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Abstract

There is an increasing trend that Unmanned Combat Air Vehicles (UCAVs) are employed to
complete different combat missions in modern wars. This paper investigates a UCAV routing
problem, which simultaneously considers the decisions for the configuration of weapons carried by
the UCAV subject to its capacity and the allocation of weapons to the targets subject to their
destroying requirements. An integer linear programming model is developed to formulate the
problem. An adaptive large neighborhood search (ALNS) heuristic is proposed to solve the problem,
in which seven neighborhood structures are designed and employed. Randomly generated instances
covering the small, medium and large sizes are used to test the proposed ALNS algorithm. CPLEX
is also utilized to solve the small-size instances, whose results are compared with that obtained by
the ALNS algorithm. And the extensive experimental results confirm the effectiveness and

superiority of the proposed ALNS algorithm.
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1. Introduction

Unmanned Combat Air Vehicle (UCAV) is usually considered to be a fighter aircraft without a pilot.
Due to the advantages of UCAVs in conducting military operations, such as without loss of human
life, lower cost and lower probability be detected [1], they have been widely employed in many
kinds of military operations in modern wars. When UCAVs are utilized in military operations for
attacking multiple targets, the commanders usually have to consider many issues for the mission
planning, including which and how many weapons to be equipped on the UCAV, which and how
many weapons to be delivered to the target by the UAV, and the route of UCAV to visit the targets.
When the decisions for weapon configuration on UCAV and allocation to targets are integrated into
the UCAV routing problem, a more complex and new extension to the traditional UAV routing
problem is generated.

In a typical UCAV mission planning problem, there are a number of predetermined targets that
must be eliminated or neutralized. The geographical coordinates and basic attributes of the targets
usually have been obtained from reconnaissance departments. For different military targets, damage
demands are different and determined by the commander. Note that, in our paper, each target can
only be visited once and must be destroyed in this visit. If not, the target may be repaired and
protected during the time between two visits from different UCAVs. Table 1 presents an illustration

example for five targets in a mission, which include their position and the damage demand for

destroying the target.
Table 1 Damage requirements for different types of target.
Target  Description Damage demand  Position
T1 Bridge 0.85 (66.27, 88.92)
T2 Communications station 0.81 (29.82, 52.35)
T3 Bunker 0.95 (90.91, 52.35)
T4 Arsenal 0.84 (11.42,94.11)
T5 Airbase 0.95 (69.79, 25.33)

There are a number of UCAVs that can be potentially used in the mission. Table 2 presents
some critical information for a typical UCAY, including the endurance time, the payload, and the

number of hanging points, the types of weapons can be carried and so on. There are three types of
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weapons that can be carried by this UCAV, whose weights and costs are different and shown in
Table 3. For different weapons, the destroying effects are different if they are used to attach the
same target. Table 4 presents the destroying effects between weapons and targets. Here, if a UCAV
attacks target TS (airbase) by utilizing weapon W1 (small smart bombs), a damage level of 0.02
units can be obtained. This can be explained by the fact that it’s extremely difficult to destroy an
airbase with a low-yield bomb. Thus, the UCAV carries different types of weapons, and the combat

ability is also quite different.

Table 2 The UCAYV basic parameters.

Index Parameter values
Cost ($ million) 10

Payload capacity (kg) 900

Full-loaded Endurance (h) 14

Cruise speed (km/h) 180

Hardpoints 6

Types of weapons W1, W2 and W3

Table 3 The weapon basic parameters.

Weapon Description Weight (kg) Cost ($ million)
Wil Small smart bombs 75 0.068
w2 Small precision guided bombs 165 0.084
W3 Laser-guided bomb 240 0.002

Table 4 Weapon-target combat ability matrix.

T1 T2 T3 T4 T5
Wil 0.35 0.70 0.35 0.85 0.02
w2 0.65 0.80 0.86 0.67 0.25
W3 0.95 0.95 0.77 0.75 0.85

From the above illustration of the typical combat mission, we can see that there are two kinds
of critical decisions faced by the commander. The first is to determine the targets attacked by each
UCVA and its flying route for visiting these targets. The second is to determine which type and how
many weapons should be carried by each UCAV and which weapon should allocated to each target,
subject to constraints on the targets’ damage demand and the limited capacity of UCAV on load and
Hardpoints. The commanders have to optimize the decisions on weapon configuration, allocation
and routing for multiple UCAVs, while minimizing the overall costs to complete the mission.

In this paper, we address the joint weapon configuration, allocation and routing problem

generated in the UCAV mission planning field, which is frequently faced by commanders in modern
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wars. We develop an integer linear programming model for the problem. As the scale of the
problem becomes large, standard solvers (e.g. CPLEX) cannot obtain an optimal solution efficiently.
An adaptive large-scale neighborhood search algorithm is proposed to solve the problem. This study
enriches the UCAV routing problem in the following aspects.

(1) This paper is the first to consider a joint optimization problem of UCAVs route planning
with weapon configuration and allocation, during which the UCAVs’ routing, the weapon
configuration for the UCAVs and the weapon allocation for the targets are optimized
simultaneously. And we provide an integer linear programming model for the focused
problem.

(2) The interactive influence among weapon configuration, allocation and routing makes the
problem more complex. For the solving, we develop an adaptive large neighborhood search
heuristic, which merges the weapon allocation strategy, several novel neighborhood
operators and adaptively learning strategy. A population-based neighborhood search
strategy is also employed to improve the search diversification in each iteration. The
extensive computational experiments confirm the effectiveness and superiority of the
developed algorithm.

The remainder of this paper is organized as follows. Section 2 presents a brief literature review
of the UCAVs mission planning problem. Problem description and mathematical formulation are
presented in Section 3. Section 4 is devoted to the solution approach developed. Computational
results of the solution method on a variety of numerical examples are presented in Section 5. Finally,

the conclusions are presented in Section 6.

2. Literature Review

The weapon configuration, allocation and route planning are important mission planning operations
for multiple UAVs. In modern wars, more and more military missions are conducted by UAVs, such
as attack, intelligence, surveillance/reconnaissance missions. The study of UAV mission planning
has gained increasing attention in recent years, and more practical applications are also presented
[2-6]. Reviews for earlier research on the UAV mission planning were presented in [7] and [8].
Most of current studies on UAVs’ mission planning problem optimize the decisions for determining

when to perform their task, how to complete the task, and making it complete with the minimum
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cost [9].

The route planning of UAVs is considered to be the most critical and challenging problem in
wartime[10], and there has been significant research in this area. The objective is to find out an
optimal or near-optimal flight path for each UAV between an initial location and the desired
destination under specific constraint conditions [11]. Edison and Shima [12] investigated the
integrated task assignment and path planning problem for multiple UAVs, where the UAVs have to
perform consecutive tasks cooperatively on ground targets. The UAV’s minimum turn radius is
considered, and the genetic algorithm is applied to solve the problem. Liu et al. [13] studied the task
assignment problem for multiple UAVs to attack targets with dynamic value, which is solved by
combining the multi-destination route planning algorithm and the ant colony algorithm. The
constraints on flying height, maximum climbing/diving rate, and maximum turning angle are
considered during planning the UAVs’ route. When planning the path of UAVs, the control features,
e.g., flying height, minimum turn radius and flying velocity, are usually considered and optimized.

