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Abstract: Long-term industrialization has led to high HCHO concentrations in North China. In this
study, we analyzed the spatial and temporal distribution characteristics of tropospheric HCHO VCD
and its driving factors in North China from 2019 to 2023 based on the HCHO daily dataset from
TROPOMI. The results showed that the spatial distribution trend of tropospheric HCHO VCD in
North China remained unchanged in the past 5 years, with the highest in the center, followed by the
east and the lowest in the west. Seasonal variations were clearly characterized, with summer being
higher than other seasons and spring being the lowest. In addition, the effects of meteorological
elements on HCHO VCD were analyzed based on the ERA5 dataset, and the correlation between
HCHO VCD and temperature and wind was strong, while the correlation with precipitation and
surface solar radiation was low, and the effects were obviously different between the growing and
non-growing seasons. Population density is directly proportional to tropospheric HCHO VCD. In
this study, a higher-resolution spatial and temporal distribution model of tropospheric HCHO VCD
in North China is obtained based on TROPOMI, which effectively characterizes the driving factors of
HCHO VCD.

Keywords: North China;, TROPOMI; tropospheric HCHO; growing and non-growing seasons
differences; spatial and temporal distribution; driving factors

1. Introduction

Long-term high ozone concentrations in urban and industrial areas around the world have not
only caused serious air quality problems[1,2],but also brought many hazards to humans, animals and
crops. High concentrations of ozone inhibit plant growth and lead to reduced crop yields[2-6], and
excessive ozone inhalation by humans can cause neurotoxic reactions, respiratory infections, or direct
damage to their immune systems[7]. In the last three decades, with the rapid growth of fossil fuel use
in China, the emissions of volatile organic compounds (VOCs), the chemical precursors of ozone,
have increased dramatically, even exceeding those in North America and Europe, and the
deterioration of ozone pollution has triggered strong social concerns acid rain, particulate matter,
and more recently fine particulate matter (PM2.5) have been the focus of research and control, and in
contrast, less is known about ozone and its precursors[3].

In the troposphere, ozone is mainly produced by photochemical reactions of volatile organic
compounds (VOCs) and nitrogen oxides in the presence of sunlight [8]. Highly reactive VOCs have

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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a short life cycle and undergo rapid photochemical oxidation in the atmosphere to produce HCHO,
so emissions of VOCs can be inferred from HCHO concentrations[9]. Previous studies by Sillman [10]
showed that HCHO can be used as an indicator of total VOCs, and Shen et al.[11] used space-based
tropospheric HCHO columns to infer the long-term trend of VOCs emissions in China over the period
of 2005-2016. In addition to being an important precursor of ozone, HCHO is itself a seriously
hazardous air pollutant. HCHO is produced not only by human activities such as transportation,
solvent use, industrial processes and coal combustion[12], but also by photochemical oxidation of
methane and non-methane VOCs (e.g., isoprene emitted from natural vegetation) in the far
atmosphere[13]. HCHO is listed as one of the 187 hazardous air pollutants by the U.S. Environmental
Protection Agency (EPA), and short-term exposure to low concentrations of HCHO increases the risk
of death from non-accidental, circulatory, and respiratory diseases[14]. The EPA found that long-
term exposure to 0.08 ug/m* HCHO concentrations over a human lifetime increases the odds of
developing cancer by one in a million [15-20].

