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Abstract: Chronic kidney disease (CKD) is a growing public health issue with significant morbidity and 

mortality rates. Traditional diagnostics, with about 70% accuracy, often delay CKD detection, highlighting the 

need for more efficient methods. Recent studies indicate a potential link between CKD and auditory health, yet 

this relationship remains underexplored due to methodological challenges and the complexity of establishing 

causality. Our research utilizes data spanning from 2000 to 2020 from the National Health and Nutrition 

Examination Survey (NHANES), covering 12,392 participants, including 2,060 diagnosed with CKD. Through 

meticulous analysis employing logistic regression and Mendelian randomization, we have unearthed novel 

insights into the bi-directional associations between hearing impairment and CKD. Furthermore, we developed 

and validated a machine learning model that surpasses traditional diagnostic approaches in terms of accuracy 

and predictive power. These findings highlight the innovative integration of auditory examinations with 

demographic data to enhance CKD detection. Our approach demonstrates the potential of machine learning in 

transforming diagnostic methodologies, thus offering a significant advancement in the field of nephrology and 

public health. 

Keywords: chronic kidney disease; hearing; mendelian randomization; machine learning models; 

predictions 

 

1. Introduction 

Chronic Kidney Disease (CKD) represents a significant global public health concern. The 

prevalence of CKD is on an upward trajectory, exacerbated by demographic aging, escalating 

environmental pollution, and shifts in lifestyle patterns. The Global Burden of Disease Consortium 

predicts that CKD will become the top five leading diseases leading to life lost by 2040 [1]. Beyond 
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its direct impact on renal function, CKD substantially elevates the risk of myriad complications; 

notably, cardiovascular mortality rates in CKD patients are estimated to be 2 to 3 times higher than 

in the general population [2], with hypertension prevalence ranging from 65% to 95% [3]. 

Furthermore, diabetes emerges as the etiology for half of all end-stage renal disease (ESRD) cases [4]. 

The current approach to the diagnosis of CKD predominantly encompasses traditional 

methodologies, including but not limited to blood and urine analyses, as well as imaging procedures 

(e.g., ultrasound, computed tomography [CT], magnetic resonance imaging [MRI]), renal biopsy, and 

histopathological examination [5]. Nevertheless, it is observed that the precision of conventional 

diagnostic practices for CKD typically hovers around the 70% mark [6]. The indistinct early 

symptomatology of CKD significantly enhances the risk of misdiagnosis or delayed diagnosis, 

underscoring the imperative for more streamlined, rapid, and efficacious diagnostic approaches [7]. 

The ancient Chinese medical book, Huangdi Neijing (Inner Canon of Yellow Emperor), posits that 

“the kidney manifests in the ear,” suggesting a potential intimate link between ear health and kidney 

function. The nexus between CKD and auditory anomalies has garnered scholarly attention since the 

onset of the 20th century, with observational studies delving into the link between CKD and auditory 

function. These studies report an increased prevalence of sensorineural hearing loss (SNHL) among 

patients with CKD, a type of hearing loss directly related to damage within the inner ear or auditory 

nerve [8–11]. However, research assessing the correlation between CKD and hearing loss has 

primarily focused on hearing loss at different frequencies, with insufficient consideration of other 

ear-related factors such as tympanic chamber measurements and otoscopic examinations. The 

variability in study outcomes may be attributed to differences in hearing assessment methodologies 

(pure-tone audiometry, threshold determination, surveys, etc.) and the influence of confounding 

factors [12,13]. Current research predominantly scrutinizes the correlation between CKD and 

auditory impairment without a unified stance on the sequential development of CKD and hearing 

loss or establishing a definitive causal relationship. To delve deeper into this domain, it is imperative 

to employ Mendelian randomization analysis to investigate the causal relationships between CKD-

related factors and hearing disorders. We investigate the causal relationships between other specified 

disorders of kidney and ureter and age-related hearing impairment (MTAG), as well as the causality 

between kidney injury molecule levels and MTAG. Molecular markers of kidney injury have been 

identified as potential biomarkers for the diagnosis and prognosis of CKD, predicting the presence 

of CKD [14], while other specified disorders of kidney and ureter are classified as subtypes of chronic 

kidney disease [15]. 

In the realm of epidemiological research, Mendelian randomization stands as a formidable 

methodology, wherein genetic variability is leveraged to probe the causal linkage between risk 

elements and specific health conditions [16]. The presence of confounders significantly impedes the 

process of causal deduction within these studies. Conversely, genetic variants utilized in Mendelian 

randomization investigations adhere to the principle of the stochastic allocation of alleles to progeny, 

mirroring the methodology intrinsic to randomized controlled trials [17]. This technique effectively 

mitigates the influence of confounding variables and the issue of reverse causality that are prevalent 

in observational research, while also addressing concerns related to the representativeness and 

applicability seen in randomized controlled experiments [18]. Consequently, the Mendelian 

randomization methodology was employed in this investigation to assess the association between 

factors related to chronic kidney disease and hearing impairment. 

The investigation delved into the putative link between otologic indicators and CKD, further 

scrutinizing the causative associations between subtypes of CKD and auditory impairment. With the 

advent of information technology, an extensive compilation of clinical data has been amassed and 

analyzed, furnishing novel insights for the prognostication and diagnosis of ailments. Notably, the 

deployment of machine learning algorithms has manifested substantial benefits in enhancing 

diagnostic precision and forecasting disease susceptibility through the adept handling of voluminous 

linear and nonlinear datasets. Within the domain of CKD diagnosis, the precision of machine learning 

models has been documented to range between 80 and 90%, markedly surpassing that of 

conventional diagnostic techniques. Presently, an array of machine learning models, leveraging 
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algorithms such as support vector machines, random forests, and artificial neural networks, are 

employed in the prediction of CKD. The datasets for these models are typically sourced from IBM 

Explorys, hospital records, and other repositories [19–23]. 