As the development of UAV’s automatic control technologies, most current UAVs in military
area can automatically complete the flying path between targets. Thus, recent studies tend to ignore
the detail control of UAV in the flying path and optimize the UAV routing problem for visiting
targets from the operational level. Shetty et al. [14] studied the priority-based target assignment and
routing problem for multiple UCAVs, where the total service to targets is maximized based on their
criticality. The problem is divided into a target assignment subproblem and a vehicle routing
subproblem, and is solved by the Tabu search heuristic. Mufalli et al. [15] investigated joint sensor
selection and routing problem for multiple UAVs, where the endurance of the UAV is considered
and depends on the weight of carried sensors. The problem is formulated as a generalization of the
team orienteering problem studied in the vehicle routing literature. Evers et al. [16] studied UAV
reconnaissance mission planning problem with time windows and time-sensitive targets, which is
modeled as the maximum coverage stochastic orienteering problem with time windows. They first
construct a tour with maximum expected profits of targets and then develop a fast heuristic to
re-plan the tour in the event a time-sensitive target appears.

Location and routing of UAVs is also an important topic in the UAV mission planning.
Saricicek and Akkus [17] studied the hub-location and routing problem for border security, where

UAVs are utilized to route a number of points in the land border of Turkey. The problem is solved
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by a two-stage approach. The first stage is to select hubs among the current airports as the base of
UAVs. The route for visiting the border points are optimized in the second stage. Yakici [18]
address the location and routing problem for small UAVs at tactical level, and the ant colony
algorithm is employed to solve the problem.

From current literature on UAV path/route planning, it can be seen that most of works on this
topic contribute on optimizing the flying path between targets or the route visiting targets. Few of

them considered the configuration of weapons and the interactive influence on the routing of UAVs.

3. Model Formulation

3.1 Problem Description

In this section we will provide a detailed description of the weapon configuration, allocation
and routing problem for UCAVs.
(1) Targets

The problem is given by a set of targets N = {1,2,-~-,n} , residing at n different locations, and
node 0 denotes the depot. Each pair of locations (i, j), where i,je{0}UN, and i=#j, is
associated with a travel time t;. Each target i is assigned a specific damage level by the

commander, denote by a, (i € N ). Each target can be attacked only once by one of the UCAVs.

(2) UCAVs

There are a fleet of homogeneous UCAVs used to attack the targets, noted as U = {1,2,---,u}

which have the same payload capacity and number of hardpoints. However, each UCAV i can carry
different weapons and then have different combat performance. With MQ-9 Reaper, for example, it
can carry two 250 kilograms of precision guided bombs or fourteen hell fire anti-tank missiles[19].
The UCAVs leave and return to the depot. Most typical UCAVs in term of military service, such as
the one shown in Table 2, have an endurance over than 10 hours, which is much longer than the our
mission planning period. Thus, we do not consider the constraints on the endurance of the UCAVss
in this paper.

(3) Weapons
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There are a number of potential weapons, noted as W = {1,2,---,w}, which can be equipped in

the UCAV. Different types of weapons have different weights and different capabilities, e.g. the

weapons shown in Table 3 and Table 4. For weapon meW , we assume its weight is (|, , its cost is

f, and its capability of destroying target ie N is b, .

m

3.2 Mathematical Model

The notations used in the formulation are summarized as follows.

1) Sets

N : the set of targets, and N ={1,2,---,n}.
U : the set of UCAVs, and U ={1,2,---,u}.

W : the set of different weapon types, and W = {1,2,---,w}.

2) Parameters

C: the payload capacity of the UCAV.

g : the number of hardpoints of the UCAV.
a, : damage demand at target 1.

d; : distance between target i and target J.

f :the cost of a weapon of type m,and meW .
g, : the weight of a weapon of type m,and meW .

b.. : the combat ability of weapon m on targeti,and meW .

L : a large enough number.

3) Decision Variables

X; : binary variable that is equal to 1 if a target ] is attacked after target I by UCAV Kk,

and 0 otherwise.

Yimi - Integer variable that denotes the number of weapon m on UCAV Kk used to attack

target 1,and vy, >0.
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The joint weapon configuration, allocation and route planning problem for UCAVs can be

formulated as follows:

Minimize Z=PY > %y +PD, fo Vi + B D D0 D X (1)
j=1 k=1 m=1 k=1 i=1 i=0 j=0 k=1
subject to: X% =1, VjeN (2)
k=1 i=0,i
Xg =1, VieN 3)
k=1 j=0, j=i
zxipk_ ijk:()a VkEU,p:O,l,"',n (4)
i=0 j=0
X5 <1, VkeU (5)
j=1
D X <1, VkeU (6)
i=1
D> Un D Vi <€, VkeU (7)
m=1 i=1
ZZYkmigg, vk eU (8)
m=1 i=l
D b Yim 28, VieN ©)
k=1 m=1
Y SLY Xy, VieN,keU,meW (10)
j=1
Yimi 20, VkeU,ieN,meW (11)
Xijke{O,l}, VieN,jeN,keU (12)

Formula (1) is the objective function of the problem. The objective of the model is to minimize
the number of UCAVs, the sum of the fixed weapons cost and the distances traveled by all UCAVs.
The first term represents the number of UCAVs used, and thus only the non-empty routes are
computed. The second term represents the total costs for all weapons used to complete all tasks.

The third term represents the total distances traveled by all UCAVs. Py, P, and P; are the
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coefficients used to adjust the costs of UCAV, weapons, and the flights into the same measure unit.

Constraints (2) and (3) define that every target node can be struck only once by one UCAV.
Constraints (4)-(6) state that each UCAV that leaves the depot, after arriving at a target the UCAV
leaves again, and it must finally return to the depot. Constraints (7) guarantee that the payload
capacity of the UCAV must not be exceeded. Constraints (8) ensure that the number of hardpoints

of each UCAV must not be exceeded. Constraints (9) regulate that the damage demand of each

target must be fulfilled. Constraints (10) guarantee that the decision variable Y, . can only make

sense if a determined UCAV goes by that target. Constraints (11) guarantee that the decision

variable Y, 1s positive. Constraints (12) assure that the decision variables X;, to be binary.

