89.81) 1731 (84.44)
yes 1530 (12.35) 1201 (10.19) 329 (15.56)
impacted_cerumen_right_ear 0.84
no 12045 (97.2) 10049 (97.36) 1996 (97.46)
yes 347 (2.8) 283 (2.64) 64 (2.54)
collapsing_ear_canals_right_ear 0.26
no 12313 (99.36) 10276 (99.32) 2037 (99.00)
yes 79 (0.64) 56 (0.68) 23 (1.00) yes

AUX_G Hearing data file is displayed in Table 3, (1) Analysis of bilateral tympanic chamber
measurement data: there were significant differences in tympanic volume and compliance between
CKD group and CKD group (P <0.05), but there was no statistical significance in middle ear pressure
and tympanic width between subjects with and without CKD (P > 0.05). (2) Analysis of hearing
threshold data of pure tone air conduction measurement: The test thresholds of the left and right ears
of the CKD group and the non-CKD group at all frequencies are significantly different, and the test
results all show that the average hearing threshold of the CKD group is higher than that of the non-
CKD group, that is, the average hearing loss of the CKD group is greater in different frequency
groups.

Table 3. Analysis of otological status indicators.

Variable No (N =10,332) Yes (N =2,060) P value
tympanic_right_middle_ear_pressure_dapa -12.22 (-13.23,-11.22) -11.58 (-13.62, -9.54) 0.57
1.44 (1.42,1.46) 1.39 (1.36,1.42) 0.003

tympanic_right_physical_volume_cc
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tympanic_right_width 82.08 (80.97,83.19)  83.61 (81.89,85.34) 0.14
tympanic_right_compliance 0.79 (0.78,0.81) 0.72 (0.69,0.75) <0.0001

tympanic_left_middle_ear_pressure_dapa -11.15(-12.19,-10.10) -9.86 (-11.50, -8.23) 0.23
tympanic_left_physical_volume_cc 1.40 (1.38,1.43) 1.34 (1.31,1.37) <0.001

tympanic_left_width 82.12 (81.00,83.24)  83.27 (81.27,85.26) 0.31
tympanic_left_compliance 0.79 (0.78,0.81) 0.72 (0.68,0.75) <0.001
right_threshold_1000hz_db 10.18 (9.79,10.57) 15.51 (14.57,16.46) <0.0001
right_threshold_500hz_db 11.30 (10.91,11.70)  16.15(15.32,16.99) <0.0001
right_threshold_1000hz_2nd_read_db 9.61 (9.23,10.00) 15.17 (14.21,16.12) <0.0001
right_threshold_2000hz_db 10.86 (10.39,11.34)  19.14 (17.87,20.42) <0.0001
right_threshold_3000hz_db 14.30 (13.77,14.83)  24.15 (22.66,25.64) <0.0001
right_threshold_4000hz_db 17.75 (17.10,18.39)  29.07 (27.46,30.68) <0.0001
right_threshold_6000hz_db 23.87 (23.06,24.67)  36.07 (34.45,37.68) <0.0001
right_threshold_8000hz_db 24.74 (23.81,25.67)  39.87 (37.93,41.81) <0.0001
left_threshold_1000hz_db 9.90 (9.57,10.23) 15.20 (14.29,16.11) <0.0001
left_threshold_500hz_db 11.10 (10.80,11.41)  15.71 (14.96,16.47) <0.0001
left_threshold_1000hz_2nd_read_db 9.56 (9.22, 9.89) 14.97 (14.08,15.86) <0.0001
left_threshold_2000hz_db 11.35(10.90,11.81)  19.53 (18.36,20.70) <0.0001

3.2. Logistic Regression Analysis of Hearing Indicators

Upon examining the baseline data, we incorporated all pertinent data into the logistic regression
analysis to identify factors contributing to CKD and their 95% Cls (Table 4). The logistic regression
model revealed:

(1) A negative correlation between the tympanic volume and compliance in both ears and CKD,
indicating that as tympanic volume and compliance decrease, the odds of CKD increase (OR <1, P <
0.05).

(2) No significant association was observed between tympanic pressure and width with CKD
[OR =1.00, 95% CI = (1.00, 1.00), P > 0.05].

