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Abstract 

There is an increasing trend that Unmanned Combat Air Vehicles (UCAVs) are employed to 

complete different combat missions in modern wars. This paper investigates a UCAV routing 

problem, which simultaneously considers the decisions for the configuration of weapons carried by 

the UCAV subject to its capacity and the allocation of weapons to the targets subject to their 

destroying requirements. An integer linear programming model is developed to formulate the 

problem. An adaptive large neighborhood search (ALNS) heuristic is proposed to solve the problem, 

in which seven neighborhood structures are designed and employed. Randomly generated instances 

covering the small, medium and large sizes are used to test the proposed ALNS algorithm. CPLEX 

is also utilized to solve the small-size instances, whose results are compared with that obtained by 

the ALNS algorithm. And the extensive experimental results confirm the effectiveness and 

superiority of the proposed ALNS algorithm. 

Keywords: Unmanned Air Vehicles; Mission planning; Routing; Weapon configuration; adaptive 

large neighborhood search 
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1. Introduction 

Unmanned Combat Air Vehicle (UCAV) is usually considered to be a fighter aircraft without a pilot. 

Due to the advantages of UCAVs in conducting military operations, such as without loss of human 

life, lower cost and lower probability be detected [1], they have been widely employed in many 

kinds of military operations in modern wars. When UCAVs are utilized in military operations for 

attacking multiple targets, the commanders usually have to consider many issues for the mission 

planning, including which and how many weapons to be equipped on the UCAV, which and how 

many weapons to be delivered to the target by the UAV, and the route of UCAV to visit the targets. 

When the decisions for weapon configuration on UCAV and allocation to targets are integrated into 

the UCAV routing problem, a more complex and new extension to the traditional UAV routing 

problem is generated. 

In a typical UCAV mission planning problem, there are a number of predetermined targets that 

must be eliminated or neutralized. The geographical coordinates and basic attributes of the targets 

usually have been obtained from reconnaissance departments. For different military targets, damage 

demands are different and determined by the commander. Note that, in our paper, each target can 

only be visited once and must be destroyed in this visit. If not, the target may be repaired and 

protected during the time between two visits from different UCAVs. Table 1 presents an illustration 

example for five targets in a mission, which include their position and the damage demand for 

destroying the target.  

Table 1 Damage requirements for different types of target. 

Target Description Damage demand Position 

T1 Bridge 0.85 (66.27, 88.92) 

T2 Communications station 0.81 (29.82, 52.35) 

T3 Bunker 0.95 (90.91, 52.35) 

T4 Arsenal 0.84 (11.42, 94.11) 

T5 Airbase 0.95 (69.79, 25.33) 

There are a number of UCAVs that can be potentially used in the mission. Table 2 presents 

some critical information for a typical UCAV, including the endurance time, the payload, and the 

number of hanging points, the types of weapons can be carried and so on. There are three types of 
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weapons that can be carried by this UCAV, whose weights and costs are different and shown in 

Table 3. For different weapons, the destroying effects are different if they are used to attach the 

same target. Table 4 presents the destroying effects between weapons and targets. Here, if a UCAV 

attacks target T5 (airbase) by utilizing weapon W1 (small smart bombs), a damage level of 0.02 

units can be obtained. This can be explained by the fact that it’s extremely difficult to destroy an 

airbase with a low-yield bomb. Thus, the UCAV carries different types of weapons, and the combat 

ability is also quite different.  

Table 2 The UCAV basic parameters. 

Index Parameter values 

Cost ($ million) 10 

Payload capacity (kg) 900 

Full-loaded Endurance (h) 14 

Cruise speed (km/h) 180 

Hardpoints 6 

Types of weapons W1, W2 and W3 

Table 3 The weapon basic parameters. 

Weapon Description Weight (kg) Cost ($ million) 

W1 Small smart bombs 75 0.068 

W2 Small precision guided bombs 165 0.084 

W3 Laser-guided bomb 240 0.002 

Table 4 Weapon-target combat ability matrix. 

 T1 T2 T3 T4 T5 

W1 0.35 0.70 0.35 0.85 0.02 

W2 0.65 0.80 0.86 0.67 0.25 

W3 0.95 0.95 0.77 0.75 0.85 

From the above illustration of the typical combat mission, we can see that there are two kinds 

of critical decisions faced by the commander. The first is to determine the targets attacked by each 

UCVA and its flying route for visiting these targets. The second is to determine which type and how 

many weapons should be carried by each UCAV and which weapon should allocated to each target, 

subject to constraints on the targets’ damage demand and the limited capacity of UCAV on load and 

Hardpoints. The commanders have to optimize the decisions on weapon configuration, allocation 

and routing for multiple UCAVs, while minimizing the overall costs to complete the mission.  

In this paper, we address the joint weapon configuration, allocation and routing problem 

generated in the UCAV mission planning field, which is frequently faced by commanders in modern 
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wars. We develop an integer linear programming model for the problem. As the scale of the 

problem becomes large, standard solvers (e.g. CPLEX) cannot obtain an optimal solution efficiently. 

An adaptive large-scale neighborhood search algorithm is proposed to solve the problem. This study 

enriches the UCAV routing problem in the following aspects. 

(1) This paper is the first to consider a joint optimization problem of UCAVs route planning 

with weapon configuration and allocation, during which the UCAVs’ routing, the weapon 

configuration for the UCAVs and the weapon allocation for the targets are optimized 

simultaneously. And we provide an integer linear programming model for the focused 

problem.  

(2) The interactive influence among weapon configuration, allocation and routing makes the 

problem more complex. For the solving, we develop an adaptive large neighborhood search 

heuristic, which merges the weapon allocation strategy, several novel neighborhood 

operators and adaptively learning strategy. A population-based neighborhood search 

strategy is also employed to improve the search diversification in each iteration. The 

extensive computational experiments confirm the effectiveness and superiority of the 

developed algorithm. 

The remainder of this paper is organized as follows. Section 2 presents a brief literature review 

of the UCAVs mission planning problem. Problem description and mathematical formulation are 

presented in Section 3. Section 4 is devoted to the solution approach developed. Computational 

results of the solution method on a variety of numerical examples are presented in Section 5. Finally, 

the conclusions are presented in Section 6.  

