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Abstract: Abnormal operating modes in the iron ore sintering process often cause a decline in both 
the yield and quality of the resulting sinter ore. Accurate early warning of such modes is therefore 
essential for improving both the quantity and quality of sinter ore. This paper presents an early-
warning method of abnormal operating mode based on the feature extraction from the cross-section 
frame at the discharge end. First, an edge-detection-based scheme is designed to isolate and analyze 
the red fire layer in the image. Second, a Random Forest feature importance ranking is employed to 
select process variables. Third, a Bayesian neural network is trained to build the early-warning model. 
Finally, the burn-through point is adopted as the classification criterion, and experiments are carried 
out on raw data collected from an industrial plant. The results show that the proposed method issues 
accurate early warnings of abnormal operating modes, achieving an accuracy of 94.07%, and thus 
offers promising prospects for industrial application. 

Keywords: abnormal operating mode; feature extraction; early-warning model; sintering process 
 

1. Introduction 

Sintering is the principal route for producing high-quality synthetic iron ore. During sintering, 
base ore is blended with other materials to enrich desirable components and, through high-
temperature reactions, to reduce impurities, thereby upgrading the product quality. The sinter ore 
produced through this process serves as the primary burden material for blast furnace ironmaking 
[1]. Global crude steel output reached 1.8826 billion tonnes in 2024 [2]. As steel demand continues to 
rise, high-grade natural ore alone can no longer satisfy industrial needs, making the sintering process 
increasingly critical. 

Sintering is a thermal agglomeration operation whose principal feed materials are iron ore, 
returning sinter ore, fluxes and coke [3]. Its high energy consumption and severe environmental 
impact have long been major concerns for steel plants. An operating mode describes the state of 
process variables under specific conditions. Operators adjust control actions according to different 
modes to improve product quality, boost productivity and reduce energy use. Correctly identifying 
operating modes in the sintering process therefore has substantial economic value. 

The recognition of abnormal operating modes has attracted considerable research attention, 
enabling mode-recognition methods to be applied to many industrial processes, the sintering process 
included [4]. Because manual monitoring is limited [5], production cannot always run safely. Hence, 
recognizing abnormal operating modes in industrial processes is crucial for operational safety. Tang 
et al. proposed an attention-based early warning framework for abnormal operating conditions in 
FCCU, combining denoising, Conv-LSTM, and anomaly attention modules to improve detection 
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accuracy and robustness [6]. Du et al. clustered and smoothed sintering data with fuzzy C-means, 
built Naïve Bayes sub-models for mode recognition and combined them into a high-accuracy model, 
laying the groundwork for stable sinter quality [7]. However, their work did not consider the cross-
section frame at the discharge end. 

Recent studies have placed considerable emphasis on analyzing discharge end images in the 
context of iron ore sintering. In [8], a hybrid just-in-time soft sensing system was introduced to 
estimate carbon efficiency by extracting key features from cross-sectional frames. A genetic-
algorithm-based fuzzy c-means clustering technique was applied to segment key frames into distinct 
regions, which then served as inputs for a soft sensor to predict the comprehensive carbon ratio (CCR) 
in real time. Liang et al. [9] proposed a CNN-Transformer dual-stream network for classifying sinter-
flame combustion states with high accuracy. However, these approaches focused on combustion or 
efficiency analysis rather than early warning of abnormal operating modes. 

Although the above methods achieved good experimental results, they still lack the use of the 
discharge end image for abnormal operating mode recognition, and they rarely provide early 
warning of modes. Issuing early warning of abnormal operating modes enables operators to 
intervene in advance, thereby shortening the time the strand spends in an abnormal state. Moreover, 
ignoring image features tends to reduce recognition accuracy. 