With the development of technologies, the endurance of new UCAVs have been significantly
improved, even in full load condition, the endurance can reach more than 10 hours[20]. When
UCAVs are employed in battlefield, there are two typical mission situations. One is that the
information of target is insufficient, and the UCAV has to cruise in an area to wait for the
appearance of the target and then starts the stacking action. The other is that the information of the
target is sufficient, and the UCAV can fly to the precise position of the target and then attacks in
time. In the former situation, we should consider the endurance of UCAV and the taking turns of
different UCAVs, while in the later situation, the endurance is long enough for the UCAV to attack
several targets and return to the depot. Our problem belongs to the later situation and we do not

consider the constraints on the UCAV’s endurance [16].

4. Adaptive Large Neighborhood Search Heuristic

In this section, an adaptive large neighborhood search heuristic (ALNS) is developed for solving the
problem. ALNS algorithm was proposed by Ropke and Pisinger [21] for solving the pickup and
delivery problem with time windows, and then applied to arc routing problem by Laporte et al. [22],
vehicle routing problem by Lei et al. [23] and Dayarian et al. [24], and territory design problem by
Lei et al. [25], which shows better performance in solving these problem. In the iteration process
the ALNS for the proposed problem, a population-based neighborhood search strategy is utilized

instead of the general single-solution based search, so as to improve the search diversification.
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Population-based neighborhood search strategies have been used to solve complex combinational
problems, e.g. the machine total weighted tardiness problem[26], job shop scheduling problem|[27]
and vehicle routing problem[28], which show good performance on improving the search
diversification. Thus, the ALNS for our problem includes two main stages: initial solutions
generation in the first stage, where a number of feasible solutions are generated through a
constructive heuristic; and the neighborhood search improvement in the second stage, where a

group of neighborhood structures are defined and utilized to search better solutions.

4.1 Framework of the ALNS

The framework of the ALNS algorithm for the proposed weapon configuration, allocation and

routing problem is illustrated in Fig. 1.

In the first stage for generating initial feasible solutions, the construction heuristic includes
three parts: firstly, weapons are allocated to each target to satisfy its destroy requirement through
randomly selecting one of the three weapon allocation operators; then a tour for visiting all targets
are constructed by randomly calling one of the three tour construction operators; at last, the tour is
segmented into sub-tours according to the capacities of UCAVs on load and hanging points. In the
initial solution generation process, both random operators, such as randomly allocating weapons to
targets, and greedy operators, such as Efficiency-cost ratio priority based allocation of weapons, are
employed and selected according to the roulette-wheel principle. Thus, a group of initial feasible
solutions, G=50, are generated, which include better feasible solutions as well as diverse solutions.

The processes of the weapon allocation operators are detailed in Section 4.3.1.

In the second stage, based on the above group of initial solutions, a large neighborhood search
strategy with multiple start points is employed, and seven neighborhood structures are defined and
used to search the neighborhood solution space related with the decision variables on configuration,
allocation and routing. In each iteration of the neighborhood search, a number of G neighbors are
generated respectively from the G solutions kept from the last iteration. The neighborhood
structures are further introduced in Section 4.4. In the generation process of neighbors, the selection
probabilities of the seven neighborhood operators are random, which are dynamically adjusted

throughout the iteration process based on an adaptive learning strategy proposed by [21]. We
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present a detail introduction of the adaptive learning strategy employed for guiding the

neighborhood search in Section 4.5.
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Fig. 1. Framework of the ALNS.
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4.2 Definition of the solution

4.2.1 Encoding

The encoding scheme is important to the ALNS algorithm for our problem, and an effective

encoding of the solution can facilitate the adjusting of decisions on both weapons and UCAV

routing, which impacts the conduction of neighborhood operators. We utilize a (W-+1)xn matrix

to represent the visiting sequence of targets and the allocation of weapons. Fig. 2 presents an
encoding illustration of an instance with 9 targets and 3 weapons. The first row presents the targets
and the attack sequence by UCAVs, which forms a complete tour by connecting the first and last
cells to the depot respectively. In each column of the matrix, the cells from the second row to the
(w+1)th row represent the weapon allocation strategy for the target in the first row. For instance, the
first column of the matrix in Fig. 2, (6, 1, 0, 1) means that one Weapon 1 and one Weapon 3 should

be delivered to Target 6.

Targets 6 2 5 7 1 4 3 9 8

Weapon 1 1 1 0 0 1 1 0 2 0

Weapon2 | 0 1 1 0 0 1 1 0 1

Weapon 3 1 0 0 1 1 0 2 0 0

Fig. 2. Example of solution representation.

4.2.2 Decoding

The above encoding scheme only determines the visiting sequence of all targets and their
weapon allocation strategies, and cannot present the weapon configuration and route of each UCAV.
Thus, a splitting heuristic is developed to decoding the chromosome into feasible solution. The
decoding process is to split the complete tour presented in the chromosome into sub-tours according
to the capacities of UCAVs on load and hanging points. The splitting heuristic is detailed in Section
4.3.3.



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2019

4.3 Construction heuristic for initial solutions

The construction heuristic is proposed to generate a group of initial solutions as the starting
points of the following neighborhood search. We construct the feasible solution based on an inverse
process. We first determine which weapon and how many should be delivered to the target, and then
construct a complete tour for all targets. At last, the UCAV starts from the depot to pick up the
weapons along the complete tour until the payload capacities and hardpoints are sufficiently utilized,
and then returns to the depot. The heuristic includes both greedy and random search ideas, so as to
ensure the initial population contains some better feasible solutions as well as some diverse

solutions.

4.3.1 Weapon allocation strategy

The weapon allocation strategy is used to determine which weapon and how many should be
delivered to the target, so as to satisfy the targets’ destroy requirement. Three operators are used in
the weapon allocation process, which are presented as follows. When weapons are allocated to the
target, the three operators are selected randomly with equal probabilities.

(1) Random allocation (RA)

The RA operator assigns weapons to each target one by one randomly until the destroy
requirement of the target is satisfied. The total weight of weapons allocated to the target must be no
more than the load capacity of the UCAYV, and the total number of weapons must be no more than
the number of hanging points in the UCAY, that is, the weapon allocation solution can not violate
constraints (7) and (8). If one of or both the constraints are violated, the solution is abandoned and
the weapons are reassigned again randomly until a feasible solution is obtained. A pseudo code of

the RA operator is given in Fig. 3.
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Algorithm 1: RA operator.

Input:

a,: damage requirement of target i;

b, : the combat ability of weapon m (m W) to against target i ;
q, : the weight of a weapon of type m,and meW ;

c: the load capacity of the UCAV;

g : the number of hanging points of the UCAV.

Output:
wat,, : the number of weapon m to against target /.
CWH =-1. llcheck if constraints (7) and (8) are satisfied.
while (CWH <0) do
wat,, =0,
a' =a;

while(a, >0) do

randomly select a weapon m from W;
wat, ++;

a,.' = a,.' -b,;

end

if (3. g,wat, <c and Y war, <g)do
CWH =1,

end

end

Return wat, (meW).

