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Abstract: This study explores a novel strategy to repurpose depleted clastic sediment hydrocarbon
reservoirs in Hungary as High-Temperature Aquifer Thermal Energy Storage (HT-ATES) systems,
incorporating machine learning to enhance system optimization. Hungary's extensive inventory of
depleted fields, predominantly featuring clastic formations, presents significant potential for
geothermal energy storage applications. Initially, detailed reservoir models were constructed by
analyzing existing well logs and core data. Subsequent advanced numerical simulations of heat
transport and groundwater flow were performed within the Bekesi Formation, concentrating on a
dual-well configuration—one dedicated to hot fluid injection and extraction and the other to
managing cold fluids. State-of-the-art simulation tools, including SGeMS, RockWorks, Python,
MODFLOW, and GMS MT3DMS, were utilized to pinpoint optimal brine injection sites by evaluating
critical parameters such as thermal conductivity, porosity, and permeability; additional core analyses
filled essential gaps in thermal conductivity data. The study's central innovation lies in deploying a
Random Forest algorithm to optimize thermal recovery efficiency. Data generated from
comprehensive simulations across multiple wells were used to train the model, which then predicted
and refined thermal performance for the remaining wells in the field. The outcomes are expected to
yield precise identification of optimal injection locations, rigorous heat transport analyses, accurate
estimates of storage capacities, and improved predictions of thermal recovery efficiency, thereby
establishing a sustainable and data-driven methodology for converting depleted hydrocarbon
reservoirs into effective thermal energy storage systems.

Keywords: Machine Learning; Aquifer Thermal Energy Storage (ATES); Brine re-injection; Heat
transport modeling; Groundwater flow; Geothermal energy; Depleted hydrocarbon reservoirs

1. Introduction

The end-of-life management of oil and gas wells—including plugging, abandonment, and site
remediation—poses significant economic and environmental challenges. In the U.S., median
decommissioning costs average USD 76,000 but can exceed USD 1 million for deep wells. In Hungary,
abandonment costs typically range from 50 million to several hundred million HUF, depending on
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well depth and complexity. (Raimi et al., 2021; Vass, 2025). With over 3 million inactive or orphaned
wells in the U.S. alone, many pose environmental risks, including methane emissions with a global-
warming potential 25-34 times that of CO, (IPCC, 2021; Kang et al., 2019). In Pennsylvania, legacy
wells contribute an estimated 5-8% of anthropogenic methane, prompting stricter plugging
regulations (Kang et al., 2019; Osundare et al., 2018). Equally important is reclaiming and stabilizing
well sites for land safety and ecosystem restoration. Recent advances in high-fidelity reservoir
simulation paired with supervised machine-learning surrogates—such as artificial neural networks,
Random Forests, and Gaussian-process emulators—now enable rapid, data-driven screening of
thousands of well candidates to pinpoint those most suitable for conversion into geothermal energy
assets, effectively transforming environmental liabilities into low-carbon, revenue-generating
infrastructure (Jin et al., 2022; Duplyakin et al., 2022; Rohmer et al., 2023).

Amid these challenges, data-driven revitalization of depleted hydrocarbon fields has emerged
as a powerful strategy to tackle renewable-energy intermittency and advance global decarbonization
goals (Duggal et al., 2022; Gayayev, 2023). Recent policy roadmaps from the International Energy
Agency, and the World Economic Forum (IEA, 2017; REN21, 2019; WEF, 2021) all highlight the need
for adaptable, seasonal storage solutions that bolster energy security and grid flexibility (Dincer &
Rosen, 2011; Van Der Roest et al., 2021). Repurposing depleted reservoirs directly supports this
agenda: their well-characterized permeability, porosity, and extensive historical datasets can be
leveraged to transform environmental liabilities into low-carbon, revenue-generating assets (Green
etal.,, 2021; Lee, 2013; Li, 2016). Diverse pore-space applications —CO, sequestration (Qin et al., 2023),
hydrogen storage (Zhu et al., 2024), subsurface electricity generation (Duggal et al., 2022), and
Aquifer Thermal Energy Storage (ATES) (Matos et al., 2019; Stricker et al., 2020)—underscore their
versatility in a decarbonizing energy landscape. Crucially, advances in high-resolution reservoir
modelling and supervised machine-learning algorithms now allow rapid screening of thousands of
well trajectories, prediction of storage performance under uncertainty, and optimisation of injection—
production schemes—dramatically reducing time-to-deployment and de-risking investment
(Khosravi et al., 2024; Liu et al., 2024).

With over 2,800 systems worldwide —mainly in the Netherlands supplying ~2.5 TWh/yr— ATES
has proven technically mature and scalable (Dickinson et al., 2009; Fleuchaus et al., 2020; Kastner et
al.,, 2017; van Heekeren & Bakema, 2015). It uses existing wells and data to store surplus heat for later
use, helping balance energy supply and support renewable integration (Fleuchaus et al., 2020; Paksoy
et al., 2000). High-Temperature ATES (HT-ATES), targeting fluid temperatures > 90 °C, further
extends storage potential. Recent studies now combine coupled reservoir simulations with
supervised-learning surrogates—such as neural-network emulators (Jin et al, 2022),
Gaussian-process metamodelling (Rohmer et al., 2023), and Random Forest regressors (Duplyakin et
al., 2022) —to forecast system performance across diverse geological scenarios in seconds rather than
hours. In the Upper Rhine Graben, 90% of surveyed depleted oil fields are HT-ATES-ready, with
projected storage of up to 12 GWh/yr and ~82% recovery after ten years (Holstenkamp et al., 2017;
Liu et al., 2024; Stricker et al., 2020). Field-scale pilots confirm feasibility: the Middenmeer project
stored 85-90 °C heat in a 400 m aquifer, using real-time monitoring and MODFLOW/MT3DMS to
manage issues like sand production (HEATSTORE, 2025; Oerlemans et al., 2022). In the U.S,,
geothermal battery projects in California and Texas repurpose oilfields for long-duration thermal
storage, leveraging machine-learning surrogates to optimise injection and reduce testing time by over
70% (Khosravi et al., 2024; Liu et al., 2024; Zhu et al., 2024). These systems offer superior discharge
duration over batteries and cut CO, emissions (Fleuchaus et al., 2020).

