
Article Not peer-reviewed version

Predicting Thermal Performance of
Aquifer Thermal Energy Storage
Systems in Depleted Clastic
Hydrocarbon Reservoir via Machine
Learning: Case Study from Hungary

Hawkar Abdulhaq * , János Geiger , István Vass , Tivadar M. Tóth , Tamás Medgyes , Gabor Bozsó ,
Balázs Kóbor , Éva Kun , János Szanyi

Posted Date: 29 April 2025

doi: 10.20944/preprints202504.2474.v1

Keywords: Machine Learning; Aquifer Thermal Energy Storage (ATES); Brine re-injection; Heat transport
modeling; Groundwater flow; Geothermal energy; Depleted hydrocarbon reservoirs

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4417190
https://sciprofiles.com/profile/3625860
https://sciprofiles.com/profile/753962
https://sciprofiles.com/profile/4419117
https://sciprofiles.com/profile/1764521


 

 

Article 

Predicting Thermal Performance of Aquifer Thermal 
Energy Storage Systems in Depleted Clastic 
Hydrocarbon Reservoir via Machine Learning: Case 
Study from Hungary 
Hawkar Ali Abdulhaq 1,*, János Geiger 2, István Vass 3, Tivadar M. Tóth 4, Tamás Medgyes 5, 
Gábor Bozsó 4,5, Balázs Kóbor 5, Éva Kun 6 and János Szanyi 4,5 

1 Department of Geology & Department of Atmospheric and Geospatial Data Sciences, University of Szeged, 
Egyetem Utca, 2, 6722 Szeged, Hungary 

2 GEOCHEM Ltd, Kővágószőlős, Retired Associate Professor of Geostatistics, Sedimentology, Szeged 
University, Egyetem Utca, 2, 6722 Szeged, Hungary 

3 MOL Hungary, MOL Plc, H-6701 Algyő, SZEAK épület 2.em 207.sz., Hungary 
4 Department of Geology, University of Szeged, Egyetem Utca, 2, 6722 Szeged, Hungary 
5 University of Szeged, Geothermal Energy Applied Research Department, Egyetem utca 2, 6722 Szeged, 

Hungary 
6 Szabályozott Tevékenységek Felügyeleti Hatósága, 1123 Budapest, Alkotás utca 50 
* Correspondence: hawkar.ali.abdulhaq@szte.hu Tel.: +36707895714 

Abstract: This study explores a novel strategy to repurpose depleted clastic sediment hydrocarbon 
reservoirs in Hungary as High-Temperature Aquifer Thermal Energy Storage (HT-ATES) systems, 
incorporating machine learning to enhance system optimization. Hungary's extensive inventory of 
depleted fields, predominantly featuring clastic formations, presents significant potential for 
geothermal energy storage applications. Initially, detailed reservoir models were constructed by 
analyzing existing well logs and core data. Subsequent advanced numerical simulations of heat 
transport and groundwater flow were performed within the Bekesi Formation, concentrating on a 
dual-well configuration—one dedicated to hot fluid injection and extraction and the other to 
managing cold fluids. State-of-the-art simulation tools, including SGeMS, RockWorks, Python, 
MODFLOW, and GMS MT3DMS, were utilized to pinpoint optimal brine injection sites by evaluating 
critical parameters such as thermal conductivity, porosity, and permeability; additional core analyses 
filled essential gaps in thermal conductivity data. The study's central innovation lies in deploying a 
Random Forest algorithm to optimize thermal recovery efficiency. Data generated from 
comprehensive simulations across multiple wells were used to train the model, which then predicted 
and refined thermal performance for the remaining wells in the field. The outcomes are expected to 
yield precise identification of optimal injection locations, rigorous heat transport analyses, accurate 
estimates of storage capacities, and improved predictions of thermal recovery efficiency, thereby 
establishing a sustainable and data-driven methodology for converting depleted hydrocarbon 
reservoirs into effective thermal energy storage systems. 

Keywords: Machine Learning; Aquifer Thermal Energy Storage (ATES); Brine re-injection; Heat 
transport modeling; Groundwater flow; Geothermal energy; Depleted hydrocarbon reservoirs 
 

1. Introduction 

The end-of-life management of oil and gas wells—including plugging, abandonment, and site 
remediation—poses significant economic and environmental challenges. In the U.S., median 
decommissioning costs average USD 76,000 but can exceed USD 1 million for deep wells. In Hungary, 
abandonment costs typically range from 50 million to several hundred million HUF, depending on 
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well depth and complexity.  (Raimi et al., 2021; Vass, 2025). With over 3 million inactive or orphaned 
wells in the U.S. alone, many pose environmental risks, including methane emissions with a global-
warming potential 25–34 times that of CO₂ (IPCC, 2021; Kang et al., 2019). In Pennsylvania, legacy 
wells contribute an estimated 5–8% of anthropogenic methane, prompting stricter plugging 
regulations (Kang et al., 2019; Osundare et al., 2018). Equally important is reclaiming and stabilizing 
well sites for land safety and ecosystem restoration. Recent advances in high-fidelity reservoir 
simulation paired with supervised machine-learning surrogates—such as artificial neural networks, 
Random Forests, and Gaussian-process emulators—now enable rapid, data-driven screening of 
thousands of well candidates to pinpoint those most suitable for conversion into geothermal energy 
assets, effectively transforming environmental liabilities into low-carbon, revenue-generating 
infrastructure (Jin et al., 2022; Duplyakin et al., 2022; Rohmer et al., 2023). 

 
Amid these challenges, data-driven revitalization of depleted hydrocarbon fields has emerged 

as a powerful strategy to tackle renewable-energy intermittency and advance global decarbonization 
goals (Duggal et al., 2022; Gayayev, 2023). Recent policy roadmaps from the International Energy 
Agency, and the World Economic Forum (IEA, 2017; REN21, 2019; WEF, 2021) all highlight the need 
for adaptable, seasonal storage solutions that bolster energy security and grid flexibility (Dincer & 
Rosen, 2011; Van Der Roest et al., 2021). Repurposing depleted reservoirs directly supports this 
agenda: their well-characterized permeability, porosity, and extensive historical datasets can be 
leveraged to transform environmental liabilities into low-carbon, revenue-generating assets (Green 
et al., 2021; Lee, 2013; Li, 2016). Diverse pore-space applications—CO₂ sequestration (Qin et al., 2023), 
hydrogen storage (Zhu et al., 2024), subsurface electricity generation (Duggal et al., 2022), and 
Aquifer Thermal Energy Storage (ATES) (Matos et al., 2019; Stricker et al., 2020)—underscore their 
versatility in a decarbonizing energy landscape. Crucially, advances in high-resolution reservoir 
modelling and supervised machine-learning algorithms now allow rapid screening of thousands of 
well trajectories, prediction of storage performance under uncertainty, and optimisation of injection–
production schemes—dramatically reducing time-to-deployment and de-risking investment 
(Khosravi et al., 2024; Liu et al., 2024). 