Fig. 3. The pseudo code of the RA operator.
(2) Combat ability priority based allocation (CAPA)

The CAPA operator is to choose a set of weapons for target i according to their combat ability.

In other words, give priority to the most powerful combat weapons assigned to the target. The

pseudo code of CAPA is given in Fig. 4.

Algorithm 2: CAPA operator.
Input:

a.: damage requirement of target 7;
b, : the combat ability of weapon m (m € W) to against target i.
Output:
wat, : the number of weapon m to against target i.
Set wat,, =0(meW),
m’ =argmax{h, ,meW};

i

m' = arg min {fm meW and a, —wat_.b . —b

i im im

20};

wat. ,++;

i’

Return wat, (meW).

Fig. 4. The pseudo code of CAPA.
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(3) Efficiency-cost ratio priority based allocation (ECRPA)

Here, the efficiency-cost ratio of weapon m to target i is calculated as follows:

b
eff, =%. (13)

m
ECRPA operator uses the efficiency-cost ratio as the weapon allocation criteria and gives priority to
the weapons with higher efficiency-cost ratio in the weapon allocation process. The pseudo code of

ECRPA operator is given in Fig. 5.

Algorithm 3: ECRPA operator.
Input:

eff.,: the efficiency-cost ratio of weapon m to target i;
q,,: the weight of weapon m;

c¢: the load capacity of the UCAV,

g : the number of hanging points of the UCAV.

Output:
wat,, : the number of weapon m to against target i.
CWH =-1. llcheck if constraints (7) and (8) are satisfied.

Set wat,, =0(meW);

while (CWH <0) do
m" = argmax {eff, ,meW};

im?

s _|a; .
i

. M M
lf(zwlqmwa!m <c¢ and Zm__l wat, < g) then

CWH=1;
end
else

wat, . = 0;

W=W/m
end

end
Return wat, (meW).

Fig. 5. The pseudo code of ECRPA operator.

4.3.2 Complete tour generation

When the weapon allocation is completed, the next step is to optimize the routing of the
UCAVs. A complete tour for visiting all targets are first constructed, which the UCAVs can fly

along this tour to attack targets in sequence. The following three operators are utilized to construct
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the complete tour.

1) Random generation (RG): The RG operator randomly arranges the visiting sequences of all
targets to form a complete tour.

2) Damage requirement priority generation (DRPG): In real-world scenarios, targets are
characterized by their priority or importance level[14], some targets may need be destroyed
first. The DRPG utilizes the damage requirement of the target as the indicator for
constructing the tour. That is, the targets are visited following the order from the one with
highest damage requirement to the one with lowest damage requirement.

3) Nearest distance priority generation (NDPG): The NDPG operator is inspired by the
nearest neighbor heuristic for the traveling salesman problem. However, in this operator,
we randomly select a target as the first one and then visiting the other targets following the

nearest neighbor principle.

4.3.3 Feasible sub-tour splitting (FSS)

Usually, one UCAV cannot complete the attacking tasks for all targets due to the limitation on
load and hang point capacities. Thus, we have to split the complete tour for all targets into multiple
sub-tours, and ensure the total weapons allocated to the targets in each sub-tour do not inviolate the
constraints (7) and (8). A feasible sub-tour splitting heuristic is proposed to help each UCAV find a
suitable sub-tour. The basic idea of this heuristic is to let the UCAV fly along the complete tour and
pick up the weapons allocated to the targets in his flying route until its capacities are sufficiently
consumed and then return to the depot. The next UCAV continues to visit the targets whose
weapons are not picked up along the complete tour, and then one UCAV is followed by another one
until all targets are visited. The calculating process of FSS operator is given in Fig. 6, while an
illustrative example is shown in Fig. 7 where the UCAV is assumed to have 6 hanging points and a

load capacity of 900 kg.
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Algorithm 4: FSS operator.
Input:

E : the encoding matrix, where the first row is obtained by complete tour generation
operators and the rows from 2 to w+l are obtained by the weapon allocation
operators, and its element is noted as e, ;

g, : the weight of a weapon of type m,and meW ;

g : the number of hanging points for the UCAV;

¢ : the load capacity of the UCAV.

Output:

V. - the number of weapon m on UCAV & used to attack target i.

Initialize k=1, g'=g, ¢'=c, y,, =0;

for(/=1,2,---,n) do

' ¢ w+l .
g = g - Zf:l e.l’:- El

f f wl i
¢ =c _z,._ I

if (g'<0orc'<0) then

i=e;;
for(m=12,---,w) do

) = .
) Kmi C'.f.m+l »

end
end
end
Return y, ..
Fig. 6. The pseudo code of FSS operator.
Targets 6 2 5 7 1 4 3 9 8
Weapon 1
(75kg) 1 1 0 0 1 1 0 2 0

Weapon 2
(165kg)011001101$

Weapon 3

(240kg) 1 0 0 1 1 0 2 0 0 |Splitting Depot(0
Sumofthe » 4 2 2 3 2

numbers

Sum of the

. 315 240 165 240 315 240 645 150 165

weights(kg)

Fig. 7. Illustration of the results after splitting.

4.4 Neighborhood Operators

The above construction heuristic can propose a number of feasible solutions for the problem,

which have to be further improved. In this section, we develop five neighborhood structures, which
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utilize the initial feasible solutions as starting points to search the solution space and find a much
better solution of the problem. Among the seven neighborhood operators, local inversion, two
exchange and three exchange are random search operators, while the other four operators are greedy

search operators.

4.4.1 Local inversion (LI)

The purpose of the LI operator is to change the attacking order of targets in the complete tour.
In the LI operator, two targets are randomly selected and exchanged, and the visiting sequences of

the targets between them are also exchanged. An example is depicted in Fig. 8.

Targets 6 // % / 9 8
Weapon 1| 1 / % / 2 0
Weapon2| 0 / %%@% / 0 1
Weapon3| 1 / %%&% /}// 0 0
ll Local inversion
Targets 6 9 8
Weapon 1| 1 2 0
Weapon2| 0 / 0 1
Weapon 3| 1 / 0 0

Fig. 8. Illustration of LI operator.

4.4.2 Two-exchange (2-ex)

The aim of this operator is to change the visit order of targets, which generates as many
feasible solutions as possible on the basis of initial feasible solutions. Randomly generate two
unequal integers eX,,eX, €[0,n—1] , which represent the position of the two genes of the
chromosome, and then exchange the gene information of the two positions. Taking the problem in
Fig. 2 as an example, a 2-exchange process is illustrated in Fig. 9. After 2-exchange operation, the

attack order of targets becomes: T6—>T2—T9—>T7—-T1—->T4—->T3—->T5-T8.
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Targets 6 2

R
R

Weapon 1 1 1 0 1 1 0 0
Weapon2 | 0 1 0 0 1 1 1
Weapon 3 | 1 0 1 1 0 2 0

ll 2-exchange

7 1 4 3

Targets 6 2

Weapon 1 | 1 1 1 1 0

Weapon2 | 0 1 0 0 1 1

N

Weapon3 | 1 0 1 1 0 2 0

S

Fig. 9. Illustration of 2-ex operator.

