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Abstract: Abnormal operating modes in the iron ore sintering process often cause a decline in both
the yield and quality of the resulting sinter ore. Accurate early warning of such modes is therefore
essential for improving both the quantity and quality of sinter ore. This paper presents an early-
warning method of abnormal operating mode based on the feature extraction from the cross-section
frame at the discharge end. First, an edge-detection-based scheme is designed to isolate and analyze
the red fire layer in the image. Second, a Random Forest feature importance ranking is employed to
select process variables. Third, a Bayesian neural network is trained to build the early-warning model.
Finally, the burn-through point is adopted as the classification criterion, and experiments are carried
out on raw data collected from an industrial plant. The results show that the proposed method issues
accurate early warnings of abnormal operating modes, achieving an accuracy of 94.07%, and thus
offers promising prospects for industrial application.

Keywords: abnormal operating mode; feature extraction; early-warning model; sintering process

1. Introduction

Sintering is the principal route for producing high-quality synthetic iron ore. During sintering,
base ore is blended with other materials to enrich desirable components and, through high-
temperature reactions, to reduce impurities, thereby upgrading the product quality. The sinter ore
produced through this process serves as the primary burden material for blast furnace ironmaking
[1]. Global crude steel output reached 1.8826 billion tonnes in 2024 [2]. As steel demand continues to
rise, high-grade natural ore alone can no longer satisfy industrial needs, making the sintering process
increasingly critical.

Sintering is a thermal agglomeration operation whose principal feed materials are iron ore,
returning sinter ore, fluxes and coke [3]. Its high energy consumption and severe environmental
impact have long been major concerns for steel plants. An operating mode describes the state of
process variables under specific conditions. Operators adjust control actions according to different
modes to improve product quality, boost productivity and reduce energy use. Correctly identifying
operating modes in the sintering process therefore has substantial economic value.

The recognition of abnormal operating modes has attracted considerable research attention,
enabling mode-recognition methods to be applied to many industrial processes, the sintering process
included [4]. Because manual monitoring is limited [5], production cannot always run safely. Hence,
recognizing abnormal operating modes in industrial processes is crucial for operational safety. Tang
et al. proposed an attention-based early warning framework for abnormal operating conditions in
FCCU, combining denoising, Conv-LSTM, and anomaly attention modules to improve detection
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accuracy and robustness [6]. Du et al. clustered and smoothed sintering data with fuzzy C-means,
built Naive Bayes sub-models for mode recognition and combined them into a high-accuracy model,
laying the groundwork for stable sinter quality [7]. However, their work did not consider the cross-
section frame at the discharge end.

Recent studies have placed considerable emphasis on analyzing discharge end images in the
context of iron ore sintering. In [8], a hybrid just-in-time soft sensing system was introduced to
estimate carbon efficiency by extracting key features from cross-sectional frames. A genetic-
algorithm-based fuzzy c-means clustering technique was applied to segment key frames into distinct
regions, which then served as inputs for a soft sensor to predict the comprehensive carbon ratio (CCR)
in real time. Liang et al. [9] proposed a CNN-Transformer dual-stream network for classifying sinter-
flame combustion states with high accuracy. However, these approaches focused on combustion or
efficiency analysis rather than early warning of abnormal operating modes.

Although the above methods achieved good experimental results, they still lack the use of the
discharge end image for abnormal operating mode recognition, and they rarely provide early
warning of modes. Issuing early warning of abnormal operating modes enables operators to
intervene in advance, thereby shortening the time the strand spends in an abnormal state. Moreover,
ignoring image features tends to reduce recognition accuracy.

