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Abstract

This research presents a study on enhancing the localization and orientation accuracy of indoor
Autonomous Guided Vehicles (AGVs) operating under a centralized, camera-based control system.
We investigate and compare the performance of two Extended Kalman Filter (EKF) configurations: a
standard EKF and a novel Blended EKF. The research methodology comprises four primary stages:
(1) Sensor bias correction for the camera (CAM), Dead Reckoning, and Inertial Measurement Unit
(IMU) to improve raw data quality; (2) Calculation of sensor weights using the Inverse-Variance
Weighting principle, which assigns higher confidence to sensors with lower variance; (3) Multi-sensor
data fusion to generate a stable state estimation that closely approximates the ground truth (GT);
and (4) A comparative performance evaluation between the standard EKF, which processes sensor
updates independently, and the Blended EKF, which fuses CAM and DR measurements prior to the
filter’s update step. Experimental results demonstrate that the implementation of bias correction and
inverse-variance weighting significantly reduces the Root Mean Square Error (RMSE) across all sensors.
Furthermore, the Blended EKF not only achieved a lower RMSE in certain scenarios but also produced
a notably smoother trajectory compared to the standard EKFE. These findings indicate the significant
potential of the proposed approach in developing more accurate and robust navigation systems for
AGVs in complex indoor environments.

Keywords: indoor AGV localization; extended Kalman filter; sensor fusion; bias correction; inverse-
variance weighting

1. Introduction

A centralized, vision-based control architecture for Autonomous Guided Vehicles (AGVs) offers a
cost-effective alternative to systems reliant on expensive onboard sensors like LIDAR [9]. In industrial
environments, positioning accuracy is critical [21]. This approach, often termed "infrastructure-based
control,” transfers complex navigation and fleet management tasks from individual vehicles to a
powerful central server, enabling sophisticated coordination while reducing per-vehicle hardware
costs [13]. The system’s core components include a network of CCTV cameras, a central processing
server, a wireless communication network, and the vehicles themselves. The cameras provide a
global "God’s-eye view" of the operational area, tracking vehicles and obstacles in real-time. This
centralized vision approach leverages advances in computer vision and deep learning techniques for
robust localization, as demonstrated by recent work combining imaging sensors with deep convo-
lutional neural networks (DCNNSs) for AGV pose estimation [9]. The central server processes this
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visual data through fleet management software that handles localization, path planning, and traffic
management using Al [6] and computer vision techniques [2]. The server then transmits simple motion
commands, such as "move forward 5 meters," to the AGVs via wireless communication networks.
Recent infrastructure-based vision studies demonstrate that overhead or roadside cameras can detect
and track mobile robots reliably in real time, underscoring the practicality of centralized, vision-first
approaches [20,25]. Yet long-term localization remains challenging due to illumination changes, occlu-
sions, and drift. A systematic review highlights the need for robust filtering, cross-sensor redundancy,
and adaptive models to sustain performance over extended periods [17]. The vehicles execute these
commands precisely by utilizing onboard sensor fusion techniques, integrating data from multiple
sensors including encoders for distance measurement and Inertial Measurement Units (IMUs) for
orientation tracking [24]. Recent advances in sensor fusion have shown that passive wheel odometry
can outperform traditional drive-wheel odometry in many scenarios, while IMU/AHRS integration
significantly improves accuracy during angular motion [2]. Advanced filtering techniques, including
hybrid Kalman-particle filters and trainable Extended Kalman Filters with adaptive noise models, have
demonstrated improved localization accuracy and robustness in indoor AGV environments [13,24].
Ultrasonic sensors act as a final safety measure, preventing collisions with unforeseen obstacles that
may be in the camera’s blind spots. This hybrid model significantly reduces the cost per vehicle by
replacing expensive onboard LIDAR systems with lower-cost sensor combinations and allows for
sophisticated, system-wide traffic optimization through centralized path planning algorithms [22].
Modern optimization approaches, such as hybrid Grey Wolf Optimization combined with Kalman
corrections, have shown improved path predictability and collision avoidance capabilities for dense
warehouse AGV operations [16,22]. However, this centralized approach relies heavily on the central
infrastructure, making it vulnerable to single-point failures and potentially less flexible in dynamic
environments compared to fully autonomous, SLAM-based robots that maintain complete onboard
sensing and processing capabilities. Although the Extended Kalman Filter (EKF) has been widely
used for AGV positioning [19] , its performance may degrade when raw sensor data have differ-
ent characteristics, such as camera (CAM) data with high noise and low update rate, compared to
Dead Reckoning data with high update rate but prone to accumulated errors (drift). The normal
EKF implementations often treat each sensor measurement update independently, which can lead to
inconsistencies and non-smooth trajectory estimates, particularly when one sensor is prone to high
noise or sudden disturbances. This highlights the research gap in developing an efficient data fusion
strategy that can blend data from different sensors before feeding it to the filter update stage. Therefore,
the contribution of this paper is to propose and evaluate a novel Blended EKF, which pre-fuses CAM
and DR data using a weighted blending strategy before sending the data to the EKF. It is hypothesized
that this approach not only reduces the positioning error but also produces smoother and more stable
trajectories compared to the Normal EKF in an indoor environment.