4.4.3 Three-exchange (3-ex)

The 3-exchange operator is a variant of the 2-exchange operator. Randomly generate three

unequal integersex,,ex,,ex, €[0,n—1], which represent the position of the three genes of the

chromosome, and then exchange the three positions of the genetic information. Taking the problem
in Fig. 2 as an example, a 3-exchange process is illustrated in Fig. 10. After 3-exchange operation,
the attack order of targets becomes: T9—>T2—T5—->T6—T1—->T4—>T3—>T7—-T8. In contrast with a
2-exchange, in a 3-exchange, where three genes are mutated, there are several possibilities to

construct a new initial solution from the 3-exchange process [29].

Targets 2 5 1 4 3 / 8
Weapon 1 /l/ 1 0 //0/ 1 1 0 / 0
Weapon 2 / 1 1 / 0 1 1
Weapon 3 / 0 0 / 1 0 2

llfa-exchange

N\

Targets 2 5 1 4 3 8
Weapon 1 1 0 1 1 0 0
Weapon 2 1 1 0 1 1

.

Weapon 3 /)/ 0 0 /I/ 1 0 2

Fig. 10. One possible case of 3-ex operator.
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4.4.4 Reducing number of weapons (RNW)

RNW operator selects the target with the largest number of weapons and checks if the target
can be destroyed by less number of weapons with higher capability. It is worth noting that the
reduction of weapons must meet the requirement of constraint(9). If the number of weapons
allocated to the target is reduced, then the UCAV may visit more targets, which provides a potential
to reduce the number of UCAV utilized and the overall flying distance. An illustrative example is

given in Fig. 11.

Targets 6 2 5 7 1 4

Weapon 1
(75kg)

Weapon 2
aeskg | O Tt / ot |:>
3

Weapon 3 o
(240kg) 0 0 |Splitting

Sum of the
numbers

2 2 1 1 2 2

Sumofthe 315 540 165 240 315 240 645 150 165

weights(kg)

jl Reducing the number of weapons(RNW)
Targets 6 2 5 7 1 4 / 9 8
Weapon 1
(75kg) 1 1o 0 |1 1 / 2.0
Weapon 2
(165ke) 0 1 1 0 0 1 / 0 1
Weapon 3 :
@Qaokgy | L0 O 1po 0 | 0 Igplitting
Sumofthe - » 1 1 2 2 2 2 1 UCAVs=3
numbers
Sumofthe 35 240 165 240 315 240 405 150 165
weights(kg)

Fig. 11. llustration of procedure RNW operator.

4.4.5 Reducing cost of weapons (RCW)

RCW operator selects the target whose total cost of allocated weapons is the highest one
among all targets, and then checks if the weapons allocated to this target can be changed into
cheaper ones. The requirements of constraints (7), (8) and (9) must be met when the weapon is
exchanged. If the overall cost of the selected targets can be reduced, the better solution may be
found. However, RCW operator cannot ensure that the solution be improved every time, and
sometimes the reducing on cost of weapons may increase the number of weapons and the total

weight of weapons, which may cause a solution with higher number of UCAVs and total flying
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distance. Thus, RCW operator just provides a potential way to optimize the current solution. An

example is given in Fig. 12.

Targets 6 2 5 7 1 3 9 8
Weapon 1
($68000) 1 1 0 0 1 0 2 0
Weapon2 | | | | | | o | 0 1o 1 Total cost of $):
($84000) otal cost of weapons($):
W 3 938000
eapon
($22000) 1 0 0 1 1 2 0 0
Sum of the ) 1 1 b 2 3 D) 1
numbers
Sum of the s
09 152 0.84 022 09 152 1.28 136 0.84 x10
costs($)
ll Reducing the cost of weapons(RCW)
Targets 6 2 5 7 1 3 9 8
Weapon 1
($68000) 1 1 0 0 1 0 2 0
Weapon 2
ssa000) | O 1 Lo o0 Lot g> Total cost of weapons($):
Weapon 3 876000
($22000) 2 0 0 1 1 2 0 0
Sumofthe —»» 2 2 3 2 1
numbers
S5
Sumofthe g6 157 084 022 09 09 128 136 084 *'°
costs($)

Fig. 12. Illustration of procedure RCW operator.

4.4.6 Reducing weight of weapons (RWW)

The RWW operator is to select the target whose total weight of all weapons is the highest, and
change some of weapons with higher weight with some lighter ones. It should be pointed out that
the replacement of weapons must meet the requirements of constraints (7)-(9). When the UCAV
cannot visit more targets due to the constraints on load, the RWW operator provides a potential to
let the UCAYV visit more targets and then may reduce the overall number of UCAV utilized and the

flying distance. An illustrative example is given in Fig. 13.
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Targets 6 | 2| 5| 7|1 4 /// 9 | 8

Weapon 1

(T5ke) 1 1 0 0 1 1 % 2 |0

Weapon 2

(165kg) 0 1 1 0 0 1 / 0 1

Weapon 3 i

i | L0010 /// 0 | 0 |splitting

Sumofthe —» » 44 3 2 3 2 1 UCAVs=4
numbers

Sum of the

315 240 165 240 315 240 645 150 165

weights(kg)
ﬂ Reducing the weight of weapons(RWW)

Targets 6 2 5 7 1 4 / 9 8

Weapon 1

P 110 o1 / 2 o

Weapon 2

e o 100 / 0o 1

Weapon3 | 5 | o | o | 1| 1] 0 0 | 0 |splitting

Sumofthe 5, 2 3 2 UCAVs=3
numbers

Sum of the

weights(kg) 315 240 165 240 315 240 315 150 165

Fig. 13. Illustration of procedure RWW operator.

4.4.7 Route merging (RM)

The aim of RM operator is to find the best possible merging route. The main idea of this
operator is to reduce the number of UCAVs to achieve the objective function optimization. For each
route, there will always be some UCAV that is not loaded when it returns. The RM operator sorted
the total number of UCAVs mounted weapons in descending order. Then try merging the two routes,
and the UCAVs that fly on both routes are relatively less armed. An example is depicted in Fig. 14,
in which the UCAV 1 and UCAV 4 are not fully loaded, after the calculation of RM operator the

corresponding two routes can be merged.