While ground-based measurements and monitoring are extremely valuable, they are often
limited in terms of spatial and, in some cases, temporal coverage, making it difficult to monitor in a
systematic and comprehensive manner [21-23]. However, the rapid development of satellite remote
sensing has made up for the shortcomings of ground monitoring. Compared with ground
observation, satellite remote sensing has the advantages of day-by-day observation, high spatial
resolution, wide spatial coverage, etc., and avoids many interfering factors, so that satellite remote
sensing can obtain a wide range of long time series of observational data, which provides a scientific
data basis for HCHO monitoring[24]. Since 1996, scholars have carried out satellite observations of
HCHO using a series of satellite instruments[25], and compared with previous satellite observations
(e.g., GOM-2 and OM], etc.), the newly TROPOMI satellite observations have unprecedented spatial
accuracy (3.5 kmx5.5 km ~ 3.5 kmx7.5 km)[26] and higher signal-to-noise ratio. TROPOMI, on board
the Sentinel-5 satellite, was launched on October 13, 2017, and operates in a near-polar solar orbit of
824 km, where it scans the globe daily at 13:30 local time. The high-resolution satellite measurements
allow us to analyze HCHO spatial and temporal features at finer scales. The Tropospheric Monitoring
Instrument TROPOMI builds on the great success of OMI[27], and its pixel resolution and
instrumental stability are more advantageous for observing urban-scale HCHO pollution. Its pixel
resolution and instrument stability are more advantageous for observing HCHO pollution at the
urban scale. Recently, TROPOMI has been used to estimate NOx emissions [28-32] and their changes
during COVID-19 closure [33-39], whereas TROPOMI-based HCHO studies are still relatively scarce.
The high spatial resolution of TROPOMI makes it an excellent instrument for observing HCHO
pollution on a number of small scales, e.g., within cities|[40-44], near power plants[45,46], near
ships[47], and wildfires [48,49] as well as in o0il and gas operations [31,41,50].

The North China Plain (NCP) is one of the most densely populated, industrialized, and
economically developed regions in China, with four distinct seasons, a warm temperate semi-humid
monsoon climate, and northeasterly and southwesterly winds throughout the year. It covers Hebei,
Henan, Shandong, Anhui, and northern Jiangsu, as well as most of the megacities of Beijing and
Tianjin, with Beijing, Tianjin, and Hebei forming a large cluster of megacities within the NCP, known
as the JJJ region. The large number of industries, coupled with transportation emissions, has led to a
significant increase in anthropogenic emissions of VOCs (a prerequisite for HCHO) in the region. In
addition, JJJ has a typical continental monsoon climate, suggesting that winds play an important role
in the local climate and environment[51]. The NCP region is bounded by the Bohai and Yellow Seas
to the east and the Taihang Mountains to the west. The north-south boundary is delineated by the
Yanshan Mountains, the Dabie Mountains, and the Yangtze River.The main part of the NCP region
is shown in Figure 1. In recent years, the concentration of HCHO in China has been on the rise, with
the NCP being one of the more severe regions [52]. The study shows that the extreme heat during
2016-2017 led to severe Os pollution in the North China Plain, which in turn influenced the long-term
Os trend[2]. According to a report by the Department of Environmental Protection (MEP, 2023), the
NCP has a growing air pollution problem caused by the accumulation of high levels of HCHOI[53].
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HCHO pollution adversely affects all aspects of human life, including climate and human health[51],
therefore, the study of HCHO in North China has important social and economic value.

Long-term and large-scale HCHO concentrations can be effectively obtained using satellite
remote sensing technology, which provides necessary data support for understanding the causes of
pollution and pollution prevention in North China. This study takes North China as the study area,
analyzes the spatial and temporal distribution of HCHO as well as the interannual variation and
seasonal characteristics of HCHO in North China from 2019 to 2023 based on TROPOMI
observations, and explores the impacts of meteorological conditions, vegetation cover, and
population density on the concentration of HCHO in the tropospheric column, with a view to
providing basic data support for the improvement of air quality in North China.
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Figure 1. Elevation distribution of North China in 3D view. The area framed by the thick black line is the North
China region. The rectangles from left to right are the western region (red), the central region (blue) and the

eastern region (black).

2. Materials and Methods
2.1. Data Sources

This study uses the 2019-2023 HCHO dataset from TROPOMI, derived from the European Space
Agency Copernicus Open Access Center (Copernicus Open Access
Hub)(https://dataspace.copernicus.eu/). TROPOMI consists of four spectrometers (UV, UV-visible,
NIR, and short-wave IR) covering eight non-overlapping and discontinuous spectral bands from 270
nm to 2385 nm. HCHO is obtained by spectral inversion in band 3, which is acquired by a UV-visible
spectrometer with a spectral resolution of 0.5 nm. The wavelengths in band 3 range from 320 to 405
nm, and the minimum signal-to-noise ratios in this band are all 800 to 1000. nm, and the lowest signal-
to-noise ratios in this band are all 800~1000. Regarding the uncertainties of the above products,
previous studies have carried out comprehensive and in-depth theoretical analyses and comparative
validations. In order to further reduce the relevant impact, this study filters the relevant data with
the following filtering criteria: quality control coefficient (qa_value) > 0.6, solar zenith angle (SZA) <
70°, and atmospheric mass factor (AMF) > 0. 1. This study covers the period of 2019-2023, and the
spatial accuracy of the corresponding data is 3.5 kmx5.5 km~3.5 kmx7.5 km. In this study, annual and
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seasonal mean data with a spatial accuracy of 0.01°x0.01° were constructed based on the daily
observation data by applying the oversampling method. In order to analyze the seasonal variation
characteristics, the seasonal mean was calculated based on the following criteria: March-May for
spring, June-August for summer, September-November for autumn, and December-February for
winter.