This investigation represents the inaugural effort to assess the prognostic utility of otologic 

indicators for CKD. Employing multiple machine learning (ML) methodologies sourced from 

NHANES, which encompassed 12,392 participants, a novel predictive model for early detection of 

CKD based on auricular metrics was developed and validated. The predictive efficacy of this model 

was juxtaposed with that of pre-existing models to underscore the enhanced accuracy afforded by 

the ML algorithm, grounded in a data-driven otologic examination. It is anticipated that the fusion 

of TCM principles with contemporary medical technologies will pave the way for novel strategies 

and methodologies in the early detection of CKD, ameliorating patient outcomes, alleviating 

suffering, and enhancing quality of life. 

2. Materials and Methods 

2.1. Data Sources 

The NHANES, conducted by the United States National Health Statistics Service (NCHS), 

represents a pivotal cross-sectional survey designed to amass data regarding the health and 

nutritional status of the U.S. populace. This endeavor facilitates the acquisition of critical insights into 

the health conditions prevalent within the nation, thereby underpinning the formulation of informed 

policies by governmental entities. Endorsement of the NHANES survey protocol by the NCHS 

Research Ethics Review Board was secured, accompanied by the provision of informed written 

consent from all participants. Accessibility to the entire database 

(https://wwwn.cdc.gov/nchs/nhanes/Default.aspx) has rendered the requirement for an ethics review 

in our research exempt [24]. 

The cohort for this investigation was derived from NHANES dataset, covering the period from 

2000 to 2020. Inclusion criteria mandated a diagnosis of CKD and the availability of comprehensive 

otology examination data. Individuals lacking complete baseline demographic information or 

missing audiological test results were systematically excluded (Figure 1). Following rigorous 

selection criteria focused on extensive exposure assessment, a total of 12,392 participants were 

incorporated into the final analysis. This meticulous approach ensured the integrity and relevance of 

the data, which underpin further conclusions. 

2.2. Statistical Analysis 

In this study, a complex sampling design along with sampling weights, in alignment with the 

guidelines for analysis set forth by NHANES, was meticulously applied to ensure that the findings 

accurately reflect the demographic composition of the U.S. populace. This methodology facilitated 

precise estimations of the prevalence of CKD and its associated health metrics within the general 

population. For the initial data assessment, the Cochran-Mantel-Haenszel test was employed to 

elucidate disparities in the distribution of categorical variables, namely sex, race, and citizenship 

status, between individuals diagnosed with CKD and those without, while accommodating for 

stratification effects. Moreover, differences in continuous variables such as age and the poverty index 

between these groups were scrutinized using the t-test. 

Subsequently, logistic regression was applied to identify auditory test measures associated with 

CKD. Multivariate logistic regression analysis was employed to ascertain the factors correlated with 

CKD. This methodology facilitated the discovery of specific variables significantly associated with 

an increased risk of CKD, allowing for the isolation of these effects from other confounding factors. 

Through this analytical approach, factors that maintained a significant association with CKD risk 

were identified, with the provision of corresponding odds ratios (ORs) and their 95% confidence 

intervals (CIs), thereby enhancing the accuracy and relevance of the study’s outcomes. 

Furthermore, Pearson’s correlation analysis was applied across 37 variables within the CKD 

dataset to quantify the extent of their influence on the condition’s presence or absence, with the 
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correlation coefficients indicating the degree of association. This comprehensive analysis 

underscored the intricate interplay between various factors and CKD, thereby contributing to a 

deeper understanding of its epidemiology. 

 

Figure 1. Participant selection flowchart. 

2.3. Mendelian Randomization Analysis 

2.3.1. Data Sources 

Genome-wide association studies (GWAS) have collated data on hearing impairment, various 

kidney and ureteral diseases, and kidney injury at the molecular level through the MRC IEU 

OpenGWAS data infrastructure [25]. This research predominantly utilized exposure and outcome 

data derived from the UK Biobank (http://www.nealelab.is/uk-biobank) and FinnGen Biobank 

(https://www.finngen.fi/fi). Exposure data included 330,759 cases from the UK Biobank [26]. 

Outcome data included 1301 cases from the UK Biobank [27] and 424 cases alongside 217,185 controls 

from the FinnGen Biobank. (Supplementary Table S1) Ethical clearance was secured for each 

component study prior to conducting the Mendelian Randomization (MR) Analysis. The UK 
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Biobank, a forward-looking study, encompasses over half a million UK residents aged 40 to 69 at 

enrollment (2006-2010), and has amassed genome-wide genotyping and phenotypic data on a broad 

spectrum of traits. 

2.3.2. Instrumental Variables 

In this analysis, three sets of GWAS summary data for exposures were extracted (Supplementary 

Table S1). Single nucleotide polymorphisms (SNPs) within the designated loci, exhibiting significance 

levels of 5 × 10−8, were selected as instrumental variables. A fundamental principle of Mendelian 

Randomization (MR) dictates the absence of linkage disequilibrium (LD) among the chosen 

instrumental variables to preclude the emergence of biased outcomes. Accordingly, to evaluate LD 

among SNPs, cluster processing was undertaken with a stringent threshold (R2 < 0.001 and a cluster 

distance of 10,000 kb), ensuring the reliability and integrity of the instrumental variables employed 

in this study. 

2.3.3. Hypotheses 

This two-sample Mendelian Randomization (MR) study is predicated on three foundational 

assumptions to mitigate bias. Firstly, the genetic instruments employed exhibit significant 

associations with the exposure. Secondly, the instrumental variables are not correlated with 

confounders influencing both exposure and outcome, ensuring their independence. Lastly, the 

instrumental variables exert influence on the outcomes solely via the exposure pathway, indicating 

the absence of horizontal pleiotropy wherein the instrumental variables would have effects on the 

outcomes that are not mediated through exposure [28]. 