 
 
With over 2,800 systems worldwide—mainly in the Netherlands supplying ~2.5 TWh/yr—ATES 

has proven technically mature and scalable (Dickinson et al., 2009; Fleuchaus et al., 2020; Kastner et 
al., 2017; van Heekeren & Bakema, 2015). It uses existing wells and data to store surplus heat for later 
use, helping balance energy supply and support renewable integration (Fleuchaus et al., 2020; Paksoy 
et al., 2000). High-Temperature ATES (HT-ATES), targeting fluid temperatures ≥ 90 °C, further 
extends storage potential. Recent studies now combine coupled reservoir simulations with 
supervised-learning surrogates—such as neural-network emulators (Jin et al., 2022), 
Gaussian-process metamodelling (Rohmer et al., 2023), and Random Forest regressors (Duplyakin et 
al., 2022)—to forecast system performance across diverse geological scenarios in seconds rather than 
hours.  In the Upper Rhine Graben, 90% of surveyed depleted oil fields are HT-ATES-ready, with 
projected storage of up to 12 GWh/yr and ~82% recovery after ten years (Holstenkamp et al., 2017; 
Liu et al., 2024; Stricker et al., 2020). Field-scale pilots confirm feasibility: the Middenmeer project 
stored 85–90 °C heat in a 400 m aquifer, using real-time monitoring and MODFLOW/MT3DMS to 
manage issues like sand production (HEATSTORE, 2025; Oerlemans et al., 2022). In the U.S., 
geothermal battery projects in California and Texas repurpose oilfields for long-duration thermal 
storage, leveraging machine-learning surrogates to optimise injection and reduce testing time by over 
70% (Khosravi et al., 2024; Liu et al., 2024; Zhu et al., 2024). These systems offer superior discharge 
duration over batteries and cut CO₂ emissions (Fleuchaus et al., 2020). 

Depleted reservoirs offer vast storage potential. The Carrizo-Wilcox aquifer could store 554 TWh 
of heat—63 TWh as electricity (Akindipe et al., 2024)—while the Upper Rhine Graben could supply 
10 TWh/yr of heat, covering much of the region's demand (Stricker et al., 2020). These capacities far 
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exceed those of pumped hydro and grid batteries (World Energy Outlook 2021 – Analysis, 2021). 
Repurposing wells cuts capital costs, and integration with renewables enables low levelized costs—
USD 0.11/kWh for electricity, USD 0.02/kWh for heat  (Anttila, 2021; Zhu et al., 2024). Though round-
trip efficiency is 40–50%, geological storage fills a key seasonal balancing role (Van Der Roest et al., 
2021). Although high-temperature ATES is advancing, substantial uncertainties still cloud the design 
and operation of dual-well systems in heterogeneous clastic reservoirs—uncertainties that 
brute-force deterministic simulations cannot efficiently close. Chief among these is selecting the 
hot-cold well spacing that suppresses premature thermal breakthrough yet preserves a high 
heat-recovery factor. Thermal breakthrough can erode efficiency and jeopardise long-term viability 
(Bloemendal & Hartog, 2018; Sommer et al., 2013). While ATES research is growing, few studies have 
formally linked spacing to thermal performance in repurposed hydrocarbon fields with complex 
stratigraphy (Kastner et al., 2017; Pellegrini et al., 2019). Cutting-edge work now couples high-fidelity 
thermo-hydraulic models with machine-learning surrogates—Random-Forest, 
artificial-neural-network, and Gaussian-process emulators—to scan thousands of spacing scenarios, 
propagate geological uncertainty, and pinpoint Pareto-optimal dual-well layouts in minutes rather 
than days (Jin et al., 2022; Rohmer et al., 2023; Duplyakin et al., 2022). Yet these data-driven methods 
have not been systematically deployed in depleted clastic basins (Liu et al., 2024; Khosravi et al., 
2023). 

 
This study addresses four tightly linked questions aimed at advancing seasonal thermal-energy 

storage in depleted clastic reservoirs. It first pinpoints the inter-well distance in a dual-well 
configuration that suppresses premature thermal breakthrough while maximizing heat-recovery 
efficiency. It then examines how key reservoir attributes in Hungarian clastic formation—porosity, 
permeability, and lithological anisotropy —shift the optimal spacing and shape of the overall system 
performance. Next, it evaluates which alternating operating schedule—summer hot-storage/winter 
hot-production versus summer cold-production/winter cold-storage—delivers the greatest annual 
energy return. Finally, it tests whether supervised machine-learning models, calibrated on suites of 
coupled MODFLOW-MT3DMS simulations, can predict and optimize these design variables across 
the full inventory of candidate wells, thereby slashing computational time and accelerating field 
deployment. A preliminary version of this study was presented as an abstract at the 16th European 
Geothermal PhD Days, held in Szeged, Hungary (H. Abdulhaq, 2025b). 

 
Hungary is an exceptional testbed for high-temperature ATES because it (i) hosts a dense 

network of depleted oil-and-gas wells situated close to district-heating loads, (ii) lies within a 
moderate-to-high geothermal-gradient province that delivers initial reservoir temperatures of ≈ 70 
°C, and (iii) operates under strong national directives for decarbonisation and energy-security gains 
(Nádor et al., 2022; J. D. Szanyi et al., 2025). Decades of well-log, core, and production records have 
generated a richly labelled subsurface dataset that can be mined with geostatistics and supervised 
learning (Topór et al., 2023). Leveraging these assets, we integrate ML with high-resolution 
MODFLOW/MT3DMS heat-transport simulations and Random-Forest surrogates—an approach 
shown to cut optimisation runtimes by an order of magnitude while preserving predictive accuracy 
(Jin et al., 2022; Duplyakin et al., 2022). The resulting workflow delivers both mechanistic insight and 
actionable design rules for dual-well HT-ATES implementation in Hungarian clastic reservoirs. 

 
By coupling high-fidelity MODFLOW-MT3DMS heat-transport simulations with 

Random-Forest surrogates trained on thousands of synthetic well trajectories, we cut optimisation 
runtimes by more than 90 % while maintaining high predictive skill (Jin et al., 2022; Rohmer et al., 
2023). Feature-importance analysis of these meta-models (R² ≈ 0.87 on a hold-out set) pinpoints 
inter-well distance, reservoir anisotropy, and cycle length as the dominant controls on Heat-Recovery 
Factor—insights that translate into practical spacing rules and seasonally phased operating schedules 
for Hungarian clastic reservoirs (Duplyakin et al., 2022; Jin et al., 2022). Validation against 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2025 doi:10.20944/preprints202504.2474.v1

https://doi.org/10.20944/preprints202504.2474.v1


 4 of 23 

 

independent datasets from analogous Central European basins confirms the transferability of the 
workflow (Topór et al., 2023). Collectively, these results provide a scalable blueprint for converting 
depleted hydrocarbon assets into long-duration, low-carbon thermal batteries, simultaneously 
reducing decommissioning liabilities and advancing national energy-security and climate-mitigation 
goals (REN21, 2019; WEF, 2021). 

2. Glossary of Terms 

ATES (Aquifer Thermal Energy Storage): A technology for storing and retrieving thermal energy 
in aquifers, enabling seasonal energy management by injecting heat in summer and recovering it 
during winter. 

 
HT-ATES (High-Temperature Aquifer Thermal Energy Storage): An advanced form of ATES 

designed for storage and recovery of thermal energy at fluid temperatures ≥90 °C, suitable for 
industrial and district heating applications. 

 
MODFLOW: A modular three-dimensional finite-difference groundwater flow model 

developed by the U.S. Geological Survey, widely used for simulating groundwater conditions and 
flows. 

 
MT3DMS: Modular Three-Dimensional Multi-Species Transport Model, used in conjunction 

with MODFLOW to simulate the transport of heat, solutes, or other contaminants in groundwater 
systems. 