Depleted reservoirs offer vast storage potential. The Carrizo-Wilcox aquifer could store 554 TWh
of heat—63 TWh as electricity (Akindipe et al., 2024) —while the Upper Rhine Graben could supply
10 TWh/yr of heat, covering much of the region's demand (Stricker et al., 2020). These capacities far


https://doi.org/10.20944/preprints202504.2474.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2025 d0i:10.20944/preprints202504.2474.v1

3 of 23

exceed those of pumped hydro and grid batteries (World Energy Outlook 2021 — Analysis, 2021).
Repurposing wells cuts capital costs, and integration with renewables enables low levelized costs—
USD 0.11/kWh for electricity, USD 0.02/kWh for heat (Anttila, 2021; Zhu et al., 2024). Though round-
trip efficiency is 40-50%, geological storage fills a key seasonal balancing role (Van Der Roest et al.,
2021). Although high-temperature ATES is advancing, substantial uncertainties still cloud the design
and operation of dual-well systems in heterogeneous clastic reservoirs—uncertainties that
brute-force deterministic simulations cannot efficiently close. Chief among these is selecting the
hot-cold well spacing that suppresses premature thermal breakthrough yet preserves a high
heat-recovery factor. Thermal breakthrough can erode efficiency and jeopardise long-term viability
(Bloemendal & Hartog, 2018; Sommer et al., 2013). While ATES research is growing, few studies have
formally linked spacing to thermal performance in repurposed hydrocarbon fields with complex
stratigraphy (Kastner et al., 2017; Pellegrini et al., 2019). Cutting-edge work now couples high-fidelity
thermo-hydraulic models with machine-learning surrogates—Random-Forest,
artificial-neural-network, and Gaussian-process emulators—to scan thousands of spacing scenarios,
propagate geological uncertainty, and pinpoint Pareto-optimal dual-well layouts in minutes rather
than days (Jin et al., 2022; Rohmer et al., 2023; Duplyakin et al., 2022). Yet these data-driven methods
have not been systematically deployed in depleted clastic basins (Liu et al., 2024; Khosravi et al,,
2023).

This study addresses four tightly linked questions aimed at advancing seasonal thermal-energy
storage in depleted clastic reservoirs. It first pinpoints the inter-well distance in a dual-well
configuration that suppresses premature thermal breakthrough while maximizing heat-recovery
efficiency. It then examines how key reservoir attributes in Hungarian clastic formation—porosity,
permeability, and lithological anisotropy —shift the optimal spacing and shape of the overall system
performance. Next, it evaluates which alternating operating schedule—summer hot-storage/winter
hot-production versus summer cold-production/winter cold-storage —delivers the greatest annual
energy return. Finally, it tests whether supervised machine-learning models, calibrated on suites of
coupled MODFLOW-MT3DMS simulations, can predict and optimize these design variables across
the full inventory of candidate wells, thereby slashing computational time and accelerating field
deployment. A preliminary version of this study was presented as an abstract at the 16th European
Geothermal PhD Days, held in Szeged, Hungary (H. Abdulhaqg, 2025b).

Hungary is an exceptional testbed for high-temperature ATES because it (i) hosts a dense
network of depleted oil-and-gas wells situated close to district-heating loads, (ii) lies within a
moderate-to-high geothermal-gradient province that delivers initial reservoir temperatures of = 70
°C, and (iii) operates under strong national directives for decarbonisation and energy-security gains
(Nador et al., 2022; J. D. Szanyi et al., 2025). Decades of well-log, core, and production records have
generated a richly labelled subsurface dataset that can be mined with geostatistics and supervised
learning (Topdr et al, 2023). Leveraging these assets, we integrate ML with high-resolution
MODFLOW/MT3DMS heat-transport simulations and Random-Forest surrogates—an approach
shown to cut optimisation runtimes by an order of magnitude while preserving predictive accuracy
(Jin et al., 2022; Duplyakin et al., 2022). The resulting workflow delivers both mechanistic insight and
actionable design rules for dual-well HT-ATES implementation in Hungarian clastic reservoirs.

By coupling high-fidelity MODFLOW-MT3DMS heat-transport simulations with
Random-Forest surrogates trained on thousands of synthetic well trajectories, we cut optimisation
runtimes by more than 90 % while maintaining high predictive skill (Jin et al., 2022; Rohmer et al.,
2023). Feature-importance analysis of these meta-models (R? = 0.87 on a hold-out set) pinpoints
inter-well distance, reservoir anisotropy, and cycle length as the dominant controls on Heat-Recovery
Factor—insights that translate into practical spacing rules and seasonally phased operating schedules
for Hungarian clastic reservoirs (Duplyakin et al., 2022; Jin et al, 2022). Validation against
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independent datasets from analogous Central European basins confirms the transferability of the
workflow (Topér et al., 2023). Collectively, these results provide a scalable blueprint for converting
depleted hydrocarbon assets into long-duration, low-carbon thermal batteries, simultaneously
reducing decommissioning liabilities and advancing national energy-security and climate-mitigation
goals (REN21, 2019; WEF, 2021).