2.3.4. Data Analysis 

A variety of analytical techniques were employed to explore potential causal inferences, 

encompassing inverse variance weighting (IVW) [29], MR-Egger, weighted mode [30], weighted 

median [31], and simple mode [32]. In scenarios devoid of horizontal pleiotropy, IVW findings were 

deemed robust [33]. Heterogeneity was assessed utilizing the ‘mr_heterogeneity’ function within the 

“TwoSampleMR” R package, applying Cochran’s Q test for the IVW method and MR-Egger 

regression. Horizontal pleiotropy was examined through the ‘mr_pleiotropy_test’ function, also in 

the “TwoSampleMR” package, leveraging the MR-Egger approach. MR-Egger regression was then 

used to estimate the impact of pleiotropy, providing more reliable causal estimates after adjusting for 

pleiotropy under the presumption of no measurement errors and instrument strength being 

independent of direct effects [34]. Should MR-Egger indicate pleiotropy, MR-PRESSO [35] was 

employed to adjust for outliers. Leave-one-out analysis determined the causal influence of individual 

SNPs. The F-statistic was calculated to ascertain the presence of weak instrument bias within the 

chosen instrumental variables, with F > 10 suggesting the absence of such bias, thereby reinforcing 

the hypothesis of association. The formula for the F-statistic is 𝐹 =
R2∗(N−2)

1−R2
, where ‘N’ represents the 

sample size of the exposure, and ‘R2’ denotes the proportion of exposure variation explained by the 

instrumental variable [36]. 

2.4. Construction of Machine Learning Model 

Initially, data from NHANES underwent a cleaning process to extract relevant feature indicators 

and predictors. This process involved segregating features into continuous and categorical variables, 

applying one-hot encoding to categorical variables, and scaling continuous variables for 

normalization [37]. 

Within the Python (Version 3.8) programming environment, the Scikit-learn library [38] was 

utilized to construct nine machine learning models: Support Vector Machine (SVM), Random Forest 

Classifier (RF), Logistic Regression Classifier (LR), Gradient Boosting Classifier (GB), K-Nearest 

Neighbors Classifier (KNN), Light Gradient Boosting Machine (LGBM), CatBoost (CATB), Decision 

Tree (DT), and AdaBoost (AD). Hyperparameter optimization for these models was conducted using 
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GridSearchCV, a method that combines grid search with cross-validation, to identify and store each 

model’s optimal settings. This optimization process employed a ten-fold cross-validation approach 

to assess model performance, ultimately selecting the combination of parameters that exhibited the 

best performance. 

Following the principle of random stratified sampling, the dataset was partitioned into a training 

set and a test set in an 8:2 ratio. Subsequently, nine machine learning models were trained using this 

data partitioning. 

2.5. Evaluation of Machine Learning Models 

Utilizing the optimized parameters, the models were trained, and their performance metrics 

were computed, including the generation and comparison of classification reports and confusion 

matrices [39]. Precision, recall, accuracy, F1 score, and the area under the receiver operating 

characteristic (ROC) curve (AUC) served as the evaluation criteria for the machine learning models 

[40]. Additional analyses, such as precision-recall, decision boundary analysis, and Bootstrap ROC 

analysis, were conducted to further assess model performance [39]. 

The Shapley Additive exPlanation (SHAP), a framework introduced by Lundberg and Lee [41] 

for elucidating machine learning predictions, offers a novel approach to interpreting various complex 

models, providing interpretable insights that has been substantiated in prior research [42]. In our 

study, SHAP values were employed to highlight critical features for the prediction of early-stage 

CKD, facilitating an examination of the pivotal factors that influence outcome predictions. This 

analysis delineated the impact of each significant feature on the predictive performance of the final 

machine learning model, enhancing our understanding of the model’s decision-making process. 

2.6. Creation of Interactive Web Interface 

A web application was developed to provide online access to our novel prediction model, 

utilizing the “shiny” R package as the foundational framework. The application can be accessed at 

https://guanmiao.shinyapps.io/machinelearningckd88/. Furthermore, the input variables were 

quantified. (Supplementary Table S2) 

3. Results 

3.1. Baseline Characteristics 

A cohort comprising 12,392 individuals was recruited, with an average age of 43.3 years; among 

these, 2,060 were diagnosed with CKD while 10,332 were not, as summarized in Table 1. Preliminary 

analysis of the baseline data revealed that the mean age of patients with CKD was significantly 

greater compared to those without CKD, with the majority of participants being non-Hispanic white. 

Regarding gender distribution, the non-CKD group exhibited a balanced ratio of male to female 

participants, whereas the CKD group had a predominance of female patients. Furthermore, notable 

disparities were observed between the CKD and non-CKD groups in terms of demographic 

characteristics, including economic status, race, citizenship, level of education, and household size, 

with all differences achieving statistical significance (P < 0.05). 

Table 1. Demographic information analysis. 

Variable No (N = 10,332) Yes (N = 2,060) P value 

age 41.50 (40.94,42.05) 52.09 (50.67,53.51) < 0.0001 

poverty 3.03 (2.94,3.13) 2.71 (2.59,2.84) < 0.0001 

sex   < 0.0001 

Female 5300 (51.13) 1158 (59.72)  

Male 5032 (48.87) 902 (40.28)  

eth1   < 0.001 

Mexican American 2067 (8.84) 342 (8.07)  
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Non-Hispanic Black 2166 (9.97) 533 (14.23)  

Non-Hispanic White 4134 (68.92) 878 (66.30)  

Other Hispanic 855 (5.87) 138 (5.02)  

Other Race including multi-racial 1110 (6.41) 169 (6.38)  

Country_of_birth   0.01 

Born Elsewhere 350 (4.82) 59 (4.68)  

Born in 50 U.S. states or Washington 

DC 
3467 (39.08) 687 (37.44)  

Born in 50 U.S. States or Washington 

DC 
4173 (44.61) 981 (48.81)  

Born in Mexico 611 (2.55) 81 (1.53)  

Born in Other Non-Spanish Speaking 

Country 
67 (0.41) 24 (0.80)  

Born in Other Spanish Speaking 

Country 
44 (0.15) 16 (0.32)  

Others 1620 (8.39) 212 (6.42)  

citizenship   < 0.0001 

Citizen by birth or naturalization 8779 (90.36) 1868 (94.10)  

Not a citizen of the U.S. 1553 (9.64) 192 (5.90)  

household_size   < 0.0001 

1 961 (10.05) 377 (16.54)  