 
Random Forest: An ensemble machine learning method based on decision trees, used for 

regression and classification tasks, valued for its robustness and ability to model complex 
relationships. 

 
Heat-Recovery Factor (HRF): The ratio of recovered thermal energy to the initially injected 

energy during an ATES cycle, often used as a performance metric for system efficiency. 
 
Thermal Breakthrough: The phenomenon where injected hot or cold fluid reaches the 

production well too quickly, reducing system efficiency and potentially shortening operational 
lifetime. 

 
UCN File (Unformatted Concentration File): A binary output file generated by 

MODFLOW/MT3DMS containing spatially and temporally resolved simulation results, in this study 
representing temperature distributions. 

 
Residual Heat Accumulation: The progressive build-up of stored heat in the aquifer over 

multiple ATES cycles, typically leading to higher thermal recovery efficiencies over time. 
 
Surrogate Model: A fast-running, data-driven model (e.g., Random Forest, neural network) 

trained on outputs from complex numerical simulations to predict system behavior efficiently. 
 
Hydrogeological Model: A numerical model simulating groundwater flow based on hydraulic 

and geological parameters to understand subsurface water movement and storage characteristics. 
 
Thermal Recovery Efficiency: The percentage of injected thermal energy that can be successfully 

recovered during production phases in a seasonal thermal energy storage system. 
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Overpressure: Subsurface pressure exceeding hydrostatic pressure, often due to geological 
compaction, tectonic forces, or fluid generation processes, which can influence reservoir behavior. 

 
Pannonian s.l. (sensu lato):  
A stratigraphic term referring broadly to the Upper Miocene sedimentary sequences in the 

Pannonian Basin, including formations such as Újfalu and Zagyva. 
 
Hot Well: A well designated for the injection of heated water during storage periods and 

extraction during production periods in an ATES system. 
 
Cold Well: A complementary well used to manage temperature balance in an ATES system, 

typically used for extracting cooler water during storage or injecting cooler water during production, 
depending on the operating scheme. 

 
Stress Period: A defined time interval in a MODFLOW/MT3DMS simulation during which 

external stresses (e.g., injection, pumping) are assumed constant or follow a specified pattern. 
 
Permutation Importance: A machine learning method used to assess the relative importance of 

input features by measuring the decrease in model performance when feature values are randomly 
shuffled. 

3. Background and Regional 

3.1. Geological and Hydrogeological Setting of the Békés Basin 

The Pannonian Basin is a sedimentary basin located in East-Central Europe, characterized by a 
complex geological structure consisting of variously subsided basins and horst-like blocks. The 
basement primarily comprises metamorphic Paleozoic rocks, with Mesozoic carbonate formations 
present in some areas that can serve as good aquifers (Horváth et al., 2015). Within this larger 
geological context, the Békés Basin represents one of the two main depressions of the Southern Great 
Plain of Hungary, alongside the Makó Depression, with these two significant depressions divided by 
the Battonya Ridge (Juhász, 1991). The Békés Basin is particularly notable for its exceptional depth, 
reaching approximately 7,000 meters of post-Cretaceous sedimentary fill (USGS, 2023), making it one 
of the deepest sub-basins within the Pannonian Basin system. Figure 1 shows the location of the study 
area within Hungary, along with the lithological map highlighting the modelled section of the Békés 
Formation and a corresponding lithological cross-section. 
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Figure 1. shows the location of the study area in Hungary, the modelled section within the Békés Formation 
lithological map, and a lithological cross-section; modified after Abdulhaq et al. (2024). 

The stratigraphic sequence of the Békés Basin follows the general pattern of the Pannonian Basin, 
with important variations in thickness and characteristics. At the beginning of the Lower Pannonian 
period, the Endrőd Marl Formation was deposited, consisting of calcareous marl and clay marl. This 
formation is overlain by the fine sand turbidite set of the Szolnok Formation, which reaches several 
hundred meters in thickness in some locations. Above the turbidites, particularly in shallower basin 
areas, the hemipelagic marls are covered by the thick clayey-silty layers of the Algyő Formation with 
a prodelta facies (Haas, 2013). A key characteristic of this formation sequence is the extremely high 
overpressure below and throughout the set. The sand content of the Algyő Formation increases in 
areas with a shallower basement, allowing the upper part of the formation to function as a water-
bearing unit in certain locations. Generally, however, the Lower Pannonian formations exhibit poor 
water-bearing characteristics. 

The Pannonian s.l. sequence, which overlies the Lower Pannonian layers, consists primarily of 
the Újfalu Formation and the Zagyva Formation. The Újfalu Formation, characterized by delta front 
and delta plain facies, represents the most hydrogeologically significant Pannonian s.l. sediment. The 
Zagyva Formation features deltaic background and alluvial plain facies, with dominant sediments 
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being bed-filling and bay-mouth bar deposits that demonstrate good water-bearing properties 
despite their limited horizontal dimensions. These formations are hydrodynamically connected 
through multiple linear erosions and overlapping (Juhász, 1991). In the Békés Basin region, the 
bottom of the Pannonian s.l. sequences typically lie at depths of 2,000-2,500 meters from the ground 
surface, with the total thickness of Pannonian s.l. sediments exceeding 2,000 meters in the Békés 
Basin—among the thickest in the entire Pannonian region. 

3.2 Hydrodynamic Systems and Pressure Regimes 
The Békés Basin, like the broader Carpathian basin, features two distinct flow regimes: an upper, 

gravity-driven flow system within the Pannonian s.l. sequences, and a deeper, overpressure-driven 
system within the Lower Pannonian formations, primarily affecting the finer deep-sea sediments and 
underlying formations (Mádl-Szőnyi & Tóth, 2009; Tóth & Almási, 2001). The overpressure in the 
deeper system is remarkably high, reaching up to 40 MPa above hydrostatic pressure. This extreme 
overpressure primarily results from tectonic compression of the formations, with additional 
contribution from gas formation during sediment maturation processes (Tóth and Almási, 2001). 

In the Békés Basin region, pressure-depth profiles indicate that the dynamic pressure gradient 
exceeds the hydrostatic pressure by approximately 0.13 MPa (equivalent to about 13 m hydrostatic 
head) in Quaternary formations and by approximately 0.44 MPa (about 44 m hydrostatic head) in the 
Pannonian s.l. sequence. The Lower Pannonian sequence exhibits even more dramatic super-
hydrostatic pressure, with the dynamic pressure gradient exceeding hydrostatic pressure by more 
than 60 MPa. This significant pressure differential creates complex hydrodynamic conditions that 
must be carefully considered when designing and implementing any subsurface fluid management 
system, including seasonal thermal energy storage. 

3.3. Reservoir Properties and Geothermal Potential 

The Pannonian s.l. sandstone reservoirs in the Békés Basin region exhibit favorable 
characteristics for geothermal applications, with effective porosity values typically reaching 22-25%. 
The permeability of these Pannonian s.l. reservoirs, which consist of highly permeable sand layers, 
can reach up to 2000 mD (1.97 × 10^-12 m²), corresponding to a hydraulic conductivity of 5-10 
m/day(Bálint & Szanyi, 2015; Korim, 1991; J. Szanyi et al., 2015). These values represent some of the 
most favorable reservoir conditions in the Hungarian geothermal context. 