To address the challenges in early detection of abnormal operating modes, this study proposes 
an early-warning model based on feature extraction from cross-sectional frames at the discharge end. 
The approach begins with frame segmentation to isolate the red fire layer, which is then analyzed 
separately. The Sobel edge detection algorithm is employed due to its balance of speed and accuracy, 
making it suitable for real-time industrial applications [10]. Subsequently, a one-way analysis of 
variance reveals that the continuity and height of the red fire layer are highly correlated with the 
operating mode. To further refine input selection, Random Forest feature importance analysis is 
performed, identifying the most relevant process variables. These top-ranked variables are used as 
inputs to a Bayesian Neural Network (BNN) model, which is trained to issue early warnings of 
abnormal operating modes. Real production data from an industrial sintering plant is utilized for 
model training and validation. Experimental results demonstrate that the proposed model achieves 
a prediction accuracy exceeding 94.07%, significantly outperforming existing methods referenced in 
[7] and [13]. 

The key contributions of this paper are summarized as follows: 
(1) An early-warning method for abnormal operating modes that exploits feature extraction from 

the cross-section frame at the discharge end. 
(2) A labelled, interpretable early-warning model that operators can readily accept for control 

guidance. 
(3) An early-warning approach that combines Bayesian theory with operator experience, improving 

the reliability of the early-warning of abnormal operating mode. 

2. Description of the Sintering Process and Design of the Early-Warning Scheme 
for Abnormal Operating Modes 

This section first gives a detailed account of iron ore sinter production and of the characteristics 
of the cross-section frame at the discharge end. On the basis of production requirements, an early-
warning scheme for abnormal operating modes is then formulated. 

2.1. Description of the Iron Ore Sintering Process 

The iron ore sintering process is multivariate, highly nonlinear and strongly time-delayed, and 
it can switch among several operating modes [11]. The Dwight-Lloyd sintering machine remains the 
dominant equipment used in current sintering operations. In this study, a 360 m² strand with 24 
bellows is selected as the case example. The overall iron ore sintering process is illustrated in Figure 
1. 
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Figure 1. Iron ore sintering process. 

The process agglomerates iron ore, returning sinter ore, fluxes and coke into hot sinter ore [12]. 
Raw materials are first blended with water in fixed proportions to form a mixture that is stored in a 
mixing hopper. A roll feeder then distributes the mixture onto a moving pallet strand. Inside the 
ignition hood the charge is ignited, after which down-draft fans draw combustion air so that the bed 
burns progressively from top to bottom. When the leading edge of the combustion zone reaches the 
grate bars, the mixture has burned out and the process reaches the burn-through point (BTP); 
combustion then ceases. Under the normal operating mode, the BTP coincides with approximately 
the 23rd bellows. 

Operators judge process stability mainly by tracking the BTP. Because the BTP marks the 
location where the mixture has finished burning, its position is the most important thermal indicator. 
If the BTP appears upstream of the target position, the effective bed area is not fully utilized and 
strand productivity falls. If the BTP appears downstream, the bed has not burned through at 
discharge, which increases the recycle load of returning sinter ore. Hence, the current operating mode 
can be assessed directly from the BTP position [13]. 

After complete combustion, the hot bed travels roughly one additional bellows length and 
reaches the segmentation frame. Here the sinter cake is broken loose and discharged. When the cake 
has fallen away completely, the cross-section frame at the discharge end becomes fully visible, 
providing the image used in this study. A typical bellows exhaust gas temperature profile is shown 
in Figure 2. 
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Figure 2. Temperature of the exhaust gas in bellows. 

2.2. Characteristic Analysis of Sintering Process 

Before applying the cross-section frame at the discharge end for early warning of abnormal 
operating modes, it is essential to examine its correlation with the operating mode and to clarify the 
challenges involved in accurate early warning. 

At the discharge end, the captured cross-section frame reveals three distinct zones: the red fire 
layer, the background area and the trolley baffle. Thermally, the strand can run in one of three 
operating modes—over-burning, normal or under-burning [14]. Over-burning arises when the cake 
reaches burn-through ahead of schedule, pushing the BTP upstream. Under-burning occurs when 
combustion remains incomplete, so the BTP shifts downstream. Either deviation diminishes strand 
utilization and lowers sinter quality, thereby impairing subsequent blast-furnace performance [15]. 