(3) Hearing thresholds at various frequencies in both ears exhibited a positive correlation with
CKD, implying that higher hearing thresholds are associated with an increased risk of CKD [OR =
1.02/1.03, P < 0.0001].

Table 4. Analysis of otological status indicators.

Character Est. Std. Err  tvalue Pr(>Itl) OR 95% CI
tympanic_right_middle_ear_pressure 1.00
(dapa) 0 0 055 0.58 ! (1.00,1.00)
tympanic_right_physical_volume (cc i 0.78
) 0.25 0.09 2.89 0.004 0.78 (0.65,0.92)
. . 1.00
tympanic_right_width 0 0 1.5 0.14 1 (1.00,1.00)
. . 0.71
tympanic_right_compliance -0.34 0.09 -3.7 <0.001 0.71 (0.59,0.85)
tympanic_left_middle_ear_pressure 1.00
(dapa) 0 0 116 025 1 (1.00,1.00)
71
tympanic_left_physical_volume_cc  -0.35 0.1 -3.61 <0.001 0.71 © 509 0.86)
. . 1.00
tympanic_left_width 0 0 1.02 0.31 1 (1.00,1.00)
tympanic_left_compliance -0.34 0.11 -3.14 0.002 0.71 0-71
ympamc_lett_comp ‘ ' ' ' 1 057,0.88)
right_threshold_1000hz_db 0.03 0 12.5 <0.0001 1.03 1.03
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(1.03,1.04)
. 1.03
right_threshold_500hz_db 0.03 0 11.77 <0.0001 1.03 (1.03,1.04)
. 1.03
right_threshold_1000hz_2nd_read_db 0.03 0 13.32 <0.0001 1.03 (1.03,1.04)
. 1.03
right_threshold_2000hz_db 0.03 0 15.15 <0.0001 1.03 (1.03,1.04)
. 1.03
right_threshold_3000hz_db 0.03 0 15.99 <0.0001 1.03 (1.02,1.03)
right_threshold_4000hz_db 0.02 0 16.85 <0.0001 1.02 a. 01 2?12 03)
. 1.02
right_threshold_6000hz_db 0.02 0 16.2 <0.0001 1.02 (1.02,1.03)
. 1.02
right_threshold_8000hz_db 0.02 0 18.54 <0.0001 1.02 (1.02,1.02)
1.03
left_threshold_1000hz_db 0.03 0 12.92 <0.0001 1.03 (1.03,1.04)
1.03
left_threshold_500hz_db 0.03 0 12.25 <0.0001 1.03 (1.03,1.04)
1.03
left_threshold_1000hz_2nd_read_db  0.03 0 13.37 <0.0001 1.03 (1.03,1.04)
1.03
left_threshold_2000hz_db 0.03 0 14.97 <0.0001 1.03 (1.03,1.04)

3.3. Correlation Analysis

Table 5 presents the ten most significant features as delineated by their correlation coefficients.
The magnitude of the coefficient’s absolute value is directly proportional to the feature’s impact on
the model’s predictive outcome. Specifically, a positive coefficient signifies a direct correlation with
an increase in the feature value leading to a higher likelihood of the positive class, exemplified by the
diagnosis of chronic kidney disease, whereas a negative coefficient denotes an inverse relationship.
The elucidated correlation coefficients suggest that variables including citizenship, hearing threshold,
and age possess considerable potential to influence the progression of CKD.

Table 5. Correlation analysis of characteristic index.

Feature Correlation
citizenship 0.5542568
right_threshold_1000hz_db 0.4365804
self_reported_better_ear 0.3382538
poverty 0.2730662
age 0.2408413
tympanic_left_compliance 0.2054256
tympanic_left_physical_volume_cc 0.2003082
left_threshold_1000hz_2nd_read_db 0.1580396
right_threshold_3000hz_db 0.1485964
impacted_cerumen_left_ear 0.1237963

3.4. Mendelian Randomization Analysis

Following the clustering of SNPs and data harmonization, a total of 29 SNPs were identified as
being associated with all outcomes. Table S3 encapsulates the R2 and F-statistics pertaining to
exposure, with all exposures demonstrating F-statistics greater than 10. This absence of weak
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instrument bias underscores the robust validity of all SNPs under consideration. (Supplementary
Tables S3)