To address the challenges in early detection of abnormal operating modes, this study proposes
an early-warning model based on feature extraction from cross-sectional frames at the discharge end.
The approach begins with frame segmentation to isolate the red fire layer, which is then analyzed
separately. The Sobel edge detection algorithm is employed due to its balance of speed and accuracy,
making it suitable for real-time industrial applications [10]. Subsequently, a one-way analysis of
variance reveals that the continuity and height of the red fire layer are highly correlated with the
operating mode. To further refine input selection, Random Forest feature importance analysis is
performed, identifying the most relevant process variables. These top-ranked variables are used as
inputs to a Bayesian Neural Network (BNN) model, which is trained to issue early warnings of
abnormal operating modes. Real production data from an industrial sintering plant is utilized for
model training and validation. Experimental results demonstrate that the proposed model achieves
a prediction accuracy exceeding 94.07%, significantly outperforming existing methods referenced in
[7] and [13].

The key contributions of this paper are summarized as follows:

(1) An early-warning method for abnormal operating modes that exploits feature extraction from
the cross-section frame at the discharge end.

(2) A labelled, interpretable early-warning model that operators can readily accept for control
guidance.

(3) Anearly-warning approach that combines Bayesian theory with operator experience, improving
the reliability of the early-warning of abnormal operating mode.

2. Description of the Sintering Process and Design of the Early-Warning Scheme
for Abnormal Operating Modes

This section first gives a detailed account of iron ore sinter production and of the characteristics
of the cross-section frame at the discharge end. On the basis of production requirements, an early-
warning scheme for abnormal operating modes is then formulated.

2.1. Description of the Iron Ore Sintering Process

The iron ore sintering process is multivariate, highly nonlinear and strongly time-delayed, and
it can switch among several operating modes [11]. The Dwight-Lloyd sintering machine remains the
dominant equipment used in current sintering operations. In this study, a 360 m? strand with 24
bellows is selected as the case example. The overall iron ore sintering process is illustrated in Figure
1.
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Figure 1. Iron ore sintering process.

The process agglomerates iron ore, returning sinter ore, fluxes and coke into hot sinter ore [12].
Raw materials are first blended with water in fixed proportions to form a mixture that is stored in a
mixing hopper. A roll feeder then distributes the mixture onto a moving pallet strand. Inside the
ignition hood the charge is ignited, after which down-draft fans draw combustion air so that the bed
burns progressively from top to bottom. When the leading edge of the combustion zone reaches the
grate bars, the mixture has burned out and the process reaches the burn-through point (BTP);
combustion then ceases. Under the normal operating mode, the BTP coincides with approximately
the 23rd bellows.

Operators judge process stability mainly by tracking the BTP. Because the BTP marks the
location where the mixture has finished burning, its position is the most important thermal indicator.
If the BTP appears upstream of the target position, the effective bed area is not fully utilized and
strand productivity falls. If the BTP appears downstream, the bed has not burned through at
discharge, which increases the recycle load of returning sinter ore. Hence, the current operating mode
can be assessed directly from the BTP position [13].

After complete combustion, the hot bed travels roughly one additional bellows length and
reaches the segmentation frame. Here the sinter cake is broken loose and discharged. When the cake
has fallen away completely, the cross-section frame at the discharge end becomes fully visible,
providing the image used in this study. A typical bellows exhaust gas temperature profile is shown
in Figure 2.
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Figure 2. Temperature of the exhaust gas in bellows.

2.2. Characteristic Analysis of Sintering Process

Before applying the cross-section frame at the discharge end for early warning of abnormal
operating modes, it is essential to examine its correlation with the operating mode and to clarify the
challenges involved in accurate early warning.

At the discharge end, the captured cross-section frame reveals three distinct zones: the red fire
layer, the background area and the trolley baffle. Thermally, the strand can run in one of three
operating modes—over-burning, normal or under-burning [14]. Over-burning arises when the cake
reaches burn-through ahead of schedule, pushing the BTP upstream. Under-burning occurs when
combustion remains incomplete, so the BTP shifts downstream. Either deviation diminishes strand
utilization and lowers sinter quality, thereby impairing subsequent blast-furnace performance [15].