2 2619 (31.08) 661 (37.90)  

3 1887 (19.01) 295 (14.61)  

4 2025 (20.19) 282 (13.67)  

5 1408 (11.15) 236 (10.28)  

6 691 (4.44) 108 (3.89)  

7 or more people in the Household 741 (4.08) 101 (3.11)  

9-11th grade (Includes 12th grade with 

no diploma) 
505 (3.44) 114 (4.39)  

9-11th Grade (Includes 12th grade 

with no diploma) 
539 (4.86) 169 (7.90)  

9th grade 66 (0.41) 6 (0.16)  

9th Grade 192 (0.73) 31 (1.13)  

College graduate or above 1313 (15.90) 149 (11.29)  

College Graduate or above 798 (12.75) 122 (8.21)  

GED or equivalent 2 (0.01) 0 (0.00)  

GED or Equivalent 16 (0.06) 2 (0.05)  

High School Grad/GED or Equivalent 817 (11.23) 207 (12.22)  

High school graduate 69 (0.46) 8 (0.25)  

High School Graduate 136 (0.60) 15 (0.54)  

High school graduate/GED or 

equivalent 
971 (8.77) 193 (9.42)  

Less Than 5th Grade 0 (0.00) 1 (0.02)  

Less than 9th grade 377 (1.88) 80 (2.21)  

Less Than 9th Grade 443 (2.54) 170 (5.41)  

More than high school 153 (0.78) 23 (0.83)  

Never attended / kindergarten only 0 (0.00) 9 (0.40)  

Some college or AA degree 1379 (14.07) 232 (11.32)  

Some College or AA degree 980 (14.35) 196 (13.07)  

In the self-reported data (Table 2), 84.1% of participants indicated either no perceived difference 

in hearing between their ears or were unaware of any disparity. The analysis of otoscopic screening 
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data revealed a statistically significant variation in the incidence of excessive cerumen between the 

left and right ears among individuals with and without CKD, and the proportion of patients with 

cerumen excess in the CKD group was higher than that in the non-CKD group. Furthermore, 

significant discrepancies were noted in the outcomes of normal otoscopic examinations between the 

two groups (P<0.05), with a greater proportion of individuals in the non-CKD group exhibiting 

normal otoscopic findings compared to those in the CKD group. 

Table 2. Analysis of otological status indicators. 

Variable Total No Yes P value 

self_reported_better_ear    0.03 

no / don’t know 10422 (84.1) 8766 (83.73) 1656 (80.76)  

yes, left ear 832 (6.71) 656 (7.10) 176 (8.82)  

yes, right ear 1138 (9.18) 910 (9.17) 228 (10.42)  

excessive_cerumen_left_ear    < 0.0001 

no 10971 (88.53) 9227 (90.88) 1744 (86.56)  

yes 1421(11.47) 1105 (9.12) 316 (13.44)  

impacted_cerumen_left_ear    0.03 

no 12089 (97.55) 10072 (97.56) 2017 (98.53)  

yes 303 (2.45) 260 (2.44) 43 (1.47)  

otoscopy_left_ear    0.002 

no 1798 (14.51) 1423 (12.13) 375 (15.94)  

yes 10594 (85.49) 8909 (87.87) 1685 (84.06)  

collapsing_ear_canals_left_ear    0.11 

no 12305 (99.3) 10271 (99.29) 2034 (98.84)  

yes 87 (0.7) 61(0.71) 26 (1.16)  

normal_otoscopy_right_ear    < 0.0001 

no 1957 (15.79) 1550 (13.45) 407 (18.61)  

yes 10435 (84.21) 8782 (86.55) 1653 (81.39)  

excessive_cerumen_right_ear    < 0.0001 

no 10862 (87.65) 9131 (89.81) 1731 (84.44)  

yes 1530 (12.35) 1201 (10.19) 329 (15.56)  

impacted_cerumen_right_ear    0.84 

no 12045 (97.2) 10049 (97.36) 1996 (97.46)  

yes 347 (2.8) 283 (2.64) 64 (2.54)  

collapsing_ear_canals_right_ear    0.26 

no 12313 (99.36) 10276 (99.32) 2037 (99.00)  

yes 79 (0.64) 56 (0.68) 23 (1.00) yes 

AUX_G Hearing data file is displayed in Table 3, (1) Analysis of bilateral tympanic chamber 

measurement data: there were significant differences in tympanic volume and compliance between 

CKD group and CKD group (P < 0.05), but there was no statistical significance in middle ear pressure 

and tympanic width between subjects with and without CKD (P > 0.05). (2) Analysis of hearing 

threshold data of pure tone air conduction measurement: The test thresholds of the left and right ears 

of the CKD group and the non-CKD group at all frequencies are significantly different, and the test 

results all show that the average hearing threshold of the CKD group is higher than that of the non-

CKD group, that is, the average hearing loss of the CKD group is greater in different frequency 

groups. 

Table 3. Analysis of otological status indicators. 

Variable No (N = 10,332) Yes (N = 2,060) P value 

tympanic_right_middle_ear_pressure_dapa -12.22 (-13.23,-11.22) -11.58 (-13.62, -9.54) 0.57 

tympanic_right_physical_volume_cc 1.44 (1.42,1.46) 1.39 (1.36,1.42) 0.003 
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tympanic_right_width 82.08 (80.97,83.19) 83.61 (81.89,85.34) 0.14 

tympanic_right_compliance 0.79 (0.78,0.81) 0.72 (0.69,0.75) < 0.0001 

tympanic_left_middle_ear_pressure_dapa -11.15 (-12.19,-10.10) -9.86 (-11.50, -8.23) 0.23 

tympanic_left_physical_volume_cc 1.40 (1.38,1.43) 1.34 (1.31,1.37) < 0.001 

tympanic_left_width 82.12 (81.00,83.24) 83.27 (81.27,85.26) 0.31 

tympanic_left_compliance 0.79 (0.78,0.81) 0.72 (0.68,0.75) < 0.001 

right_threshold_1000hz_db 10.18 (9.79,10.57) 15.51 (14.57,16.46) < 0.0001 

right_threshold_500hz_db 11.30 (10.91,11.70) 16.15 (15.32,16.99) < 0.0001 

right_threshold_1000hz_2nd_read_db 9.61 (9.23,10.00) 15.17 (14.21,16.12) < 0.0001 