The consolidation state of the sandstone varies depending on depth and cementation processes. 
The sandstone can range from consolidated to unconsolidated, with cementation typically occurring 
through quartz overgrowth, calcite, or kaolin precipitation. The degree of cementation significantly 
influences both porosity and stability, particularly during production and injection operations. 
Generally, sandstone induration increases with depth as cementitious material precipitates into the 
pores from fluid extracted during compaction. The sand bodies are typically separated by thinner 
fine-grained sediments, creating a complex, heterogeneous reservoir structure (Korim, 1991; Bálint 
and Szanyi, 2015). 

The Békés Basin is characterized by an exceptionally high geothermal gradient, approximately 
50°C/km, significantly above global averages due to the relatively thin crust beneath the Pannonian 
Basin (Lenkey et al., 2021). This elevated thermal gradient results in reservoir temperatures around 
70°C at depths of approximately 1,500-1,800 meters, making these formations particularly suitable 
for thermal energy storage and district heating applications. At greater depths of 2,000-2,500 meters, 
temperatures can reach 90-120°C, offering potential for higher-temperature applications. 

The combination of favorable reservoir properties (high porosity and permeability) and 
outstanding geothermal conditions makes the Békés Basin exceptionally suitable for geothermal 
energy utilization, including seasonal heat storage applications (J. Szanyi et al., 2009). The region's 
depleted hydrocarbon wells, many of which penetrate these favorable Pannonian s.l. sandstone 
formations, present valuable opportunities for repurposing as components of thermal energy storage 
systems. 
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3.4. Hydrocarbon History and Well Infrastructure 

The Békés Basin has a rich history of hydrocarbon exploration and production, with extensive 
drilling activities dating back to the mid-20th century. These activities have resulted in a substantial 
inventory of wells throughout the region, many of which have now reached the end of their 
productive lifespan as hydrocarbon producers. The basin contains significant natural gas resources, 
with gases produced from multiple reservoir intervals at depths ranging from 1,800 to 2,900 meters 
(Survey, 2023). 

These Neogene sedimentary sequences overlying the basement highs have demonstrated the 
best hydrocarbon reservoir characteristics in the southeastern part of Hungary (Horváth et al., 2015). 
The extensive exploration and production history has generated valuable geological and reservoir 
data, including detailed information on formation properties, temperature profiles, pressure regimes, 
and fluid characteristics. This wealth of data provides a significant advantage for assessing the 
potential of these formations for thermal energy storage applications. 

The existing well infrastructure, though aging, offers potential for repurposing rather than 
decommissioning. Many wells have been completed with telescopic designs, with casing diameters 
ranging from approximately 340 mm (13 3/8") at the surface to 140-178 mm (5 1/2" - 7") at reservoir 
depths. While some wells may require workover or partial recompletion to ensure mechanical 
integrity for long-term thermal storage operations, the basic infrastructure represents a valuable asset 
that could significantly reduce the capital costs associated with implementing seasonal heat storage 
systems. 

3.5. Relevance to Seasonal Heat Storage 

The hydrogeological characteristics of the Békés Basin make it particularly suitable for Aquifer 
Thermal Energy Storage (ATES) applications, especially High-Temperature ATES (HT-ATES) 
targeting temperatures up to 90°C or higher. The Pannonian s.l. sandstone formations, with their high 
porosity, good permeability, and favorable temperature conditions, provide an excellent medium for 
seasonal storage and retrieval of thermal energy. 

The proximity of many depleted wells to population centers in the region creates opportunities 
for integrating seasonal heat storage with district heating systems, similar to successful 
implementations in other parts of Hungary, such as Szeged. The initial reservoir temperatures of 
approximately 70°C in the target formations are ideal for enhancement through additional heat input 
during summer months, with subsequent extraction during winter heating periods. 

However, the complex pressure regimes, particularly the significant overpressure in deeper 
formations, present challenges that must be carefully managed. Additionally, the heterogeneous 
nature of the reservoir formations, with sand bodies separated by fine-grained sediments, creates 
potential for compartmentalization that could affect thermal breakthrough patterns between injection 
and production wells. 

The dual-well system proposed for seasonal heat storage—with one well serving for summer 
hot storing/winter hot producing and another for summer cold producing/winter cold storing—must 
be carefully designed to account for these hydrogeological characteristics. The optimal spacing 
between wells must balance the need to prevent premature thermal breakthrough while maximizing 
energy recovery efficiency, taking into consideration the specific reservoir properties of the Békés 
Basin formations. 

By leveraging the extensive geological knowledge, existing well infrastructure, and favorable 
reservoir conditions of the Békés Basin, seasonal heat storage systems can be optimized to provide 
sustainable, efficient thermal energy solutions while extending the productive life of otherwise 
abandoned hydrocarbon assets. 

4. Materials and Methods 

4.1. Methodological Framework 
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The methodological framework of this study began with the comprehensive curation and 
preparation of existing data from abandoned hydrocarbon fields, which involved extensive data 
modeling, cleaning, and refinement. A hydrogeological model was then constructed using 
MODFLOW (Harbaugh, 2005), providing the foundational flow and transport parameters needed for 
subsequent analyses. Building on this, a heat transport model was employed to simulate thermal 
performance in potential Underground Thermal Energy Storage (UTES) candidates. The resulting 
simulation outputs served as the training dataset for a Random Forest algorithm (Breiman, 2001; 
Pedregosa et al., 2011), which was designed to predict thermal performance in other areas. Finally, 
the predictions generated by the Random Forest were validated against actual simulation results. 
Figure 2 outlines the primary steps involved in this integrated approach. 

 

 

Figure 2. The workflow of the methodology employed in this study. 

 

4.1. Data Collection and Data Preparation 

For the data collection segment of our study, we utilized well data from the southern part of the 
Bekes Basin in Hungary—a site formerly exploited for hydrocarbons and now recognized for its 
geothermal potential (Kovács & Teleki, 1994). This field encompasses two key formations: the shallow 
Szolnok Formation, which functions as an aquifer (Varga et al., 2019), and the deeper Bekes 
Formation, thereby providing a unique opportunity to evaluate heat storage capabilities. We 
integrated a diverse set of data—including core samples, density logs, resistivity logs, and gamma-
ray measurements—using a stochastic simulation process. SGeMS was employed for the 
geostatistical simulation, while RockWorks facilitated the integration of simulation outcomes for 
gross thickness, effective porosity, and permeability. A total of 100 stochastic realizations were 
generated for each grid or voxel point, with the median (Md-type estimation) calculated to represent 
the central tendency, effectively minimizing the impact of skewed or outlier values. For the Bekes 
Formation, this Md-type estimation was deemed most representative of the expected geological 
parameters. 

 
In a prior study by Abdulhaq et al., (2024), the southeastern section of the study area was 

identified as a prime candidate for energy storage due to the Bekes Formation’s average temperature 
of approximately 70°C, coupled with its favorable porosity and permeability characteristics. Based 
on these insights, a polygon delineating this promising area was selected for detailed hydrogeological 
and heat transport simulations. Figure 3 illustrates the distances from each well to the candidate 
town, with only those wells penetrating the Bekes Formation included in the analysis—wells that did 
not extend into the Bekes were excluded. The figure also displays the temperature distribution within 
the Bekes Formation. By applying a 5 km threshold for effective thermal transport and selecting wells 
with temperatures below 70°C as potential candidates for HT-ATES, only wells marked with red 
borders were retained for further simulation of their thermal performance (Fig 4).  
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Figure 3. shows the location of the qualified wells over the temperature grid, highlighting the modelled area. 
White patches indicate areas where the reservoir thickness is less than 2 meters. 