2. Literature Review 

The weapon configuration, allocation and route planning are important mission planning operations 

for multiple UAVs. In modern wars, more and more military missions are conducted by UAVs, such 

as attack, intelligence, surveillance/reconnaissance missions. The study of UAV mission planning 

has gained increasing attention in recent years, and more practical applications are also presented 

[2-6]. Reviews for earlier research on the UAV mission planning were presented in [7] and [8]. 

Most of current studies on UAVs’ mission planning problem optimize the decisions for determining 

when to perform their task, how to complete the task, and making it complete with the minimum 
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cost [9].  

The route planning of UAVs is considered to be the most critical and challenging problem in 

wartime[10], and there has been significant research in this area. The objective is to find out an 

optimal or near-optimal flight path for each UAV between an initial location and the desired 

destination under specific constraint conditions [11]. Edison and Shima [12] investigated the 

integrated task assignment and path planning problem for multiple UAVs, where the UAVs have to 

perform consecutive tasks cooperatively on ground targets. The UAV’s minimum turn radius is 

considered, and the genetic algorithm is applied to solve the problem. Liu et al. [13] studied the task 

assignment problem for multiple UAVs to attack targets with dynamic value, which is solved by 

combining the multi-destination route planning algorithm and the ant colony algorithm. The 

constraints on flying height, maximum climbing/diving rate, and maximum turning angle are 

considered during planning the UAVs’ route. When planning the path of UAVs, the control features, 

e.g., flying height, minimum turn radius and flying velocity, are usually considered and optimized.  

As the development of UAV’s automatic control technologies, most current UAVs in military 

area can automatically complete the flying path between targets. Thus, recent studies tend to ignore 

the detail control of UAV in the flying path and optimize the UAV routing problem for visiting 

targets from the operational level. Shetty et al. [14] studied the priority-based target assignment and 

routing problem for multiple UCAVs, where the total service to targets is maximized based on their 

criticality. The problem is divided into a target assignment subproblem and a vehicle routing 

subproblem, and is solved by the Tabu search heuristic. Mufalli et al. [15] investigated joint sensor 

selection and routing problem for multiple UAVs, where the endurance of the UAV is considered 

and depends on the weight of carried sensors. The problem is formulated as a generalization of the 

team orienteering problem studied in the vehicle routing literature. Evers et al. [16] studied UAV 

reconnaissance mission planning problem with time windows and time-sensitive targets, which is 

modeled as the maximum coverage stochastic orienteering problem with time windows. They first 

construct a tour with maximum expected profits of targets and then develop a fast heuristic to 

re-plan the tour in the event a time-sensitive target appears. 

Location and routing of UAVs is also an important topic in the UAV mission planning. 

Sarıçiçek and Akkuş [17] studied the hub-location and routing problem for border security, where 

UAVs are utilized to route a number of points in the land border of Turkey. The problem is solved 
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by a two-stage approach. The first stage is to select hubs among the current airports as the base of 

UAVs. The route for visiting the border points are optimized in the second stage. Yakıcı [18] 

address the location and routing problem for small UAVs at tactical level, and the ant colony 

algorithm is employed to solve the problem. 

From current literature on UAV path/route planning, it can be seen that most of works on this 

topic contribute on optimizing the flying path between targets or the route visiting targets. Few of 

them considered the configuration of weapons and the interactive influence on the routing of UAVs. 

3. Model Formulation 

3.1 Problem Description 

In this section we will provide a detailed description of the weapon configuration, allocation 

and routing problem for UCAVs. 

(1) Targets 

The problem is given by a set of targets  1,2, ,N n  , residing at n  different locations, and 

node 0 denotes the depot. Each pair of locations ( , )i j , where  , 0i j N  , and i j , is 

associated with a travel time ijt . Each target i is assigned a specific damage level by the 

commander, denote by ia ( i N ). Each target can be attacked only once by one of the UCAVs. 

(2) UCAVs 

There are a fleet of homogeneous UCAVs used to attack the targets, noted as  1,2, ,U u   

which have the same payload capacity and number of hardpoints. However, each UCAV i can carry 

different weapons and then have different combat performance. With MQ-9 Reaper, for example, it 

can carry two 250 kilograms of precision guided bombs or fourteen hell fire anti-tank missiles[19]. 

The UCAVs leave and return to the depot. Most typical UCAVs in term of military service, such as 

the one shown in Table 2, have an endurance over than 10 hours, which is much longer than the our 

mission planning period. Thus, we do not consider the constraints on the endurance of the UCAVs 

in this paper. 

(3) Weapons 
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There are a number of potential weapons, noted as  1,2, ,W w   , which can be equipped in 

the UCAV. Different types of weapons have different weights and different capabilities, e.g. the 

weapons shown in Table 3 and Table 4. For weapon m W , we assume its weight is mq , its cost is 

mf  and its capability of destroying target i N  is imb . 

3.2 Mathematical Model 

The notations used in the formulation are summarized as follows. 

1) Sets  

N : the set of targets, and  1, 2, ,N n  . 

U : the set of UCAVs, and  1,2, ,U u   . 

W : the set of different weapon types, and  1,2, ,W w   . 

2) Parameters 

c : the payload capacity of the UCAV. 

g : the number of hardpoints of the UCAV. 

ia : damage demand at target i . 

ijd : distance between target i  and target j . 

mf  : the cost of a weapon of type m , and m W . 

mq : the weight of a weapon of type m , and m W . 

imb : the combat ability of weapon m  on target i, and m W . 

L : a large enough number. 

3) Decision Variables 

ijkx : binary variable that is equal to 1 if a target j  is attacked after target i  by UCAV k , 

and 0 otherwise.  

kmiy : integer variable that denotes the number of weapon m  on UCAV k  used to attack 

target i , and 0kmiy  . 
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The joint weapon configuration, allocation and route planning problem for UCAVs can be 

formulated as follows： 

Minimize 1 0 2 3
1 1 1 1 1 0 0 1

n u w u n n n u

jk m kmi ij ijk
j k m k i i j k

Z P x P f y P d x
       

      (1) 
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 0, , ,kmiy k U i N m W       (11) 

  0,1 , , ,ijkx i N j N k U       (12) 

Formula (1) is the objective function of the problem. The objective of the model is to minimize 

the number of UCAVs, the sum of the fixed weapons cost and the distances traveled by all UCAVs. 

