

1 **Simple approach to elaborate test bricks for traditional ceramic studies**

2 Hicham Idrissi ^(1*), Wafaa Borja ⁽¹⁾, Nathalie Fagel ⁽²⁾, Lahcen Daoudi ⁽³⁾

3 ⁽¹⁾ Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI

4 Polytechnic University (UM6P), Lot 660.Hay Moulay Rachid, 43150, Ben Guerir,

5 Morocco.

6 ⁽²⁾ UR, AGEs, Département de Géologie, Université de Liège, Quartier Agora, Bâtiment

7 B18, Liège 4000, Belgium.

8 ⁽³⁾ Laboratoire de Géoressources, Géoenvironnement et Génie civil (L3G), Faculté des

9 Sciences et Techniques, Université Cadi Ayyad, B.P.549, Marrakech.

10

11

Abstract

12 Fired bricks have shown tremendous potential as a construction material due to

13 their properties. However, their use required some specifications in terms of quality,

14 resistance, and durability. In developing countries, the lack of tools to make test

15 specimens leads to many defects in these brick specimens responsible for low

16 durability and weak precision during mechanical tests and shrinkage. In this study, a

17 simple and traditional method of making test bricks is presented. This simple method

18 allows the production of bricks with the required properties. This method is especially

19 efficient for a firm or semi-soft pastes consistency. The handmade pastes do not stick

20 into the walls of the mold like the case of steel molds and it gives specimens with

21 standard shape, smooth surface, and sharp edges. The resulting fired bricks exhibit

22 high mechanical strength comparable and even better than those of conventional

23 methods.

24 Keywords: Test bricks; Fired bricks; handmade bricks; ceramics; mechanical
25 strengths.

26 **I. Introduction**

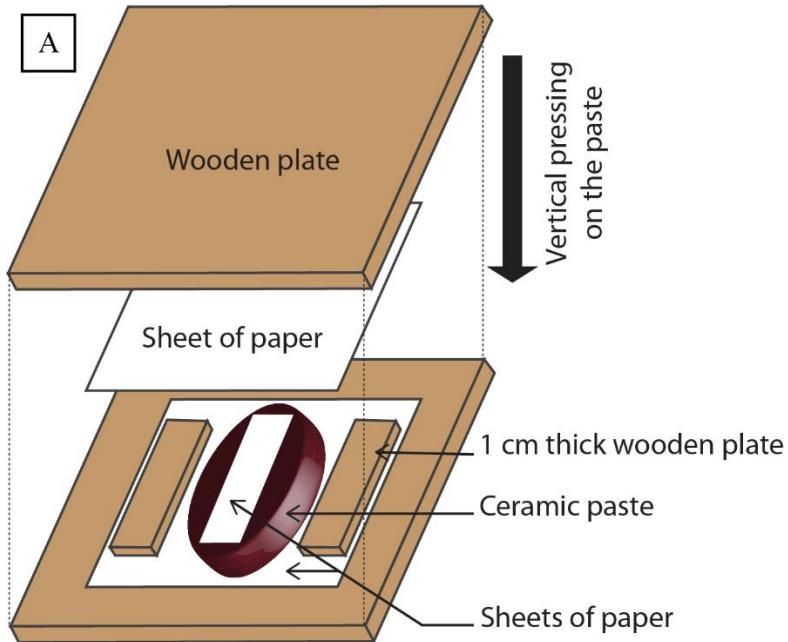
27 Since the 19th century, efficiency and durability are important criteria in the design
28 concerns of materials construction. For that reason, making tests on these
29 construction materials before using them is a necessity. Fired bricks are considered
30 one of the main construction materials because of their low cost and durability.

31 However, the type of equipment used to elaborate test specimens influences their
32 quality and the results obtained for the drying and the mechanical strength studies.

33 Different appropriate routes of molding were taken to prepare bricks such as
34 Table molding and Ground-Molding. They give bricks that contain standard shapes,
35 sharp edges, and smooth surfaces. Most test specimens were made by cylindrical or
36 rectangular molds and then pressed by a hydraulic press under specific pressure.

37 However, this method is only adapted for dry samples but not for wet pastes unlike
38 the extrusion process but that requires unaffordable tools for small laboratories.