2. Materials and Methods

This research presents an integrated approach for indoor localization of automated guided vehicles
(AGVs) using multiple low-cost sensors, including cameras (CAMs), encoders, inertial measurement
units (IMUs), and approximate positioning (Dead Reckoning - DR) [7].

2.1. Preparation and Equipment Used in the Experiment
2.1.1. Preparation Used in the Experiment

The BALTY AGYV robot used in the experiment were equipped with specified sensors. Data from
the encoder and IMU were recorded at a sampling rate of 10 Hz (every 0.1 s), while data from the
camera (CAM) for absolute positioning were recorded at a rate of 5 Hz (every 0.2 s) [12]. To ensure the
accuracy and consistency of the data used in the data fusion process, two data sampling scenarios were
defined: (1) using the original sampling rate, with the IMU and Wheel Encoder set at 10 Hz and the
CAM at 5 Hz, and (2) adjusting the sampling rate of all sensors to 5 Hz to create temporal consistency
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and facilitate efficient joint processing. Since the data from each sensor is collected asynchronously,
a temporal alignment using an event-based synchronization method was performed in the post-
processing step, with the “AGV starting point” set as the reference marker for synchronizing the entire
dataset. For data communication between sensors, the MQTT protocol is used, which is set to a basic
Quality of Service (QoS) level, prioritizing data transmission speed. However, this approach may result
in some data loss in cases of unstable Wi-Fi network signals. The Ground Truth (GT) data is obtained
by recording the AGV movement video using a top-view camera. Then, the image is processed frame
by frame to extract the AGV position using Camera Calibration and Coordinate Transformation [3].
Reference positions on the experimental field are established as ground truth coordinates, which serve
as a reference data set to assess the accuracy and errors of the sensors, as well as to perform error
correction and evaluate the overall system performance [21].

2.1.2. Equipment Used in the Experiment

In this experiment, various sensors were installed to determine the grid position at (Table 1). An
encoder coupled to a DC motor (JGB37-520) provides an AB-phase quadrature signal of 90 pulses per
revolution, which is used to calculate the distance and direction of rotation. The WitMotion WT901C
Inertial Measurement Unit (IMU) is a 9-DOF sensor that can measure linear acceleration (+16 g) and
rotation rate (up to £2000 °/s) and is set to output data at a frequency of 10 Hz. For image sensing, a
TP-Link Tapo C200 camera was installed in a 4x8m the experimental area (Figure 1), which supports
Full HD (1080p) recording at 30 frames per second. The data from these three sensors is used to
integrate the data, which helps the system determine the position of the AGV.

Table 1. Summary of sensor specifications used in the AGV localization system.

Sensor Model Specifications
AB-phase (quadrature) output for direction and
Encoder DC Motor JGB37-520 with  revolution detection; 90 pulses/rev; operating
Double Magnetic Hall voltage: 3.3-5 V DC.
Encoder

Measures linear acceleration (£16 g), angular velocity
(£2000°/s), and orientation; sampling rate: 10 Hz.

Wireless IP camera; 1080p at 30 fps; H.264
CCTV TP-Link Tapo C200 compression; IR LED (850 nm, up to 30 ft); WiFi
video streaming.
Full HD (1920 x 1080) resolution; auto-focus lens;
used as the ground-truth reference camera.

IMU WitMotion WT901C
(9-DOF)

Reference OKER HD-869
Camera (GT)
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Figure 1. Illustration of the experimental area showing the four CCTV camera placements around the 4 x 8 m
testbed. Each camera covers a specific quadrant to provide full-area visual tracking of the AGV.
2.1.3. IoT System Architecture Concepts

The conceptual framework for the IoT system architecture for AGV localization (Figure 2) is
designed to collect, synchronize, and integrate data between multiple sensors and a central processing
unit. This architecture consists of four main layers:

10T System Architecture for AGV Localization

Sensor Network Processing Application

Layer Layer Layer Layer

Figure 2. IoT system architecture for AGV localization. The framework consists of three layers: the perception
layer (sensors such as UWB, IMU, and encoders), the network layer (wireless data transmission via Wi-Fi or
MQTT), and the application layer (central server performing sensor fusion and control via the EKF).