ECMWEF Reanalysis v5 (ERAD) is the latest global reanalysis dataset of the European Center for
Medium-Range Weather Forecasts (ECMWF)(https://landscan.ornl.gov/).ERA5 is based on the 4D-
Var data assimilation method and the 41r2 cycle of the Integrated Forecasting System (IFS) and
provides various quantities of long-term global atmospheric data, such as absolute temperature,
relative humidity, and wind speed, for selectable regions, and it replaces ERA-Interim. its unique
advantage is the relatively high spatial and temporal resolution, with a spatial resolution of 31x31
kilometers, and a temporal resolution of 1 hour. that provides more details of atmospheric
parameters. In this study, in order to investigate the effects of temperature, precipitation, and wind
speed on HCHO column concentrations, monthly mean surface temperature, monthly cumulative
precipitation, and monthly mean wind speed from ERA5 were spatially correlated with monthly
mean tropospheric formaldehyde column concentrations for the period 2019-2023. The ERA5 data
were resampled onto a grid with the same spatial resolution as the formaldehyde column
concentrations (0.01° x 0.01°), and thematic maps of the spatial distribution were generated based on
the calculated correlation coefficients.

The Normalized Difference Vegetation Index (NDVI) data are derived from the MODIS
terrestrial tertiary product system developed by the National Aeronautics and Space Administration
(NASA), and the MOD13A3 dataset was used in this study. The data were collected and generated
by the Terra polar orbiting environmental remote sensing satellite, constructed by sinusoidal
projection with 1000 m spatial resolution and monthly temporal resolution, and belong to the global
scale standardized processing products. The dataset significantly improves the characterization
accuracy of the surface vegetation information through the unified algorithm of radiometric
correction, geometric correction and elimination of atmospheric interferences (including aerosols,
clouds, water vapor, etc.) on the original observation data. Thanks to its multispectral characteristics,
global coverage, timeliness and open access, this product has become an important data source for
vegetation cover dynamics monitoring studies. The time-series data of this study were selected from
January 2019 to December 2023, totaling 60 months of continuous observation series.

The LandScan global vital statistics database was developed by the U.S. Department of Energy's
Oak Ridge National Laboratory (ORNL) and published by East View Cartographic. The database
integrates GIS and remote sensing technologies to build a high-precision vital statistics system
through spatial distribution modeling, and has become an internationally recognized benchmark
dataset for demographic analyses in socio-economic fields due to its superior geospatial positioning
accuracy (with the optimal resolution globally) and data reliability. The LandScan dataset is a
comprehensive, high-resolution global population distribution dataset, and a valuable resource for a
wide range of applications. The LandScan dataset is a comprehensive high-resolution global
population distribution dataset, which is a valuable resource for a wide range of applications.
Utilizing state-of-the-art spatial modeling techniques and advanced geospatial data sources,
LandScan provides detailed information on population size and density at a resolution of 30",
allowing for an accurate and up-to-date understanding of human settlement patterns on a global
scale. With its accuracy and granularity, LandScan supports a wide range of fields such as urban
planning, disaster response, epidemiology, and environmental research, making it an important tool
for policymakers and researchers to understand and address a wide range of social and
environmental challenges on a global scale. In this study, year-by-year population data from 2019-
2023 were selected to analyze the distribution of population density and HCHO column
concentration in different regions.
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2.2. Modeling of Inter-Annual Variability

In this study, a model was constructed to simulate the annual growth rate of tropospheric HCHO
column concentration in North China:

3 . 3 .
Y = An/12+B+ a,sin ( 2;[2”" j+z b cos( 2;’2’”) M)

i=1 i=1

where Y is the monthly mean of tropospheric HCHO concentration, n denotes the number of months

from 2019-2023, An/12+B indicates a linear trend in tropospheric HCHO column concentration, A is
the annual growth rate of HCHO and B  represents the intercept,

3 . 3 .
Z a, sin (@}Lz b, cos ( 27
i=1 12 i=1 12

. a, b . . .
HCHO column concentrations, ' and  is the coefficient of variation of the seasonal cycle.