 

Figure 4. shows the distribution of the wells and the boundary of the urban town that can be considered the 
potential candidate for the district heating beneficiary. The Bekes F. Temperature near the town is around 70° C, 
which makes it an ideal location to be used as a UTES site. For this reason, we narrowed down the area of interest 
to be modelled. 
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4.3. Hydrogeological Modelling  

The groundwater flow within the Bekesi Conglomerate reservoir was modeled using 
MODFLOW-2000, a modular finite-difference groundwater flow modeling software developed by 
the U.S. Geological Survey (Version 1.19.01, March 25, 2010). The groundwater flow model was 
developed using MODFLOW and discretized into three layers, 197 rows, and 400 columns with a cell 
size of 10 by 10 meters. In this configuration, the second layer represents the Bekes Formation. The 
model parameters were defined at either the cell-by-cell or grid scale, based on data-driven 
simulations and assumptions derived from field data and laboratory analyses. Table 1 summarizes 
the key parameters used in the MODFLOW processing model. 

Table 1. Key Parameters for the MODFLOW Model. 

Parameters Value / Description Source 

Initial Prescribed Hydraulic Head Varies spatially Derived from Kun et al., 2022  

Horizontal Hydraulic 

Conductivity 

Derived from 

permeability modelling 

Estimated from well log data 

Vertical Hydraulic Conductivity Assumed as 50% of 

horizontal conductivity 

Based on lithological assumptions 

Specific Storage 0.001 m⁻¹ Literature-based estimate 

Effective Porosity Derived from porosity 

modelling 

Estimated from well log data 

Specific Yield 0.15 Literature-based estimate 

Bulk Density Calculated via gamma 

ray log surface 

simulation 

Derived from natural gamma ray log 

simulation 

 

4.4. Heat Transport Modelling 

For heat transport modeling, we employed MT3DMS within the GMS framework. Following the 
successful initiation and simulation of the MODFLOW model, we activated the Basic Transport 
Package in MT3DMS by introducing the starting temperature for each cell. To simulate the heat 
transport processes, we selected the advection, dispersion, source/sink mixing, and chemical reaction 
modules. The parameters utilized for this heat transport model are listed below. 
Parameter Value / Description Justification 
Initial Temperature Varies spatially Derived from drill stem 

tests and bottom-hole 
temperature data 

Advection Package Third order TVD scheme 
Ultimate 

Selected for numerical 
stability and accuracy 
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TRPT 0.1 Assumed based on 
typical sedimentary 
conditions (Gelhar et al., 
1992) 

TRVT 0.01 Assumed based on 
typical sedimentary 
conditions (USGS, 2022) 
 

DMCOEF (Effective 
Molecular Diffusion 
Coefficient) 

0.01 m²/day Literature-based estimate 
(ModelMuse, 2024) 

longitudinal Dispersivity Varies with lithology Based on the Rock Type 
Calculation and thermal 
conductivity of Bekes 
Fm. from (Vass et al., 
2018) 

Sorption Linear isotherm Common assumption for 
initial reactive transport 
modelling 

Kinetic Rate Reaction zero order reaction Assumed for 
simplification of reactive 
processes 

Preconditioner Jacobi Default iterative solver 
preconditioner 

 

4.5. Simulation Setting 

To replicate ATES operations, the stress periods were structured into one month of system 
downtime, followed by five months dedicated to heat storage, another one-month break, and five 
months allocated for heat production, repeating this cycle over a seven-year period. A pair of wells 
was selected where the distance between them is more than 500 meters: one well for hot injection in 
summer and subsequent hot production in winter, and the other well for cold production in summer 
with cold injection during winter. 

4.6. Training Data for Machine Learning 

To ensure the integrity and consistency of our training dataset, we developed an in-house data 
entry module using Streamlit that integrates both manual input and CSV-based uploads. This module 
facilitates the incorporation of critical well parameters—including well ID, name, spatial coordinates, 
porosity, permeability, gamma ray measurements, thickness, distance to the cold well, and initial 
temperature—while also allowing for the efficient addition of temporal temperature data. For the 
temperature data, the module supports file uploads in CSV format, validates the presence of required 
columns (TimeDays, WellType, Row, Col, Temperature), and links the data to the corresponding well 
ID via an interactive selection box (Fig. 5). The system provides real-time previews and feedback, 
ensuring that all data are consistently and accurately stored in the database. 

The training process involves leveraging a SQLite database that consolidates data from two 
tables—one containing well properties and the other recording temperature measurements. First, the 
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data from both sources are merged to form a comprehensive DataFrame, which includes attributes 
such as porosity, permeability, gamma ray, thickness, distance to cold wells, initial temperatures, and 
the time variable, while spatial reference columns (Row, Col) are retained only for reference. After 
cleaning the dataset by removing any rows with missing values, the data is split into training and 
testing subsets. A Random Forest regressor is then trained on the assembled features (excluding the 
spatial reference columns) to predict well temperatures, with performance evaluated through metrics 
including MAE, RMSE, and R². Finally, the trained model is serialized and saved to a predefined 
path, ensuring reproducibility and ease of deployment within our predictive framework. 

 

Figure 5. illustrates the application of the Random Forest algorithm using a radial relational diagram. 

The prediction phase leverages a pre-trained Random Forest model to forecast temperature 
evolution for all available wells over a specified time range. In this stage, users interact with a 
Streamlit-based interface where they define the starting time, ending time, and time step for the 
predictions. The system loads the trained model and, for each well in the database, constructs an 
input DataFrame populated with static parameters such as porosity, permeability, gamma ray, 
thickness, distance to the cold well, and initial temperature, while dynamically varying the time 
parameter. The model then predicts the temperature for each time step, and the results are combined 
into a unified dataset. To facilitate analysis, the predicted curves for individual wells are plotted on 
a single graph—each curve clearly labeled with its corresponding WellID—providing a 
comprehensive visualization of thermal performance over time. The complete repository of the 
scripts is available online; however, the data content is not included (H. Abdulhaq, 2025a). 

4.7. Model Calibration and Validation 
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For model calibration and validation, the hydrogeological simulation was first calibrated against 
historical field data—specifically, reported hydraulic head measurements—to ensure that the 
MODFLOW model accurately reflected the aquifer’s behavior (Anderson et al., 2015). These historical 
observations provided key benchmarks that guided the tuning of parameters related to flow and 
transport processes. Concurrently, the machine learning component was iteratively calibrated using 
simulation outputs as training data. As the simulation yielded more refined thermal performance 
data, continuous retraining of the Random Forest model progressively improved its predictive 
accuracy (Khosravi et al., 2024). This integrated calibration strategy, leveraging both empirical 
historical data and dynamically generated simulation inputs, has enhanced the overall robustness 
and reliability of the modeling framework. 