The first term represents the number of UCAVs used, and thus only the non-empty routes are 

computed. The second term represents the total costs for all weapons used to complete all tasks. 

The third term represents the total distances traveled by all UCAVs. P1, P2 and P3 are the 
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coefficients used to adjust the costs of UCAV, weapons, and the flights into the same measure unit. 

Constraints (2) and (3) define that every target node can be struck only once by one UCAV. 

Constraints (4)-(6) state that each UCAV that leaves the depot, after arriving at a target the UCAV 

leaves again, and it must finally return to the depot. Constraints (7) guarantee that the payload 

capacity of the UCAV must not be exceeded. Constraints (8) ensure that the number of hardpoints 

of each UCAV must not be exceeded. Constraints (9) regulate that the damage demand of each 

target must be fulfilled. Constraints (10) guarantee that the decision variable kmiy  can only make 

sense if a determined UCAV goes by that target. Constraints (11) guarantee that the decision 

variable kmiy  is positive. Constraints (12) assure that the decision variables ijkx to be binary. 

With the development of technologies, the endurance of new UCAVs have been significantly 

improved, even in full load condition, the endurance can reach more than 10 hours[20]. When 

UCAVs are employed in battlefield, there are two typical mission situations. One is that the 

information of target is insufficient, and the UCAV has to cruise in an area to wait for the 

appearance of the target and then starts the stacking action. The other is that the information of the 

target is sufficient, and the UCAV can fly to the precise position of the target and then attacks in 

time. In the former situation, we should consider the endurance of UCAV and the taking turns of 

different UCAVs, while in the later situation, the endurance is long enough for the UCAV to attack 

several targets and return to the depot. Our problem belongs to the later situation and we do not 

consider the constraints on the UCAV’s endurance [16]. 

4. Adaptive Large Neighborhood Search Heuristic 

In this section, an adaptive large neighborhood search heuristic (ALNS) is developed for solving the 

problem. ALNS algorithm was proposed by Ropke and Pisinger [21] for solving the pickup and 

delivery problem with time windows, and then applied to arc routing problem by Laporte et al. [22], 

vehicle routing problem by Lei et al. [23] and Dayarian et al. [24], and territory design problem by 

Lei et al. [25], which shows better performance in solving these problem. In the iteration process 

the ALNS for the proposed problem, a population-based neighborhood search strategy is utilized 

instead of the general single-solution based search, so as to improve the search diversification. 
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Population-based neighborhood search strategies have been used to solve complex combinational 

problems, e.g. the machine total weighted tardiness problem[26], job shop scheduling problem[27] 

and vehicle routing problem[28], which show good performance on improving the search 

diversification. Thus, the ALNS for our problem includes two main stages: initial solutions 

generation in the first stage, where a number of feasible solutions are generated through a 

constructive heuristic; and the neighborhood search improvement in the second stage, where a 

group of neighborhood structures are defined and utilized to search better solutions. 

4.1 Framework of the ALNS 

The framework of the ALNS algorithm for the proposed weapon configuration, allocation and 

routing problem is illustrated in Fig. 1.  

In the first stage for generating initial feasible solutions, the construction heuristic includes 

three parts: firstly, weapons are allocated to each target to satisfy its destroy requirement through 

randomly selecting one of the three weapon allocation operators; then a tour for visiting all targets 

are constructed by randomly calling one of the three tour construction operators; at last, the tour is 

segmented into sub-tours according to the capacities of UCAVs on load and hanging points. In the 

initial solution generation process, both random operators, such as randomly allocating weapons to 

targets, and greedy operators, such as Efficiency-cost ratio priority based allocation of weapons, are 

employed and selected according to the roulette-wheel principle. Thus, a group of initial feasible 

solutions, G=50, are generated, which include better feasible solutions as well as diverse solutions. 

The processes of the weapon allocation operators are detailed in Section 4.3.1. 

In the second stage, based on the above group of initial solutions, a large neighborhood search 

strategy with multiple start points is employed, and seven neighborhood structures are defined and 

used to search the neighborhood solution space related with the decision variables on configuration, 

allocation and routing. In each iteration of the neighborhood search, a number of G neighbors are 

generated respectively from the G solutions kept from the last iteration. The neighborhood 

structures are further introduced in Section 4.4. In the generation process of neighbors, the selection 

probabilities of the seven neighborhood operators are random, which are dynamically adjusted 

throughout the iteration process based on an adaptive learning strategy proposed by [21]. We 
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present a detail introduction of the adaptive learning strategy employed for guiding the 

neighborhood search in Section 4.5. 

 
Fig. 1. Framework of the ALNS.	

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 April 2019                   



4.2 Definition of the solution 

4.2.1 Encoding 

The encoding scheme is important to the ALNS algorithm for our problem, and an effective 

encoding of the solution can facilitate the adjusting of decisions on both weapons and UCAV 

routing, which impacts the conduction of neighborhood operators. We utilize a ( 1)w n   matrix 

to represent the visiting sequence of targets and the allocation of weapons. Fig. 2 presents an 

encoding illustration of an instance with 9 targets and 3 weapons. The first row presents the targets 

and the attack sequence by UCAVs, which forms a complete tour by connecting the first and last 

cells to the depot respectively. In each column of the matrix, the cells from the second row to the 

(w+1)th row represent the weapon allocation strategy for the target in the first row. For instance, the 

first column of the matrix in Fig. 2, (6, 1, 0, 1) means that one Weapon 1 and one Weapon 3 should 

be delivered to Target 6.  

 
Fig. 2. Example of solution representation. 

4.2.2 Decoding 

The above encoding scheme only determines the visiting sequence of all targets and their 

weapon allocation strategies, and cannot present the weapon configuration and route of each UCAV. 

Thus, a splitting heuristic is developed to decoding the chromosome into feasible solution. The 

decoding process is to split the complete tour presented in the chromosome into sub-tours according 

to the capacities of UCAVs on load and hanging points. The splitting heuristic is detailed in Section 

4.3.3. 
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4.3 Construction heuristic for initial solutions 

The construction heuristic is proposed to generate a group of initial solutions as the starting 

points of the following neighborhood search. We construct the feasible solution based on an inverse 

process. We first determine which weapon and how many should be delivered to the target, and then 

construct a complete tour for all targets. At last, the UCAV starts from the depot to pick up the 

weapons along the complete tour until the payload capacities and hardpoints are sufficiently utilized, 

and then returns to the depot. The heuristic includes both greedy and random search ideas, so as to 

ensure the initial population contains some better feasible solutions as well as some diverse 

solutions. 