Route merging (RM)

Depot(0)

UCAV [#i] #2 | #3 [#4/] UCAV [#A] #2 | #3
e * | e ) ° | °
Weight of /1/ Weight of

- 76| 795 | 795 /‘5’ —— 855|795 | 705

Fig. 14. Illustration of procedure RM operator.
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4.5 Adaptively Learning Strategy

The feasible solution optimization heuristics are each associated a weight which dynamically
changes throughout the algorithm. The general idea behind the learning selection mechanism, which

was introduced by [23]. At each iteration, the selection of a removal heuristic and of an insertion

heuristic is based on the roulette-wheel principle selection. Given h operators with weights @, ,
operator | is chosen with probability @, / Zih:l @, . The weight of each operator is updated every

@(¢p =4) iterations. Initially, all operators have a weight of 1. The weight @, of operator i at

the jth sequence of ¢ iterations is computed as

)

I, j+1

Oji
=w;(1-r)+r— (14)
ij

where &;and o are the number of times operator i has been used in the jth sequence of ¢

iterations, and the score of operator iin the jth sequence of ¢ iterations, respectively, and

r(r €[0,1]) a is an arbitrary parameter equal to 0.1 in our implementation.

At the start of each learning, the scores of all operators are set to zero. The scores are increased

by o} =30 if a new best solution is found, by oﬁ =10 if the new solution is better than the

current solution and by O'S =6 if the new solution is not improve upon the current solution but is

accepted.

4.6 Acceptance and stopping criteria

We use the acceptance criteria introduced by [23] to define the acceptance criterion for a new
solution. Let f" be the value of the best current solution, and & is a unique and positive
parameter. Let R be a solution, R" a neighbor of R, and f, the objective value of solution

R'. Solution R’ is accepted if f, < f +5,and f~ is updated if f, <f . Weset §=0.1f"in

our implementation. This ALNS algorithm will not stop unless the predetermined number of

iterations € is conducted.
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5. Computational experiments

In this section, computational experiments are presented to evaluate the performance of ALNS
algorithm. The proposed ALNS algorithm was coded with Visual C# 4.0 and the test environment is
set up on a computer with Intel Core 17-4790 CPU, 3.60 GHz, 32GB RAM, running on Windows 7.
One hundred and twenty instances are designed to test the algorithm, which cover the problem in
different sizes including 10, 20, 50 and 100 targets respectively. For the small-size instances, the

computational results of our ALNS algorithm are also compared with that obtained by CPLEX.

5.1 Experiment design and instance generation

In order to estimate the value of parameters related with the UCAV, we investigated typical
UCAVs employed by armies in word wide, e.g, the MQ-9 Reaper which has six hardpoints and can
carry four AGM-114 Hellfire airborne anti-tank missiles, and carry two GBU-12 Paveway II aerial
laser-guided bombs [19]. We consider three types of payload capacity for UCAV, which are 600kg,
900kg and 1,200kg, and also three types of the number of hardpoints, which are 4, 6 and 8. It is
assumed that three types of weapons can be armed in the UCAV. The details of the parameters are
illustrated in Table 5, which can reflect the capabilities of UCAVs applied in different battlefields of

modern wars.

Table 5 Basic data for UCAV and weapon.

Index Parameter values
Payload capacity of the UCAV(kg) 600; 900; 1,200
Number of hardpoints 4,6, 8
UCAV

Type of weapons W1, W2 and W3
Cruise speed (km/h) 180
Weight (k 75

wi eight (kg)
Cost ($ thousand) 68
Weight (k 165

Weapons W2 ght (kg)

Cost ($ thousand) 84
Weight (k 240

W3 eight (kg)
Cost ($ thousand) 22

As mentioned earlier, our mathematical model does not consider UCAV endurance, and

assumes that the all attacking missions can be completed within the UCAV endurance. Accordingly,
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considering the UCAV endurance and combat radius, three scales of the mission region of the
battlefield are considered, which are 300 by 300 km, 500 by 500 km and 800 by 800 km and
discretized to grids with size of 300 x 300, 500 x 500 and 800 x 800, respectively. In practical war

scenarios, the depot must keep a safe distance far away from the enemy targets, and we note this
safe distance as ¢. In this paper, we suppose that the safe distance ¢ is equal to the UCAV
uniform cruise one hour flight distance, which is ¢ =180km. Without loss of generality, suppose

that the depot position is at (1, 1), and all the targets are randomly generated in the region and are

away from the depot at least the safe distance ¢. Related with different scales of the planning

region, four sizes for the number of targets are considered, which are 10, 20, 50 and 100. The

experimental scales are set in Table 6.

Table 6 Summary of experiments.

Instance size number of targets Region (kmz)
Small 10 and 20 300 x 300
Medium 50 500 x 500
Large 100 800 x 800

The damage demand @, of each target is randomly generated in the range [0.85,1] following

the uniform distribution. The combat ability of weapon m on target i, b, is randomly generated in

im
the range [0.1, 1] following the uniform distribution. In the considered mission planning situation,

each target can only be visited once, and thus for any target i, the UCAV must be able to destroy it

when carrying the weapons with highest ability to this target, that is, max{b,,g,meW}>a, for
i € N . If this condition cannot be satisfied, the randomly generated value of b, is unreasonable.

We check all b, and find the unreasonable ones to regenerate randomly until this condition holds.

As mentioned earlier, the objective function coefficients reflect the UCAV combat cost. Therefore,
the setting of the objective function coefficients in the experiment varies slightly according to the

UCAV payload capacity. The objective function coefficients setting is shown in Table 7.
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Table 7 The objective function coefficients setting in experiment.

Armament objective function coefficients
4 hardpoints & 600 kg payload capacity P,=1000; P,=1; P;=1000
6 hardpoints & 900 kg payload capacity P1=1200; P,=1; P;=1200
8 hardpoints & 1200 kg payload capacity = P,=1440; P,=1; P;=1440

5.2 Computational results analysis

In the experiment, each instance is solved ten times, and the average value of the ten results is

taken as the final result of the tested instance. The computation times are measured in seconds.
5.3.1 Small-size instances

Thirty small-size instances with 10 targets and thirty with 20 targets are randomly generated
based on the above experiment design, which are solved both by the proposed ALNS and CPLEX.
Table 8 presents the computational results for the instances with 10 targets. Columns 4 and 7 of
Table 8 and Table 9 display the computational time of two approaches, respectively. And the
average computational time of CPLEX in 10 targets is 0.59 seconds, which is shorter than the
average computational time of ALNS. But in 20 targets, the average computational time of CPLEX
is 4002.20 seconds, which is much larger than the average computational time of ALNS. Columns 8
in Table 8 and Table 9 show the improvement by the ALNS algorithm on the initial solutions, and
the average solution improvement is about 48.21% and 41.10%, respectively. Columns 9 of Table 8
and Table 9 display the gap between the two approaches, in this paper, where gap means the relative
gap between the objective value obtained by CPLEX and the ALNS, which is equal to (the
objective obtained by ALNS — the objective obtained by CPLEX)/the objective obtained by ALNS.
The average gaps between the two approaches are only 1.22% and 1.98%, respectively on the

instances with 10 targets and 20 targets.
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Table 8 Performance characteristics of CPLEX and ALNS tested using 10 targets instances.