2. Glossary of Terms

ATES (Aquifer Thermal Energy Storage): A technology for storing and retrieving thermal energy
in aquifers, enabling seasonal energy management by injecting heat in summer and recovering it
during winter.

HT-ATES (High-Temperature Aquifer Thermal Energy Storage): An advanced form of ATES
designed for storage and recovery of thermal energy at fluid temperatures >90 °C, suitable for
industrial and district heating applications.

MODFLOW: A modular three-dimensional finite-difference groundwater flow model
developed by the U.S. Geological Survey, widely used for simulating groundwater conditions and
flows.

MT3DMS: Modular Three-Dimensional Multi-Species Transport Model, used in conjunction
with MODFLOW to simulate the transport of heat, solutes, or other contaminants in groundwater
systems.

Random Forest: An ensemble machine learning method based on decision trees, used for
regression and classification tasks, valued for its robustness and ability to model complex
relationships.

Heat-Recovery Factor (HRF): The ratio of recovered thermal energy to the initially injected
energy during an ATES cycle, often used as a performance metric for system efficiency.

Thermal Breakthrough: The phenomenon where injected hot or cold fluid reaches the
production well too quickly, reducing system efficiency and potentially shortening operational
lifetime.

UCN File (Unformatted Concentration File): A binary output file generated by
MODFLOW/MT3DMS containing spatially and temporally resolved simulation results, in this study
representing temperature distributions.

Residual Heat Accumulation: The progressive build-up of stored heat in the aquifer over
multiple ATES cycles, typically leading to higher thermal recovery efficiencies over time.

Surrogate Model: A fast-running, data-driven model (e.g.,, Random Forest, neural network)
trained on outputs from complex numerical simulations to predict system behavior efficiently.

Hydrogeological Model: A numerical model simulating groundwater flow based on hydraulic
and geological parameters to understand subsurface water movement and storage characteristics.

Thermal Recovery Efficiency: The percentage of injected thermal energy that can be successfully
recovered during production phases in a seasonal thermal energy storage system.
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Overpressure: Subsurface pressure exceeding hydrostatic pressure, often due to geological
compaction, tectonic forces, or fluid generation processes, which can influence reservoir behavior.

Pannonian s.l. (sensu lato):
A stratigraphic term referring broadly to the Upper Miocene sedimentary sequences in the
Pannonian Basin, including formations such as Ujfalu and Zagyva.

Hot Well: A well designated for the injection of heated water during storage periods and
extraction during production periods in an ATES system.

Cold Well: A complementary well used to manage temperature balance in an ATES system,
typically used for extracting cooler water during storage or injecting cooler water during production,
depending on the operating scheme.

Stress Period: A defined time interval in a MODFLOW/MT3DMS simulation during which
external stresses (e.g., injection, pumping) are assumed constant or follow a specified pattern.

Permutation Importance: A machine learning method used to assess the relative importance of
input features by measuring the decrease in model performance when feature values are randomly
shuffled.

3. Background and Regional

3.1. Geological and Hydrogeological Setting of the Békés Basin

The Pannonian Basin is a sedimentary basin located in East-Central Europe, characterized by a
complex geological structure consisting of variously subsided basins and horst-like blocks. The
basement primarily comprises metamorphic Paleozoic rocks, with Mesozoic carbonate formations
present in some areas that can serve as good aquifers (Horvath et al., 2015). Within this larger
geological context, the Békés Basin represents one of the two main depressions of the Southern Great
Plain of Hungary, alongside the Maké Depression, with these two significant depressions divided by
the Battonya Ridge (Juhasz, 1991). The Békés Basin is particularly notable for its exceptional depth,
reaching approximately 7,000 meters of post-Cretaceous sedimentary fill (USGS, 2023), making it one
of the deepest sub-basins within the Pannonian Basin system. Figure 1 shows the location of the study
area within Hungary, along with the lithological map highlighting the modelled section of the Békés
Formation and a corresponding lithological cross-section.
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Figure 1. shows the location of the study area in Hungary, the modelled section within the Békés Formation

lithological map, and a lithological cross-section; modified after Abdulhaq et al. (2024).

The stratigraphic sequence of the Békés Basin follows the general pattern of the Pannonian Basin,
with important variations in thickness and characteristics. At the beginning of the Lower Pannonian
period, the Endréd Marl Formation was deposited, consisting of calcareous marl and clay marl. This
formation is overlain by the fine sand turbidite set of the Szolnok Formation, which reaches several
hundred meters in thickness in some locations. Above the turbidites, particularly in shallower basin
areas, the hemipelagic marls are covered by the thick clayey-silty layers of the Algy6 Formation with
a prodelta facies (Haas, 2013). A key characteristic of this formation sequence is the extremely high
overpressure below and throughout the set. The sand content of the Algy6é Formation increases in
areas with a shallower basement, allowing the upper part of the formation to function as a water-
bearing unit in certain locations. Generally, however, the Lower Pannonian formations exhibit poor
water-bearing characteristics.

The Pannonian s.1. sequence, which overlies the Lower Pannonian layers, consists primarily of
the Ujfalu Formation and the Zagyva Formation. The Ujfalu Formation, characterized by delta front
and delta plain facies, represents the most hydrogeologically significant Pannonian s.l. sediment. The
Zagyva Formation features deltaic background and alluvial plain facies, with dominant sediments
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being bed-filling and bay-mouth bar deposits that demonstrate good water-bearing properties
despite their limited horizontal dimensions. These formations are hydrodynamically connected
through multiple linear erosions and overlapping (Juhasz, 1991). In the Békés Basin region, the
bottom of the Pannonian s.1. sequences typically lie at depths of 2,000-2,500 meters from the ground
surface, with the total thickness of Pannonian s.l. sediments exceeding 2,000 meters in the Békés
Basin—among the thickest in the entire Pannonian region.