right_threshold_2000hz_db 10.86 (10.39,11.34) 19.14 (17.87,20.42) < 0.0001 

right_threshold_3000hz_db 14.30 (13.77,14.83) 24.15 (22.66,25.64) < 0.0001 

right_threshold_4000hz_db 17.75 (17.10,18.39) 29.07 (27.46,30.68) < 0.0001 

right_threshold_6000hz_db 23.87 (23.06,24.67) 36.07 (34.45,37.68) < 0.0001 

right_threshold_8000hz_db 24.74 (23.81,25.67) 39.87 (37.93,41.81) < 0.0001 

left_threshold_1000hz_db 9.90 (9.57,10.23) 15.20 (14.29,16.11) < 0.0001 

left_threshold_500hz_db 11.10 (10.80,11.41) 15.71 (14.96,16.47) < 0.0001 

left_threshold_1000hz_2nd_read_db 9.56 (9.22, 9.89) 14.97 (14.08,15.86) < 0.0001 

left_threshold_2000hz_db 11.35 (10.90,11.81) 19.53 (18.36,20.70) < 0.0001 

3.2. Logistic Regression Analysis of Hearing Indicators 

Upon examining the baseline data, we incorporated all pertinent data into the logistic regression 

analysis to identify factors contributing to CKD and their 95% CIs (Table 4). The logistic regression 

model revealed: 

(1) A negative correlation between the tympanic volume and compliance in both ears and CKD, 

indicating that as tympanic volume and compliance decrease, the odds of CKD increase (OR < 1, P < 

0.05). 

(2) No significant association was observed between tympanic pressure and width with CKD 

[OR = 1.00, 95% CI = (1.00, 1.00), P > 0.05]. 

(3) Hearing thresholds at various frequencies in both ears exhibited a positive correlation with 

CKD, implying that higher hearing thresholds are associated with an increased risk of CKD [OR = 

1.02/1.03, P < 0.0001]. 

Table 4. Analysis of otological status indicators. 

Character Est. Std. Err t value Pr (>|t|) OR 95% CI 

tympanic_right_middle_ear_pressure

（dapa） 
0 0 0.55 0.58 1 

1.00 

(1.00,1.00) 

tympanic_right_physical_volume（cc

） 
-0.25 0.09 -2.89 0.004 0.78 

0.78 

(0.65,0.92) 

tympanic_right_width 0 0 1.5 0.14 1 
1.00 

(1.00,1.00) 

tympanic_right_compliance -0.34 0.09 -3.7 <0.001 0.71 
0.71 

(0.59,0.85) 

tympanic_left_middle_ear_pressure

（dapa） 
0 0 1.16 0.25 1 

1.00 

(1.00,1.00) 

tympanic_left_physical_volume_cc -0.35 0.1 -3.61 <0.001 0.71 
0.71 

(0.59,0.86) 

tympanic_left_width 0 0 1.02 0.31 1 
1.00 

(1.00,1.00) 

tympanic_left_compliance -0.34 0.11 -3.14 0.002 0.71 
0.71 

(0.57,0.88) 

right_threshold_1000hz_db 0.03 0 12.5 <0.0001 1.03 1.03 
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(1.03,1.04) 

right_threshold_500hz_db 0.03 0 11.77 <0.0001 1.03 
1.03 

(1.03,1.04) 

right_threshold_1000hz_2nd_read_db 0.03 0 13.32 <0.0001 1.03 
1.03 

(1.03,1.04) 

right_threshold_2000hz_db 0.03 0 15.15 <0.0001 1.03 
1.03 

(1.03,1.04) 

right_threshold_3000hz_db 0.03 0 15.99 <0.0001 1.03 
1.03 

(1.02,1.03) 

right_threshold_4000hz_db 0.02 0 16.85 <0.0001 1.02 
1.02 

(1.02,1.03) 

right_threshold_6000hz_db 0.02 0 16.2 <0.0001 1.02 
1.02 

(1.02,1.03) 

right_threshold_8000hz_db 0.02 0 18.54 <0.0001 1.02 
1.02 

(1.02,1.02) 

left_threshold_1000hz_db 0.03 0 12.92 <0.0001 1.03 
1.03 

(1.03,1.04) 

left_threshold_500hz_db 0.03 0 12.25 <0.0001 1.03 
1.03 

(1.03,1.04) 

left_threshold_1000hz_2nd_read_db 0.03 0 13.37 <0.0001 1.03 
1.03 

(1.03,1.04) 

left_threshold_2000hz_db 0.03 0 14.97 <0.0001 1.03 
1.03 

(1.03,1.04) 

3.3. Correlation Analysis 

Table 5 presents the ten most significant features as delineated by their correlation coefficients. 

The magnitude of the coefficient’s absolute value is directly proportional to the feature’s impact on 

the model’s predictive outcome. Specifically, a positive coefficient signifies a direct correlation with 

an increase in the feature value leading to a higher likelihood of the positive class, exemplified by the 

diagnosis of chronic kidney disease, whereas a negative coefficient denotes an inverse relationship. 

The elucidated correlation coefficients suggest that variables including citizenship, hearing threshold, 

and age possess considerable potential to influence the progression of CKD. 

Table 5. Correlation analysis of characteristic index. 