The red fire layer provides the clearest visual cue to the combustion state. Two attributes—its 
vertical height and its continuity—define that state. A tall, unbroken red band indicates an elevated 
combustion front, under-burning of the mix and a delayed BTP; a shallow, intermittent band signals 
premature burn-through and an advanced BTP. When both height and continuity are intermediate, 
the bed burns out at the intended depth. Thus, every operating mode is associated with a 
characteristic red fire layer pattern. 

The location of BTP (𝐿𝐿BTP) is taken as the indicator of the operating mode. In normal operation 
𝐿𝐿BTP  must lie inside the band [𝐿𝐿𝑑𝑑 − 𝑑𝑑, 𝐿𝐿𝑑𝑑 + 𝑑𝑑] , where 𝐿𝐿𝑑𝑑  is the target BTP position and 𝑑𝑑  the 
admissible fluctuation (here 𝑑𝑑 = 0.5 and 𝐿𝐿𝑑𝑑 = 22.5). If 𝐿𝐿BTP rises above the upper limit the bed is 
under-burned; if it falls below the lower limit the bed is over-burned. 

Thus, three modes are defined: 
𝑂𝑂𝑂𝑂1—Over-burning: 𝐿𝐿BTP < 𝐿𝐿𝑑𝑑 − 𝑑𝑑. 
Premature burn-through lowers strand utilization and reduces sinter output. 
𝑂𝑂𝑂𝑂2—Normal: 𝐿𝐿𝑑𝑑 − 𝑑𝑑 ≤ 𝐿𝐿BTP ≤ 𝐿𝐿𝑑𝑑 + 𝑑𝑑. 
The mixture burns out precisely at the desired location, fulfilling production requirements. 
𝑂𝑂𝑂𝑂3—Under-burning: 𝐿𝐿BTP > 𝐿𝐿𝑑𝑑 − 𝑑𝑑. 
Incomplete burn-through of the mixture at the time of unloading results in reduced output and 

inferior sinter ore quality. 
When over-burning occurs, combustion ends early; the red fire layer reaches the grate, giving a 

low and intermittent appearance. When under-burning occurs, the combustion zone remains in the 
upper–middle bed; the red fire layer appears high and continuous. Under normal operating mode 
the red fire layer is located in the middle-lower part of the frame and shows good continuity. 

2.3. Design of the Early-Warning Scheme for Abnormal Operating Modes 
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Given the strong non-linearity and high degree of coupling inherent in the sintering process [16], 
this study proposes an early-warning model for abnormal operating modes that leverages the cross-
section frame at the discharge end. To ensure reliable early warning, it is crucial to fully incorporate 
the relevant state parameters into the model. Because the key frame features are also highly correlated 
with the operating mode, they must be included among the model inputs. 

The early-warning scheme comprises three main steps. First, an image-processing module is 
designed to extract feature parameters from the discharge end cross-section frame. Next, a Random 
Forest feature importance ranking is applied to select the variables. Then, a BNN is constructed to 
serve as the early-warning model. The overall structure is shown in Figure 3. 

Iron Ore Sintering Process

Time-series Data Collection by Sensors Keyframe selection

Before the mineral cake falls      After the mineral cake falls

Keyframe feature extraction

Operating mode early-warning model
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Figure 3. Operating mode early-warning model for sintering process. 

For the model inputs, the key frame features are extracted first. In view of the periodic descent 
of the sinter cake, a key frame selection strategy is devised. After selecting the discharge end key 
frame, the Sobel operator segments it into the red fire layer and the background region. The resulting 
feature parameters are calculated and stored in a database. 

To handle the multi-factor influences on the operating mode, a Random Forest algorithm is 
employed to compute the importance of each variable. Random Forest is simple, easy to implement 
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and incurs only modest computational cost; variables with higher importance scores are retained as 
inputs to the early-warning model. 