) indicates the trend in the seasonal cycle of monthly average

In addition, in order to measure the merit of the model, the following two equations were used
in this study to calculate the correlation coefficients, R and RMSE, between the simulated HCHO
column concentration and the measured HCHO column concentration:

2 o Vaean Voo ) (Ve = Vo)

R =
DS (R )3 (R

)

N 2
RMSE ZFI(Vsz‘m;]_ Vo) @)

where Vmea denotes the measured HCHO column concentration, Vsim denotes the simulated
HCHO column concentration, the variable with the horizontal line above denotes the mean value of
the variable, and N is the total number of months from 2019-2023.

2.3. Calculation of the Correlation Between Each Influencing Factor and HCHO Column Concentration

In this study, based on the monthly mean surface temperature, monthly cumulative
precipitation, and monthly mean wind speed data from the European Center for Medium-Range
Weather Forecasts (ECMWF) fifth-generation reanalysis data (ERA5) and the monthly mean products
of formaldehyde (HCHO) column concentration from the TROPOMI satellite inversion, a spatially
gridded analysis method is used to carry out a spatial correlation study on a month-by-month scale
over the period of 2019-2023 by integrating the ERA5 data and HCHO column concentration data
were unified to a 0.01° x 0.01° spatial grid by bilinear interpolation. The grid-point-by-grid-point
Pearson correlation coefficient method was used for correlation calculation:

z,:1 (T;,j,t _];,j)(Hi,j,t _Hi,j)

= — —
n 2 n 2
\/Zm (7;,,-,; - 7;,,-) \/Zz:l (Hi,j,t a Hz',j)

where Ti,j,t and Hi,j,t denote the ERA5 data with HCHO column concentration at month t of grid
point (i,j), respectively, and the variable with a horizontal line above it denotes the mean value of the

(4)

variable, n = 60 months.
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3. Results and Discussion
3.1. Spatial and Temporal Distribution Characteristics of Formaldehyde in North China

The tropospheric column concentrations of HCHO in North China for the last five years from
2019 to 2023 were observed based on the Sentinel-5P satellite TROPOMI sensor. As shown in Figure
2, from 2019 to 2023, the tropospheric HCHO column concentration in North China is 1.76x10+ mol
m?2in the last five years, which is significantly higher than that in the neighboring provinces, such as
Henan, Anhui, Gansu, and Inner Mongolia. Based on the topography and geographic location, we
divided North China into three regions: western region, central region, and eastern region (as shown
in Figure 1), and the distribution characteristics of HCHO column concentration in these three regions
are obviously different. The western region is located along the Loess Plateau and Qinling Mountains,
sparsely populated, industrially underdeveloped, and economically backward, and has the lowest
tropospheric column concentration of HCHO, with a 5-year average of 1.65x10-* mol m2. The central
region is dominated by the Taihang Mountains and the North China Plain, and the eastern region
and the mountainous hills, with populations mainly concentrated in the central and eastern regions,
have relatively high tropospheric column concentrations of HCHO, which are respectively 2.23x10
mol m2, and 1.90x10+4 mol m=2.

Averaged Tropospheric HCHO VCD in North China Region
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Figure 2. Spatial distribution of 5-year mean column concentrations of HCHO in the troposphere in North China,
2019-2023.