Feature Correlation 

citizenship 0.5542568 

right_threshold_1000hz_db 0.4365804 

self_reported_better_ear 0.3382538 

poverty 0.2730662 

age 0.2408413 

tympanic_left_compliance 0.2054256 

tympanic_left_physical_volume_cc 0.2003082 

left_threshold_1000hz_2nd_read_db 0.1580396 

right_threshold_3000hz_db 0.1485964 

impacted_cerumen_left_ear 0.1237963 

3.4. Mendelian Randomization Analysis 

Following the clustering of SNPs and data harmonization, a total of 29 SNPs were identified as 

being associated with all outcomes. Table S3 encapsulates the R2 and F-statistics pertaining to 

exposure, with all exposures demonstrating F-statistics greater than 10. This absence of weak 
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instrument bias underscores the robust validity of all SNPs under consideration. (Supplementary 

Tables S3) 

In our investigation of the causal relationships between certain chronic kidney disease factors 

and hearing impairment, as illustrated by scatter plots and forest plots (Figure 2), the results indicate 

a significant positive correlation. The Inverse Variance Weighted (IVW) method reveals a causal 

relationship between MTAG and kidney injury molecule levels, demonstrating a significant positive 

correlation (Figure 2, A) (β = 1.116, OR = 3.051, 95%CI: (1.064, 8.748), P = 0.0379). This finding suggests 

that an increase in hearing impairment is associated with elevated levels of kidney injury markers. 

Despite an overarching positive trend across all five analytical methods (inverse variance weighting, 

MR Egger, simple mode, weighted median, and weighted mode) (Figure 2, B), the wide confidence 

intervals introduce some uncertainty regarding the specific magnitude of this effect. Nonetheless, 

they uniformly affirm a statistically significant connection between MTAG and the kidney injury 

molecule levels. Furthermore, MTAG exhibited a causally significant and positive association with 

other specified disorders of kidney and ureter (Figure 2E) (β = 2.160, OR = 8.673, 95% CI: (1.427, 

52.728), P = 0.0190), intimating that worsening hearing impairment is closely and significantly linked 

to an augmented risk of these conditions. While the five methodologies similarly indicate an overall 

positive correlation (Figure 2, F), their extensive confidence intervals reveal some ambiguity 

regarding the impact’s definitive extent. (Supplementary Table S4) 
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Figure 2. Result graph of Mendelian randomization. Mendelian randomization analysis of age-related 

hearing impairment (MTAR) and kidney injury Molecular levels included (A) forest plot, (B) scatter 

plot, (C) funnel plot, and (D) leave-one-out sensitivity analysis result plot. The Mendelian 

randomization analysis of MTAR and other specified disorders of kidney and ureter included (E) 

forest plot (F) scatter plot (G) funnel plot (H) leave-one-out sensitivity analysis results plot. 

To assess the robustness of our study findings, further analyses were conducted on the included 

SNPs using MR-Egger and MR-PRESSO tests. These analyses did not detect any potential horizontal 
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pleiotropy (P > 0.05), (Supplementary Table S5) indicating an absence of pleiotropic effects among 

the SNPs. However, it is noteworthy that funnel plots revealed a slight asymmetry (Figure 2, C and 

G). Such asymmetry within the funnel plots suggests the presence of some degree of potential bias 

or heterogeneity among the study outcomes. While this does not directly undermine our findings, it 

prompts consideration of the possibility of unexplained minor biases or variations present in the data. 

Adjusted Cochran Q statistics for the current analysis indicate significant heterogeneity among 

the SNP effects included in our study. (Supplementary Table S5) Furthermore, leave-one-out 

sensitivity analysis was employed to assess the impact of each individual SNP on the overall causal 

relationship. (Figure 2, D and H) As illustrated, the outcomes of this analysis demonstrate that 

systematically excluding each SNP and repeating the MR analysis does not result in any significant 

alterations to the observed causal relationship. This consistency across various iterations of the 

analysis reinforces the conclusion that the estimated effects are not driven by any single genetic 

variant. This finding substantiates the robustness of the causal inferences drawn from our data, 

suggesting that the genetic instruments constitute a well-distributed set that collectively contributes 

to the analysis. 

3.5. Machine Learning model Construction 

Nine machine learning models were developed, encompassing Support Vector Machine (SVM), 

Random Forest (RF), Logistic Regression (LR), Gradient Boosting (GB), K-Nearest Neighbors (KNN), 

Light Gradient Boosting Machine (LGBM), CatBoost (CATB), Decision Tree (DT), and AdaBoost (AD). 

Following the optimization of hyperparameters, the optimal settings for each model were determined. 

(Supplementary Table S6) 

3.6. Machine Learning Model Comparison and Evaluation 

We embarked on a comparison and evaluation of various machine learning models for the 

binary classification of CKD, utilizing two distinct performance assessment methodologies. Initially, 

the Receiver Operating Characteristic (ROC) curves during the training process were plotted (Figure 

3). This figure displays the ROC curve for each model, with the Area Under the Curve (AUC) scores 

provided in the legend. The AUC score quantifies the two-dimensional area beneath the entirety of 

the ROC curve, offering a comprehensive measure of performance across all classification thresholds. 

The proximity of the ROC curve to the top left corner of the chart signifies greater test accuracy. 

Correspondingly, an AUC score nearing 1 indicates the model’s proficiency in predicting positive 

cases while minimizing false positives. The figure illustrates our ROC curves closely aligned with the 

upper left corner, denoting high accuracy. CatBoost emerged with the highest AUC at 0.931, marking 

it as the most effective among the evaluated models. In contrast, the K-Nearest Neighbors (KNN) 

model had the lowest AUC at 0.860, reflecting its poor trade-off between true positive and false 

positive rates. Subsequently, recall and decision boundary graphs were delineated (Figure 3B), 

comprising separate charts for the CKD and non-CKD classes. Each line within these graphs 

represents the recall rate of distinct models across various decision boundary thresholds (T). For the 

CKD class (left graph), recall rates ascend with increasing decision boundaries, whereas for the non-

CKD class (right graph), most models initially exhibit high recall rates, which then progressively 

diminish. This pattern indicates a trade-off in accurately classifying CKD versus non-CKD cases. The 

ideal threshold for balancing recall rates between these categories lies near the convergence or closest 

approach of the curves. The adjustment of recall rates is tailored to the specific requirements of the 

task at hand. CatBoost, Logistic Regression, and Light Gradient Boosting models notably achieve an 

optimal balance in overall performance. 
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Figure 3. (A) ROC curves of nine models; (B) Recall and decision boundary diagram of nine models 

(C) ROC curve of CatBoost model; (D) Recall and Decision boundary graph of CatBoost model (E) 

Based on mean (|SHAP value |), feature ranking (Y-axis) indicates importance of prediction model. 