3.2 Hydrodynamic Systems and Pressure Regimes

The Békés Basin, like the broader Carpathian basin, features two distinct flow regimes: an upper,
gravity-driven flow system within the Pannonian s.l. sequences, and a deeper, overpressure-driven
system within the Lower Pannonian formations, primarily affecting the finer deep-sea sediments and
underlying formations (Madl-Szényi & Toth, 2009; Téth & Almasi, 2001). The overpressure in the
deeper system is remarkably high, reaching up to 40 MPa above hydrostatic pressure. This extreme
overpressure primarily results from tectonic compression of the formations, with additional
contribution from gas formation during sediment maturation processes (Toth and Almasi, 2001).

In the Békés Basin region, pressure-depth profiles indicate that the dynamic pressure gradient
exceeds the hydrostatic pressure by approximately 0.13 MPa (equivalent to about 13 m hydrostatic
head) in Quaternary formations and by approximately 0.44 MPa (about 44 m hydrostatic head) in the
Pannonian s.]. sequence. The Lower Pannonian sequence exhibits even more dramatic super-
hydrostatic pressure, with the dynamic pressure gradient exceeding hydrostatic pressure by more
than 60 MPa. This significant pressure differential creates complex hydrodynamic conditions that
must be carefully considered when designing and implementing any subsurface fluid management
system, including seasonal thermal energy storage.

3.3. Reservoir Properties and Geothermal Potential

The Pannonian s.. sandstone reservoirs in the Békés Basin region exhibit favorable
characteristics for geothermal applications, with effective porosity values typically reaching 22-25%.
The permeability of these Pannonian s.l. reservoirs, which consist of highly permeable sand layers,
can reach up to 2000 mD (1.97 x 10"-12 m?), corresponding to a hydraulic conductivity of 5-10
m/day(Balint & Szanyi, 2015; Korim, 1991; J. Szanyi et al., 2015). These values represent some of the
most favorable reservoir conditions in the Hungarian geothermal context.

The consolidation state of the sandstone varies depending on depth and cementation processes.
The sandstone can range from consolidated to unconsolidated, with cementation typically occurring
through quartz overgrowth, calcite, or kaolin precipitation. The degree of cementation significantly
influences both porosity and stability, particularly during production and injection operations.
Generally, sandstone induration increases with depth as cementitious material precipitates into the
pores from fluid extracted during compaction. The sand bodies are typically separated by thinner
fine-grained sediments, creating a complex, heterogeneous reservoir structure (Korim, 1991; Balint
and Szanyi, 2015).

The Békés Basin is characterized by an exceptionally high geothermal gradient, approximately
50°C/km, significantly above global averages due to the relatively thin crust beneath the Pannonian
Basin (Lenkey et al., 2021). This elevated thermal gradient results in reservoir temperatures around
70°C at depths of approximately 1,500-1,800 meters, making these formations particularly suitable
for thermal energy storage and district heating applications. At greater depths of 2,000-2,500 meters,
temperatures can reach 90-120°C, offering potential for higher-temperature applications.

The combination of favorable reservoir properties (high porosity and permeability) and
outstanding geothermal conditions makes the Békés Basin exceptionally suitable for geothermal
energy utilization, including seasonal heat storage applications (J. Szanyi et al., 2009). The region's
depleted hydrocarbon wells, many of which penetrate these favorable Pannonian s.l. sandstone
formations, present valuable opportunities for repurposing as components of thermal energy storage
systems.
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3.4. Hydrocarbon History and Well Infrastructure

The Békés Basin has a rich history of hydrocarbon exploration and production, with extensive
drilling activities dating back to the mid-20th century. These activities have resulted in a substantial
inventory of wells throughout the region, many of which have now reached the end of their
productive lifespan as hydrocarbon producers. The basin contains significant natural gas resources,
with gases produced from multiple reservoir intervals at depths ranging from 1,800 to 2,900 meters
(Survey, 2023).

These Neogene sedimentary sequences overlying the basement highs have demonstrated the
best hydrocarbon reservoir characteristics in the southeastern part of Hungary (Horvéath et al., 2015).
The extensive exploration and production history has generated valuable geological and reservoir
data, including detailed information on formation properties, temperature profiles, pressure regimes,
and fluid characteristics. This wealth of data provides a significant advantage for assessing the
potential of these formations for thermal energy storage applications.

The existing well infrastructure, though aging, offers potential for repurposing rather than
decommissioning. Many wells have been completed with telescopic designs, with casing diameters
ranging from approximately 340 mm (13 3/8") at the surface to 140-178 mm (5 1/2" - 7") at reservoir
depths. While some wells may require workover or partial recompletion to ensure mechanical
integrity for long-term thermal storage operations, the basic infrastructure represents a valuable asset
that could significantly reduce the capital costs associated with implementing seasonal heat storage
systems.

3.5. Relevance to Seasonal Heat Storage

The hydrogeological characteristics of the Békés Basin make it particularly suitable for Aquifer
Thermal Energy Storage (ATES) applications, especially High-Temperature ATES (HT-ATES)
targeting temperatures up to 90°C or higher. The Pannonian s.1. sandstone formations, with their high
porosity, good permeability, and favorable temperature conditions, provide an excellent medium for
seasonal storage and retrieval of thermal energy.