Finally, a BNN-based early-warning model is used, taking as inputs the feature parameters of 
the discharge end frame together with several key state parameters of the sintering process. The BNN 
is chosen because it merges the strengths of Bayesian statistics and neural networks, thereby 
enhancing both early-warning accuracy and generalization ability. 

3. Early-Warning Model for Abnormal Operating Modes 

This section establishes the early-warning model for abnormal operating modes. First, an image-
processing module is used to extract feature parameters from the cross-section frame at the discharge 
end. Second, a Random Forest feature importance ranking is applied to select the input variables. 
Finally, a BNN is trained to construct the early-warning model. 

3.1. Feature extraction from the cross-section frame at the discharge end 

A key frame selection method was designed according to the characteristics of the infrared video 
taken at the discharge end. The key frame extraction procedure processes the images captured at the 
discharge end in order to identify those moments that best represent changes in the operating mode. 
A camera mounted at the discharge end continuously records the sintering process, and, during 
processing, only the key frames that have a significant influence on the operating mode are retained. 

The sinter cake falls from the pallet at roughly 60 s intervals; immediately afterwards a large 
dust plume is generated, degrading image quality. To avoid this problem, the key frame is extracted 
during the initial appearance of the red fire layer, before dust obscures the view. In the present study 
an image is captured every 5 s, and the grey-level difference between successive frames is calculated. 
The frame with the maximum difference is selected as the key frame because it clearly reflects the 
operating mode while minimizing dust interference, ensuring both efficiency and accuracy. 

Information from the red fire layer is essential for early warning, so this region must be 
segmented before the image features are calculated. Sobel edge detection, a classical image-
processing algorithm, identifies edges by evaluating the gradient magnitude and direction at each 
pixel, and is applied in this study to segment the key frames. A comparison of the frame before and 
after the sinter cake has fallen is shown in Figure 4. 

   
(a) Before the mineral cake falls (b) After the mineral cake falls 

Figure 4. Comparison of sintered ore cake before and after falling. 
As outlined in Section 2.2, two descriptors are extracted from each key frame: the average height 

ℎ and the continuity degree 𝜔𝜔 of the red fire layer. 
The average height is obtained by 

ℎ =
1
𝑘𝑘
�𝑦𝑦𝑖𝑖

𝑘𝑘

𝑖𝑖=1

, (1) 

where 𝑦𝑦𝑖𝑖  denotes the highest pixel ordinate in the 𝑖𝑖 − 𝑡𝑡ℎ column and 𝑘𝑘 is the total number of 
columns. 

Continuity is measured via 

𝜔𝜔 =
𝑛𝑛𝑝𝑝
𝑘𝑘

, (2) 

with 𝑛𝑛𝑝𝑝  representing the count of columns whose red fire layer height reaches (or exceeds) that 
average value, while 𝑘𝑘 again is the column total. 
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Thus, ℎ captures the vertical extent of the red zone, whereas 𝜔𝜔 quantifies how consistently 
that height is maintained across the frame. 

3.2. Input Variable Selection of Early-Warning Model 

The sintering data set contains 20 measured variables, as shown in Figure 3. To address the 
multifactor influence on the operating mode, a Random Forest algorithm is employed to evaluate the 
importance of each variable. Random Forest is an ensemble method that builds multiple decision 
trees as base learners and aggregates their outputs to improve performance. It improves the 
classification performance of single trees by bootstrap aggregation and random feature splitting 
during tree construction [18]. It is straightforward to implement and has low computational cost. 