4.3.1 Weapon allocation strategy 

The weapon allocation strategy is used to determine which weapon and how many should be 

delivered to the target, so as to satisfy the targets’ destroy requirement. Three operators are used in 

the weapon allocation process, which are presented as follows. When weapons are allocated to the 

target, the three operators are selected randomly with equal probabilities. 

(1) Random allocation (RA) 

The RA operator assigns weapons to each target one by one randomly until the destroy 

requirement of the target is satisfied. The total weight of weapons allocated to the target must be no 

more than the load capacity of the UCAV, and the total number of weapons must be no more than 

the number of hanging points in the UCAV, that is, the weapon allocation solution can not violate 

constraints (7) and (8). If one of or both the constraints are violated, the solution is abandoned and 

the weapons are reassigned again randomly until a feasible solution is obtained. A pseudo code of 

the RA operator is given in Fig. 3. 
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Fig. 3. The pseudo code of the RA operator. 

(2) Combat ability priority based allocation (CAPA) 

The CAPA operator is to choose a set of weapons for target i according to their combat ability. 

In other words, give priority to the most powerful combat weapons assigned to the target. The 

pseudo code of CAPA is given in Fig. 4. 

 
Fig. 4. The pseudo code of CAPA. 
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(3) Efficiency-cost ratio priority based allocation (ECRPA) 

Here, the efficiency-cost ratio of weapon m to target i is calculated as follows: 

im
im

m

b
eff

f
 .                                                  (13) 

ECRPA operator uses the efficiency-cost ratio as the weapon allocation criteria and gives priority to 

the weapons with higher efficiency-cost ratio in the weapon allocation process. The pseudo code of 

ECRPA operator is given in Fig. 5. 

 

Fig. 5. The pseudo code of ECRPA operator. 

4.3.2 Complete tour generation 

When the weapon allocation is completed, the next step is to optimize the routing of the 

UCAVs. A complete tour for visiting all targets are first constructed, which the UCAVs can fly 

along this tour to attack targets in sequence. The following three operators are utilized to construct 
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the complete tour. 

1) Random generation (RG): The RG operator randomly arranges the visiting sequences of all 

targets to form a complete tour. 

2) Damage requirement priority generation (DRPG): In real-world scenarios, targets are 

characterized by their priority or importance level[14], some targets may need be destroyed 

first. The DRPG utilizes the damage requirement of the target as the indicator for 

constructing the tour. That is, the targets are visited following the order from the one with 

highest damage requirement to the one with lowest damage requirement. 

3) Nearest distance priority generation (NDPG): The NDPG operator is inspired by the 

nearest neighbor heuristic for the traveling salesman problem. However, in this operator, 

we randomly select a target as the first one and then visiting the other targets following the 

nearest neighbor principle. 

4.3.3 Feasible sub-tour splitting (FSS) 

Usually, one UCAV cannot complete the attacking tasks for all targets due to the limitation on 

load and hang point capacities. Thus, we have to split the complete tour for all targets into multiple 

sub-tours, and ensure the total weapons allocated to the targets in each sub-tour do not inviolate the 

constraints (7) and (8). A feasible sub-tour splitting heuristic is proposed to help each UCAV find a 

suitable sub-tour. The basic idea of this heuristic is to let the UCAV fly along the complete tour and 

pick up the weapons allocated to the targets in his flying route until its capacities are sufficiently 

consumed and then return to the depot. The next UCAV continues to visit the targets whose 

weapons are not picked up along the complete tour, and then one UCAV is followed by another one 

until all targets are visited. The calculating process of FSS operator is given in Fig. 6, while an 

illustrative example is shown in Fig. 7 where the UCAV is assumed to have 6 hanging points and a 

load capacity of 900 kg.  
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Fig. 6. The pseudo code of FSS operator. 
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Fig. 7. Illustration of the results after splitting. 

4.4 Neighborhood Operators 

The above construction heuristic can propose a number of feasible solutions for the problem, 

which have to be further improved. In this section, we develop five neighborhood structures, which 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 April 2019                   



utilize the initial feasible solutions as starting points to search the solution space and find a much 

better solution of the problem. Among the seven neighborhood operators, local inversion, two 

exchange and three exchange are random search operators, while the other four operators are greedy 

search operators. 

4.4.1 Local inversion (LI) 

The purpose of the LI operator is to change the attacking order of targets in the complete tour. 

In the LI operator, two targets are randomly selected and exchanged, and the visiting sequences of 

the targets between them are also exchanged. An example is depicted in Fig. 8. 

 

Fig. 8. Illustration of LI operator. 

4.4.2 Two-exchange (2-ex) 

The aim of this operator is to change the visit order of targets, which generates as many 

feasible solutions as possible on the basis of initial feasible solutions. Randomly generate two 

unequal integers 1 2, [0, 1]ex ex n  , which represent the position of the two genes of the 

chromosome, and then exchange the gene information of the two positions. Taking the problem in 

Fig. 2 as an example, a 2-exchange process is illustrated in Fig. 9. After 2-exchange operation, the 

attack order of targets becomes: T6→T2→T9→T7→T1→T4→T3→T5→T8. 
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Fig. 9. Illustration of 2-ex operator. 

4.4.3 Three-exchange (3-ex) 

The 3-exchange operator is a variant of the 2-exchange operator. Randomly generate three 

unequal integers 1 2 3, , [0, 1]ex ex ex n  , which represent the position of the three genes of the 

chromosome, and then exchange the three positions of the genetic information. Taking the problem 

in Fig. 2 as an example, a 3-exchange process is illustrated in Fig. 10. After 3-exchange operation, 

the attack order of targets becomes: T9→T2→T5→T6→T1→T4→T3→T7→T8. In contrast with a 

2-exchange, in a 3-exchange, where three genes are mutated, there are several possibilities to 

construct a new initial solution from the 3-exchange process [29]. 