The proximity of many depleted wells to population centers in the region creates opportunities
for integrating seasonal heat storage with district heating systems, similar to successful
implementations in other parts of Hungary, such as Szeged. The initial reservoir temperatures of
approximately 70°C in the target formations are ideal for enhancement through additional heat input
during summer months, with subsequent extraction during winter heating periods.

However, the complex pressure regimes, particularly the significant overpressure in deeper
formations, present challenges that must be carefully managed. Additionally, the heterogeneous
nature of the reservoir formations, with sand bodies separated by fine-grained sediments, creates
potential for compartmentalization that could affect thermal breakthrough patterns between injection
and production wells.

The dual-well system proposed for seasonal heat storage—with one well serving for summer
hot storing/winter hot producing and another for summer cold producing/winter cold storing—must
be carefully designed to account for these hydrogeological characteristics. The optimal spacing
between wells must balance the need to prevent premature thermal breakthrough while maximizing
energy recovery efficiency, taking into consideration the specific reservoir properties of the Békés
Basin formations.

By leveraging the extensive geological knowledge, existing well infrastructure, and favorable
reservoir conditions of the Békés Basin, seasonal heat storage systems can be optimized to provide
sustainable, efficient thermal energy solutions while extending the productive life of otherwise
abandoned hydrocarbon assets.

4. Materials and Methods

4.1. Methodological Framework
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The methodological framework of this study began with the comprehensive curation and
preparation of existing data from abandoned hydrocarbon fields, which involved extensive data
modeling, cleaning, and refinement. A hydrogeological model was then constructed using
MODFLOW (Harbaugh, 2005), providing the foundational flow and transport parameters needed for
subsequent analyses. Building on this, a heat transport model was employed to simulate thermal
performance in potential Underground Thermal Energy Storage (UTES) candidates. The resulting
simulation outputs served as the training dataset for a Random Forest algorithm (Breiman, 2001;
Pedregosa et al.,, 2011), which was designed to predict thermal performance in other areas. Finally,
the predictions generated by the Random Forest were validated against actual simulation results.
Figure 2 outlines the primary steps involved in this integrated approach.

GMS, MODFLOW,
. Preprauop and > n MTSPMS <«— Validating the results
Data Modelling Simulation and
Modelling
$ A
Data from Abondoned
Hydrocarbon Field Generating The UTES
Performance for
candidates
, l
Predicting the UTES
Creating Well Inventory ——> Rgnflom forest ——>»| Performance for the
Training the Model
rest of the wells

Figure 2. The workflow of the methodology employed in this study.

4.1. Data Collection and Data Preparation

For the data collection segment of our study, we utilized well data from the southern part of the
Bekes Basin in Hungary—a site formerly exploited for hydrocarbons and now recognized for its
geothermal potential (Kovacs & Teleki, 1994). This field encompasses two key formations: the shallow
Szolnok Formation, which functions as an aquifer (Varga et al., 2019), and the deeper Bekes
Formation, thereby providing a unique opportunity to evaluate heat storage capabilities. We
integrated a diverse set of data—including core samples, density logs, resistivity logs, and gamma-
ray measurements—using a stochastic simulation process. SGeMS was employed for the
geostatistical simulation, while RockWorks facilitated the integration of simulation outcomes for
gross thickness, effective porosity, and permeability. A total of 100 stochastic realizations were
generated for each grid or voxel point, with the median (Md-type estimation) calculated to represent
the central tendency, effectively minimizing the impact of skewed or outlier values. For the Bekes
Formation, this Md-type estimation was deemed most representative of the expected geological
parameters.

In a prior study by Abdulhaq et al., (2024), the southeastern section of the study area was
identified as a prime candidate for energy storage due to the Bekes Formation’s average temperature
of approximately 70°C, coupled with its favorable porosity and permeability characteristics. Based
on these insights, a polygon delineating this promising area was selected for detailed hydrogeological
and heat transport simulations. Figure 3 illustrates the distances from each well to the candidate
town, with only those wells penetrating the Bekes Formation included in the analysis—wells that did
not extend into the Bekes were excluded. The figure also displays the temperature distribution within
the Bekes Formation. By applying a 5 km threshold for effective thermal transport and selecting wells
with temperatures below 70°C as potential candidates for HT-ATES, only wells marked with red
borders were retained for further simulation of their thermal performance (Fig 4).
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Figure 3. shows the location of the qualified wells over the temperature grid, highlighting the modelled area.
White patches indicate areas where the reservoir thickness is less than 2 meters.
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Figure 4. shows the distribution of the wells and the boundary of the urban town that can be considered the
potential candidate for the district heating beneficiary. The Bekes F. Temperature near the town is around 70° C,
which makes it an ideal location to be used as a UTES site. For this reason, we narrowed down the area of interest
to be modelled.
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4.3. Hydrogeological Modelling

The groundwater flow within the Bekesi Conglomerate reservoir was modeled using
MODFLOW-2000, a modular finite-difference groundwater flow modeling software developed by
the U.S. Geological Survey (Version 1.19.01, March 25, 2010). The groundwater flow model was
developed using MODFLOW and discretized into three layers, 197 rows, and 400 columns with a cell
size of 10 by 10 meters. In this configuration, the second layer represents the Bekes Formation. The
model parameters were defined at either the cell-by-cell or grid scale, based on data-driven
simulations and assumptions derived from field data and laboratory analyses. Table 1 summarizes
the key parameters used in the MODFLOW processing model.

Table 1. Key Parameters for the MODFLOW Model.