In our investigation of the causal relationships between certain chronic kidney disease factors
and hearing impairment, as illustrated by scatter plots and forest plots (Figure 2), the results indicate
a significant positive correlation. The Inverse Variance Weighted (IVW) method reveals a causal
relationship between MTAG and kidney injury molecule levels, demonstrating a significant positive
correlation (Figure 2, A) (3 =1.116, OR =3.051, 95%CI: (1.064, 8.748), P = 0.0379). This finding suggests
that an increase in hearing impairment is associated with elevated levels of kidney injury markers.
Despite an overarching positive trend across all five analytical methods (inverse variance weighting,
MR Egger, simple mode, weighted median, and weighted mode) (Figure 2, B), the wide confidence
intervals introduce some uncertainty regarding the specific magnitude of this effect. Nonetheless,
they uniformly affirm a statistically significant connection between MTAG and the kidney injury
molecule levels. Furthermore, MTAG exhibited a causally significant and positive association with
other specified disorders of kidney and ureter (Figure 2E) (f = 2.160, OR = 8.673, 95% CI: (1.427,
52.728), P = 0.0190), intimating that worsening hearing impairment is closely and significantly linked
to an augmented risk of these conditions. While the five methodologies similarly indicate an overall
positive correlation (Figure 2, F), their extensive confidence intervals reveal some ambiguity
regarding the impact’s definitive extent. (Supplementary Table S4)
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Figure 2. Result graph of Mendelian randomization. Mendelian randomization analysis of age-related
hearing impairment (MTAR) and kidney injury Molecular levels included (A) forest plot, (B) scatter
plot, (C) funnel plot, and (D) leave-one-out sensitivity analysis result plot. The Mendelian
randomization analysis of MTAR and other specified disorders of kidney and ureter included (E)
forest plot (F) scatter plot (G) funnel plot (H) leave-one-out sensitivity analysis results plot.

To assess the robustness of our study findings, further analyses were conducted on the included
SNPs using MR-Egger and MR-PRESSO tests. These analyses did not detect any potential horizontal
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pleiotropy (P > 0.05), (Supplementary Table S5) indicating an absence of pleiotropic effects among
the SNPs. However, it is noteworthy that funnel plots revealed a slight asymmetry (Figure 2, C and
G). Such asymmetry within the funnel plots suggests the presence of some degree of potential bias
or heterogeneity among the study outcomes. While this does not directly undermine our findings, it
prompts consideration of the possibility of unexplained minor biases or variations present in the data.

Adjusted Cochran Q statistics for the current analysis indicate significant heterogeneity among
the SNP effects included in our study. (Supplementary Table S5) Furthermore, leave-one-out
sensitivity analysis was employed to assess the impact of each individual SNP on the overall causal
relationship. (Figure 2, D and H) As illustrated, the outcomes of this analysis demonstrate that
systematically excluding each SNP and repeating the MR analysis does not result in any significant
alterations to the observed causal relationship. This consistency across various iterations of the
analysis reinforces the conclusion that the estimated effects are not driven by any single genetic
variant. This finding substantiates the robustness of the causal inferences drawn from our data,
suggesting that the genetic instruments constitute a well-distributed set that collectively contributes
to the analysis.

3.5. Machine Learning model Construction

Nine machine learning models were developed, encompassing Support Vector Machine (SVM),
Random Forest (RF), Logistic Regression (LR), Gradient Boosting (GB), K-Nearest Neighbors (KNN),
Light Gradient Boosting Machine (LGBM), CatBoost (CATB), Decision Tree (DT), and AdaBoost (AD).
Following the optimization of hyperparameters, the optimal settings for each model were determined.
(Supplementary Table S6)