The red fire layer provides the clearest visual cue to the combustion state. Two attributes—its
vertical height and its continuity —define that state. A tall, unbroken red band indicates an elevated
combustion front, under-burning of the mix and a delayed BTP; a shallow, intermittent band signals
premature burn-through and an advanced BTP. When both height and continuity are intermediate,
the bed burns out at the intended depth. Thus, every operating mode is associated with a
characteristic red fire layer pattern.

The location of BTP (Lpp) is taken as the indicator of the operating mode. In normal operation
Lgrp must lie inside the band [Ly; —d, Ly +d], where L, is the target BTP position and d the
admissible fluctuation (here d = 0.5 and L, = 22.5). If Lgrp rises above the upper limit the bed is
under-burned; if it falls below the lower limit the bed is over-burned.

Thus, three modes are defined:

OM; —Opver-burning: Lgrp < Ly — d.

Premature burn-through lowers strand utilization and reduces sinter output.

OM,—Normal: L; —d < Lgpp < Lg +d.

The mixture burns out precisely at the desired location, fulfilling production requirements.

OM; —Under-burning: Lgrp > Ly —d.

Incomplete burn-through of the mixture at the time of unloading results in reduced output and
inferior sinter ore quality.

When over-burning occurs, combustion ends early; the red fire layer reaches the grate, giving a
low and intermittent appearance. When under-burning occurs, the combustion zone remains in the
upper—-middle bed; the red fire layer appears high and continuous. Under normal operating mode
the red fire layer is located in the middle-lower part of the frame and shows good continuity.

2.3. Design of the Early-Warning Scheme for Abnormal Operating Modes
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Given the strong non-linearity and high degree of coupling inherent in the sintering process [16],
this study proposes an early-warning model for abnormal operating modes that leverages the cross-
section frame at the discharge end. To ensure reliable early warning, it is crucial to fully incorporate
the relevant state parameters into the model. Because the key frame features are also highly correlated
with the operating mode, they must be included among the model inputs.

The early-warning scheme comprises three main steps. First, an image-processing module is
designed to extract feature parameters from the discharge end cross-section frame. Next, a Random
Forest feature importance ranking is applied to select the variables. Then, a BNN is constructed to
serve as the early-warning model. The overall structure is shown in Figure 3.

Iron Ore Sintering Process
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Figure 3. Operating mode early-warning model for sintering process.

For the model inputs, the key frame features are extracted first. In view of the periodic descent
of the sinter cake, a key frame selection strategy is devised. After selecting the discharge end key
frame, the Sobel operator segments it into the red fire layer and the background region. The resulting
feature parameters are calculated and stored in a database.

To handle the multi-factor influences on the operating mode, a Random Forest algorithm is
employed to compute the importance of each variable. Random Forest is simple, easy to implement
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and incurs only modest computational cost; variables with higher importance scores are retained as
inputs to the early-warning model.

Finally, a BNN-based early-warning model is used, taking as inputs the feature parameters of
the discharge end frame together with several key state parameters of the sintering process. The BNN
is chosen because it merges the strengths of Bayesian statistics and neural networks, thereby
enhancing both early-warning accuracy and generalization ability.

3. Early-Warning Model for Abnormal Operating Modes

This section establishes the early-warning model for abnormal operating modes. First, an image-
processing module is used to extract feature parameters from the cross-section frame at the discharge
end. Second, a Random Forest feature importance ranking is applied to select the input variables.
Finally, a BNN is trained to construct the early-warning model.

3.1. Feature extraction from the cross-section frame at the discharge end

A key frame selection method was designed according to the characteristics of the infrared video
taken at the discharge end. The key frame extraction procedure processes the images captured at the
discharge end in order to identify those moments that best represent changes in the operating mode.
A camera mounted at the discharge end continuously records the sintering process, and, during
processing, only the key frames that have a significant influence on the operating mode are retained.