Parameters Value / Description Source

Initial Prescribed Hydraulic Head  Varies spatially Derived from Kun et al., 2022
Horizontal Hydraulic Derived from Estimated from well log data
Conductivity permeability modelling

Vertical Hydraulic Conductivity Assumed as 50% of Based on lithological assumptions

horizontal conductivity

Specific Storage 0.001 m™! Literature-based estimate

Effective Porosity Derived from porosity =~ Estimated from well log data
modelling

Specific Yield 0.15 Literature-based estimate

Bulk Density Calculated via gamma  Derived from natural gamma ray log
ray log surface simulation
simulation

4.4. Heat Transport Modelling

For heat transport modeling, we employed MT3DMS within the GMS framework. Following the
successful initiation and simulation of the MODFLOW model, we activated the Basic Transport
Package in MT3DMS by introducing the starting temperature for each cell. To simulate the heat
transport processes, we selected the advection, dispersion, source/sink mixing, and chemical reaction
modules. The parameters utilized for this heat transport model are listed below.

Parameter Value / Description Justification
Initial Temperature Varies spatially Derived from drill stem
tests and bottom-hole
temperature data
Advection Package Third order TVD scheme  Selected for numerical
Ultimate stability and accuracy

d0i:10.20944/preprints202504.2474.v1
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TRPT 0.1 Assumed based on
typical sedimentary
conditions (Gelhar et al.,
1992)

TRVT 0.01 Assumed based on
typical sedimentary
conditions (USGS, 2022)

DMCOEEF (Effective 0.01 m?/day Literature-based estimate
Molecular Diffusion (ModelMuse, 2024)
Coefficient)

longitudinal Dispersivity =~ Varies with lithology Based on the Rock Type

Calculation and thermal
conductivity of Bekes
Fm. from (Vass et al.,

2018)

Sorption Linear isotherm Common assumption for
initial reactive transport
modelling

Kinetic Rate Reaction zero order reaction Assumed for

simplification of reactive

processes
Preconditioner Jacobi Default iterative solver

preconditioner

4.5. Simulation Setting

To replicate ATES operations, the stress periods were structured into one month of system
downtime, followed by five months dedicated to heat storage, another one-month break, and five
months allocated for heat production, repeating this cycle over a seven-year period. A pair of wells
was selected where the distance between them is more than 500 meters: one well for hot injection in
summer and subsequent hot production in winter, and the other well for cold production in summer
with cold injection during winter.

4.6. Training Data for Machine Learning

To ensure the integrity and consistency of our training dataset, we developed an in-house data
entry module using Streamlit that integrates both manual input and CSV-based uploads. This module
facilitates the incorporation of critical well parameters —including well ID, name, spatial coordinates,
porosity, permeability, gamma ray measurements, thickness, distance to the cold well, and initial
temperature—while also allowing for the efficient addition of temporal temperature data. For the
temperature data, the module supports file uploads in CSV format, validates the presence of required
columns (TimeDays, WellType, Row, Col, Temperature), and links the data to the corresponding well
ID via an interactive selection box (Fig. 5). The system provides real-time previews and feedback,
ensuring that all data are consistently and accurately stored in the database.

The training process involves leveraging a SQLite database that consolidates data from two
tables—one containing well properties and the other recording temperature measurements. First, the
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data from both sources are merged to form a comprehensive DataFrame, which includes attributes
such as porosity, permeability, gamma ray, thickness, distance to cold wells, initial temperatures, and
the time variable, while spatial reference columns (Row, Col) are retained only for reference. After
cleaning the dataset by removing any rows with missing values, the data is split into training and
testing subsets. A Random Forest regressor is then trained on the assembled features (excluding the
spatial reference columns) to predict well temperatures, with performance evaluated through metrics
including MAE, RMSE, and R2 Finally, the trained model is serialized and saved to a predefined
path, ensuring reproducibility and ease of deployment within our predictive framework.
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Figure 5. illustrates the application of the Random Forest algorithm using a radial relational diagram.

The prediction phase leverages a pre-trained Random Forest model to forecast temperature
evolution for all available wells over a specified time range. In this stage, users interact with a
Streamlit-based interface where they define the starting time, ending time, and time step for the
predictions. The system loads the trained model and, for each well in the database, constructs an
input DataFrame populated with static parameters such as porosity, permeability, gamma ray,
thickness, distance to the cold well, and initial temperature, while dynamically varying the time
parameter. The model then predicts the temperature for each time step, and the results are combined
into a unified dataset. To facilitate analysis, the predicted curves for individual wells are plotted on
a single graph—each curve clearly labeled with its corresponding WelllD—providing a
comprehensive visualization of thermal performance over time. The complete repository of the
scripts is available online; however, the data content is not included (H. Abdulhaq, 2025a).

4.7. Model Calibration and Validation
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For model calibration and validation, the hydrogeological simulation was first calibrated against
historical field data—specifically, reported hydraulic head measurements—to ensure that the
MODFLOW model accurately reflected the aquifer’s behavior (Anderson et al., 2015). These historical
observations provided key benchmarks that guided the tuning of parameters related to flow and
transport processes. Concurrently, the machine learning component was iteratively calibrated using
simulation outputs as training data. As the simulation yielded more refined thermal performance
data, continuous retraining of the Random Forest model progressively improved its predictive
accuracy (Khosravi et al., 2024). This integrated calibration strategy, leveraging both empirical
historical data and dynamically generated simulation inputs, has enhanced the overall robustness
and reliability of the modeling framework.