3.6. Machine Learning Model Comparison and Evaluation

We embarked on a comparison and evaluation of various machine learning models for the
binary classification of CKD, utilizing two distinct performance assessment methodologies. Initially,
the Receiver Operating Characteristic (ROC) curves during the training process were plotted (Figure
3). This figure displays the ROC curve for each model, with the Area Under the Curve (AUC) scores
provided in the legend. The AUC score quantifies the two-dimensional area beneath the entirety of
the ROC curve, offering a comprehensive measure of performance across all classification thresholds.
The proximity of the ROC curve to the top left corner of the chart signifies greater test accuracy.
Correspondingly, an AUC score nearing 1 indicates the model’s proficiency in predicting positive
cases while minimizing false positives. The figure illustrates our ROC curves closely aligned with the
upper left corner, denoting high accuracy. CatBoost emerged with the highest AUC at 0.931, marking
it as the most effective among the evaluated models. In contrast, the K-Nearest Neighbors (KNN)
model had the lowest AUC at 0.860, reflecting its poor trade-off between true positive and false
positive rates. Subsequently, recall and decision boundary graphs were delineated (Figure 3B),
comprising separate charts for the CKD and non-CKD classes. Each line within these graphs
represents the recall rate of distinct models across various decision boundary thresholds (T). For the
CKD class (left graph), recall rates ascend with increasing decision boundaries, whereas for the non-
CKD class (right graph), most models initially exhibit high recall rates, which then progressively
diminish. This pattern indicates a trade-off in accurately classifying CKD versus non-CKD cases. The
ideal threshold for balancing recall rates between these categories lies near the convergence or closest
approach of the curves. The adjustment of recall rates is tailored to the specific requirements of the
task at hand. CatBoost, Logistic Regression, and Light Gradient Boosting models notably achieve an
optimal balance in overall performance.
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Figure 3. (A) ROC curves of nine models; (B) Recall and decision boundary diagram of nine models
(C) ROC curve of CatBoost model; (D) Recall and Decision boundary graph of CatBoost model (E)
Based on mean (ISHAP value 1), feature ranking (Y-axis) indicates importance of prediction model.
The SHAP value (X-axis) is a uniform index that responds to the influence of a feature in the model. ;
(F) Ranking the stability and importance of interpretation of the top 20 features using an optimal
model. In each feature important row, all patients’ attributions to the outcome are plotted with
different colored dots, where red dots represent high risk values and blue dots represent low risk

values.

Subsequently, we compared various metrics across nine machine learning models (Table 6).
Accuracy, defined as the ratio of correct predictions to total predictions, indicates the model’s efficacy
in correctly predicting labels. A higher accuracy denotes a greater number of correctly predicted
labels. According to the results, the CatBoost model achieved the highest accuracy (0.862), signifying
it had the highest percentage of correctly classified instances. Conversely, the KNN model exhibited
the lowest accuracy, indicating the highest number of classification errors.

Regarding the AUC, the CatBoost model demonstrated superior performance, closely followed
by Logistic Regression and Light Gradient Boosting Machine, suggesting these models excel in
distinguishing between categories. When assessing accuracy, the CatBoost model also ranked highest,
with Decision Tree and Gradient Boosting models trailing closely behind.

Further analysis of model performance, as per Table 6, reveals that among all models, CatBoost
exhibits an exceptionally high recall rate for the non-CKD class and the best precision for the CKD
class, with high F1 scores for both categories. CatBoost appears to maintain the optimal overall
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balance between accuracy and recall across these two categories. The KNN model underperforms in
predicting CKD, manifesting the lowest F1 score for this category. The Decision Tree model shows a
very high recall for the non-CKD class, indicating a potential overprediction of this category at the
expense of precision for the CKD class. When considering both macro and weighted averages, CATB
also performs well in terms of accuracy, recall and F1 scores. It was positioned as a potentially
superior model for this dataset based on these metrics. GB and DT also demonstrate strong
performance, albeit slightly inferior to CATB.

Consequently, considering its superior overall performance, we have selected CatBoost as our
preferred model, characterized by an AUC of 0.931 and an accuracy of 0.862. The stability and
discriminative capacity of the model are further corroborated by the Bootstrap ROC curve (Figure 3,
C), with the 95% confidence interval closely hugging the mean line, indicating consistent model
performance across different samples. The recall versus decision boundary graph (Figure 3, D)
illustrates that within the threshold range of 0.5 to 0.75, the model achieves an optimal balance
between identifying CKD cases and maintaining a low false-positive rate. These findings underscore
the CatBoost model’s capability to accurately identify positive cases while minimizing misdiagnoses,
making it particularly well-suited for scenarios requiring precise identification of CKD cases.