From 2019 to 2023, the spatial distribution of HCHO tropospheric column concentrations in and
around North China remains largely unchanged, with the central region consistently maintaining the
highest HCHO tropospheric column concentrations (Figure 3). The tropospheric HCHO column
concentration in North China shows an overall increasing trend, however, the central and eastern
parts of North China show a decreasing and then increasing trend over the past 5 years, while the
western part increases steadily. In order to investigate the monthly and interannual variation
characteristics in North China, this study calculated the monthly average of tropospheric HCHO
column concentrations in North China from 2019 to 2023 (Figure 4A). Statistically, the percentage of
valid data in each month is above 70%, which is sufficient to ensure the accuracy of the time series of
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tropospheric HCHO column concentration. The HCHO tropospheric column concentrations in North
China show significant and regular monthly variations, with a maximum in June-August and a
minimum in February-April, and the peak patterns are slightly different from the general variations
in other studies[15]. To quantify the interannual variability of tropospheric HCHO column
concentrations, we fit monthly mean HCHO data using linear equations with seasonally varying sine
and cosine functions (Equation (1)). The fitting parameter A of the modeling function represents the
slope and is used to estimate the growth rate of the HCHO tropospheric column concentration. As
shown in Figure 4A, the model successfully captured the monthly-averaged trend of tropospheric
HCHO column concentration in North China. The modeled tropospheric HCHO column
concentrations and the monitored HCHO data are strongly correlated with a correlation coefficient
R of 0.895 and a root mean square error RMSE of 0.079 (Table 1). The fitting results show that the
HCHO tropospheric column concentration in North China shows a significant positive trend, with a
growth rate of 1.37x10 mol m? yr, or about 3.70% yr, from 2019 to 2023, which is much higher
than the growth rate of HCHO in North China from 2005 to 1.80% yr? in 2016[11]. The anomalous
increase in the tropospheric column concentration of HCHO in North China was unexpected because
most of the world shows a decreasing trend in the tropospheric HCHO column concentration.

Averaged Tropospheric HCHO VCD in North China Region
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Figure 3. Annual average spatial distribution of HCHO tropospheric column concentrations in North China,
2019-2023.

Table 1. Mean tropospheric HCHO column concentrations, annual growth rates, and direct correlation
coefficients (R) between measured and modeled HCHO data for eight typical cities in North China and its three
regions, 2019-2023.

Mean tropospheric Annual growth rate of

Region and city name HCHO VCD(10“mol tropospheric HCHO R RMS];ZI:%Z(;A mol
m2) VCD(10¢ mol m=2 yr)

North China Region 1.76 1.37 0.90 0.08
Western Region 1.65 1.93 0.89 0.08
Central Region 223 -1.22 0.87 0.18
Eastern Region 1.90 0.15 0.76 0.13
Beijing 2.02 0.61 0.79 0.20
Jinan 2.15 -0.55 0.83 0.21
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Qingdao 1.80 1.63 0.73 0.13
Shijiazhuang 2.19 0.14 0.84 0.20
Taiyuan 2.22 0.35 0.87 0.17
Tianjin 2.04 -0.94 0.80 0.20
Xian 1.51 2.13 0.80 0.09
Zhengzhou 2.15 -1.59 0.86 0.14

All correlation coefficient (R) is significant (p <0.01).

Figure 4. Time series of monthly mean tropospheric column concentrations of HCHO in North China, 2019-
2023.

Similarly, this study used the same methodology to investigate the variation characteristics of
HCHO tropospheric column concentrations in western, central and eastern North China over the last
5 years. As shown in Figure 4B-D, the tropospheric column concentrations of HCHO in both the
central and eastern regions follow a similar monthly variation pattern, reaching a maximum in June-
July and a minimum in March-April. In contrast, a bimodal distribution was observed in the western
region, with the first peak occurring in June-July, the second peak in ovember-December, and the
minimum in March-April, which is consistent with the trend in northern China. The simulated
HCHO tropospheric column concentrations are closely correlated with satellite monitoring data, with
correlation coefficients R values of 0.90, 0.89, 0.87, and 0.76 for North, West, Central, and East China,
respectively. The fitting results show that the tropospheric HCHO column concentrations in the
western part of North China show an increasing trend from 2019 to 2023, with an annual growth rate
of 1.93x10-¢ mol m 2 yr, however, the central region shows a clear decreasing trend with an annual
growth rate of -1.22x10-6¢ mol m?2 yr, and the eastern region shows little change with a 5-year annual
growth rate of only 0.15x10-°* mol m 2 yr, as shown in Figure 3. However, as shown in Figure 2, the
annual mean HCHO tropospheric column concentration from 2019 to 2023 is highest in the central
region at 2.23x106 mol m 2 yr, followed by 1.90x10¢ mol m 2 yr'! in the eastern region , and the
lowest was 1.65x10¢ mol m yr-! in the western region.