39 Additionally, not every researcher that is undertaking a new study on clayey materials
40 for fired bricks making have the necessary tools for test bricks making. As a result,
41 researchers are forced to rely on their own way of making bricks or to delay their
42 study. Moreover, several research works were carried out in developing countries on
43 building materials based on clays [1]–[3] and an alternative affordable way is a
44 necessity for them.


45 With the limited access to the tools of making bricks specimens for mechanical
46 tests, our work is intended to provide and describe an easy and practical laboratory
47 scale method of molding, for ceramists working in developing countries. This method
48 was applied in previous papers without giving the details of how to elaborate the test
49 bricks [4], [5] and it generated very promising results comparing with the tools that are
50 available in industrialized nations [6], [7].

51 **II. Manufacturing procedure**

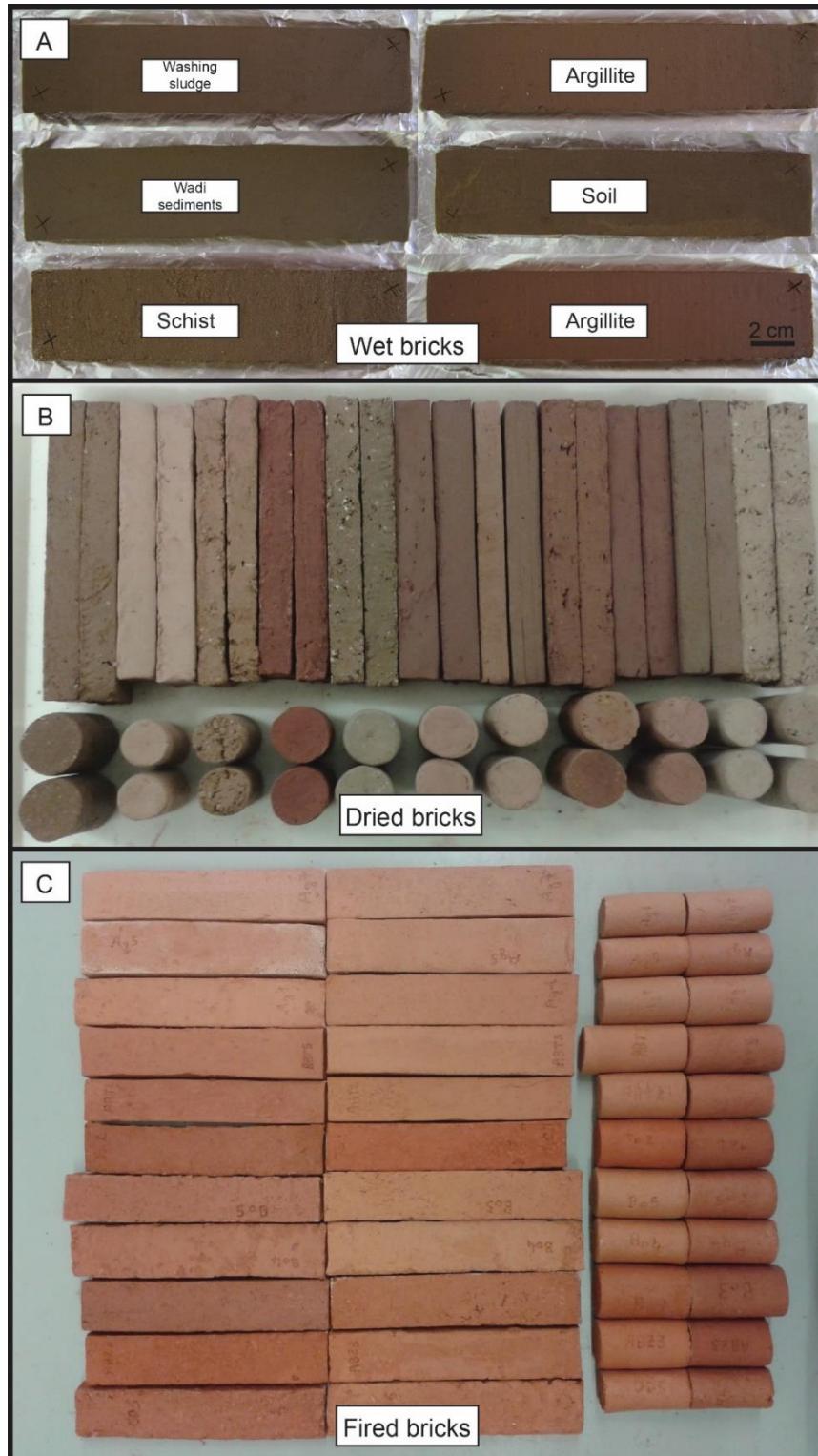
52 The adopted method was developed at the Georesources, Geoenvironment and
53 Civil Engineering Laboratory (L3G) of the Faculty of Sciences and Techniques of
54 Marrakech. It is an artisanal elaboration of test bricks according to the device
55 presented in Figure 1. The produced specimen presents the following dimensions: 1
56 cm in thickness, 3 cm in width and 15 cm in length as shown in Figure 1.