Subsequently, we employed SHAP values to elucidate how various variables influence CKD
predictions within the model. Figure 3E illustrates the top 20 risk factors assessed by average absolute
SHAP values. Figure 3F highlights the 20 most significant features within our model. It was observed
that age stands out as the most critical feature, exerting a substantial average impact on the model’s
output magnitude. Additionally, several demographic factors, such as place of birth, education level,
poverty status, and ethnicity, also significantly influence the model. Hearing-related variables, like
“right_threshold_8000hz_db” and “tympanic_right_middle_ear_pressure_dapa,” play an important
role in the model’s decision-making process.

Ultimately, we have established a website that utilizes the CatBoost algorithm to predict CKD
from auditory and demographic data, available at
(https://guanmiao.shinyapps.io/machinelearningckd88/). This platform features a user-friendly
interface that permits the entry of clinical characteristics for new samples. This web application also
offers predictions regarding the likelihood of CKD presence or absence, tailored to the specifics of
the user-provided information.

4. Discussion

In this study, we explored interpretable ML approaches utilizing auditory and demographic
indicators from the US NHANES data spanning from 2000 to 2020, aimed at identifying CKD. The
study encompassed 12,392 participants, including 2,060 individuals diagnosed with CKD. By
comparing the baseline characteristics of the CKD and non-CKD groups, we observed that
individuals with CKD were, on average, older and that there was a higher proportion of females
among these patients. Additionally, significant correlations were identified between CKD and
various demographic factors such as economic status, race, citizenship, level of education, and
household size, underscoring the importance of considering demographic characteristics in CKD
research and management. Most participants perceived their hearing in both ears to be similar.
However, otoscopic examinations revealed significant differences between the CKD and non-CKD
groups in terms of cerumen excess and otoscopic results. Furthermore, a positive correlation was
observed between hearing thresholds and CKD, indicating greater average hearing loss within the
CKD group. These results suggest that auditory indicators may serve as critical health markers for
individuals with CKD. Through Mendelian randomization analysis, we discovered causal
relationships between certain factors of CKD and hearing impairment. Significantly, our research
elucidated substantial causal associations between other specified disorders of kidney and ureter and
age-related hearing impairment, as well as establishing the causality between kidney injury molecule
levels and MTAG. These findings, based on extensive clinical data, not only reinforce the potential
biological connection between CKD and hearing but also represent a pioneering investigation into
the causal relationship between factors associated with CKD and hearing impairment. Additionally,
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they provide a theoretical foundation for ML models that use auditory and demographic indicators
for the early prediction of CKD.

Among nine ML models, the CATB model achieved the best performance, ultimately being
selected to identify CKD. Tested across various metrics, the CATB model demonstrated an average
AUC of 0.931, indicating efficient and stable classification capabilities, coupled with a high accuracy
of 0.862, as well as superior F1-score, recall, and other metrics. Nevertheless, different models possess
distinct advantages; some may excel in identifying CKD patients, while others may be better at
confirming non-CKD cases. The choice of model might depend on clinical requirements. If
minimizing false negatives is paramount, models with a high recall rate for the CKD category at the
selected threshold would be preferable. Conversely, if reducing false positives is more critical, models
with a high recall rate for the non-CKD category would be favored. The CATB model demonstrates
robust and stable performance in classifying diseases such as CKD, striking an excellent balance
between identifying actual cases and avoiding false positives. Yet, the precise balance between recall
and precision can be adjusted according to the specific costs associated with false negatives and false
positives in the application domain, allowing for fine-tuning of decision thresholds to achieve the
balance required for practical use [43].

In Table 7, we catalog a range of machine learning models previously employed for predicting
CKD. Comparative analysis reveals that our model exhibits a higher AUC, denoting a superior
capability in distinguishing between CKD and non-CKD instances. This elevated discriminative
proficiency not only underscores the model’s robustness but also its reliability in generating
predictions. Moreover, the balanced performance of our model across accuracy, recall, and F1 scores
highlights its efficacy in managing the binary classification of CKD and non-CKD categories. Notably,
a high recall rate for the positive category ensures that the model rarely overlooks actual cases of
CKD, a critical requirement for medical diagnostics. The considerable size of our dataset offers
multiple advantages. It mitigates the risk of overfitting, a common challenge in machine learning
models, thereby enhancing the model’s ability to generalize well to new data. Additionally, it
addresses issues related to class imbalance, a frequently encountered concern in medical datasets
where one category may disproportionately represent. The extensive dataset also diminishes the
impact of noise or incorrect data, contributing to the robustness of our predictive model.