The SHAP value (X-axis) is a uniform index that responds to the influence of a feature in the model. ; 

(F) Ranking the stability and importance of interpretation of the top 20 features using an optimal 

model. In each feature important row, all patients’ attributions to the outcome are plotted with 

different colored dots, where red dots represent high risk values and blue dots represent low risk 

values. 

Subsequently, we compared various metrics across nine machine learning models (Table 6). 

Accuracy, defined as the ratio of correct predictions to total predictions, indicates the model’s efficacy 

in correctly predicting labels. A higher accuracy denotes a greater number of correctly predicted 

labels. According to the results, the CatBoost model achieved the highest accuracy (0.862), signifying 

it had the highest percentage of correctly classified instances. Conversely, the KNN model exhibited 

the lowest accuracy, indicating the highest number of classification errors. 

Regarding the AUC, the CatBoost model demonstrated superior performance, closely followed 

by Logistic Regression and Light Gradient Boosting Machine, suggesting these models excel in 

distinguishing between categories. When assessing accuracy, the CatBoost model also ranked highest, 

with Decision Tree and Gradient Boosting models trailing closely behind. 

Further analysis of model performance, as per Table 6, reveals that among all models, CatBoost 

exhibits an exceptionally high recall rate for the non-CKD class and the best precision for the CKD 

class, with high F1 scores for both categories. CatBoost appears to maintain the optimal overall 
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balance between accuracy and recall across these two categories. The KNN model underperforms in 

predicting CKD, manifesting the lowest F1 score for this category. The Decision Tree model shows a 

very high recall for the non-CKD class, indicating a potential overprediction of this category at the 

expense of precision for the CKD class. When considering both macro and weighted averages, CATB 

also performs well in terms of accuracy, recall and F1 scores. It was positioned as a potentially 

superior model for this dataset based on these metrics. GB and DT also demonstrate strong 

performance, albeit slightly inferior to CATB. 

Consequently, considering its superior overall performance, we have selected CatBoost as our 

preferred model, characterized by an AUC of 0.931 and an accuracy of 0.862. The stability and 

discriminative capacity of the model are further corroborated by the Bootstrap ROC curve (Figure 3, 

C), with the 95% confidence interval closely hugging the mean line, indicating consistent model 

performance across different samples. The recall versus decision boundary graph (Figure 3, D) 

illustrates that within the threshold range of 0.5 to 0.75, the model achieves an optimal balance 

between identifying CKD cases and maintaining a low false-positive rate. These findings underscore 

the CatBoost model’s capability to accurately identify positive cases while minimizing misdiagnoses, 

making it particularly well-suited for scenarios requiring precise identification of CKD cases. 

Subsequently, we employed SHAP values to elucidate how various variables influence CKD 

predictions within the model. Figure 3E illustrates the top 20 risk factors assessed by average absolute 

SHAP values. Figure 3F highlights the 20 most significant features within our model. It was observed 

that age stands out as the most critical feature, exerting a substantial average impact on the model’s 

output magnitude. Additionally, several demographic factors, such as place of birth, education level, 

poverty status, and ethnicity, also significantly influence the model. Hearing-related variables, like 

“right_threshold_8000hz_db” and “tympanic_right_middle_ear_pressure_dapa,” play an important 

role in the model’s decision-making process. 

Ultimately, we have established a website that utilizes the CatBoost algorithm to predict CKD 

from auditory and demographic data, available at 

(https://guanmiao.shinyapps.io/machinelearningckd88/). This platform features a user-friendly 

interface that permits the entry of clinical characteristics for new samples. This web application also 

offers predictions regarding the likelihood of CKD presence or absence, tailored to the specifics of 

the user-provided information. 

4. Discussion 

In this study, we explored interpretable ML approaches utilizing auditory and demographic 

indicators from the US NHANES data spanning from 2000 to 2020, aimed at identifying CKD. The 

study encompassed 12,392 participants, including 2,060 individuals diagnosed with CKD. By 

comparing the baseline characteristics of the CKD and non-CKD groups, we observed that 

individuals with CKD were, on average, older and that there was a higher proportion of females 

among these patients. Additionally, significant correlations were identified between CKD and 

various demographic factors such as economic status, race, citizenship, level of education, and 

household size, underscoring the importance of considering demographic characteristics in CKD 

research and management. Most participants perceived their hearing in both ears to be similar. 

However, otoscopic examinations revealed significant differences between the CKD and non-CKD 

groups in terms of cerumen excess and otoscopic results. Furthermore, a positive correlation was 

observed between hearing thresholds and CKD, indicating greater average hearing loss within the 

CKD group. These results suggest that auditory indicators may serve as critical health markers for 

individuals with CKD. Through Mendelian randomization analysis, we discovered causal 

relationships between certain factors of CKD and hearing impairment. Significantly, our research 

elucidated substantial causal associations between other specified disorders of kidney and ureter and 

age-related hearing impairment, as well as establishing the causality between kidney injury molecule 

levels and MTAG. These findings, based on extensive clinical data, not only reinforce the potential 

biological connection between CKD and hearing but also represent a pioneering investigation into 

the causal relationship between factors associated with CKD and hearing impairment. Additionally, 
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they provide a theoretical foundation for ML models that use auditory and demographic indicators 

for the early prediction of CKD. 

Among nine ML models, the CATB model achieved the best performance, ultimately being 

selected to identify CKD. Tested across various metrics, the CATB model demonstrated an average 

AUC of 0.931, indicating efficient and stable classification capabilities, coupled with a high accuracy 

of 0.862, as well as superior F1-score, recall, and other metrics. Nevertheless, different models possess 

distinct advantages; some may excel in identifying CKD patients, while others may be better at 

confirming non-CKD cases. The choice of model might depend on clinical requirements. If 

minimizing false negatives is paramount, models with a high recall rate for the CKD category at the 

selected threshold would be preferable. Conversely, if reducing false positives is more critical, models 

with a high recall rate for the non-CKD category would be favored. The CATB model demonstrates 

robust and stable performance in classifying diseases such as CKD, striking an excellent balance 

between identifying actual cases and avoiding false positives. Yet, the precise balance between recall 

and precision can be adjusted according to the specific costs associated with false negatives and false 

positives in the application domain, allowing for fine-tuning of decision thresholds to achieve the 

balance required for practical use [43]. 