To quantify the contribution of each variable to the classification process, the Gini index is used 
as the splitting criterion in the Random Forest algorithm. For any node 𝑚𝑚 in a decision tree within 
the Random Forest, the Gini impurity 𝑔𝑔𝑚𝑚 is defined as: 

𝑔𝑔𝑚𝑚 = �𝑝𝑝
^
𝑚𝑚𝑚𝑚(1 − 𝑝𝑝

^
𝑚𝑚𝑚𝑚)

𝐾𝐾

𝑘𝑘=1

, (3) 

where 𝐾𝐾 is the total number of classes, 𝑝𝑝
^
𝑚𝑚𝑚𝑚  is the estimated probability that a sample at node 𝑚𝑚 

belongs to class 𝑘𝑘. 
For binary classification problems, this can be simplified as: 

𝑔𝑔𝑚𝑚 = 2𝑝𝑝
^
𝑚𝑚(1 − 𝑝𝑝

^
𝑚𝑚). (4) 

If a variable 𝑡𝑡𝑗𝑗  is used in the 𝑖𝑖 − 𝑡𝑡ℎ  decision tree and contributes to 𝑀𝑀  splits, then the 
importance score 𝑣𝑣𝑖𝑖𝑖𝑖  of variable 𝑡𝑡𝑗𝑗 in that tree, based on the reduction in Gini impurity, is given by: 

𝑣𝑣𝑖𝑖𝑖𝑖
(Gini) = � Δ𝑔𝑔𝑗𝑗𝑗𝑗

(Gini)
𝑀𝑀

𝑚𝑚=1

, (5) 

where Δ𝑔𝑔𝑗𝑗𝑗𝑗
(Gini) is the reduction in Gini impurity at node 𝑚𝑚 when splitting on variable 𝑡𝑡𝑗𝑗. 

The total importance of variable 𝑡𝑡𝑗𝑗 across all 𝑛𝑛 trees in the Random Forest is calculated as the 
average: 

𝑣𝑣𝑗𝑗
(Gini) =

1
𝑛𝑛
�𝑣𝑣𝑖𝑖𝑖𝑖

(Gini)
𝑛𝑛

𝑖𝑖=1

. (6) 

This quantitative metric enables Random Forest to rank variables by their contribution to the 
classification outcome, making it suitable for selecting relevant features that influence the sintering 
process’’s operating mode. Variables with relatively high Gini importance values were chosen as 
input features for the early-warning model. The corresponding importance coefficients are shown in 
Table 1. 

Table 1. Results of importance analysis. 

Feature 𝑻𝑻𝟐𝟐𝟐𝟐 𝑽𝑽𝑻𝑻 𝑻𝑻𝟐𝟐𝟐𝟐 𝑷𝑷𝑵𝑵 𝑯𝑯𝑴𝑴 𝑻𝑻𝟐𝟐𝟐𝟐 𝑻𝑻𝟐𝟐𝟐𝟐 
Gini-based 
importance 

0.402 0.356 0.341 0.305 0.302 0.282 0.279 

Feature 𝑻𝑻𝟏𝟏𝟏𝟏 𝑻𝑻𝟐𝟐𝟐𝟐 𝑻𝑻𝟏𝟏𝟏𝟏 𝑻𝑻𝟏𝟏 𝑻𝑻𝟏𝟏𝟏𝟏 𝑻𝑻𝟑𝟑 𝑻𝑻𝟗𝟗 
Gini-based 
importance 

0.233 0.198 0.153 0.149 0.098 0.071 0.032 

To accelerate the early-warning model, the number of selected inputs must be limited. In order 
to avoid excessive redundancy while still retaining sufficient time series information, an importance 
score threshold of 0.3 is adopted; the resulting scores are listed in Table 2. The analysis shows that 
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temperature of exhaust gas in 23rd bellows (𝑻𝑻𝟐𝟐𝟐𝟐 ), 𝑻𝑻𝟐𝟐𝟐𝟐 , the strand speed, the main flue negative 
pressure and the bed height all have importance values above the threshold. These five variables are 
therefore chosen as the inputs to the abnormal operating mode early-warning model. 

Table 2. Cross-section frames at discharge end features analysis. 