57 To elaborate homogenous test bricks in terms of thickness, two small wooden
58 plates of 1 cm of thickness were used as a wedge during the pressing of the pastes.
59 Then, the other wooden plate is superimposed on a paper of the same basal
60 dimension. Two small wooden plates 1 cm thick serve as a wedge during pressing to
61 obtain bricks of the same thickness.

62 After pressing, the wooden plate is superimposed on a paper of the same basal
63 dimension. The basal surface of the wooden plate corresponds to that of the brick to
64 be developed. The brick is then cut with a sharp blade using this wooden plate as a
65 template.

66

67 *Figure 1: (A) Device for producing test specimens by the proposed method. (B) Example of a*
 68 *test specimen with the two reference crosses for measuring shrinkage.*


69 The upper paper attached to the prepared wet brick is removed and replaced with
 70 aluminum foil (previously weighed) which will serve as a tray for the brick. The
 71 assembly is turned over to remove the plate and the bottom paper. Marks are made
 72 with a point on the two diagonal ends of the brick. They will allow to measure the
 73 change in the length between these two points as a function of time. Then the length
 74 of the brick and its weight are measured to get information about the drying shrinkage
 75 and the loss on weight during drying respectively.

76 The mechanical resistance to compression is achieved on cylindrical specimens.
 77 They are made by rolling up a semi-soft paste (which does not stick to the fingers) to

78 form a clay coil 10 cm in length and 2 cm in diameter. Then we keep 4 cm from the
79 middle of the coil, and we cut the edges carefully with a well cleaned sharp blade.
80 Finally, we let it dry gently in the shade to prevent rapid drying that could cause
81 cracking.

82 After firing three rectangular and three cylindrical test specimens for each sample
83 at the desired temperature, we can carry out the mechanical flexion strength test for
84 the former and to the compressive strength test for the latter. The **Erreur ! Source du**
85 **renvoi introuvable.** shows an example of the elaborated test bricks at different
86 perspectives: wet, dry and fired.

87 The limitations of the classic molding method on soft to semi-soft pastes are that a
88 large volume of air gets trapped in the base of the specimen resulting in an improper
89 shape. Also, during demolding, the walls of the mold stick to the paste and their
90 detachment deforms the test specimen. Even if the shape is manually restored, the
91 overall grain arrangement changes what is reflected and becomes visible as the drying
92 process progresses and the brick becomes twisted from its original shape. This
93 problem does not exist in the proposed method since the papers used during pressing
94 make it possible to prevent the wooden planks from sticking to the ceramic paste.

99 III. Data measurement

100 On laboratory scale, the manufacturing of the brick specimens requests several
101 measurements.

102 (1) The length measurements are taken from the two diagonal marks to calculate
103 the drying shrinkage according to the equation 1:

$$104 \quad \% \mathbf{DS} = \frac{(Li-Lf)}{Li} \times 100 \quad \text{eq. 1}$$

105 where D_s is the drying shrinkage, L_i is the length between the two marks before
106 drying and L_f is the length between the two marks after the end of drying.

107 (2) At the same time, the measurement of the loss in weight on drying can be
108 measured according to the equation 2:

$$109 \quad \%WL = \frac{(Mi - Mf)}{Mi} \times 100 \quad \text{eq. 2}$$

110 where WL is the weight loss after the end of drying, M_i is the initial mass of the
111 moisturized specimen and M_f is the final mass at the end of drying.