The sinter cake falls from the pallet at roughly 60 s intervals; immediately afterwards a large
dust plume is generated, degrading image quality. To avoid this problem, the key frame is extracted
during the initial appearance of the red fire layer, before dust obscures the view. In the present study
an image is captured every 5 s, and the grey-level difference between successive frames is calculated.
The frame with the maximum difference is selected as the key frame because it clearly reflects the
operating mode while minimizing dust interference, ensuring both efficiency and accuracy.

Information from the red fire layer is essential for early warning, so this region must be
segmented before the image features are calculated. Sobel edge detection, a classical image-
processing algorithm, identifies edges by evaluating the gradient magnitude and direction at each
pixel, and is applied in this study to segment the key frames. A comparison of the frame before and
after the sinter cake has fallen is shown in Figure 4.

(a) Before the mineral cake falls (b) After the mineral cake falls
Figure 4. Comparison of sintered ore cake before and after falling.
As outlined in Section 2.2, two descriptors are extracted from each key frame: the average height
h and the continuity degree w of the red fire layer.

1 k
=g M)
i=1

where y; denotes the highest pixel ordinate in the i —th column and k is the total number of

The average height is obtained by

columns.
Continuity is measured via

n
P
=2 2
=" @
with n, representing the count of columns whose red fire layer height reaches (or exceeds) that
average value, while k again is the column total.
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Thus, h captures the vertical extent of the red zone, whereas w quantifies how consistently
that height is maintained across the frame.

3.2. Input Variable Selection of Early-Warning Model

The sintering data set contains 20 measured variables, as shown in Figure 3. To address the
multifactor influence on the operating mode, a Random Forest algorithm is employed to evaluate the
importance of each variable. Random Forest is an ensemble method that builds multiple decision
trees as base learners and aggregates their outputs to improve performance. It improves the
classification performance of single trees by bootstrap aggregation and random feature splitting
during tree construction [18]. It is straightforward to implement and has low computational cost.

To quantify the contribution of each variable to the classification process, the Gini index is used
as the splitting criterion in the Random Forest algorithm. For any node m in a decision tree within
the Random Forest, the Gini impurity g,, is defined as:

K
Im = z Pmk (1 = Pmi), 3)
k=1

where K is the total number of classes, p,, is the estimated probability that a sample at node m
belongs to class k.
For binary classification problems, this can be simplified as:

I = 2Pm(L = Pmo). @)

If a variable t; is used in the i —th decision tree and contributes to M splits, then the
importance score v;; of variable t; in that tree, based on the reduction in Gini impurity, is given by:

M
v = ) agh, ©
m=1
where Agj(.ii ™ s the reduction in Gini impurity at node m when splitting on variable t;.

The total importance of variable t; across all n trees in the Random Forest is calculated as the
average:

n

p (G %z p im0, ©)
i=1

This quantitative metric enables Random Forest to rank variables by their contribution to the

classification outcome, making it suitable for selecting relevant features that influence the sintering

process’’s operating mode. Variables with relatively high Gini importance values were chosen as

input features for the early-warning model. The corresponding importance coefficients are shown in

Table 1.

Table 1. Results of importance analysis.

Feature T3 Vy Ty, Py Hy Ty, Ty
Gini-based
ri-base 0402 0356 0341 0305 0302 0282 0279
importance

Feature Ty T3 Ty4 Ty LET: Ts Ty
Ginibased )33 198 0153 0149 0098 0071 0032
importance

To accelerate the early-warning model, the number of selected inputs must be limited. In order
to avoid excessive redundancy while still retaining sufficient time series information, an importance
score threshold of 0.3 is adopted; the resulting scores are listed in Table 2. The analysis shows that
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temperature of exhaust gas in 23rd bellows (T»3), T2;, the strand speed, the main flue negative
pressure and the bed height all have importance values above the threshold. These five variables are
therefore chosen as the inputs to the abnormal operating mode early-warning model.

Table 2. Cross-section frames at discharge end features analysis.