 
Fig. 10. One possible case of 3-ex operator. 
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4.4.4 Reducing number of weapons (RNW) 

RNW operator selects the target with the largest number of weapons and checks if the target 

can be destroyed by less number of weapons with higher capability. It is worth noting that the 

reduction of weapons must meet the requirement of constraint(9). If the number of weapons 

allocated to the target is reduced, then the UCAV may visit more targets, which provides a potential 

to reduce the number of UCAV utilized and the overall flying distance. An illustrative example is 

given in Fig. 11. 

 

 
Fig. 11. Illustration of procedure RNW operator. 

4.4.5 Reducing cost of weapons (RCW) 

RCW operator selects the target whose total cost of allocated weapons is the highest one 

among all targets, and then checks if the weapons allocated to this target can be changed into 

cheaper ones. The requirements of constraints (7), (8) and (9) must be met when the weapon is 

exchanged. If the overall cost of the selected targets can be reduced, the better solution may be 

found. However, RCW operator cannot ensure that the solution be improved every time, and 

sometimes the reducing on cost of weapons may increase the number of weapons and the total 

weight of weapons, which may cause a solution with higher number of UCAVs and total flying 
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distance. Thus, RCW operator just provides a potential way to optimize the current solution. An 

example is given in Fig. 12. 
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Fig. 12. Illustration of procedure RCW operator. 

4.4.6 Reducing weight of weapons (RWW) 

The RWW operator is to select the target whose total weight of all weapons is the highest, and 

change some of weapons with higher weight with some lighter ones. It should be pointed out that 

the replacement of weapons must meet the requirements of constraints (7)-(9). When the UCAV 

cannot visit more targets due to the constraints on load, the RWW operator provides a potential to 

let the UCAV visit more targets and then may reduce the overall number of UCAV utilized and the 

flying distance. An illustrative example is given in Fig. 13. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 April 2019                   



Targets

Weapon 1
(75kg)

Weapon 2
(165kg)

Weapon 3
(240kg)

Sum of the 
numbers

Targets

Sum of the 
numbers

2 2 11 2 2 3 2 1

Reducing the weight of weapons(RWW)

Sum of the 
weights(kg)

315

2 2 11 2 2 3 2 1

240 165 240 315 240 645 150 165

Sum of the 
weights(kg)

Weapon 1
(75kg)

Weapon 2
(165kg)

Weapon 3
(240kg)

315 240 165 240 315 240 315 150 165

Splitting

Splitting

6

1

0

2

2

1

1

0

5

0

1

0

7

0

0

1

1

1

0

1

4

1

1

0

3

2

1

0

1

9

2

0

0

0

0

8

6

1

0

1

2

1

1

0

5

0

1

0

7

0

0

1

1

1

0

1

4

1

1

0

3

0

1

2

1

9

2

0

0

0

0

8

UCAVs=4

UCAVs=3

1

Depot(0)

8

7
5 3

2

6

9

4

1

Depot(0)

8

7
5 3

2

6

9

4

 
Fig. 13. Illustration of procedure RWW operator. 

4.4.7 Route merging (RM)  

The aim of RM operator is to find the best possible merging route. The main idea of this 

operator is to reduce the number of UCAVs to achieve the objective function optimization. For each 

route, there will always be some UCAV that is not loaded when it returns. The RM operator sorted 

the total number of UCAVs mounted weapons in descending order. Then try merging the two routes, 

and the UCAVs that fly on both routes are relatively less armed. An example is depicted in Fig. 14, 

in which the UCAV 1 and UCAV 4 are not fully loaded, after the calculation of RM operator the 

corresponding two routes can be merged. 

 

Fig. 14. Illustration of procedure RM operator. 
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4.5 Adaptively Learning Strategy 

The feasible solution optimization heuristics are each associated a weight which dynamically 

changes throughout the algorithm. The general idea behind the learning selection mechanism, which 

was introduced by [23]. At each iteration, the selection of a removal heuristic and of an insertion 

heuristic is based on the roulette-wheel principle selection. Given h  operators with weights i  , 

operator j  is chosen with probability
1

h

j ii
 

 . The weight of each operator is updated every 

( 4)    iterations. Initially, all operators have a weight of 1. The weight ij  of operator i  at 

the j th sequence of   iterations is computed as 

 , 1 (1 ) ij
i j ij

ij

r r


 
      (14) 

where ij and ij are the number of times operator i  has been used in the j th sequence of   

iterations, and the score of operator i in the j th sequence of   iterations, respectively, and 

( [0,1])r r a is an arbitrary parameter equal to 0.1 in our implementation.  

At the start of each learning, the scores of all operators are set to zero. The scores are increased 

by 1 30ij   if a new best solution is found, by 2 10ij   if the new solution is better than the 

current solution and by 3 6ij   if the new solution is not improve upon the current solution but is 

accepted. 

4.6 Acceptance and stopping criteria 

We use the acceptance criteria introduced by [23] to define the acceptance criterion for a new 

solution. Let *f  be the value of the best current solution, and   is a unique and positive 

parameter. Let R  be a solution, R  a neighbor of R , and Rf   the objective value of solution 

R . Solution 'R  is accepted if *
Rf f    , and *f  is updated if *

Rf f  . We set *0.1 f  in 

our implementation. This ALNS algorithm will not stop unless the predetermined number of 

iterations   is conducted. 
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5. Computational experiments 

In this section, computational experiments are presented to evaluate the performance of ALNS 

algorithm. The proposed ALNS algorithm was coded with Visual C# 4.0 and the test environment is 

set up on a computer with Intel Core i7-4790 CPU, 3.60 GHz, 32GB RAM, running on Windows 7. 

One hundred and twenty instances are designed to test the algorithm, which cover the problem in 

different sizes including 10, 20, 50 and 100 targets respectively. For the small-size instances, the 

computational results of our ALNS algorithm are also compared with that obtained by CPLEX. 

5.1 Experiment design and instance generation 

In order to estimate the value of parameters related with the UCAV, we investigated typical 

UCAVs employed by armies in word wide, e.g, the MQ-9 Reaper which has six hardpoints and can 

carry four AGM-114 Hellfire airborne anti-tank missiles, and carry two GBU-12 Paveway II aerial 

laser-guided bombs [19]. We consider three types of payload capacity for UCAV, which are 600kg, 

900kg and 1,200kg, and also three types of the number of hardpoints, which are 4, 6 and 8. It is 

assumed that three types of weapons can be armed in the UCAV. The details of the parameters are 

illustrated in Table 5, which can reflect the capabilities of UCAVs applied in different battlefields of 

modern wars. 