Operating mode Average height Continuity degree 
Over-burning 0.15 0.62 

Normal 0.37 0.70 

Under-burning 0.58 0.73 

3.3. Structure of Early-Warning Model 

The early-warning model for sintering operating mode is designed to infer the upcoming state 
𝑂𝑂𝑂𝑂𝑘𝑘 (𝑘𝑘 ∈ {1, 2, 3}) using a set of real-time process parameters. The selected parameter vector 𝑃𝑃in ∈
𝑅𝑅𝑑𝑑, obtained from prior feature selection, serves as the model input, and the early-warning result 
represents the output. 

BNNs integrate the interpretability of Bayesian statistics with the expressive power of deep 
learning [19]. Traditional Bayesian models rely on Bayes’ theorem to update probability estimates by 
combining prior distributions with observed data. However, they struggle with scalability in high-
dimensional, nonlinear contexts. Neural networks, on the other hand, are effective at abstracting 
complex patterns but lack inherent uncertainty quantification. BNNs overcome both limitations by 
treating all weights and biases as probability distributions rather than fixed values, allowing them to 
represent model uncertainty and reduce overfitting. 

Formally, the transformation in each layer 𝑙𝑙 of a BNN is defined as: 

𝑎𝑎(𝑙𝑙) = 𝜎𝜎�𝑊𝑊(𝑙𝑙)𝑎𝑎(𝑙𝑙−1) + 𝑏𝑏(𝑙𝑙)�, (7) 

where 𝑊𝑊(𝑙𝑙)  and 𝑏𝑏(𝑙𝑙)  are random variables drawn from prior distributions, 𝜎𝜎(⋅)  denotes the 
activation function, and 𝑎𝑎(0) = 𝑃𝑃in is the input feature vector. 

To approximate the intractable posterior 𝑝𝑝(𝑊𝑊, 𝑏𝑏|𝒟𝒟), variational inference is used: 

𝑝𝑝(𝑊𝑊, 𝑏𝑏 ∣ 𝒟𝒟 ) ≈ 𝑞𝑞(𝑊𝑊, 𝑏𝑏 ∣ 𝜃𝜃 ), (8) 

where 𝑞𝑞(⋅) is a tractable variational distribution parameterized by 𝜃𝜃, and 𝒟𝒟 is the dataset. 
The objective is to minimize the evidence lower bound (ELBO): 

ℒ = 𝐸𝐸𝑞𝑞[log 𝑝𝑝(𝒟𝒟 ∣ 𝑊𝑊, 𝑏𝑏 )] − KL�𝑞𝑞(𝑊𝑊, 𝑏𝑏) ∥ 𝑝𝑝(𝑊𝑊, 𝑏𝑏)�, (9) 

This balances data fit and model complexity, enabling better generalization and robustness. The 
architecture of the complete early-warning system is illustrated in Figure 5. 

C
ross -section fram

e
Iron ore sintering process

Input
Layer

First Hidden
Layer

Second Hidden
Layer

Output
Layer

BNN Module

Early-warning result of the 
operating mode 

 
Figure 5. Structure of abnormal operating modes early-warning model. 
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4. Experimental Study and Analysis 

This section validates the proposed early-warning method for abnormal operating modes by 
means of experiments based on raw data collected from a steel plant and discusses the results. 

4.1. Experimental Design 

To validate the effectiveness of the proposed early-warning scheme utilizing cross-section frame 
features at the discharge end, a series of images at the discharge end were collected from an actively 
operating industrial strand. Key frames were identified in the infrared video—captured with IRTool 
Pro—by applying the selection strategy described above. After saving the raw stream to a local 
directory, a Python routine (i) isolated the key frames, (ii) defined crop coordinates and (iii) 
automatically clipped the region of interest, namely the red fire layer. Each cropped frame was then 
passed through image-segmentation and feature-extraction steps, and the resulting parameters were 
written back to disk by the same Python script. 

Because the field sensors sample every 5 s, the sampling interval of the raw production data was 
enlarged to 1 min to reduce the influence of high-frequency noise. In total, 3000 time series samples 
were collected: the training set consists of 1000 over-burning, 1000 normal and 1000 under-burning 
cases, while the remaining 540 samples—180 for each operating mode—were set aside for testing. 