®  Sensor (Sensor) Layer: Consists of the encoder + IMU and a CCTV camera that records data from
the experimental area.

¢  Network (Communication) Layer: Uses Wi-Fi wireless communication with the MQTT protocol
for lightweight messaging to exchange sensor data with low latency.

*  Processing Layer (Central Server): The central server collects sensor data streams, performs
synchronization, integrates the data, and stores the records for analysis.

e Application Layer: Provides visualization and location identification for the experimental area.

2.2. Localization Methods

Multi-sensor fusion works to determine the position and orientation of the AGV by combining
data from internal sensors (e.g., encoder, IMU) with external sensors (e.g., camera) using EKF [11] with
encoder, IMU, and camera.

2.2.1. Dead Reckoning Localization

Dead Reckoning estimation, which estimates the position of an AGV based on its previous state
and movement data, is divided into two parts: measuring the distance from the wheels (encoder)and
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the direction from the IMU. This method is widely used in positioning research [5,18,23]. The state
vector for Dead Reckoning is defined as
x

X=ly| (1)
0
which represents the Cartesian coordinates and heading angle of the AGV. The AGV’s motion

can be estimated using a kinematic motion model using the linear velocity v and angular velocity w
data from the sensors, as shown in the equation:

X v cos 0
y| = |vsind |, (2)
0 w

When integrating this equation with respect to time At, the state update is obtained as follows:

Xk Xp_1 + vpAt cos(0r_1)
Yi| = |Yk—1 + oxAtsin(Op_1) |, ®)
O Or_1 + wiAt

where k is the current time index and k — 1 is the previous time index. The data v and wy are obtained
by fusing data from:

e  Distance measurement from encoder: An encoder mounted to the drive motor provides wheel
rotation data that is converted to linear velocity v, and angular velocity w, using the vehicle
kinematics model. However, This method is limited by accumulated errors caused by wheel slip,
calibration inaccuracies, and surface irregularities [18,23].

¢ Direction from IMU: A 9-DOF IMU provides angular velocity wj,,,, and linear acceleration a;,,,,.
The gyroscope output is crucial for direction calculations, as accelerometer data is highly sensitive
to noise and bias errors that increase with time [8].

A limitation of the DR method is the continuous error introduced by the time integral, which
leads to an infinitely increasing error [11,14]. Therefore, periodic corrections from external sensors are
required.

2.2.2. Camera Localization

To address the accumulated drift of Dead Reckoning (DR) that cannot be corrected with internal
sensor data, external sensors, such as cameras, LIDAR, or CCTV, are used to measure the position
based on world coordinates, thus correcting the position estimate. [5]. The process is as follows:

*  Feature Detection: The system detects the features of the AGV to be located using standard
computer vision algorithms.

¢  Coordinate Transformation: The AGV’s position in the image plane is converted to its real-world
coordinates (world frame) via perspective transformation or a pre-calibrated homography matrix.

The measurement values obtained from this camera, zc 45, are crucial for making the system
observable, meaning that important system states (such as position and velocity) can be estimated. [8]

The measurement values, zy, are fed into a filter for interpolation and prediction of £;;_; through
a nonlinear measurement model, /, noise, wy as shown in the equation:

Zp = h(xk) + wy, 4)

These measurement values are then used in a Kalman Filter to calculate the innovation or error of the
measurement, v:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Yk = 2k — h(Rgjk-1), (5)

The accuracy of coordinate transformation and feature detection is crucial because they affect the
accuracy of zy, which is a key factor in reducing the cumulative error of the DR.

2.3. Pre-Processing Data Analysis

Before data from different sensors can be fed through the data fusion process, it is essential to
perform a pre-processing step to reduce bias and increase the reliability of the input data. This step
consists of two main steps designed to apply bias correction and appropriately weight each sensor
based on its statistical variance. An overview of all these pre-processing steps is shown in Figure 3 .
The next subsections describe each step in detail.

Raw Sensor Data
(Encoder IMU, Camera)

\ | J

: l 1

Step 1: Bias Correction
(Remove Systematic Errors)

\ [ J

r l 1

Step 2: Inverse-Variance Weighting
(or Custom Weights)

\ | J

r l 1

Pre-Processed Data —» Data Fusion (EKF)

Figure 3. Data pre-processing workflow for multi-sensor fusion. The process includes noise filtering, time
synchronization, bias correction, and resampling to align data from Camera, IMU, and encoder sensors prior to
fusion using the Extended Kalman Filter (EKF).