Table 5 Basic data for UCAV and weapon. 

  Index Parameter values 

UCAV 

 Payload capacity of the UCAV(kg) 600; 900; 1,200 

 Number of hardpoints 4, 6, 8 

 Type of weapons W1, W2 and W3 

 Cruise speed (km/h) 180 

Weapons 

W1 
Weight (kg) 75 

Cost ($ thousand) 68 

W2 
Weight (kg) 165 

Cost ($ thousand) 84 

W3 
Weight (kg) 240 

Cost ($ thousand) 22 

 

As mentioned earlier, our mathematical model does not consider UCAV endurance, and 

assumes that the all attacking missions can be completed within the UCAV endurance. Accordingly, 
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considering the UCAV endurance and combat radius, three scales of the mission region of the 

battlefield are considered, which are 300 by 300 km, 500 by 500 km and 800 by 800 km and 

discretized to grids with size of 300 × 300, 500 × 500 and 800 × 800, respectively. In practical war 

scenarios, the depot must keep a safe distance far away from the enemy targets, and we note this 

safe distance as  . In this paper, we suppose that the safe distance   is equal to the UCAV 

uniform cruise one hour flight distance, which is 180  km. Without loss of generality, suppose 

that the depot position is at (1, 1), and all the targets are randomly generated in the region and are 

away from the depot at least the safe distance  . Related with different scales of the planning 

region, four sizes for the number of targets are considered, which are 10, 20, 50 and 100. The 

experimental scales are set in Table 6. 

Table 6 Summary of experiments. 

Instance size number of targets Region (km2) 

Small 10 and 20  300 × 300 

Medium 50  500 × 500 

Large 100  800 × 800 

 

The damage demand ia  of each target is randomly generated in the range [0.85,1] following 

the uniform distribution. The combat ability of weapon m on target i, imb  is randomly generated in 

the range [0.1, 1] following the uniform distribution. In the considered mission planning situation, 

each target can only be visited once, and thus for any target i, the UCAV must be able to destroy it 

when carrying the weapons with highest ability to this target, that is,  max ,im ib g m W a   for 

i N . If this condition cannot be satisfied, the randomly generated value of  imb  is unreasonable. 

We check all imb  and find the unreasonable ones to regenerate randomly until this condition holds. 

As mentioned earlier, the objective function coefficients reflect the UCAV combat cost. Therefore, 

the setting of the objective function coefficients in the experiment varies slightly according to the 

UCAV payload capacity. The objective function coefficients setting is shown in Table 7. 
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Table 7 The objective function coefficients setting in experiment. 

Armament objective function coefficients 

4 hardpoints & 600 kg payload capacity P1=1000；P2=1；P3=1000 

6 hardpoints & 900 kg payload capacity P1=1200；P2=1；P3=1200 

8 hardpoints & 1200 kg payload capacity P1=1440；P2=1；P3=1440 

5.2 Computational results analysis 

In the experiment, each instance is solved ten times, and the average value of the ten results is 

taken as the final result of the tested instance. The computation times are measured in seconds. 

5.3.1 Small-size instances 

Thirty small-size instances with 10 targets and thirty with 20 targets are randomly generated 

based on the above experiment design, which are solved both by the proposed ALNS and CPLEX. 

Table 8 presents the computational results for the instances with 10 targets. Columns 4 and 7 of 

Table 8 and Table 9 display the computational time of two approaches, respectively. And the 

average computational time of CPLEX in 10 targets is 0.59 seconds, which is shorter than the 

average computational time of ALNS. But in 20 targets, the average computational time of CPLEX 

is 4002.20 seconds, which is much larger than the average computational time of ALNS. Columns 8 

in Table 8 and Table 9 show the improvement by the ALNS algorithm on the initial solutions, and 

the average solution improvement is about 48.21% and 41.10%, respectively. Columns 9 of Table 8 

and Table 9 display the gap between the two approaches, in this paper, where gap means the relative 

gap between the objective value obtained by CPLEX and the ALNS, which is equal to (the 

objective obtained by ALNS – the objective obtained by CPLEX)/the objective obtained by ALNS. 

The average gaps between the two approaches are only 1.22% and 1.98%, respectively on the 

instances with 10 targets and 20 targets. 
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Table 8 Performance characteristics of CPLEX and ALNS tested using 10 targets instances. 

Armament No. 

CPLEX ALNS a 

Gap 

(%) Obj.Val. 
Time 

(s) 
Obj.Val. 

Initial 

solutionb 

Time 

(s) 

Improve 

(%) 