In addition, the 5-year time evolution characteristics of the tropospheric HCHO column
concentrations in eight typical cities in North China, including Beijing, Jinan, Qingdao, Shijiazhuang,
Taiyuan, Tianjin, Xi'an, and Zhengzhou, were also studied (Figure 4 E-L). The HCHO column
concentration of the city is the tropospheric HCHO column concentration within the latitude and
longitude + 0.5° of the city center range. Xi'an, located in the western region, has the largest annual
growth rate of 2.13x10¢ mol m? yr! but the lowest 5-year mean HCHO tropospheric column
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concentration of 1.51x10 mol m2. The 2019 to 2023 mean HCHO VCD is highest in Taiyuan and
Shijiazhuang, 2.22x10-* mol m2 and 2.19x10* mol m?, respectively, but their annual growth rates are
the lowest, 0.35x10¢ mol m? yr -1, 0.14x10* mol m? yr-'. Jinan, Tianjin, and Zhengzhou show a
decreasing trend, with annual growth rates of -0.55x10-¢ mol m2 yr7, - 0.94x106 mol m?2 yr-, -1.59x10-
¢ mol m? yr!, whereas the 5-year averages of Jinan, Tianjin, and Zhengzhou were higher than those
of North China (1.76x104 mol m-2), which are 2.15x104 mol m2, 2.04x104 mol m?2, and 2.15x10 mol
m?, respectively.The tropospheric column concentration of HCHO in Beijing grows slowly from 2019
to 2023 with an annual growth rate of 0.61x10¢ mol m? yr! and an average HCHO tropospheric
column concentration of 2.02x10-# mol m2. Table 1 lists the 5-year average tropospheric HCHO VCD
in North China, the annual growth rate, the simulated and measured values between the correlation
coefficients R and RMSE in detail.

Previous studies have shown that HCHO VCD generally has significant seasonal
characteristics[54]. The distribution and boxplots of the 5-year seasonal mean tropospheric HCHO
VCD in North China from 2019 to 2023 are shown in Figure 5A and B, respectively. As shown in the
figures, the tropospheric HCHO VCD shows similar seasonal variation characteristics in different
regions of North China, all of which reach a maximum in summer and a reaches a minimum in spring,
and remains basically flat in fall and winter. Similarly, the typical urban areas also maintain similar
seasonal variation characteristics, i.e., the maximum value is reached in summer, the minimum value
is reached in spring, and the magnitude of the tropospheric HCHO VCD values in fall and winter is
located between spring and summer, and the magnitude of the tropospheric HCHO VCD values in
autumn and winter is not comparable to each other. From the seasonal distribution map, it is still the
highest in the center, followed by the east and the lowest in the west.

A.Seasonal mean tropospheric HCHO VCD distribution in North China

Averaged Tropospheric HCHO VCD in North China Plain Averaged Tropospheric HCHO VCD in North China Plain
(Spring) (Summer)

I8N

Jinan
Mount Taishan

3N

8 . oo ‘ o - >
200 km b O 200 km §'
&, .
i T

0

108°L 12°E 16°E RE 108°E 112°E H6°E 120°E

Averaged Tropospheric HCHO VCD in North China Plain Averaged Tropospheric HCHO VCD in North China Plain
(Autumn) (Winter)

38N

N

& ;
108°E 1n2'e 16°E Rre 108°L 112° 1ne'E 120°K


https://doi.org/10.20944/preprints202503.0668.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2025 d0i:10.20944/preprints202503.0668.v1

10 of 18

B.Box plots of seasonal means of HCHO VCD for different regions in North China

A B e Regien C Conta Regun D

Figure 5. Seasonal mean of tropospheric HCHO VCD in North China.

3.2. Factors Affecting Tropospheric HCHO Column Concentrations in North China

Many factors can affect the concentration of HCHO[25,55-58].Based on previous studies, the
influencing factors that may affect HCHO VCD in North China were selected for this study.