2.3.1. Bias Correction

Before using the raw sensor data in the fusion process, the systematic bias of each sensor is
assessed and corrected [15]. This is done by calculating the average deviation between the measured
sensor value S and the reference value from the Ground Truth (GT) according to the equation:

- 1
bs:N

M=

(St —GTy), (6)

t=1

Where S; is the measured value from the sensor at time t and GT; is the reference value from the
true path GT at the same time. The corrected value S} is then given by:

S; = St_ES/ (7)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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This process reduces the Root Mean Squared Error (RMSE) of the raw data and improves the
reliability of the data. [10].

2.3.2. Inverse-Variance Weighting

Data from the error-corrected sensors are weighted statistically using the Inverse-Variance Weight-
ing [4] method. This method assumes that sensors with low error variance are given higher weights
during data fusion. The weight w; for each sensor i is calculated from the error variance o7 as follows:

w; = i (8)

The weights are then normalized to Normalized Weights so that the sum of all weights is 1, defined as:

w:
w} d

i~ oM ]
Zj:l w;j

, ©)

where M is the total number of sensors.

2.4. Extended Kalman Filter (EKF)

This research developed and compared the performance of two Extended Kalman Filter (EKF)
models to estimate the state of an AGV, consisting of its position (X, Y axes) and heading. The state
equations and measurement equations used in the EKF system can be written in the following general
form: [13]:

X = f(Xk_1,u) + Wy, (10)

z) = h(xk) + Vg, (11)

Where: x; is the AGV state vector (position and direction), f(-) is the state transition function, uy
is the control data from the IMU and encoder, wy, is the process noise, z is the measured value from
the sensor, h(-) is the measurement function, v is the measurement noise.

2.4.1. Normal Series Fusion EKF (Normal EKF)

A typical EKF operates using an iterative process consisting of two main steps: Prediction Step
and Update Step[1] Prediction Step:

In this step, the EKF uses the AGV’s motion model, combined with data from the IMU and DR
(encoder) sensors to predict the AGV’s next state (position and direction) based on the predicted state
values. X;;_; and the variance of the estimate (covariance) Py;_; According to the equation:

X1 = f(Rp—1je—1, k), (12)

Pyi—1 = Fo1Pi 1By + Qi1 (13)

where X, _1 and Py, _; is the predicted state and covariance, Fy_1 is the Jacobian matrix of the
state transition function f, and Qj_; is the process noise covariance of the system.

Update Step:

When new measurements from a sensor (e.g., a CAM) are received, the EKF uses them to update
the predictions.

The Kalman Gain K} is calculated to determine the appropriate weight between the predicted
and actual measured values. Then, the state and covariance are updated according to the equation:

-1
Ky = P H] (HkPk|k—lH;£ + Rk) , (14)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Xik = Xpe—1 + K (Zk - h(’?k|k71))/ (15)
Py = (I = KeHp) Py, (16)

where Hy, is the Jacobian matrix of the measurement function /i, and Ry, is the measurement noise
covariance.

A conventional EKF updates its values using measurements from each sensor separately. In
sequential updating.

2.4.2. Blended EKF

The purpose of Blended EKEF is to correct for the characteristics of Camera-Based Reckoning
(CAM) and Dead Reckoning (DR) measurements. While CAM provides drift-free absolute position
data, it suffers from high noise, inconsistent update rates, and occasional occlusions. DR, on the other
hand, provides relative motion estimates, but inevitably accumulates drift over time. The raw data
causes EKF to be unsmooth, as it alternates between noisy camera updates and drifting DR estimates.
To correct for this, CAM and DR measurements are pre-blended prior to the update step. This blending
produces a more stable and consistent measurement input, which reduces oscillations and produces a
smoother trajectory.

The Blended EKF method fuses measurements from the Camera (CAM) and Dead Reckoning
(DR) before the update process. User-defined weights are used to control the proportion of influence
of each measurement source. This can be written as the following equation:

Zplend = Xcam Zcam + Xdr Zdr, (17)

where:

® Qe is the weight assigned to the Camera (CAM) measurements
*  ay is the weight assigned to the Dead Reckoning (DR) measurements

To achieve balance in the aggregation, the following conditions are defined. Normalization:

Kcam + &gr = 1, (18)

The uncertainty of the mixed measurement covariance, or Ry.,,4, can be estimated as:

Rplend = ‘x%am Ream + lxér Ryr, (19)

The selection of the values of a,; and a4, may be based on experimental testing or tuning to suit
the actual application environment.