Each key frame was segmented with the Sobel edge-detection method. Frames corresponding to 
the three operating modes—identified in consultation with experienced plant operators—were 
selected for segmentation. The results are presented in Figure 6, where it is evident that the red fire 
layer exhibits distinct characteristics across the three operating modes: under over-burning the layer’s 
continuity and average height are markedly lower than in the normal mode, whereas under-burning 
yields the greatest height and continuity. The numerical feature parameters for the three frames 
depicted in Figure 6 are provided in Table 2. 

To refine the experimental results, multiple runs were performed. Once the features of the cross-
section frame at the discharge end had been extracted, they were merged with the time series process 
data to serve as the input vector of the abnormal operating mode early-warning model, which then 
produced the early-warning result for the operating mode. 

   

(a) Original figure(under-burning) (b) Original figure(normal) (c) Original figure(over-burning) 

Figure 6. Image segmentation result. 

The early-warning performance for different operating modes is represented by the confusion 
matrix in Table 3. In this matrix, 𝑀𝑀𝑖𝑖𝑖𝑖(𝑖𝑖 = 1,2,3; 𝑗𝑗 = 1,2,3) denotes the number of test samples that are 
predicted as operating mode OM𝑖𝑖  by the early-warning model, while their true label is OM𝑗𝑗 . In 
addition, three metrics are defined to evaluate the early-warning performance: 𝜂𝜂𝑎𝑎 represents the 
overall accuracy, 𝜂𝜂𝑓𝑓 the false-alarm rate, and 𝜂𝜂𝑚𝑚 the missing-alarm rate. They are expressed as, 

𝜂𝜂𝑎𝑎 =
𝑀𝑀11 + 𝑀𝑀22 + 𝑀𝑀33

∑ ∑ 𝑀𝑀𝑖𝑖𝑖𝑖
3
𝑖𝑖=1

3
𝑖𝑖=1

× 100%. (10) 

𝜂𝜂𝑓𝑓 =
𝑀𝑀12 + 𝑀𝑀32

∑ 𝑀𝑀𝑖𝑖2
3
𝑖𝑖=1

× 100%. (11) 

𝜂𝜂𝑓𝑓 =
𝑀𝑀21 + 𝑀𝑀31 + 𝑀𝑀13 + 𝑀𝑀23

∑ 𝑀𝑀𝑖𝑖1
3
𝑖𝑖=1 + ∑ 𝑀𝑀𝑖𝑖3

3
𝑖𝑖=1

× 100%. (12) 

Table 3. Example of confusion matrix. 
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 Mode 
Actual 

Accuracy 
False-alarm 

rate 
Missing-

alarm rate 𝑶𝑶𝑶𝑶𝟏𝟏 𝑶𝑶𝑶𝑶𝟐𝟐 𝑶𝑶𝑶𝑶𝟑𝟑 

Early-
warning 

𝑂𝑂𝑂𝑂1 𝑀𝑀11 𝑀𝑀12 𝑀𝑀13 
𝜂𝜂𝑎𝑎 𝜂𝜂𝑓𝑓 𝜂𝜂𝑚𝑚 𝑂𝑂𝑂𝑂2 𝑀𝑀21 𝑀𝑀22 𝑀𝑀23 

𝑂𝑂𝑂𝑂3 𝑀𝑀31 𝑀𝑀32 𝑀𝑀33 

4.2. Experimental Result Analysis 

The operating mode defined by 𝐿𝐿BTP is used as the recognition target. To evaluate the early-
warning accuracy more effectively, the metrics introduced above are applied to verify the validity of 
the proposed early-warning model for abnormal operating modes. 