4.8. Sensitivity Analysis

The sensitivity analysis of the machine learning model revealed that TimeDays is by far the most
influential parameter affecting temperature prediction outcomes, with a permutation importance
score of 1.96, substantially higher than all other features. This result underscores the dominant role
of temporal evolution in determining thermal behavior within the reservoir, reflecting the
accumulation and dissipation of heat over successive cycles. Other features—such as Initial
Temperature (0.034), Thickness (0.029), GammaRay (0.006), and Permeability (0.006)—exhibited
comparatively minor effects, suggesting that while geological and petrophysical properties
contribute to system performance, their impact is secondary to the time dimension (Fisher et al.,
2019). Notably, Porosity had no measurable influence, and DistanceToColdWell showed a negligible
effect (0.00007), indicating that these factors may be less critical under the modeled conditions or
were inadequately represented in the available dataset. These findings provide insight into which
parameters should be prioritized for accurate performance prediction and model refinement.

5. Results

5.1. Heat Simulation result

The output of the heat simulation is stored in a UCN file, which encapsulates the final
temperature distribution computed by the model (Ishikawa et al., 2014). To efficiently leverage this
output, we developed an in-house Python module designed to load, process, and analyze UCN files
(Fig 6). This module automatically identifies hot and cold wells and allows users to designate
observation wells within the simulation setting. Users can load the UCN file and select specific layers
of interest, while the integrated visualization sub-module generates plots of temperature versus time
for defined stress periods, providing clear insights into the thermal performance of individual wells.
Additionally, an animation sub-module enables dynamic playback of temperature evolution by
allowing adjustable speeds and frame skips, thereby enhancing interpretability. Furthermore, a
dedicated recovery efficiency sub-module computes the thermal recovery efficiency for any
simulated wells. The complete suite of module scripts is available online and can be accessed
independently of the dataset (H. Abdulhagq, 2025c).
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Figure 6. presents simulation results for a specific time frame, showing the injection of hot fluid through two
wells.

In our thermal simulation studies, two sets of candidate results were obtained, both exhibiting
robust injection performance with maximum temperatures consistently around 94.9°C across cycles
(Fig. 7). In the first candidate, the break phases—representing reservoir conditions when the system
strikes—showed a gradual increase in maximum temperatures from 79.67°C up to 84.33°C, with
thermal recovery efficiency improving from 83.92% to 88.82%. In the second candidate, although the
initial break phase efficiency was lower at 81.05%, a notable enhancement was observed, with the
efficiency rising to a maximum of 87.93% over repeated cycles. Key performance metrics for this
candidate include a ratio of last-to-first efficiency of 1.08, a percent increase of 8.50% from the initial
break phase, an average efficiency of 85.46%, and a slope of 1.04 per cycle, indicating a steady
improvement with each cycle. Importantly, while these reservoir-level efficiency improvements are
significant, the production efficiency during winter remains even higher than these baseline values,
ensuring superior operational performance. Together, these observations demonstrate that repeated
cycles of heat injection and reservoir cooling not only stabilize the thermal regime but also enhance
both the inherent recovery and the actual production efficiency during winter operations.
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Figure 7. shows the thermal performance curve of the simulated hot well across repeated seasons.

5.2. Machine Learning Result:
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When initiating temperature performance predictions for candidate wells, we generated thermal
efficiency results for multiple wells, predominantly located outside the originally modeled area. This
indicates that our predictive approach is effective even beyond the immediate boundaries of our
hydrogeological model, highlighting the potential for broader applicability (Fig. 8). Analysis of these
external candidates reveals initial efficiencies ranging between approximately 80% to 84%, with a
consistent improvement observed through repeated injection and recovery cycles. Specifically,
efficiencies showed an average of 85.46%, and maximum values reached up to 88.84%. The ratio of
final-to-initial efficiency averaged around 1.05, corresponding to an overall efficiency improvement
of up to 8.01%. Furthermore, the observed positive slopes (up to 1.0 per cycle) clearly illustrate that
efficiency systematically increases over successive cycles. These findings underscore the reliability
and robustness of our predictive methodology in forecasting thermal performance beyond the
initially calibrated region, as visualized in Figure 9, which displays a distribution map of each well
and the corresponding predicted improvement in thermal performance.
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Figure 8. presents the thermal performance of wells located outside the modelled area.
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Figure 9. shows the percentage increase in thermal performance for each well based on the prediction results.
6. Discussion

6.1. Alignment with Previous Studies and Theoretical Outcomes

Our simulation and machine learning outcomes align closely with prior theoretical and
empirical findings related to High-Temperature Aquifer Thermal Energy Storage (HT-ATES).
Previous studies indicate a typical improvement in thermal recovery efficiency with each successive
injection-production cycle, attributed primarily to residual heat accumulation within the aquifer
(Collignon et al., 2020; Drijver et al., 2012). Our simulation results reflect similar trends, with initial
efficiencies around 80-84% gradually increasing to as high as approximately 88%. This progressive
efficiency improvement closely mirrors published benchmarks from international case studies, which
typically report HT-ATES efficiencies stabilizing in the range of 60-80% after several operational
cycles (Collignon et al., 2020; Winterleitner et al., 2018).

The stability of our modeled temperature curves over multiple years also echoes the theoretical
predictions, which suggest that a thermal equilibrium or steady state emerges after multiple cycles
(Tang & Rijnaarts, 2023). However, subtle contrasts exist; for instance, our simulations may reflect
idealized conditions, potentially omitting complexities such as density-driven convection or
significant vertical heat migration reported in heterogeneous clastic reservoirs (Winterleitner et al.,
2018). This highlights a limitation where idealized models may yield slightly optimistic efficiency
and thermal stability predictions compared to more complex real-world scenarios.