3. Experimental Design

This experiment aimed to evaluate the performance of AGV location identification using fusion
of data from multiple sensors.The main equipment used in this experiment is the AGV BALTY and
various sensors, shown in Figure 4. The experimental design was structured and controlled to generate
reliable data for analysis. The experimental data processing steps consisted of the following:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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(b) CCTV (c) Reference camera

(d) Motor encoder (e) IMU

Figure 4. Experimental equipment used for AGV localization: (a) AGV BALTY; (b) CCTV; (c) reference camera; (d)
motor encoder; and (e) IMU.

1.  Bias Correction Analysis: The raw data obtained from each sensor type were analyzed against
Ground Truth (GT) data, which is akin to the "true path," to determine the systematic bias and
variance.

This step is crucial in reducing the Root Mean Squared Error (RMSE) of the raw data and
enhancing the reliability of the data before further use.

2. Weighting with Inverse-Variance Weighting: The error-corrected data were then statistically
weighted. The principle is that sensors with lower bias variance (which means higher reliability)
will receive higher weight in data fusion.

3. Data Fusion with EKF: The pre-processed data is fed into the EKF system to estimate the
state (position and orientation). Two EKF models have been developed and compared: (1) a
conventional EKF and (2) a blended EKF, which fuses measurements from the CAM and DR
sensors before the update process.

To ensure that the performance evaluation covers real-world application scenarios, the AGV was tested
to move along a specially designed route, which consists of two main parts:

1. Straight Section: This movement involves constant speed and no sudden changes of direction to
assess the ability to maintain a precise position under normal conditions.

2. Curved Section: It is a dynamic movement, which easily causes accumulated drift in the dead
reckoning system to assess the system capability and stability under the condition of changing
direction of movement.

The experiment starts at x=0, y=7, moves in a straight line, stops at position x=1, y=7, then rotates and
moves in a straight line again, then stops the movement, which is a comprehensive experiment to test
the accuracy and stability under the conditions of movement.

4. Results and Discussion

This section presents and discusses experimental results obtained from sensor data analysis and
data fusion, focusing on evaluating the performance of the designed algorithmic location system.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 2. Average bias errors of each sensor at different sampling intervals.
Sampling interval dt (s) Sensor Mean Error Mean Error Mean Error
X (m) Y (m) 0 (rad)
0.1 CAM 0.0305 0.0268 -
DR -0.0617 0.0190 -
IMU - - 0.0977
0.2 CAM 0.0250 0.0290 -
DR -0.0604 0.0201 -
IMU - - 0.1006

Note: The symbol “~” indicates that no measurement or estimation is available for that axis.

4.1. Analysis of bias correction (BC) results

Bias correction improves the accuracy of the sensor, particularly its positioning. The analysis of
the average bias errors of each sensor used in the experiment reveals the limitations and basic accuracy
of the sensor before its application. Table 2 shows the average sensor error values at two sampling
rates (dt), 0.1 s and 0.2 s, the sensor’s data acquisition frequency.

e  Camera Sensor (CAM): The bias error values in the X-axis (Mean Error X) and Y-axis (Mean Error
Y) were found to be positive in both cases (dt = 0.1 and 0.2). The position was higher than the
actual values in both axes. However, the camera sensor did not measure the rotation angle, so
there was no error for the Mean Error 6.

*  Dead Reckoning (DR) Sensor: For DR, the error values in the X-axis (Mean Error X) were negative,
while the Y-axis (Mean Error Y) were positive, indicating that there was error in both directions.

* Inertial Measurement Unit (IMU) Sensors: IMU sensors are used to measure changes in angle ().
The only error is the Mean Error (0).

Different types of sensors have different bias tolerances, both in direction (positive/negative) and
magnitude. This information is used to develop bias correction algorithms, and the analysis, using
Root Mean Square Error (RMSE) values, was calculated for two sampling intervals: dt = 0.1 s and dt =
0.2 s (Table 3).

e  Camera Sensor (CAM):
—  Before Correction (Raw): CAM had RMSE X values of 0.0617 m and 0.0483 m, and RMSE Y
values of 0.0467 m and 0.0459 m for dt = 0.1s and dt = 0.25s, respectively.

—  After Correction (Corrected): RMSE values significantly decreased, with RMSE X decreasing
to 0.0536 m and 0.0414 m, and RMSE Y decreasing to 0.0382 m and 0.0355 m, respectively.
*  Dead Reckoning (DR) Sensor:
—  Before Correction (Raw): DR had RMSE X values of 0.0792m and 0.0780m, and RMSE Y
values of 0.0241 m and 0.0255 m.
-  After Correction (Corrected): Error correction significantly reduced the RMSE of DR. RMSE
X decreased to 0.0497 m and 0.0495m, while RMSE Y decreased to 0.0148 m and 0.0157 m,
respectively.
e  Inertial Measurement Unit (IMU) Sensor:
—  Before Correction (Raw): The IMU is used to measure the rotation angle (). The RMSE 0
values before correction were approximately 0.2256 rad and 0.2317 rad.