Table 7. Analysis of otological status indicators.

Authors Dataset Algorithms Performance Limitations
Stefan Ravizza IBM Explorys & Feature selection The overall Prediction of CKD as
et al [19] Indiana Network for  strategy and logistic = AUC value is a diabetic
Patient Care regression 0.7937 complication
LASSO Only indicators for 14
Jiamin Chen L. . . The AUC value attributes included,
MIMIC-IV multivariate logistic . . .
et al [20] . . is 0.771 with potential
regression analysis . )
selection bias
Limitations include a
LR Lasso RF small dataset size and
Dai Su HABCS CBDT SVM The maximum potential biases due
etal [21] DNN AUCis0.75  toreliance on self-
reported medical
history.
Only 5 population

LR Ridge Lasso

Jing Xiao Shanghai Huadong The highest indicators, which

. SVM RF KNN .
et al [22] Hospital NN XGBoost AUC was 0.873 predlct.24—l?our
proteinuria.
reivong Jemstbemion LSOO g Silnsiion
etal [23] Y AUC is 0.815 & P

Hospital AdaBoost size, and potential
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NN DT bias from missing
SYM LR data in EMR, not
using suitable feature
selection techniques
for the dataset

CKD is defined as persistent abnormalities in kidney structure or function for more than three
months [44]. Diagnosis primarily relies on routine screening or incidental findings through serum
chemistry features and urinalysis, followed by confirmatory imaging studies (e.g., ultrasound, CT,
MRI), renal biopsy, and histopathological examination [5]. Traditional machine learning (ML) models
for early diagnosis of CKD typically utilize predictors derived from blood and urine tests along with
demographic indicators. Our methodology introduces a pioneering approach by integrating auditory
examination indicators with demographic predictors for CKD forecasting. These predictive markers
are more readily accessible than traditional blood and urine analyses, requiring merely an ear
examination and supplementary information gathered through a brief survey. Consequently, this
predictive model can be broadly applied across various levels of medical institutions, from primary
care to specialized clinics. Our research delves deeper into the association and causality between
auditory indicators and CKD, pioneering a CKD prediction model based on auditory metrics. We
assessed the significance of auditory indicators within the model using SHAP values, revealing their
notable importance. This innovative approach to CKD detection offers enhanced convenience, cost-
effectiveness, and accuracy, presenting a valuable instrument poised to advance early and broader
CKD screening, particularly in environments where conventional methods are less accessible.

The model, leveraging data from the NHANES, principally mirrors the demographic
characteristics of the U.S. population, including a higher proportion of African American and
Hispanic individuals [24]. However, it does not comprehensively encompass global diversity, which
may limit its applicability worldwide. The reliance on auditory examination metrics may overlook
other critical medical indicators essential for the diagnosis of CKD. Clinical validation emerges as a
pivotal next step, necessitating the testing of the model within clinical settings to ensure the reliability
and adaptability of its predictions.

In summary, we have employed innovative otologic indicators in conjunction with demographic
indicators as predictors, subsequently transforming them into a promising tool for the expedited
screening of CKD. It is meritorious for future studies to test the model incorporating ear examinations
in actual clinical settings, thereby enhancing its potential for wider application and adoption. More
importantly, further investigations into whether interventions targeting these factors could reduce
the incidence of CKD are warranted, thereby facilitating precise early-stage prevention and
intervention.

5. Conclusions

Our investigation leverages NHANES data spanning from 2000 to 2020, with a focus on otologic
indicators and demographic factors to identify CKD. The study elucidates the correlation and
causation between CKD and auditory impairments, serving as the foundation for the development
of a robust machine learning model. Notably, the CatBoost algorithm emerged as the most
efficacious, exhibiting an average AUC of 0.931. Compared to traditional blood and urine tests, this
novel approach herald new avenues for CKD screening, minimizing the risk of misdiagnoses or
overlooked cases, and demonstrating potential for broader application across various medical
settings. However, further clinical validation is required to ensure the predictive relevance of the
model and its adaptability in real-world healthcare environments. This study synergizes traditional
medical theories with contemporary technology, offering a simplified and more effective tool for the
early detection of CKD.

6. Patents

There are no patents resulting from the work reported in this manuscript.
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