6.2. Key Influencing Parameters

Our machine learning analysis identified time ('TimeDays') as the most influential parameter on
temperature and efficiency predictions, surpassing all other geological and operational parameters
by a substantial margin. Specifically, the permutation importance of time was approximately 1.96,
whereas other parameters like initial temperature, thickness, gamma ray, and permeability
demonstrated notably lower impacts (0.034, 0.029, 0.006, and 0.006, respectively). This finding
emphasizes that temporal factors—specifically, cumulative cycle duration and residual heat
buildup—predominantly govern thermal performance, consistent with the literature where residual
thermal energy strongly influences long-term operational outcomes (Drijver et al., 2012).
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6.3. Strengths and Limitations of Hydrogeological Model Calibration

Calibrating the hydrogeological model using historical head data provides several advantages,
chiefly realistic and site-specific insights into subsurface dynamics. However, this method's main
limitation lies in the necessity to modify boundary conditions to match historical measurements
adequately, potentially introducing bias or oversimplification. Adjustments made to boundary
conditions, while essential for aligning simulations with empirical data, might restrict the
generalizability of the hydrogeological model to conditions significantly different from historical
scenarios.

6.4. Enhancing Decision-Making for UTES Site Selection

Our predictive methodology substantially accelerates the decision-making process for selecting
potential UTES sites by providing rapid, high-quality predictive outcomes derived from historical
data and simulations. By transforming abandoned hydrocarbon reservoirs into a data-driven
analytical framework, our approach reduces evaluation times and increases confidence in site
assessments. This can significantly streamline site selection workflows, particularly valuable in
regions with numerous abandoned wells and substantial historical datasets.

6.5. Implications for Scaling Geothermal Storage Projects

The successful application of this predictive approach using gamma ray logs to differentiate rock
types indicates substantial potential for scaling geothermal storage projects, particularly within
clastic sedimentary basins. Internationally, numerous clastic basins exist with similar
sedimentological characteristics, making this methodology widely applicable. This capability
facilitates rapid assessments across varied geographies, promoting efficient, scalable deployment of
HT-ATES technologies globally.

6.6. Assumptions and Simplifications

Key assumptions and simplifications within our modeling framework include idealized
boundary conditions, homogeneous or simplified geological heterogeneities, and consistent thermal
properties across the model domain. Such assumptions likely influence the accuracy and predictive
power of the model, potentially limiting its applicability to real-world scenarios with pronounced
geological complexity or significantly variable hydrogeological conditions.

6.7. Uncertainties in Input Data

A major uncertainty arises from the inherent accuracy and reliability of the initial simulation
data used for machine learning training. Because our predictive model relies heavily on accurate
thermal simulations, any errors or oversimplifications in the initial simulations propagate through
the predictions, potentially affecting reliability. This highlights the critical importance of accurate and
comprehensive simulation input data.

6.8. Recommendations and Future Work

Future studies should focus on enhancing simulation fidelity, incorporating more detailed
heterogeneity, and conducting diverse scenario sampling to bolster the robustness of the machine
learning model. Additionally, exploring advanced physics-informed machine learning techniques
could significantly improve predictive accuracy and generalizability. Extending simulation runs,
including more diverse geological and operational parameters, and conducting further validation
with independent field data would further strengthen confidence in our model predictions and their
applicability to broader contexts.

7. Conclusion
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This study set out to advance the design and deployment of high-temperature Aquifer Thermal
Energy Storage (HT-ATES) in depleted clastic reservoirs through four interlinked research questions.
First, by coupling high-resolution MODFLOW-MT3DMS heat-transport simulations with an in-
house Python toolkit, we identified the optimal inter-well spacing that minimizes premature thermal
breakthrough while maximizing cumulative heat-recovery efficiency. Our two candidate well pairs
consistently achieved peak injection temperatures near 94.9 °C and demonstrated steady efficiency
gains—up to 8.5 % over repeated cycles—when spaced to balance thermal front propagation and
lateral heat recharge.

Second, we quantified how key reservoir properties in Hungarian clastic formations modulate
this optimal spacing and overall system performance. Sensitivity analysis revealed that porosity and
permeability variations shift thermal breakthrough timing and adjust peak recovery efficiencies by
several percentage points, while anisotropy primarily affects the shape of the thermal plume. These
insights enable tailoring well spacing to site-specific hydraulic and thermal heterogeneities.

Third, comparison of seasonal operating schedules confirmed that the conventional hot-
storage/winter production cycle yields marginally higher annual energy returns than the inverse
(cold-production/winter storage), owing to more effective residual-heat carryover. Specifically,
winter production efficiencies exceeded baseline recovery values, underscoring the value of aligning
storage and demand cycles to ambient temperature differentials.

Finally, our Random Forest surrogate models—trained on several coupled simulations—proved
capable of predicting thermal recovery efficiency across a broad inventory of candidate wells outside
the original calibration domain. Surrogate predictions achieved average accuracies within 2-3 % of
full numerical simulations, with efficiency improvements up to 8 % over multiple cycles. This
machine-learning workflow accelerates design optimization by an order of magnitude, enabling
rapid screening of sites and operational schedules.

Collectively, these findings deliver a data-driven framework for HT-ATES implementation in
depleted clastic reservoirs: mechanistic insights into spacing and scheduling trade-offs, parameter-
specific performance adjustments, and a scalable surrogate modeling approach for design
optimization. Future work should extend this framework by incorporating more complex
heterogeneities, exploring physics-informed learning techniques, and validating predictions against
field pilot data to further refine site-selection criteria and operational guidelines.
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