—  After Correction (Corrected): The RMSE 6 values decreased to approximately 0.2018 rad and
0.2072 rad.

The trajectories of the CAM and DR sensors before and after the aberration correction, compared
to the ground truth (GT) trajectories at dt=0.1s and dt=0.2s, are shown Figure 5 and 6 respectively.

*  True Trajectory (GT): The blue line represents the actual trajectory of the object, which is the
reference line.
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Table 3. Root mean square error (RMSE) values of the sensors before (raw) and after bias correction (BC) at two
sampling intervals (4t = 0.1 s and dt = 0.25).

Sampling interval dt (s) Sensor X X Y Y 6 6
Raw (m) BC (m) Raw (m) BC (m) Raw (rad) BC (rad)
0.1 CAM 0.0617 0.0536 0.0467 0.0382 - -
DR 0.0792 0.0497 0.0241 0.0148 - -
MU - - - - 0.2256 0.2018
0.2 CAM 0.0483 0.0414 0.0459 0.0355 - -
DR 0.0780 0.0495 0.0255 0.0157 - -
MU - - - - 0.2317 0.2072

Note:#_» i1y dicates that no measurement or estimation is available for that axis.

Trajectory comparison of ground truth (GT) and sensors (CAM/DR)
before and after bias correction (dt = 0.1 s)

761 —=— GT (Rx,Ry) RO
¢ CAM (raw)

= CAM (bias-corrected)
7.44 # DR (raw)

A DR (bias-corrected)

Y (m)

7.2
[ ]
l...‘ .o‘c .... ® o
7.0 1 AA
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X (m)

Figure 5. Trajectory comparison of ground truth (GT) and sensor data (CAM and DR): Raw vs Bias-Corrected (BC)
atdt =0.1s.

Table 4. Variance and corresponding weights of CAM, DR, and IMU sensors at dt = 0.1s.

Data e Sensor Var X VarY Var 6 W- W W,
o (m?) (m?) (rad?) ¥ ' '
Raw CAM 0.002904 0.001478 - 0.460989 0.129245 -
DR 0.002483 0.000219 - 0.539011 0.870755 -
IMU - - 0.041277 - - 1.000000
Bias corrected CAM 0.002904 0.001478 - 0.460989 0.129245 -
DR 0.002483 0.000219 0.539011 0.870755

MU - - 0.041277 - - 1.000000

Note: The symbol “~” indicates that no measurement or estimation is available for that axis.

e  CAM (Raw): The dark blue dots represent the CAM path before correction.

*  CAM (Bias-Corrected): The orange dots represent the CAM path after correction.
* DR (Raw): The green dots represent the DR path before correction.

* DR (Bias-Corrected): The red dots represent the DR path after correction.

Bias correction reduces sensor errors. The apparent decrease in RMSE values corresponds to a closer
match of the corrected trajectory to the ground truth, demonstrating the importance of performing
bias correction before data acquisition.

4.2. Analysis of the results of sensor data fusion using Inverse-Variance Weighting

Data from multiple sensors is combined using Inverse-Variance Weighting, a method that prior-
itizes low variance (i.e. high accuracy) data. Data from cameras (CAM), dead reckoning (DR), and
inertial measurement units (IMU) are compared between raw data and bias corrected at dt=0.1s and
dt=0.2s.
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Trajectory comparison of ground truth (GT) and sensors (CAM/DR)
before and after bias correction (dt = 0.2 s)

7.6 +
—— GT (RX,Ry) .,
754 e CAM (raw) 4
= CAM (bias-corrected) *
_ 747 & DR (raw)
£734 a DR (bias-corrected)
>
7.2 1
7.1
7.0 1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

X (m)

Figure 6. Trajectory comparison of ground truth (GT) and sensor data (CAM and DR): Raw vs Bias-Corrected (BC)
atdt =02s.

Table 5. Variance and corresponding weights of CAM, DR, and IMU sensors at dt = 0.2s.

Data type Sensor Var X Var Y Var 6 Wy Wy Wy
(m?) (m?) (rad?)

Raw CAM 0.001732 0.001278 - 0.588462 0.164134 -
DR 0.002477 0.000251 - 0.411538 0.835866 -
MU - - 0.044070 - - 1.000000

Bias corrected CAM 0.001732 0.001278 - 0.588462 0.164134 -
DR 0.002477 0.000251 - 0.411538 0.835866 -
MU - - 0.044070 - - 1.000000

Note: The symbol “~” indicates that no measurement or estimation is available for that axis.