112 After firing at the desired temperature, the firing shrinkage can be measured
113 according to the equation 3:

$$114 \quad \% \mathbf{Fs} = \frac{(Ld - Lf)}{Ld} \times 100 \quad \text{eq. 3}$$

115 where F_s is the firing shrinkage at a given temperature, L_d is the length between
116 the two marks after drying and L_f is the length between the two marks after firing.

117 Simultaneously, the measurement of the firing weight loss can be measured
118 according to the equation 4:

119
$$\%WL_f = \frac{(M_i - M_f)}{M_i} \times 100 \quad \text{eq. 4}$$

120 where WL_f is the weight loss after the end of the firing process, M_i is the initial
121 mass of the dried specimen and M_f is the final mass at the end of the firing.

122 The establishment of the Bigot curve that allows to characterize the shrinkage
123 efficiently will be detailed in a future programed paper based on this technic of bricks
124 elaboration.

125 The mechanical flexural and compressive strengths are deduced from the
126 maximum stress before rupture according to the equation 5 and 6 respectively:

127
$$Ff = \frac{f \times l}{d_1 \times d_2^2} \quad \text{Eq. 5}$$

128 where Ff is the flexural strength expressed in MPa, f is the maximum load in
129 newtons, l is the distance between the support cylinders, d_1 and d_2 are the lateral
130 dimensions of the specimen in mm (width and thickness respectively).
131

132
$$Fc = \frac{f}{A} \quad \text{Eq. 6}$$

133 where Fc is the compressive strength expressed in MPa, f is the maximal load
134 expressed in newtons and A is the surface section of the specimen to which the
135 compressive force is applied, expressed in mm^2 .

136 On average, the test pieces have a dimension of 2 x 4 cm for cylindrical shaped
137 test specimens and a dimension of 10 x 2 x 1 cm for rectangular shaped test
138 specimens.

139 IV. Example of the application of the method on clayey raw materials

140 The efficiency of the method was tested on various materials, i.e., schist (5

141 samples), colluviums (5 samples), soils (3 samples), washing sludges (2 samples),

142 argillites (6 samples), and river sediments (3 samples). After crushing and grinding of

143 these raw materials, water was added until obtaining a good consistency of the pastes.

144 This method is most efficient with semi-soft to firm paste. The elaborated bricks are

145 uniform, and they conserve their form after a complete drying if the process is applied

146 delicately.

147 The data measured from the elaborated bricks are represented in Table 1. The

148 drying shrinkage rates range between 3 and 10%, while the drying weight loss sweep

149 between 15.3 to 36.6%. The firing shrinkage presents lower values varying between

150 0.3 and 4.9%, whilst the firing shrinkage orbits between 4.8 to 13.2%.

151 The firing temperature for the specimens was 1050 °C according to the

152 recommendation of many authors [8]–[11] to produce a good quality ceramic. The

153 firing process was done at a rate of 3 °C/min and holding for 30 minutes at the

154 maximum temperature. The measurements were done by a “Testometric Micro350”

155 for the flexural strength according to the European Standard [12] and a compression

156 machine made at ArGENCo Laboratory (University of liege) for the compressive

157 strength according to the European Standard [13], equipped with a worm gear motor

158 NEFF and controlled by a Microstep Drive (Parker) and a compumotor PC23 adaptator.

159

160

161

Table 1: Data measured from the elaborated bricks.

162

%Ds: Drying shrinkage ; %WL: Drying weight loss; %Fs: Firing shrinkage; %WLf: Firing weight

163

loss; Ff: Flexural strength; Fc: Compressive strength.