In addition, two comparative experiments are established to highlight the advantages of the 
proposed method based on feature extraction from the cross-section frame at the discharge end. The 
model presented in [7] is designed for operating mode recognition in the iron ore sintering process 
and is constructed using a Naïve Bayes classifier, making it comparable to our method in terms of its 
probabilistic framework. The model in [13] employs a fuzzy rule-based framework to predict 
operating modes for the same process, sharing essentially the same background and objective as the 
present study. Therefore, these two models are adopted as benchmarks for comparison with our 
proposed approach. According to Table 4, our model exhibits the best performance in terms of mean 
accuracy. A reliable early-warning model for operating mode should ideally combine high accuracy 
with both a low false-alarm rate and a low missing-alarm rate. Our model surpasses the models in 
[13] and [7] in all three metrics—accuracy, false-alarm rate, and missing-alarm rate. Hence the 
proposed approach is effective. It offers operators a reliable reference for adjusting strand operation 
and thus holds significant practical value for enhancing combustion efficiency and boosting 
productivity in the sintering process. 

Table 4. Early-warning result of operating mode. 

Model Mode 𝑶𝑶𝑶𝑶𝟏𝟏 𝑶𝑶𝑶𝑶𝟐𝟐 𝑶𝑶𝑶𝑶𝟑𝟑 𝜼𝜼𝒂𝒂 𝜼𝜼𝒇𝒇 𝜼𝜼𝒎𝒎 

Model in 
[7] 

𝑂𝑂𝑂𝑂1 123 42 15    
𝑂𝑂𝑂𝑂2 1 130 49 79.63% 25.71% 17.81% 
𝑂𝑂𝑂𝑂3 0 3 177    

 
Model in 

[13] 
 

𝑂𝑂𝑂𝑂1 
𝑂𝑂𝑂𝑂2 
𝑂𝑂𝑂𝑂3 

153 
2 
0 

14 
136 
0 

13 
42 

180 

 
86.85% 

 
9.33% 

 
14.62% 

 
Our model 

 

𝑂𝑂𝑂𝑂1 
𝑂𝑂𝑂𝑂2 
𝑂𝑂𝑂𝑂3 

162 
1 
0 

10 
168 
2 

8 
11 

178 

 
94.07% 

 
6.67% 

 
5.56% 

The comparison of false-alarm rate and missing-alarm rate results are shown in Figure 7. Our 
model achieves both a lower false-alarm rate 𝜂𝜂𝑓𝑓  and missing-alarm rate 𝜂𝜂𝑚𝑚  compared to the 
benchmarks. The false-alarm rate increases computational burden and may trigger unnecessary 
control actions, while the missing-alarm rate risks failing to address actual abnormal conditions. 
Since intelligent decision-making depends on early-warning outputs, reducing 𝜂𝜂𝑚𝑚  is especially 
critical for maintaining process stability. The comparison between false-alarm and missing-alarm 
rates across different algorithms is shown in Figure 7. It is evident that the proposed model 
outperforms the benchmark methods in both false-alarm and missing-alarm rates. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2025 doi:10.20944/preprints202506.1235.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1235.v1
http://creativecommons.org/licenses/by/4.0/


 11 

 

 

Figure 7. Comparison of false-alarm rate and missing-alarm rate among different algorithms. 

5. Conclusions 

Reliable early warning of abnormal operating modes is vital for correctly characterizing the 
combustion state of a sintering strand and for keeping the process under stable control. In this study 
we begin by devising a dedicated feature-extraction routine for the discharge end cross-section frame, 
and then built an abnormal operating mode early-warning model based on a BNN. Compared with 
other models, the proposed early-warning model provides higher accuracy. Overall, the early-
warning model that relies on image features from the discharge end constitutes an effective guide for 
sinter production and offers tangible benefits for plants aiming to cut costs while boosting operational 
efficiency. Looking ahead, the framework could be coupled with an intelligent control layer to adjust 
the operating mode automatically. 

Despite its high-precision warning performance, the approach still has two notable 
shortcomings: 
(1) It relies on an on-site, high-temperature infrared camera to obtain the key frames required for 

real-time warnings. 
(2) Because of the harsh working environment, discharge end images are sometimes blurred, which 

can degrade the accuracy of the warning results. 
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