Table 6. Summary of RMSE values for fused data before and after bias correction at two different sampling

intervals.
Sampling interval df (s)  Fusion type RMSE X (m) RMSE Y (m)
0.1 Fused (Raw) 0.0661 0.0230
Fused (Corrected) 0.0483 0.0122
0.2 Fused (Raw) 0.0415 0.0235
Fused (Corrected) 0.0402 0.0095

Note: The root mean square error (RMSE) values represent the deviation of fused trajectories from the ground truth (GT) in the
X and Y directions. “Corrected” indicates data after bias removal, while “Raw” refers to uncorrected data.

From Tables 4 and 5, the variance values were used to determine the sensor weights via inverse-
variance weighting, which assigns larger weights to measurements with lower variance. In particular,
the dead reckoning (DR) sensor, having a very low Y-axis variance (Vary ~ 0.0002), receives a high
Y-axis weight (Wy ~ 0.87). Conversely, the camera (CAM) has a higher Y-axis variance, resulting
in a lower weight (Wy ~ 0.13), while along the X-axis the similar variances lead to more balanced
weights. For the rotation angle (6), the inertial measurement unit (IMU)—as the sole information
source—receives a weight of 1. These findings are consistent with the trajectory comparison in Figures 7
and 8, where the bias-corrected trajectories lie closer to the ground truth.

Table 6, which shows the root mean square error (RMSE) values of the sensor data fusion, shows
that bias-corrected data were obtained before fusion. Comparing the raw data and the fused data after
bias correction, the RMSE of the bias-corrected data decreased on both the X and Y axes.

4.3. Analysis of data integration results using EKF

Indoor localization of an Automated Guided Vehicle (AGV) involves the fusion of data from
multiple sensor sources to improve accuracy. The Extended Kalman Filter (EKF) is a popular choice
due to its capability of handling nonlinearities. Therefore, two EKF models were compared: the EKF
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Trajectory comparison of ground truth (GT) and fused data (raw vs. bias-corrected) at dt = 0.1 s.

7.6 + —— GT (Rx,Ry) ¥ -|-+ S
+ Fused (Raw) b *
7571 &« Fused (Corrected) 'i'.]
7.4
E 73]
>
7.2
7.11
7.0 -
0.00 0.25 0.50 0.75 1.00 125 1.50 1.75 2.00
X (m)
Figure 7. Trajectory comparison between the ground truth (GT) and fused data (raw and bias-corrected) at
dt =0.1s.
Traj7egtory comparison of ground truth (GT) and fused data (raw vs. bias-corrected) at dt = 0.2 s.
" | == GT (Rx.Ry) 11
7.51 % Fused (Raw)
»  Fused (Corrected) 5
7.4 "
€73
>
7.2
7.1
7.0
0.00 0.25 0.50 0.75 1.00 125 1.50 175
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Figure 8. Trajectory comparison between the ground truth (GT) and fused data (raw and bias-corrected) at
dt =0.2s.

Table 7. Summary of root mean square error (RMSE) values for Extended Kalman Filter (EKF) models at two
sampling intervals (dt = 0.1s and dt = 0.2s).

Sampling interval dt (s) EKF model RMSE X (m) RMSE Y (m) RMSE XY (m)

0.1 Normal (Raw) 0.060541 0.022919 0.064734
Normal (Bias Corrected) 0.047174 0.012047 0.048688
Blend (a; = 0.50, &, = 0.50) 0.047108 0.009638 0.048084
Blend («, = 0.30, &y = 0.30) 0.047699 0.009897 0.048715
Blend (ay = 0.70, &, = 0.70) 0.047114 0.009983 0.048160
Blend (#; = 0.30, & = 0.70) 0.047696 0.009983 0.048729
Blend (a; = 0.70, &y = 0.30) 0.047118 0.009897 0.048146

0.2 Normal (Raw) 0.040356 0.023574 0.046737
Normal (Bias Corrected) 0.039453 0.009881 0.040672
Blend (ay = 0.50, &y = 0.50) 0.040282 0.011603 0.041920
Blend (#y = 0.30, &, = 0.30) 0.043155 0.007732 0.043842
Blend («; = 0.70, &y = 0.70) 0.038740 0.018405 0.042889
Blend (ay = 0.30, &y = 0.70) 0.043131 0.018432 0.046905
Blend (#y = 0.70, &y = 0.30) 0.038761 0.007731 0.039524

Note: RMSE values are rounded to six decimal places for consistency. Boldface entries can be added to highlight the lowest
RMSE values for each case.