Lithology	Samples	%Ds	%WL	%Fs	%WLf	Ff (MPa)	Fc (MPa)
Schist	S1	4.6	16.6	0.3	4.8	42	9
	S2	4	15.3	0.8	4.8	43	10
	S3	4.2	18.5	0.7	9.1	28	10
	S4	7.1	22.5	1.8	7.2	51	17
	S5	6	20.3	1.4	8.8	34	9
	S6	5.8	21	1	8.0	36	9
	S7	3.3	16.2	3	7.7	20	6
Argillite	A1	5.6	23.6	1	6.2	39	7
	A2	5.5	22.8	2.9	7.9	102	24
	A3	5.9	22.7	4.5	6.6	33	13
	A4	8.1	32.8	4.9	6.6	99	28
	A5	5.8	22	2.9	9.0	77	13
	A6	9.2	30.4	3.8	8.6	54	15
Colluvium	C1	6.5	22.2	0.4	5.4	30	7
	C2	8.4	26.4	1.6	7.2	41	11
	C3	10	24.1	0.6	5.9	42	17
	C4	8.2	25.8	2.2	5.1	28	7
	C5	8.5	26.2	3.2	9.6	51	9
Soil	O1	6.6	26.3	0.5	10.5	52	18
	O2	5.2	21.5	1.9	11.4	59	19
	O3	6	28.7	0.8	11.2	50	16
Wadi sediments	W1	5.9	36.6	0.7	12.8	38	18
	W2	6.2	31.9	1.1	9.1	38	14
	W3	7.2	35.5	0.6	13.2	25	10

Washing	L1	5.2	27.4	3.3	6.2	65	20
sludges	L2	5.7	25.7	3	5.9	63	21

164

165 The high mechanical strength values of the studied samples evidence the method
166 efficiency (Figure 3). Mechanical strength of fired bricks is influenced by temperature,
167 grain size, process of elaboration, and the origin of raw materials. For instance, the
168 finest raw materials such as argillite (samples A2 and A4) exhibit the highest values of
169 mechanical strength (99-102 MPa) and the highest values for flexural strengths (24-28
170 MPa) unlike the schist-based or Wadi sediments-based raw materials (Figure3).
171 However, the elaborated bricks from Wadi sediment by this simple approach gives
172 very promising results (compressive strength of 100% sediments-based bricks fired at
173 1050°C ranged from 25 to 38 MPa) compared with sediments based bricks studied by
174 Mezencevova et al. [7] formed by using the stiff mud extrusion process (compressive
175 strength of 100% sediments based bricks fired at 1000°C ranged from 8 to 12 MPa).

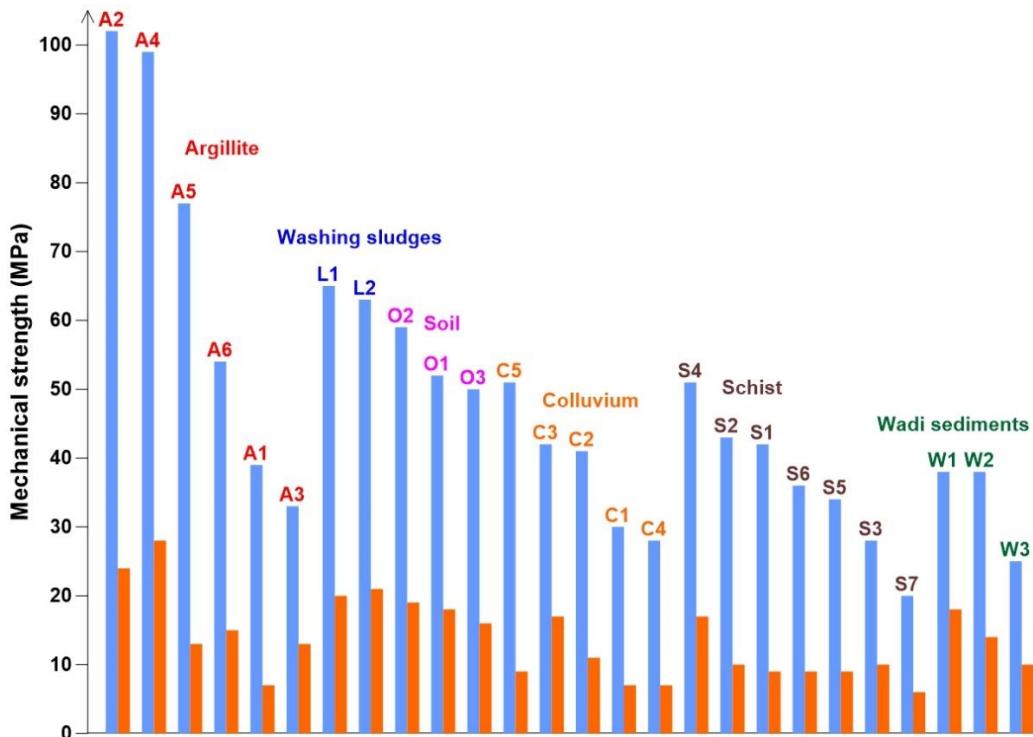


Figure 3: Diagram showing the evolution of the compressive strength (blue bars) and the flexural strength (orange bars) depending on the type of raw materials (fine to coarse).