Operating mode Average height Continuity degree
Over-burning 0.15 0.62
Normal 0.37 0.70
Under-burning 0.58 0.73

3.3. Structure of Early-Warning Model

The early-warning model for sintering operating mode is designed to infer the upcoming state
OM; (k € {1,2,3}) using a set of real-time process parameters. The selected parameter vector P, €
R?, obtained from prior feature selection, serves as the model input, and the early-warning result
represents the output.

BNNs integrate the interpretability of Bayesian statistics with the expressive power of deep
learning [19]. Traditional Bayesian models rely on Bayes’ theorem to update probability estimates by
combining prior distributions with observed data. However, they struggle with scalability in high-
dimensional, nonlinear contexts. Neural networks, on the other hand, are effective at abstracting
complex patterns but lack inherent uncertainty quantification. BNNs overcome both limitations by
treating all weights and biases as probability distributions rather than fixed values, allowing them to
represent model uncertainty and reduce overfitting.

Formally, the transformation in each layer [ of a BNN is defined as:

) = g(WOGED 4 pO), )
where W® and b® are random variables drawn from prior distributions, o(-) denotes the

activation function, and a® = P, is the input feature vector.
To approximate the intractable posterior p(W, b|D), variational inference is used:

p(W,b1D)~q(W,b|8), (8)

where q(-) is a tractable variational distribution parameterized by 6, and D is the dataset.
The objective is to minimize the evidence lower bound (ELBO):

L = Eg[logp(D | W,b)] = KL(q(W,b) | p(W, b)), )

This balances data fit and model complexity, enabling better generalization and robustness. The
architecture of the complete early-warning system is illustrated in Figure 5.
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Figure 5. Structure of abnormal operating modes early-warning model.
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4. Experimental Study and Analysis

This section validates the proposed early-warning method for abnormal operating modes by
means of experiments based on raw data collected from a steel plant and discusses the results.

4.1. Experimental Design

To validate the effectiveness of the proposed early-warning scheme utilizing cross-section frame
features at the discharge end, a series of images at the discharge end were collected from an actively
operating industrial strand. Key frames were identified in the infrared video— captured with IRTool
Pro—by applying the selection strategy described above. After saving the raw stream to a local
directory, a Python routine (i) isolated the key frames, (ii) defined crop coordinates and (iii)
automatically clipped the region of interest, namely the red fire layer. Each cropped frame was then
passed through image-segmentation and feature-extraction steps, and the resulting parameters were
written back to disk by the same Python script.

Because the field sensors sample every 5 s, the sampling interval of the raw production data was
enlarged to 1 min to reduce the influence of high-frequency noise. In total, 3000 time series samples
were collected: the training set consists of 1000 over-burning, 1000 normal and 1000 under-burning
cases, while the remaining 540 samples—180 for each operating mode —were set aside for testing.

Each key frame was segmented with the Sobel edge-detection method. Frames corresponding to
the three operating modes—identified in consultation with experienced plant operators—were
selected for segmentation. The results are presented in Figure 6, where it is evident that the red fire
layer exhibits distinct characteristics across the three operating modes: under over-burning the layer’s
continuity and average height are markedly lower than in the normal mode, whereas under-burning
yields the greatest height and continuity. The numerical feature parameters for the three frames
depicted in Figure 6 are provided in Table 2.

To refine the experimental results, multiple runs were performed. Once the features of the cross-
section frame at the discharge end had been extracted, they were merged with the time series process
data to serve as the input vector of the abnormal operating mode early-warning model, which then
produced the early-warning result for the operating mode.

| . 1m m

(a) Original figure(under-burning) (b) Original figure(normal) (c) Original figure(over-burning)

Figure 6. Image segmentation result.