4 hardpoints 

& 600 kg 

payload 

capacity 

1 2424597.98 0.12 2457572.51 3888657.08 14.13 36.80 1.36 

2 2380102.02 1.92 2394144.62 3873176.37 14.84 38.19 0.59 

3 2060957.84 0.20 2091047.82 3608727.74 13.65 42.06 1.46 

4 2352257.91 0.44 2393422.42 3724640.19 14.83 35.74 1.75 

5 2114529.56 0.65 2148150.58 3777908.04 14.32 43.14 1.59 

6 2243336.12 0.53 2274518.49 4068900.50 14.45 44.10 1.39 

7 2155791.79 0.40 2193733.73 3751946.02 15.65 41.53 1.76 

8 2141811.63 0.34 2159802.85 3806186.38 15.54 43.26 0.84 

9 2041426.68 0.27 2054695.95 3776444.99 14.93 45.59 0.65 

10 2360302.65 0.55 2378476.98 3923007.34 15.92 39.37 0.77 

6 hardpoints 

& 900 kg 

payload 

capacity 

11 2409043.58 1.79 2415788.90 4878869.49 15.18 50.48 0.28 

12 2451521.48 0.22 2455198.76 4672567.67 15.70 47.46 0.15 

13 2150123.74 0.20 2177430.31 4289204.62 14.47 49.23 1.27 

14 2223192.75 1.43 2232974.80 4544061.43 15.04 50.86 0.44 

15 2396833.35 2.06 2444290.65 4402794.64 14.96 44.48 1.98 

16 2371673.97 0.21 2383769.51 4471151.19 15.44 46.69 0.51 

17 2367222.82 0.17 2408412.50 4824156.59 14.04 50.08 1.74 

18 2293715.92 0.12 2390969.47 4761927.64 13.68 49.79 4.24 

19 2164985.48 0.14 2182521.86 4428984.09 13.78 50.72 0.81 

20 2198422.64 0.64 2212492.54 4654435.57 13.24 52.46 0.64 

8 hardpoints 

& 1200 kg 

payload 

capacity 

21 2232777.94 0.62 2273637.78 4942157.64 13.45 54.00 1.83 

22 2170507.96 0.31 2181143.45 4903109.18 13.52 55.52 0.49 

23 2133621.41 0.35 2186961.95 5173273.95 13.19 57.73 2.5 

24 2322472.15 0.44 2372637.55 4834518.65 13.49 50.92 2.16 

25 2169989.42 0.23 2185396.34 5112405.26 13.68 57.25 0.71 

26 2297950.78 0.52 2323687.83 5536982.21 13.31 58.03 1.12 

27 2210491.30 1.75 2242543.42 4830348.62 13.35 53.57 1.45 

28 2466338.72 0.34 2472997.83 5262662.30 13.33 53.01 0.27 

29 2318171.53 0.49 2348307.76 4953336.47 13.29 52.59 1.3 

30 2451781.82 0.28 2466737.69 5111780.87 14.08 51.74 0.61 

Avg. — 0.59 — — 14.28 48.21 1.22 
a the iteration number of the algorithm is 2000. 
b the minimum value of the objective function in the initial population. 

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 April 2019                   



Table 9 Performance characteristics of CPLEX and ALNS tested using 20 targets instances. 

Armament No. 

CPLEX ALNS a 

Gap 

(%) Obj.Val. 
Time 

(s) 
Obj.Val. 

Initial 

solutionb 

Time 

(s) 

Improve

(%) 

4 hardpoints & 

600 kg payload 

capacity 

31 4899610.22 3343.28 5063697.54 7492363.51 172.83 32.42 3.35 

32 5034765.67c 7200.00 5059977.76 7952110.85 181.88 36.37 0.50 

33 5520572.73 2101.08 5581197.55 8262242.54 174.34 32.45 1.10 

34 4782554.74c 7200.00 4814935.01 7740820.10 159.98 37.80 0.68 

35 5126144.84 3342.66 5221043.14 8521157.63 181.46 38.73 1.85 

36 4983406.04 4139.49 5062217.82 7714785.85 177.81 34.38 1.58 

37 5426823.76 2861.28 5493187.76 8244558.53 202.44 33.37 1.22 

38 4768546.48 3295.02 4816711.65 7385545.18 159.35 34.78 1.01 

39 5082171.68 2296.35 5243736.55 8077279.46 214.01 35.08 3.18 

40 4893166.56 2864.81 5079180.63 8007398.00 175.60 36.57 3.80 

6 hardpoints & 

900 kg payload 

capacity 

41 6072122.90c 7200.00 6097756.98 10133896.72 169.87 39.83 0.42 

42 5169130.61 4139.63 5251331.52 9273408.90 331.76 43.37 1.59 

43 6223474.21 4452.23 6413740.53 11126924.68 207.58 42.36 3.06 

44 5468838.52 2175.06 5528572.84 9717544.13 196.23 43.11 1.09 

45 5439860.50 3658.69 5638837.13 9352402.83 186.67 39.71 3.66 

46 5274467.03 3493.83 5403594.43 9749993.90 161.46 44.58 2.45 

47 5374977.48c 7200.00 5422746.29 9191694.26 155.84 41.00 0.89 

48 6192449.97 2218.25 6307882.98 10540562.03 175.84 40.16 1.86 

49 6257508.70 4313.64 6400498.98 10622605.75 165.88 39.75 2.29 

50 6202262.45c 7200.00 6263963.85 10172959.25 174.07 38.43 0.99 

8 hardpoints & 

1200 kg 

payload 

capacity 

51 6308856.25 3009.60 6390566.83 12201417.94 160.00 47.62 1.30 

52 5480492.21 2080.21 5641612.05 11202576.31 155.18 49.64 2.94 

53 6070380.20c 7200.00 6117562.61 12239885.06 164.25 50.02 0.78 

54 5522360.80 2815.72 5696050.07 11141702.42 157.08 48.88 3.15 

55 5533082.06 3096.89 5709138.24 9902122.84 177.69 42.34 3.18 

56 6512213.86 2760.13 6578654.03 11533613.36 152.47 42.96 1.02 

57 5833734.84 4166.18 6071186.17 11812193.19 163.27 48.60 4.07 

58 6443927.95 3942.82 6611908.41 11734979.34 159.43 43.66 2.61 

59 5933455.78 3558.42 6052242.16 11705717.35 168.15 48.30 2.00 

60 6010477.97 2740.77 6121263.88 11505725.93 162.27 46.80 1.84 

Avg. — 4002.20 — — 178.16 41.10 1.98 
a the iteration number of the algorithm is 10000. 
b the minimum value of the objective function in the initial population. 
c optimality was not verified within a time-limit of 7200 s. 

From the overall results, it can be seen that the proposed ALNS solved all the small-size 

instances in reasonable time and obtained near optimal solutions which are quite close to that 

obtained by CPLEX. However, the computational time of CPLEX increases greatly as the number 

of targets increases, and for some instances with 20 target, e.g. Instance 32, 34, 41 etc, CPLEX 
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cannot obtain the optimal solution in 7200 seconds. 

5.3.2 Medium size and large size instances  

As indicated by the results for instances with 10 and 20 targets, the computational time of 

CPLEX increases greatly with the number of targets. And the further computation of the instances 

with 50 targets shows that CPLEX cannot obtain satisfactory solutions in several hours, which 

cannot satisfy the practical military requirement in current wars. Thus, we only present the 

computational results for the medium and large-size instances, which are obtained by the ALNS 

algorithm. Table 10 and Table 11 report the results obtained by ALNS for solving instances with 

50 targets and 100 targets, respectively.  

The computational results in Table 10 for the medium instances show that, compared with the 

initial solutions obtained by the constructive heuristic, the final solutions obtained the ALNS 

algorithm are improved by an average of 42.04%, which is similar to the performance on the 

small-size instances. The average computational time is 901.12 seconds, which is acceptable. 