Normal (original, both raw and bias-corrected) and the EKF Blended (weighted with sensor values based
on the parameters &y and ay).

From Table 7, it can be seen that using the EKF with bias correction effectively reduces the RMSE
error. The RMSE for XY is significantly reduced when using the corrected data compared to the raw
data, both at dt = 0.1s and dt = 0.2s. Furthermore, applying the blended EKF provides even better
results, minimizing the RMSE for XY when appropriate weighting coefficients (ay, ;) are selected.

From Figures 9 and 10, which compare the trajectories of the EKEF filter, it is found that the
trajectory obtained from the raw data (Normal RAW) deviates the most from the ground truth (GT),
especially at dt=0.1s. However, when the data is normal bias corrected, the trajectory becomes closer
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Trajectory comparison of ground truth (GT), EKF Normal, and EKF Blend models at dt = 0.1 s.

&
7.6 1 —*— GT (Rx,Ry) - ++ 'y
= EKF Normal (Bias Corrected) 4w B
757 % EKF Normal (RAW) . E
;4] 4 EKFBlend (ax=0.70, ay=0.30) )
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Figure 9. Trajectory comparison between the normal and blended Extended Kalman Filter (EKF) models at

dt =0.1s.
Trajectory comparison of ground truth (GT), EKF Normal, and EKF Blend models at dt = 0.2 s.
7.6
—+— GT (Rx,Ry) " ).
7.5 = EKF Normal (Bias Corrected) 2
+ EKF Normal (RAW) +.
741 A EKF Blend (ax=0.70, ay=0.30) .
E73
>
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Figure 10. Trajectory comparison between the normal and blended Extended Kalman Filter (EKF) models at
dt =0.2s.

to the GT, and the Blended EKF performs better, giving a smoother trajectory that is closest to the GT.
Comparing the sampling periods (dt), it is found that at dt=0.1s, although it provides more detailed
trajectory details, it also has more pronounced noise, while at dt=0.2s, it is smoother.

It is noteworthy that some weighting configurations of Blended EKF give lower RMSE values.
Fusing higher «, and lower &, values leads to better performance. This result can be explained by
Table 4 and 5, which shows that Dead Reckoning (DR) sensors have lower variance along the Y-axis
compared to cameras (CAM), thereby increasing the reliability of DR measurements in that direction.
Therefore, it is more prudent to assign more weight to DR along the Y-axis, which relies more on stable
sensors, while CAM still performs better along the X-axis, which is comparable to DR. The importance
of adjusting the blending coefficients to match the statistical values of each sensor to increase the
accuracy and stability of the positioning.

4.4. Discussion and suggestions

The experiments demonstrate the advantages of Blended EKEF, but there are some limitations.
First, the experiment was conducted indoors in a controlled environment with fixed camera positions,
which may not capture complex real-world conditions or have uncaptured points. Second, this analysis
assumes that the deviations of each sensor are constant. In practice, sensor characteristics may change
due to temperature, wear, or other disturbances, which may affect the bias correction process. Third,
the blending coefficients (ax, a,) were selected based on experimental performance.

This limitation provides a useful guideline for future research. Future studies could expand the
experiments to larger or more complex environments and incorporate dynamic simulations, such
as moving obstacles or the interaction of multiple automated guided vehicles (AGVs). Developing
methods and compensating for time-varying biases is also important. Furthermore, adopting adaptive
or machine-learning mechanisms to automatically adjust blending weights may contribute to the
practical application of the proposed Blended EKF in industrial and logistics contexts.
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5. Conclusions

This research has demonstrated an effective data fusion framework for the localization of Au-
tomated Guided Vehicles (AGVs) in indoor environments. The core of this framework, which incor-
porates bias correction and inverse-variance weighting, yielded a significant reduction in the Root
Mean Square Error (RMSE) across all sensors, causing the corrected trajectories to align more closely
with the ground truth (GT). This weighting method strategically assigns greater influence to more
reliable sensor data, such as the high weight given to the Dead Reckoning (DR) sensor’s stable Y-axis
measurements. The proposed Blended EKF methodology proved superior to the standard EKF. Not
only did it achieve a lower RMSE in key scenarios, but it also produced a markedly smoother trajectory
that demonstrated the highest fidelity to the ground truth. Furthermore, this study confirmed that
fine-tuning the blending coefficients to reflect the statistical properties of each sensor enhances both
accuracy and stability. Specifically, assigning greater weight to the DR sensor for the Y-axis and the
Camera (CAM) for the X-axis minimized the overall RMSE.

In conclusion, the experimental results indicate that the proposed approach provides a low-cost,
accurate, and robust localization solution, making it highly suitable for practical AGV applications in
indoor settings.
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