The early-warning performance for different operating modes is represented by the confusion
matrix in Table 3. In this matrix, M;;(i = 1,2,3;j = 1,2,3) denotes the number of test samples that are
predicted as operating mode OM; by the early-warning model, while their true label is OM;. In
addition, three metrics are defined to evaluate the early-warning performance: 7, represents the
overall accuracy, 7 the false-alarm rate, and 7,, the missing-alarm rate. They are expressed as,

_ My + My, + Mg

N = x 100%. 10
¢ i=1 Zi=1 Mij 10
My + M
1y =ﬁx 1009%. (11)
1= L

0, = My, + M3y + My3 + M3
4 YiaMy + Y M

X 100%. (12)

Table 3. Example of confusion matrix.
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4.2. Experimental Result Analysis

The operating mode defined by Lgrp is used as the recognition target. To evaluate the early-
warning accuracy more effectively, the metrics introduced above are applied to verify the validity of
the proposed early-warning model for abnormal operating modes.

In addition, two comparative experiments are established to highlight the advantages of the
proposed method based on feature extraction from the cross-section frame at the discharge end. The
model presented in [7] is designed for operating mode recognition in the iron ore sintering process
and is constructed using a Naive Bayes classifier, making it comparable to our method in terms of its
probabilistic framework. The model in [13] employs a fuzzy rule-based framework to predict
operating modes for the same process, sharing essentially the same background and objective as the
present study. Therefore, these two models are adopted as benchmarks for comparison with our
proposed approach. According to Table 4, our model exhibits the best performance in terms of mean
accuracy. A reliable early-warning model for operating mode should ideally combine high accuracy
with both a low false-alarm rate and a low missing-alarm rate. Our model surpasses the models in
[13] and [7] in all three metrics—accuracy, false-alarm rate, and missing-alarm rate. Hence the
proposed approach is effective. It offers operators a reliable reference for adjusting strand operation
and thus holds significant practical value for enhancing combustion efficiency and boosting
productivity in the sintering process.

Table 4. Early-warning result of operating mode.

Model Mode oM, oM, oM, Na Ty N
oM, 123 12 15
MO;‘;““ oM, 1 130 49 79.63%  2571%  17.81%
oM, 0 3 177
I
[13] o’ ; . 5o 8685%  933%  14.62%
3
oM, 162 10 8
Ourmodel  OM 1 168 11
Hrmese ot . ) g A07%  667%  556%
3

The comparison of false-alarm rate and missing-alarm rate results are shown in Figure 7. Our
model achieves both a lower false-alarm rate 7y and missing-alarm rate 7, compared to the
benchmarks. The false-alarm rate increases computational burden and may trigger unnecessary
control actions, while the missing-alarm rate risks failing to address actual abnormal conditions.
Since intelligent decision-making depends on early-warning outputs, reducing 7,, is especially
critical for maintaining process stability. The comparison between false-alarm and missing-alarm
rates across different algorithms is shown in Figure 7. It is evident that the proposed model
outperforms the benchmark methods in both false-alarm and missing-alarm rates.
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Figure 7. Comparison of false-alarm rate and missing-alarm rate among different algorithms.

5. Conclusions

Reliable early warning of abnormal operating modes is vital for correctly characterizing the
combustion state of a sintering strand and for keeping the process under stable control. In this study
we begin by devising a dedicated feature-extraction routine for the discharge end cross-section frame,
and then built an abnormal operating mode early-warning model based on a BNN. Compared with
other models, the proposed early-warning model provides higher accuracy. Overall, the early-
warning model that relies on image features from the discharge end constitutes an effective guide for
sinter production and offers tangible benefits for plants aiming to cut costs while boosting operational
efficiency. Looking ahead, the framework could be coupled with an intelligent control layer to adjust
the operating mode automatically.

Despite its high-precision warning performance, the approach still has two notable
shortcomings:

(1) It relies on an on-site, high-temperature infrared camera to obtain the key frames required for
real-time warnings.

(2) Because of the harsh working environment, discharge end images are sometimes blurred, which
can degrade the accuracy of the warning results.
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