V. Conclusion

This study describes a simple and affordable method of bricks elaboration for any laboratory. The described method allows to calculate very important parameters such as drying and firing shrinkage, drying and firing weight loss, and mechanical strengths, all essential for brick quality control. The obtained results of mechanical strengths are even better than those obtained in literature for fired bricks.

Acknowledgements

The authors would like to thank the ArGENCo Laboratory (University of liege) for its support in carrying out the mechanical resistance tests.

References

189 [1] A. Nkalih Mefire *et al.*, "Mineralogy and geochemical features of Foumban clay
190 deposits (west Cameroon): genesis and potential applications," *Clay Miner.*, vol.
191 53, no. 3, pp. 431–445, Sep. 2018.

192 [2] T. Monatshebe, A. F. Mulaba-Bafubiandi, and D. Kasongo Nyembwe,
193 "Mechanical properties and mineralogy of artisanal clay bricks manufactured in
194 Dididi, Limpopo, South Africa," *Constr. Build. Mater.*, vol. 225, pp. 972–982, Nov.
195 2019.

196 [3] L. Diko-Makia and R. Ligege, "Composition and Technological Properties of Clays
197 for Structural Ceramics in Limpopo (South Africa)," *Minerals*, vol. 10, no. 8, p.
198 700, Aug. 2020.

199 [4] H. E. B. El Idrissi, L. Daoudi, M. El Ouahabi, A. Balo Madi, F. Collin, and N. Fagel,
200 "Suitability of soils and river deposits from Marrakech for the manufacturing of
201 earthenware," *Appl. Clay Sci.*, vol. 129, pp. 108–115, 2016.

202 [5] H. E. B. El Idrissi, L. Daoudi, M. El Ouahabi, F. Collin, and N. Fagel, "The influence
203 of clay composition and lithology on the industrial potential of earthenware,"
204 *Constr. Build. Mater.*, vol. 172, pp. 650–659, 2018.

205 [6] A. L. Murmu and A. Patel, "Towards sustainable bricks production: An
206 overview," *Constr. Build. Mater.*, vol. 165, pp. 112–125, 2018.

207 [7] A. Mezencevova, N. N. Yeboah, S. E. Burns, L. F. Kahn, and K. E. Kurtis,
208 "Utilization of Savannah Harbor river sediment as the primary raw material in
209 production of fired brick," *J. Environ. Manage.*, vol. 113, pp. 128–136, Dec. 2012.

210 [8] N. El Yakoubi, "Potentialités d'utilisation des argiles marocaines dans l'industrie
211 céramique : cas des gisements de Jbel Kharrou et de Benhmed (Meseta
212 marocaine occidentale). Thèse de Doctorat," p. 212, 2006.

213 [9] M. Hajjaji, S. Kacim, and M. Boulmane, "Mineralogy and firing characteristics of
214 a clay from the valley of Ourika (Morocco)," *Appl. Clay Sci.*, vol. 21, pp. 203–212,
215 2002.

216 [10] D. Wetshondo Osomba, "Caractérisation et valorisation des matériaux argileux
217 de la Province de Kinshasa (RD Congo)," p. 340, 2012.

218 [11] H. E. B. El Idrissi, "Characterization of clays used in the earthenware sector of
219 Marrakech region to improve the quality of the products. UCA in partnership
220 with ULiege. <http://hdl.handle.net/2268/212621>," 2017.

221 [12] E. N. 12390-5 European Standard, "Testing hardened concrete - Part 5: Flexural
222 strength of test specimens," p. 9, 2000.

223 [13] N. F. E. N. 12390-3 European Standard, "Essai pour béton durci - Partie 3 :
224 Résistance à la compression des éprouvettes," p. 15, 2003.

225