The computational results in Table 11 for the large instances show that, compared with the 

initial solutions obtained by the constructive heuristic, the final solutions obtained the ALNS 

algorithm are improved by an average of 42.13%, which is similar to the performance on the 

small-size and medium instances. The average computational time for large instances is 3588.58 

seconds, about one hour, which is also acceptable. 

Form the computational results for all instances with different sizes, it can be seen that the 

ALNS algorithm shows good performance on both solution quality and computational time, which 

indicates that the neighborhood structures designed for the joint weapon configuration, allocation 

and route planning problem are effective. 
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Table 10 Performance characteristics of ALNS tested using 50 targets instances. 

Armament No. 

ALNS a 

Obj.Val. Initial solutionb Time 

(s) 

Improve 

(%) 

4 hardpoints & 600 kg 

payload capacity 

61 19639702.79 26418858.49 894.16 25.66 

62 20226587.53 28091423.00 905.93 28.00 

63 19075602.57 29497875.83 827.38 35.33 

64 19562878.93 28270698.47 885.11 30.80 

65 21225258.16 33479351.74 968.09 36.60 

66 21245526.49 30937990.54 903.73 31.33 

67 19025215.37 30255708.29 951.10 37.12 

68 18279376.77 25863988.21 934.00 29.32 

69 21500859.25 32517817.92 921.50 33.88 

70 19837561.10 27110162.60 843.02 26.83 

6 hardpoints & 900 kg 

payload capacity 

71 23757260.36 38863692.78 864.34 38.87 

72 23626293.40 45297246.03 839.71 47.84 

73 25086301.95 43649491.24 897.37 42.53 

74 23803380.80 40704101.47 957.38 41.52 

75 24953042.70 44968659.67 960.44 44.51 

76 20252252.48 33375639.30 951.77 39.32 

77 21484026.19 36297375.83 947.17 40.81 

78 20961277.39 34038993.24 962.00 38.42 

79 21290151.48 38375687.63 965.33 44.52 

80 23262131.65 43412205.51 871.07 46.42 

8 hardpoints & 1200 

kg payload capacity 

81 26411759.24 51683908.96 916.99 48.90 

82 25927669.48 49991044.91 839.00 48.14 

83 28654411.71 64790006.23 925.85 55.77 

84 25173709.93 53936381.18 834.87 53.33 

85 24846209.02 51853298.48 943.74 52.08 

86 26687074.82 54588557.26 941.93 51.11 

87 26893376.17 59066981.34 843.04 54.47 

88 24835318.46 47791483.44 839.85 48.03 

89 29422705.85 62766002.15 849.10 53.12 

90 27632781.35 63730779.37 848.59 56.64 

Avg. — — 901.12 42.04 
a the iteration number of the algorithm is 15000. 
b the minimum value of the objective function in the initial population. 
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Table 11 Performance characteristics of ALNS tested using 100 targets instances. 

Armament No. 

ALNS a 

Obj.Val. Initial solutionb Time 

(s) 

Improve 

(%) 

4 hardpoints & 600 kg 

payload capacity 

91 56713612.00 77833338.02 3658.66 27.13 

92 58819736.63 88335510.39 3939.26 33.41 

93 61499268.73 90584129.84 3620.54 32.11 

94 59363550.94 81817562.91 3480.32 27.44 

95 60015455.25 87037253.27 3427.54 31.05 

96 59031436.97 79440954.08 3691.88 25.69 

97 54676897.55 82662092.88 3331.97 33.85 

98 57308366.75 93759087.00 3532.63 38.88 

99 58273504.04 93494742.44 3337.27 37.67 

100 60034343.70 82882886.05 3913.52 27.57 

6 hardpoints & 900 kg 

payload capacity 

101 74474010.78 120333006.01 3994.62 38.11 

102 70858242.62 129567870.06 3787.14 45.31 

103 63311816.71 117370935.19 3334.90 46.06 

104 63549955.83 105734877.09 3598.18 39.90 

105 80182413.87 134483508.76 3715.91 40.38 

106 60589994.73 101644904.13 3806.19 40.39 

107 74023035.54 123394701.99 3506.24 40.01 

108 72685374.15 139422975.33 3571.98 47.87 

109 68584173.73 131933825.44 3564.44 48.02 

110 70937380.62 127674074.42 3954.26 44.44 

8 hardpoints & 1200 

kg payload capacity 

111 71011557.80 138470904.86 3455.29 48.72 

112 79348300.75 188831368.78 3335.35 57.98 

113 87032222.17 174639693.52 3548.56 50.16 

114 78536295.79 155542205.60 3307.42 49.51 

115 79126976.77 169402740.94 3984.86 53.29 

116 81119272.13 162194167.94 3545.99 49.99 

117 80819186.75 191885864.20 3407.36 57.88 

118 89209526.06 177191089.51 3516.22 49.65 

119 78658940.98 166693102.07 3353.06 52.81 

120 84250485.60 163825165.08 3435.85 48.57 

Avg. — — 3588.58 42.13 
a the iteration number of the algorithm is 20000. 
b the minimum value of the objective function in the initial population. 

6. Conclusions and future work 

In this paper, we introduced a joint weapon configuration, allocation and route planning 
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problem for a fleet of unmanned combat air vehicles, which is a new extension of the UAV/vehicle 

routing problem. The problem is formulated into an integer linear programming model, and an 

adaptive large neighborhood search heuristic is developed to solve the model. A problem specified 

constructive heuristic is designed to obtain initial feasible solutions of the problem, and seven 

neighborhood structures are defined and employed to improve the quality of the solutions. 

Computational results based on random instances with different sizes show that CPLEX can only 

solve the small-size instances, while the proposed ALNS algorithm can obtain good solutions for all 

instances and the average computational time for large instances with 100 targets is about one hour. 

The overall computational results indicate that the proposed ALNS algorithm is efficient and 

applicable in practical military mission planning. 

The joint Weapon configuration, allocation and route planning problem is a new topic in 

military UCAV mission planning area, and there are many extensions required to be studied in 

future research, such as the situations with multiple deports, with time window and with random 

losses of UCAVs. Another valuable research on this topic is to develop solution algorithms based on 

other metaheurisitcs, e.g. Tabu search, greedy randomized adaptive search, and evolutionary 

algorithm, and then compare their performances. 
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