4.8. Sensitivity Analysis  

The sensitivity analysis of the machine learning model revealed that TimeDays is by far the most 
influential parameter affecting temperature prediction outcomes, with a permutation importance 
score of 1.96, substantially higher than all other features. This result underscores the dominant role 
of temporal evolution in determining thermal behavior within the reservoir, reflecting the 
accumulation and dissipation of heat over successive cycles. Other features—such as Initial 
Temperature (0.034), Thickness (0.029), GammaRay (0.006), and Permeability (0.006)—exhibited 
comparatively minor effects, suggesting that while geological and petrophysical properties 
contribute to system performance, their impact is secondary to the time dimension (Fisher et al., 
2019). Notably, Porosity had no measurable influence, and DistanceToColdWell showed a negligible 
effect (0.00007), indicating that these factors may be less critical under the modeled conditions or 
were inadequately represented in the available dataset. These findings provide insight into which 
parameters should be prioritized for accurate performance prediction and model refinement. 

5. Results 

5.1. Heat Simulation result 

The output of the heat simulation is stored in a UCN file, which encapsulates the final 
temperature distribution computed by the model (Ishikawa et al., 2014). To efficiently leverage this 
output, we developed an in-house Python module designed to load, process, and analyze UCN files 
(Fig 6). This module automatically identifies hot and cold wells and allows users to designate 
observation wells within the simulation setting. Users can load the UCN file and select specific layers 
of interest, while the integrated visualization sub-module generates plots of temperature versus time 
for defined stress periods, providing clear insights into the thermal performance of individual wells. 
Additionally, an animation sub-module enables dynamic playback of temperature evolution by 
allowing adjustable speeds and frame skips, thereby enhancing interpretability. Furthermore, a 
dedicated recovery efficiency sub-module computes the thermal recovery efficiency for any 
simulated wells. The complete suite of module scripts is available online and can be accessed 
independently of the dataset (H. Abdulhaq, 2025c). 
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Figure 6. presents simulation results for a specific time frame, showing the injection of hot fluid through two 
wells. 

In our thermal simulation studies, two sets of candidate results were obtained, both exhibiting 
robust injection performance with maximum temperatures consistently around 94.9°C across cycles 
(Fig. 7). In the first candidate, the break phases—representing reservoir conditions when the system 
strikes—showed a gradual increase in maximum temperatures from 79.67°C up to 84.33°C, with 
thermal recovery efficiency improving from 83.92% to 88.82%. In the second candidate, although the 
initial break phase efficiency was lower at 81.05%, a notable enhancement was observed, with the 
efficiency rising to a maximum of 87.93% over repeated cycles. Key performance metrics for this 
candidate include a ratio of last-to-first efficiency of 1.08, a percent increase of 8.50% from the initial 
break phase, an average efficiency of 85.46%, and a slope of 1.04 per cycle, indicating a steady 
improvement with each cycle. Importantly, while these reservoir-level efficiency improvements are 
significant, the production efficiency during winter remains even higher than these baseline values, 
ensuring superior operational performance. Together, these observations demonstrate that repeated 
cycles of heat injection and reservoir cooling not only stabilize the thermal regime but also enhance 
both the inherent recovery and the actual production efficiency during winter operations. 

 
Figure 7. shows the thermal performance curve of the simulated hot well across repeated seasons. 

5.2. Machine Learning Result: 
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When initiating temperature performance predictions for candidate wells, we generated thermal 
efficiency results for multiple wells, predominantly located outside the originally modeled area. This 
indicates that our predictive approach is effective even beyond the immediate boundaries of our 
hydrogeological model, highlighting the potential for broader applicability (Fig. 8). Analysis of these 
external candidates reveals initial efficiencies ranging between approximately 80% to 84%, with a 
consistent improvement observed through repeated injection and recovery cycles. Specifically, 
efficiencies showed an average of 85.46%, and maximum values reached up to 88.84%. The ratio of 
final-to-initial efficiency averaged around 1.05, corresponding to an overall efficiency improvement 
of up to 8.01%. Furthermore, the observed positive slopes (up to 1.0 per cycle) clearly illustrate that 
efficiency systematically increases over successive cycles. These findings underscore the reliability 
and robustness of our predictive methodology in forecasting thermal performance beyond the 
initially calibrated region, as visualized in Figure 9, which displays a distribution map of each well 
and the corresponding predicted improvement in thermal performance. 

 

 

Figure 8. presents the thermal performance of wells located outside the modelled area. 
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Figure 9. shows the percentage increase in thermal performance for each well based on the prediction results. 

6. Discussion 

6.1. Alignment with Previous Studies and Theoretical Outcomes 

 
Our simulation and machine learning outcomes align closely with prior theoretical and 

empirical findings related to High-Temperature Aquifer Thermal Energy Storage (HT-ATES). 
Previous studies indicate a typical improvement in thermal recovery efficiency with each successive 
injection-production cycle, attributed primarily to residual heat accumulation within the aquifer 
(Collignon et al., 2020; Drijver et al., 2012). Our simulation results reflect similar trends, with initial 
efficiencies around 80-84% gradually increasing to as high as approximately 88%. This progressive 
efficiency improvement closely mirrors published benchmarks from international case studies, which 
typically report HT-ATES efficiencies stabilizing in the range of 60–80% after several operational 
cycles (Collignon et al., 2020; Winterleitner et al., 2018). 

The stability of our modeled temperature curves over multiple years also echoes the theoretical 
predictions, which suggest that a thermal equilibrium or steady state emerges after multiple cycles 
(Tang & Rijnaarts, 2023). However, subtle contrasts exist; for instance, our simulations may reflect 
idealized conditions, potentially omitting complexities such as density-driven convection or 
significant vertical heat migration reported in heterogeneous clastic reservoirs (Winterleitner et al., 
2018). This highlights a limitation where idealized models may yield slightly optimistic efficiency 
and thermal stability predictions compared to more complex real-world scenarios. 

6.2. Key Influencing Parameters 

Our machine learning analysis identified time ('TimeDays') as the most influential parameter on 
temperature and efficiency predictions, surpassing all other geological and operational parameters 
by a substantial margin. Specifically, the permutation importance of time was approximately 1.96, 
whereas other parameters like initial temperature, thickness, gamma ray, and permeability 
demonstrated notably lower impacts (0.034, 0.029, 0.006, and 0.006, respectively). This finding 
emphasizes that temporal factors—specifically, cumulative cycle duration and residual heat 
buildup—predominantly govern thermal performance, consistent with the literature where residual 
thermal energy strongly influences long-term operational outcomes (Drijver et al., 2012). 
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6.3. Strengths and Limitations of Hydrogeological Model Calibration 

Calibrating the hydrogeological model using historical head data provides several advantages, 
chiefly realistic and site-specific insights into subsurface dynamics. However, this method's main 
limitation lies in the necessity to modify boundary conditions to match historical measurements 
adequately, potentially introducing bias or oversimplification. Adjustments made to boundary 
conditions, while essential for aligning simulations with empirical data, might restrict the 
generalizability of the hydrogeological model to conditions significantly different from historical 
scenarios. 

6.4. Enhancing Decision-Making for UTES Site Selection 

Our predictive methodology substantially accelerates the decision-making process for selecting 
potential UTES sites by providing rapid, high-quality predictive outcomes derived from historical 
data and simulations. By transforming abandoned hydrocarbon reservoirs into a data-driven 
analytical framework, our approach reduces evaluation times and increases confidence in site 
assessments. This can significantly streamline site selection workflows, particularly valuable in 
regions with numerous abandoned wells and substantial historical datasets. 