CPLEX ALNS* Gap

Armament No. . Time . Initial Time Improve
Obj.Val. Obj.Val. . b (%)

(s) solution (s) (%)

1 2424597.98 0.12 2457572.51 3888657.08 14.13 36.80 1.36
2 2380102.02 1.92 2394144.62 3873176.37 14.84 38.19 0.59
3 2060957.84 0.20 2091047.82 3608727.74 13.65 42.06 1.46
4 hardpoints 4 2352257.91 0.44 2393422.42 3724640.19 14.83 35.74 1.75
& 600 kg 5 2114529.56 0.65 2148150.58 3777908.04 14.32 43.14 1.59
payload 6 2243336.12 0.53 2274518.49 4068900.50 14.45 44.10 1.39
capacity 7 2155791.79 0.40 2193733.73 3751946.02 15.65 41.53 1.76
8 2141811.63 0.34 2159802.85 3806186.38 15.54 43.26 0.84
9 2041426.68 0.27 2054695.95 3776444.99 14.93 45.59 0.65
10 2360302.65 0.55 2378476.98 3923007.34 15.92 39.37 0.77
11 2409043.58 1.79 2415788.90 4878869.49 15.18 50.48 0.28
12 2451521.48 0.22 2455198.76  4672567.67 15.70 47.46 0.15
13 2150123.74 0.20 2177430.31 4289204.62 14.47 49.23 1.27
6 hardpoints 14  2223192.75 1.43 2232974.80 4544061.43 15.04 50.86 0.44
& 900 kg 15  2396833.35 2.06 2444290.65 4402794.64 14.96 44 .48 1.98
payload 16  2371673.97 0.21 2383769.51 4471151.19 15.44 46.69 0.51
capacity 17 2367222.82 0.17 2408412.50 4824156.59 14.04 50.08 1.74
18 229371592 0.12 2390969.47 4761927.64 13.68 49.79 4.24
19  2164985.48 0.14 2182521.86 4428984.09 13.78 50.72 0.81
20  2198422.64 0.64 2212492.54 4654435.57 13.24 52.46 0.64
21 2232777.94 0.62 2273637.78 4942157.64 13.45 54.00 1.83
22 2170507.96 0.31 2181143.45 4903109.18 13.52 55.52 0.49
23 2133621.41 0.35 2186961.95 5173273.95 13.19 57.73 2.5
8 hardpoints 24  2322472.15 0.44 2372637.55 4834518.65 13.49 50.92 2.16
& 1200 kg 25  2169989.42 0.23 2185396.34 5112405.26 13.68 57.25 0.71
payload 26 2297950.78 0.52 2323687.83 5536982.21 13.31 58.03 1.12
capacity 27  2210491.30 1.75 2242543.42 4830348.62 13.35 53.57 1.45
28  2466338.72 0.34 2472997.83 5262662.30 13.33 53.01 0.27
29  2318171.53 0.49 2348307.76  4953336.47 13.29 52.59 1.3
30 2451781.82 0.28 2466737.69 5111780.87 14.08 51.74 0.61
Avg. — 0.59 — — 14.28 48.21 1.22

? the iteration number of the algorithm is 2000.

® the minimum value of the objective function in the initial population.
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Table 9 Performance characteristics of CPLEX and ALNS tested using 20 targets instances.

CPLEX ALNS* G
a
Armament No. . Time . Initial Time Improve P
Obj.Val. Obj.Val. . b (%)
(s) solution (s) (%)

31 4899610.22 3343.28  5063697.54 7492363.51 172.83 32.42 3.35
32 5034765.67°  7200.00  5059977.76 7952110.85  181.88  36.37 0.50
33 5520572.73 2101.08  5581197.55 8262242.54 17434  32.45 1.10
. 34 4782554.74°  7200.00  4814935.01 7740820.10 159.98  37.80 0.68

4 hardpoints &
35  5126144.84 3342.66  5221043.14 8521157.63  181.46  38.73 1.85

600 kg payload
i« 36 4983406.04 413949  5062217.82 7714785.85 177.81  34.38 1.58

capaci

pacty 37  5426823.76 2861.28  5493187.76 8244558.53  202.44  33.37 1.22
38  4768546.48 3295.02  4816711.65 7385545.18  159.35  34.78 1.01
39  5082171.68 2296.35  5243736.55 8077279.46  214.01  35.08 3.18
40  4893166.56 2864.81  5079180.63 8007398.00 175.60  36.57 3.80
41 6072122.90°  7200.00  6097756.98 10133896.72 169.87  39.83 0.42
42 5169130.61 4139.63  5251331.52 9273408.90 331.76  43.37 1.59
43 6223474.21 445223  6413740.53 11126924.68 207.58  42.36 3.06
) 44  5468838.52 2175.06  5528572.84 9717544.13  196.23  43.11 1.09

6 hardpoints &
45  5439860.50 3658.69  5638837.13 9352402.83  186.67 39.71 3.66

900 kg payload
" 46  5274467.03 3493.83  5403594.43 974999390 161.46  44.58 2.45

capaci

pacty 47  5374977.48°  7200.00  5422746.29 919169426  155.84  41.00 0.89
48  6192449.97 221825  6307882.98 10540562.03 175.84  40.16 1.86
49  6257508.70 4313.64  6400498.98 10622605.75 165.88  39.75 2.29
50  6202262.45°  7200.00  6263963.85 10172959.25 174.07  38.43 0.99
51 6308856.25 3009.60  6390566.83 12201417.94 160.00 47.62 1.30
52 5480492.21 2080.21  5641612.05 11202576.31 155.18  49.64 2.94
53 6070380.20°  7200.00  6117562.61 12239885.06 164.25  50.02 0.78
8 hardpoints & 54  5522360.80 2815.72  5696050.07 1114170242 157.08  48.88 3.15
1200 kg 55  5533082.06 3096.89  5709138.24 9902122.84 177.69 42.34 3.18
payload 56  6512213.86 2760.13  6578654.03 11533613.36 152.47 42.96 1.02
capacity 57  5833734.84 4166.18  6071186.17 11812193.19 163.27  48.60 4.07
58  6443927.95 3942.82  6611908.41 11734979.34 159.43  43.66 2.61
59  5933455.78 3558.42  6052242.16 11705717.35 168.15  48.30 2.00
60  6010477.97 2740.77  6121263.88 1150572593 162.27  46.80 1.84
Avg. — 4002.20 — — 178.16  41.10 1.98

? the iteration number of the algorithm is 10000.

® the minimum value of the objective function in the initial population.

¢ optimality was not verified within a time-limit of 7200 s.

From the overall results, it can be seen that the proposed ALNS solved all the small-size
instances in reasonable time and obtained near optimal solutions which are quite close to that
obtained by CPLEX. However, the computational time of CPLEX increases greatly as the number

of targets increases, and for some instances with 20 target, e.g. Instance 32, 34, 41 etc, CPLEX



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2019

cannot obtain the optimal solution in 7200 seconds.