In Table 7, we catalog a range of machine learning models previously employed for predicting 

CKD. Comparative analysis reveals that our model exhibits a higher AUC, denoting a superior 

capability in distinguishing between CKD and non-CKD instances. This elevated discriminative 

proficiency not only underscores the model’s robustness but also its reliability in generating 

predictions. Moreover, the balanced performance of our model across accuracy, recall, and F1 scores 

highlights its efficacy in managing the binary classification of CKD and non-CKD categories. Notably, 

a high recall rate for the positive category ensures that the model rarely overlooks actual cases of 

CKD, a critical requirement for medical diagnostics. The considerable size of our dataset offers 

multiple advantages. It mitigates the risk of overfitting, a common challenge in machine learning 

models, thereby enhancing the model’s ability to generalize well to new data. Additionally, it 

addresses issues related to class imbalance, a frequently encountered concern in medical datasets 

where one category may disproportionately represent. The extensive dataset also diminishes the 

impact of noise or incorrect data, contributing to the robustness of our predictive model. 

Table 7. Analysis of otological status indicators. 

Authors Dataset Algorithms Performance Limitations 

Stefan Ravizza  

et al [19] 

IBM Explorys & 

Indiana Network for 

Patient Care 

Feature selection 

strategy and logistic 

regression 

The overall 

AUC value is 

0.7937 

Prediction of CKD as 

a diabetic 

complication 

Jiamin Chen  

et al [20] 
MIMIC-IV 

LASSO 

multivariate logistic 

regression analysis 

The AUC value 

is 0.771 

Only indicators for 14 

attributes included, 

with potential 

selection bias 

Dai Su  

et al [21] 
HABCS 

LR Lasso RF 

GBDT SVM 

DNN 

The maximum 

AUC is 0.75 

Limitations include a 

small dataset size and 

potential biases due 

to reliance on self-

reported medical 

history. 

Jing Xiao  

et al [22] 

Shanghai Huadong 

Hospital 

LR Ridge Lasso 

SVM RF KNN 

NN XGBoost 

The highest 

AUC was 0.873 

Only 5 population 

indicators, which 

predict 24-hour 

proteinuria. 

Zheyi Dong 

et al [23] 

People’s Liberation 

Army (PLA) General 

Hospital 

LightGBM  

XGBoost 

AdaBoost  

The highest 

AUC is 0.815 

Single-institution 

setting, small sample 

size, and potential 
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NN DT  

SYM LR 

bias from missing 

data in EMR，not 

using suitable feature 

selection techniques 

for the dataset 

CKD is defined as persistent abnormalities in kidney structure or function for more than three 

months [44]. Diagnosis primarily relies on routine screening or incidental findings through serum 

chemistry features and urinalysis, followed by confirmatory imaging studies (e.g., ultrasound, CT, 

MRI), renal biopsy, and histopathological examination [5]. Traditional machine learning (ML) models 

for early diagnosis of CKD typically utilize predictors derived from blood and urine tests along with 

demographic indicators. Our methodology introduces a pioneering approach by integrating auditory 

examination indicators with demographic predictors for CKD forecasting. These predictive markers 

are more readily accessible than traditional blood and urine analyses, requiring merely an ear 

examination and supplementary information gathered through a brief survey. Consequently, this 

predictive model can be broadly applied across various levels of medical institutions, from primary 

care to specialized clinics. Our research delves deeper into the association and causality between 

auditory indicators and CKD, pioneering a CKD prediction model based on auditory metrics. We 

assessed the significance of auditory indicators within the model using SHAP values, revealing their 

notable importance. This innovative approach to CKD detection offers enhanced convenience, cost-

effectiveness, and accuracy, presenting a valuable instrument poised to advance early and broader 

CKD screening, particularly in environments where conventional methods are less accessible. 

The model, leveraging data from the NHANES, principally mirrors the demographic 

characteristics of the U.S. population, including a higher proportion of African American and 

Hispanic individuals [24]. However, it does not comprehensively encompass global diversity, which 

may limit its applicability worldwide. The reliance on auditory examination metrics may overlook 

other critical medical indicators essential for the diagnosis of CKD. Clinical validation emerges as a 

pivotal next step, necessitating the testing of the model within clinical settings to ensure the reliability 

and adaptability of its predictions. 

In summary, we have employed innovative otologic indicators in conjunction with demographic 

indicators as predictors, subsequently transforming them into a promising tool for the expedited 

screening of CKD. It is meritorious for future studies to test the model incorporating ear examinations 

in actual clinical settings, thereby enhancing its potential for wider application and adoption. More 

importantly, further investigations into whether interventions targeting these factors could reduce 

the incidence of CKD are warranted, thereby facilitating precise early-stage prevention and 

intervention. 

5. Conclusions 

Our investigation leverages NHANES data spanning from 2000 to 2020, with a focus on otologic 

indicators and demographic factors to identify CKD. The study elucidates the correlation and 

causation between CKD and auditory impairments, serving as the foundation for the development 

of a robust machine learning model. Notably, the CatBoost algorithm emerged as the most 

efficacious, exhibiting an average AUC of 0.931. Compared to traditional blood and urine tests, this 

novel approach herald new avenues for CKD screening, minimizing the risk of misdiagnoses or 

overlooked cases, and demonstrating potential for broader application across various medical 

settings. However, further clinical validation is required to ensure the predictive relevance of the 

model and its adaptability in real-world healthcare environments. This study synergizes traditional 

medical theories with contemporary technology, offering a simplified and more effective tool for the 

early detection of CKD. 

6. Patents 

There are no patents resulting from the work reported in this manuscript. 
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