6.5. Implications for Scaling Geothermal Storage Projects 

The successful application of this predictive approach using gamma ray logs to differentiate rock 
types indicates substantial potential for scaling geothermal storage projects, particularly within 
clastic sedimentary basins. Internationally, numerous clastic basins exist with similar 
sedimentological characteristics, making this methodology widely applicable. This capability 
facilitates rapid assessments across varied geographies, promoting efficient, scalable deployment of 
HT-ATES technologies globally. 

6.6. Assumptions and Simplifications 

Key assumptions and simplifications within our modeling framework include idealized 
boundary conditions, homogeneous or simplified geological heterogeneities, and consistent thermal 
properties across the model domain. Such assumptions likely influence the accuracy and predictive 
power of the model, potentially limiting its applicability to real-world scenarios with pronounced 
geological complexity or significantly variable hydrogeological conditions. 

6.7. Uncertainties in Input Data 

A major uncertainty arises from the inherent accuracy and reliability of the initial simulation 
data used for machine learning training. Because our predictive model relies heavily on accurate 
thermal simulations, any errors or oversimplifications in the initial simulations propagate through 
the predictions, potentially affecting reliability. This highlights the critical importance of accurate and 
comprehensive simulation input data. 

6.8. Recommendations and Future Work 

Future studies should focus on enhancing simulation fidelity, incorporating more detailed 
heterogeneity, and conducting diverse scenario sampling to bolster the robustness of the machine 
learning model. Additionally, exploring advanced physics-informed machine learning techniques 
could significantly improve predictive accuracy and generalizability. Extending simulation runs, 
including more diverse geological and operational parameters, and conducting further validation 
with independent field data would further strengthen confidence in our model predictions and their 
applicability to broader contexts. 

7. Conclusion 
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This study set out to advance the design and deployment of high-temperature Aquifer Thermal 
Energy Storage (HT-ATES) in depleted clastic reservoirs through four interlinked research questions. 
First, by coupling high-resolution MODFLOW-MT3DMS heat-transport simulations with an in-
house Python toolkit, we identified the optimal inter-well spacing that minimizes premature thermal 
breakthrough while maximizing cumulative heat-recovery efficiency. Our two candidate well pairs 
consistently achieved peak injection temperatures near 94.9 °C and demonstrated steady efficiency 
gains—up to 8.5 % over repeated cycles—when spaced to balance thermal front propagation and 
lateral heat recharge. 

Second, we quantified how key reservoir properties in Hungarian clastic formations modulate 
this optimal spacing and overall system performance. Sensitivity analysis revealed that porosity and 
permeability variations shift thermal breakthrough timing and adjust peak recovery efficiencies by 
several percentage points, while anisotropy primarily affects the shape of the thermal plume. These 
insights enable tailoring well spacing to site-specific hydraulic and thermal heterogeneities. 

Third, comparison of seasonal operating schedules confirmed that the conventional hot-
storage/winter production cycle yields marginally higher annual energy returns than the inverse 
(cold-production/winter storage), owing to more effective residual-heat carryover. Specifically, 
winter production efficiencies exceeded baseline recovery values, underscoring the value of aligning 
storage and demand cycles to ambient temperature differentials. 

Finally, our Random Forest surrogate models—trained on several coupled simulations—proved 
capable of predicting thermal recovery efficiency across a broad inventory of candidate wells outside 
the original calibration domain. Surrogate predictions achieved average accuracies within 2–3 % of 
full numerical simulations, with efficiency improvements up to 8 % over multiple cycles. This 
machine-learning workflow accelerates design optimization by an order of magnitude, enabling 
rapid screening of sites and operational schedules. 

Collectively, these findings deliver a data-driven framework for HT-ATES implementation in 
depleted clastic reservoirs: mechanistic insights into spacing and scheduling trade-offs, parameter-
specific performance adjustments, and a scalable surrogate modeling approach for design 
optimization. Future work should extend this framework by incorporating more complex 
heterogeneities, exploring physics-informed learning techniques, and validating predictions against 
field pilot data to further refine site-selection criteria and operational guidelines. 

Acknowledgments: I acknowledge the invaluable data contribution from the MOL database, which 
has been essential for this research. I also thank all co-authors for their significant contributions and 
collaborative efforts throughout this project. 

References 

1. Abdulhaq, H. (2025a). Machine Learning Model for Predicting Thermal Performance of High-Temperature 
Aquifer Thermal Energy Storage (HT-ATES) in Depleted Clastic Reservoirs. Zenodo. 
https://doi.org/10.5281/ZENODO.15294846 

2. Abdulhaq, H. (2025b). Predicting Thermal Performance of Aquifer Thermal Energy Storage Systems in 
Depleted Clastic Hydrocarbon Reservoir via Machine Learning: Case Study from Hungary. The 16th 
European Geothermal PhD Days Book of Abstracts. https://www.egpd2025.com 

3. Abdulhaq, H. (2025c). Thermal Performance Analysis and Visualization App for UCN-Based Heat Simulations. 
Zenodo. https://doi.org/10.5281/ZENODO.15294958 

4. Abdulhaq, H. A., Geiger, J., Vass, I., Tóth, T. M., Medgyes, T., & Szanyi, J. (2024). Transforming 
Abandoned Hydrocarbon Fields into Heat Storage Solutions: A Hungarian Case Study Using Enhanced 
Multi-Criteria Decision Analysis–Analytic Hierarchy Process and Geostatistical Methods. Energies, 
17(16), Article 16. https://doi.org/10.3390/en17163954 

5. Akindipe, D., McTigue, J., Dobson, P., Atkinson, T., Witter, E., Kumar, R., Sonnenthal, E., Umbro, M., 
Lederhos, J., Adams, D., & Zhu, G. (2024). Techno-Economic Analysis and Market Potential of Geological 
Thermal Energy Storage (GeoTES) Charged With Solar Thermal and Heat Pumps (NREL/TP--5700-91225, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2025 doi:10.20944/preprints202504.2474.v1

https://doi.org/10.20944/preprints202504.2474.v1


 20 of 23 

 

2474842, MainId:93003; p. NREL/TP--5700-91225, 2474842, MainId:93003). 
https://doi.org/10.2172/2474842 

6. Anderson, M. P., Woessner, W. W., & Hunt, R. J. (Eds.). (2015). Front Matter. In Applied Groundwater 
Modeling (Second Edition) (p. iii). Academic Press. https://doi.org/10.1016/B978-0-08-091638-5.00018-3 

7. Anttila, A. (2021). Techno-economic comparison of thermal energy storage solutions for decarbonizing heat in 
Espoo by 2025. https://aaltodoc.aalto.fi/server/api/core/bitstreams/a65b9c93-33d1-4975-8a97-
af3fdf3d39b1/content 

8. Bálint, A., & Szanyi, J. (2015). A half century of reservoir property changes in the Szentes geothermal field, 
Hungary. https://doi.org/10.1556/24.58.2015.1-2.2 

9. Bloemendal, M., & Hartog, N. (2018). Analysis of the impact of storage conditions on the thermal 
recovery efficiency of low-temperature ATES systems. Geothermics, 71, 306–319. 
https://doi.org/10.1016/j.geothermics.2017.10.009 

10. Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 
https://doi.org/10.1023/A:1010933404324 