5.3.2 Medium size and large size instances

As indicated by the results for instances with 10 and 20 targets, the computational time of
CPLEX increases greatly with the number of targets. And the further computation of the instances
with 50 targets shows that CPLEX cannot obtain satisfactory solutions in several hours, which
cannot satisfy the practical military requirement in current wars. Thus, we only present the
computational results for the medium and large-size instances, which are obtained by the ALNS
algorithm. Table 10 and Table 11 report the results obtained by ALNS for solving instances with
50 targets and 100 targets, respectively.

The computational results in Table 10 for the medium instances show that, compared with the
initial solutions obtained by the constructive heuristic, the final solutions obtained the ALNS
algorithm are improved by an average of 42.04%, which is similar to the performance on the
small-size instances. The average computational time is 901.12 seconds, which is acceptable.

The computational results in Table 11 for the large instances show that, compared with the
initial solutions obtained by the constructive heuristic, the final solutions obtained the ALNS
algorithm are improved by an average of 42.13%, which is similar to the performance on the
small-size and medium instances. The average computational time for large instances is 3588.58
seconds, about one hour, which is also acceptable.

Form the computational results for all instances with different sizes, it can be seen that the
ALNS algorithm shows good performance on both solution quality and computational time, which
indicates that the neighborhood structures designed for the joint weapon configuration, allocation

and route planning problem are effective.
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Table 10 Performance characteristics of ALNS tested using 50 targets instances.

ALNS*®
Armament No. . . . b Time Improve
Obj.Val. Initial solution
(s) (%)
61 19639702.79 26418858.49 894.16 25.66
62  20226587.53 28091423.00 905.93 28.00
63 19075602.57 29497875.83 827.38 35.33
64  19562878.93 28270698.47 885.11 30.80
4 hardpoints & 600 kg 65  21225258.16 33479351.74 968.09 36.60
payload capacity 66  21245526.49 30937990.54 903.73 31.33
67  19025215.37 30255708.29 951.10 37.12
68 18279376.77 25863988.21 934.00 29.32
69  21500859.25 32517817.92 921.50 33.88
70 19837561.10 27110162.60 843.02 26.83
71 23757260.36 38863692.78 864.34 38.87
72 23626293.40 45297246.03 839.71 47.84
73 25086301.95 43649491.24 897.37 42.53
74 23803380.80 40704101.47 957.38 41.52
6 hardpoints & 900 kg 75  24953042.70 44968659.67 960.44 4451
payload capacity 76 20252252.48 33375639.30 951.77 39.32
77  21484026.19 36297375.83 947.17 40.81
78  20961277.39 34038993.24 962.00 38.42
79  21290151.48 38375687.63 965.33 44.52
80  23262131.65 43412205.51 871.07 46.42
81  26411759.24 51683908.96 916.99 48.90
82  25927669.48 4999104491 839.00 48.14
83  28654411.71 64790006.23 925.85 55.77
84  25173709.93 53936381.18 834.87 53.33
8 hardpoints & 1200 85  24846209.02 51853298.48 943.74 52.08
kg payload capacity 86  26687074.82 54588557.26 941.93 51.11
87  26893376.17 59066981.34 843.04 54.47
88  24835318.46 47791483.44 839.85 48.03
89  29422705.85 62766002.15 849.10 53.12
90  27632781.35 63730779.37 848.59 56.64
Avg. — — 901.12 42.04

? the iteration number of the algorithm is 15000.

® the minimum value of the objective function in the initial population.
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Table 11 Performance characteristics of ALNS tested using 100 targets instances.

ALNS*®
Armament No. . L b Time Improve
Obj.Val. Initial solution
(s) (%)
91 56713612.00 77833338.02 3658.66 27.13
92  58819736.63 88335510.39 3939.26 3341
93  61499268.73 90584129.84 3620.54 32.11
94 59363550.94 81817562.91 3480.32 27.44
4 hardpoints & 600 kg 95  60015455.25 87037253.27 3427.54 31.05
payload capacity 96  59031436.97 79440954.08 3691.88 25.69
97  54676897.55 82662092.88 3331.97 33.85
98  57308366.75 93759087.00 3532.63 38.88
99  58273504.04 93494742.44 3337.27 37.67
100 60034343.70 82882886.05 3913.52 27.57
101 74474010.78 120333006.01 3994.62 38.11
102 70858242.62 129567870.06 3787.14 4531
103 63311816.71 117370935.19 3334.90 46.06
104  63549955.83 105734877.09 3598.18 39.90
6 hardpoints & 900 kg 105 80182413.87 134483508.76 371591 40.38
payload capacity 106  60589994.73 101644904.13 3806.19 40.39
107  74023035.54 123394701.99 3506.24 40.01
108 72685374.15 139422975.33 3571.98 47.87
109 68584173.73 131933825.44 3564.44 48.02
110  70937380.62 127674074.42 3954.26 44.44
111 71011557.80 138470904.86 3455.29 48.72
112 79348300.75 188831368.78 3335.35 57.98
113 87032222.17 174639693.52 3548.56 50.16
114 78536295.79 155542205.60 3307.42 49.51
8 hardpoints & 1200 115 79126976.77 169402740.94 3984.86 53.29
kg payload capacity 116 81119272.13 162194167.94 3545.99 49.99
117 80819186.75 191885864.20 3407.36 57.88
118  89209526.06 177191089.51 3516.22 49.65
119 78658940.98 166693102.07 3353.06 52.81
120  84250485.60 163825165.08 3435.85 48.57
Avg. — — 3588.58 42.13

? the iteration number of the algorithm is 20000.

® the minimum value of the objective function in the initial population.

6. Conclusions and future work

In this paper, we introduced a joint weapon configuration, allocation and route planning
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problem for a fleet of unmanned combat air vehicles, which is a new extension of the UAV/vehicle
routing problem. The problem is formulated into an integer linear programming model, and an
adaptive large neighborhood search heuristic is developed to solve the model. A problem specified
constructive heuristic is designed to obtain initial feasible solutions of the problem, and seven
neighborhood structures are defined and employed to improve the quality of the solutions.
Computational results based on random instances with different sizes show that CPLEX can only
solve the small-size instances, while the proposed ALNS algorithm can obtain good solutions for all
instances and the average computational time for large instances with 100 targets is about one hour.
The overall computational results indicate that the proposed ALNS algorithm is efficient and
applicable in practical military mission planning.

The joint Weapon configuration, allocation and route planning problem is a new topic in
military UCAV mission planning area, and there are many extensions required to be studied in
future research, such as the situations with multiple deports, with time window and with random
losses of UCAVs. Another valuable research on this topic is to develop solution algorithms based on
other metaheurisitcs, e.g. Tabu search, greedy randomized adaptive search, and evolutionary

algorithm, and then compare their performances.
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