The effect of temperature on HCHO concentrations was first explored. Monthly surface
temperature data from ERA5 were selected for correlation analysis with monthly mean tropospheric
HCHO VCD data from 2019 to 2023, and this operation was performed on a grid per 0.1° x 0.1°. We
divided the study period into the growing season (March-November) and the non-growing season
(December-February), and generated spatial distribution maps based on the calculated correlation
coefficients, which are shown in Figure 6A (growing season) and Figure 6B (non-growing season),
respectively. The results showed that in the growing season, temperature and HCHO VCD were
positively correlated, and the correlation coefficient R was high, with a mean value of 0.50, with the
highest value of 0.63 in Jinan, followed by 0.61 in Shijiazhuang, and 0.59 and 0.58 in Tianjin and
Taiyuan, respectively, while in the non-growing season, they were negatively correlated to varying
degrees, with a mean value of -0.1, with the values of R in Beijing, Shijiazhuang, and Beijing reaching
-0.41. During the growing season, high temperatures favor the oxidation of volatile organic
compounds[59],which increases the atmospheric concentration of formaldehyde, whereas for the
non-growing season, low winter temperatures require coal heating, which consumes a large amount
of fossil fuels such as coal and leads to the emission of formaldehyde and volatile organic compounds,
so that the temperature is positively correlated with the concentration of formaldehyde during the
growing season, and negatively correlated with the temperature and the concentration of
formaldehyde during the non-growing season.
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Figure 6. Spatial distribution of tropospheric HCHO VCD and temperature dependence in North China during

the growing season (a) and non-growing season(b),2019-2023.

We used the same method to study the effect of precipitation on HCHO concentration, which is
an indirect factor affecting the concentration of formaldehyde columns, and Figure 7A (growing
season) and B (non-growing season) shows the spatial distribution of correlation coefficients between
HCHO concentration and precipitation in North China from 2019 to 2023. The average R value in the
growing season is 0.22, with positive correlation and positive R values in eastern, central, and western
North China as well as in typical urban areas, with Zhengzhou and Xi'an being the highest, 0.32 and
0.28, respectively.The average R value in the non-growing season is -0.11, with positive correlation
and positive correlation in central North China, with Qingdao having an R value of 0.29, Zhengzhou
having an R value of 0.15, and Jinan having an R value of 0.05, and the rest of the regions were
negatively correlated. A small amount of precipitation can promote the growth of plants and increase
the VOCs produced during plant growth, which cannot be easily purified by water, so that these
VOCs have the opportunity to be converted into formaldehyde [60].On the other hand, precipitation
has an obvious scavenging effect on atmospheric formaldehyde, and the atmospheric formaldehyde
content after precipitation is generally lower than that before precipitation, but over time,
precipitation increases air humidity and promotes hydrolysis of formaldehyde polymers, which
leads to an increase in the concentration of formaldehyde columns [59].

Correlation coefficient between tropospheric HCHO VCD and precipitation
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Figure 7. Spatial distribution of tropospheric HCHO VCD and its relationship with precipitation during the

growing season (a) and non-growing season (b) in North China, 2019-2023.

Next, we explored the effect of another important meteorological element, wind, on HCHO
concentration, and the results are shown in Figure 8. The correlation coefficients between HCHO
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concentration and wind speed in North China from 2019 to 2023 are low, with R-values of only 0.07
and 0.04 for the growing and non-growing seasons, suggesting that overall North China's HCHO
concentration has little correlation with wind. However, Qingdao and Tianjin, which are located in
the coastal area, have relatively high R-values, which is caused by the fact that the region is mainly
affected by sea winds and land winds, which transport wet sea vapors to the land and have a certain
dilution effect on formaldehyde[59]. It has been shown that wind direction directly affects the
direction of formaldehyde diffusion, as shown in Figure 8, the R-value is higher in the southern part
of North China during the growing season, whereas during the non-growing season, the R-value is
higher in the northern part of the country, which may be related to the difference in wind direction
in different seasons.

Correlation coefficient between tropospheric HCHO VCD and wind speed
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Figure 8. Spatial distribution of tropospheric HCHO VCD and its relationship with wind speed during the

growing season (a) and non-growing season (b) in North China, 2019-2023.

Figure 9 shows the correlation between HCHO column concentration and net surface solar
radiation in North China from 2019-2023. As shown in the figure, during the growing season, the
HCHO column concentration is positively correlated with the net surface solar radiation as a whole,
but the correlation is not large. While in the non-growing season, the correlation between the two
was higher in most areas, but inversely correlated.

Correlation coefficient between tropospheric HCHO VCD and net solar radiation
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Figure 9. Spatial distribution of tropospheric HCHO VCD and its relationship with net surface solar radiation

during the growing season (a) and non-growing season (b) in North China, 2019-2023.


https://doi.org/10.20944/preprints202503.0668.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2025

13 of 18

Another important natural influence is NDVI, and the spatial distribution of correlation
coefficients between HCHO column concentrations and NDVI is shown in Figure 10. During the
growing season, the HCHO column concentrations in the western and eastern regions were
positively correlated with NDVI and the correlation was high, whereas the correlation with NDVI in
the central region was low, presumably related to the concentration of heavy industries such as
copper processing plants, mining plants, and steel plants in this region. The correlation coefficients
between HCHO column concentrations and NDVI were similar and lower in most areas during the
non-growing season.

Correlation coefficient between tropospheric HCHO VCD and NDVI Correlation coefficient between tropospheric HCHO VCD and NDVI
(2019-2023 Growing season) (2019-2023 Non-growing season)
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Figure 10. Spatial distribution of tropospheric HCHO VCD and its relationship with NDVI during the growing
season (a) and non-growing season (b) in North China, 2019-2023.

Finally, we calculated the mean population density within the same urban +0.5° grid as above
based on the LandScan population dataset and plotted it against the mean tropospheric HCHO VCD
for 2019-2023 (Figure 11). The results show that overall the population density and the mean
tropospheric HCHO column concentration are positively proportional in North China, e.g., the
central region has the highest population density (434.43 persons/km?) and the highest mean
tropospheric HCHO column concentration (2.23x10-* mol m2), followed by the eastern region with a
population density of 288.54 persons/km? and a mean tropospheric HCHO column concentration of
1.90x10+ mol m?, and the lowest population density (245.56 people/km?) and the lowest mean
tropospheric HCHO column concentration (1.65x10 mol m) in the west. However, this pattern is
not fully satisfied for typical cities specifically, and population density is not the main factor affecting
these cities.
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Figure 11. Relationship between Population Density and Mean Tropospheric HCHO Column Concentration in
Major Regions and Cities in North China, 2019-2023.

4. Conclusions

In this study, the temporal and spatial trends of tropospheric HCHO VCD in North China from
2019 to 2023 are investigated based on the HCHO dataset from the TROPOMI sensor of the Sentinel-
5 satellite. The tropospheric HCHO column concentration in North China shows an overall increasing
trend, with the central and eastern parts of the region showing a decreasing and then increasing
trend, and the North China region shows a steady increasing trend with smaller changes. The HCHO
VCD in North China shows a spatial distribution trend of lowest in the west and highest in the center.
The seasonal variation of HCHO VCD in North China is obvious, with the summer season being
higher than the other seasons as a whole and the spring season being the lowest, and the high value
of HCHO VCD basically occurs in June-August and reaches the lowest value in March-April every
year. During the growing season, high temperatures are favorable for VOCs to undergo oxidation
and increase HCHO VCD, and temperature and HCHO VCD are positively proportional, while
during the non-growing season, temperature is inversely proportional to the change in HCHO VCD.
The correlation coefficients of precipitation, wind, and net surface solar radiation with HCHO VCD
were smaller than those of temperature, whereas NDVI was positively correlated with HCHO VCD
and the correlation was high during the growing season. Human activities also have some influence
on HCHO VCD, and the population density in North China is proportional to the mean tropospheric
HCHO column concentration.
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Abbreviations

The following abbreviations are used in this manuscript:

VOCs Volatile organic chemicals
VCD Vertical column density
TROPOMI  Tropospheric Monitoring Instrument
EPA Environmental Protection Agency
i) Jing Jin Ji
NCP North China Plain
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