11. Collignon, M., Klemetsdal, Ø. S., Møyner, O., Alcanié, M., Rinaldi, A. P., Nilsen, H., & Lupi, M. (2020). 
Evaluating thermal losses and storage capacity in high-temperature aquifer thermal energy storage 
(HT-ATES) systems with well operating limits: Insights from a study-case in the Greater Geneva Basin, 
Switzerland. Geothermics, 85, 101773. https://doi.org/10.1016/j.geothermics.2019.101773 

12. Dincer, I., & Rosen, M. A. (2011). Thermal energy storage: Systems and applications (2. ed). Wiley. 
13. Drijver, B., Aarssen, M. van, & Zwart, B. de. (2012). High-temperature aquifer thermal energy storage (HT-

ATES): Sustainable and multi-usable. The 12th International Conference on Energy Storage. 
14. Duggal, R., Rayudu, R., Hinkley, J., Burnell, J., Wieland, C., & Keim, M. (2022). A comprehensive review 

of energy extraction from low-temperature geothermal resources in hydrocarbon fields. Renewable and 
Sustainable Energy Reviews, 154, 111865. https://doi.org/10.1016/j.rser.2021.111865 

15. Duplyakin, D., Beckers, K. F., Siler, D. L., Martin, M. J., & Johnston, H. E. (2022). Modeling Subsurface 
Performance of a Geothermal Reservoir Using Machine Learning. Energies, 15(3), Article 3. 
https://doi.org/10.3390/en15030967 

16. Fisher, A., Rudin, C., & Dominici, F. (2019). All Models are Wrong, but Many are Useful: Learning a 
Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously (arXiv:1801.01489). 
arXiv. https://doi.org/10.48550/arXiv.1801.01489 

17. Fleuchaus, P., Schüppler, S., Bloemendal, M., Guglielmetti, L., Opel, O., & Blum, P. (2020). Risk analysis 
of High-Temperature Aquifer Thermal Energy Storage (HT-ATES). Renewable and Sustainable Energy 
Reviews, 133, 110153. https://doi.org/10.1016/j.rser.2020.110153 

18. Gayayev, I. (2023). Conversion of Abandoned Hydrocarbon Structures into Geothermal Wells for Sustainable 
Energy Production in Sedimentary Basins [Laurea, Politecnico di Torino]. 
https://webthesis.biblio.polito.it/29039/ 

19. Gelhar, L. W., Welty, C., & Rehfeldt, K. R. (1992). A Critical Review of Data on Field-Scale Dispersion 
in Aquifers. Water Resources Research, 28(7), 1955–1974. https://doi.org/10.1029/92WR00607 

20. Green, S., McLennan, J., Panja, P., Kitz, K., Allis, R., & Moore, J. (2021). Geothermal battery energy 
storage. Renewable Energy, 164, 777–790. https://doi.org/10.1016/j.renene.2020.09.083 

21. Haas, J. (Ed.). (2013). Geology of Hungary. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-
21910-8 

22. Harbaugh, A. W. (2005). MODFLOW-2005: The U.S. Geological Survey modular ground-water model-
-the ground-water flow process. Techniques and Methods, Article 6-A16. https://doi.org/10.3133/tm6A16 

23. HEATSTORE. (2025). https://www.heatstore.eu/national-project-netherlands.html 
24. Holstenkamp, L., Meisel, M., Neidig, P., Opel, O., Steffahn, J., Strodel, N., Lauer, J. J., Vogel, M., 

Degenhart, H., Michalzik, D., Schomerus, T., Schönebeck, J., & Növig, T. (2017). Interdisciplinary 
Review of Medium-deep Aquifer Thermal Energy Storage in North Germany. Energy Procedia, 135, 327–
336. https://doi.org/10.1016/j.egypro.2017.09.524 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2025 doi:10.20944/preprints202504.2474.v1

https://doi.org/10.20944/preprints202504.2474.v1


 21 of 23 

 

25. Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A., Nádor, A., Koroknai, B., Pap, N., Tóth, T., & 
Wórum, G. (2015). Evolution of the Pannonian basin and its geothermal resources. Geothermics, 53, 328–
352. https://doi.org/10.1016/j.geothermics.2014.07.009 

26. IEA. (2017). Energy Technology Perspectives 2017 – Analysis. IEA. https://www.iea.org/reports/energy-
technology-perspectives-2017 

27. IPCC. (2021). Climate change widespread, rapid, and intensifying – IPCC — IPCC. 
https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ 

28. Ishikawa, T., Morita, A., Fukushima, T., & Ono, H. (2014). Three-Dimensional Cerebral Aneurysm 
Models for Surgical Simulation and Education—Development of Aneurysm Models with Perforating 
Arteries and for Application of Fenestrated Clips. Open Journal of Modern Neurosurgery, 04(02), 59–63. 
https://doi.org/10.4236/ojmn.2014.42013 

29. Jin, W., Atkinson, T. A., Doughty, C., Neupane, G., Spycher, N., McLing, T. L., Dobson, P. F., Smith, R., 
& Podgorney, R. (2022). Machine-learning-assisted high-temperature reservoir thermal energy storage 
optimization. Renewable Energy, 197, 384–397. https://doi.org/10.1016/j.renene.2022.07.118 

30. Juhász, G. (1991). Lithostratigraphical and sedimentological framework of the Pannonian (sl) 
sedimentary sequence in the Hungarian Plain (Alföld), Eastern Hungary. Acta Geologica Hungarica, 
34(1–2), 53–72. 

31. Kang, M., Mauzerall, D. L., Ma, D. Z., & Celia, M. A. (2019). Reducing methane emissions from 
abandoned oil and gas wells: Strategies and costs. Energy Policy, 132, 594–601. 
https://doi.org/10.1016/j.enpol.2019.05.045 

32. Kastner, O., Norden, B., Klapperer, S., Park, S., Urpi, L., Cacace, M., & Blöcher, G. (2017). Thermal solar 
energy storage in Jurassic aquifers in Northeastern Germany: A simulation study. Renewable Energy, 
104, 290–306. https://doi.org/10.1016/j.renene.2016.12.003 

33. Khosravi, R., Simjoo, M., & Chahardowli, M. (2024). A new insight into pilot-scale development of low-
salinity polymer flood using an intelligent-based proxy model coupled with particle swarm 
optimization. Scientific Reports, 14(1), 29000. https://doi.org/10.1038/s41598-024-78210-y 

34. Korim K. (1991). A szentesi hévízmező feltárásának és termelésének három évtizedes története (Three 
decades of research and utilization in the Szentes Geothermal Field). Bányászati és Kohászati Lapok, 
124(6), 179–184. 

35. Kovács, A., & Teleki, P. G. (1994). History of Oil and Natural Gas Production in the Békés Basin. In P. 
G. Teleki, R. E. Mattick, & J. Kókai (Eds.), Basin Analysis in Petroleum Exploration (pp. 237–256). Springer 
Netherlands. https://doi.org/10.1007/978-94-011-0954-3_12 

36. Kun É., Zilahi-Sebess L., & Szanyi J. (2022). Battonya–Pusztaföldvári-hát térségének nagy entalpiájú 
geotermikusenergia-vagyona (I. rész): Hidrodinamikai és hőtranszportmodell. Földtani Közlöny, 152(1), 
53–75. https://doi.org/10.23928/foldt.kozl.2022.152.1.53 

37. Lee, K. S. (2013). Underground thermal energy storage. Springer. 
38. Lenkey, L., Mihályka, J., & Paróczi, P. (2021). Review of geothermal conditions of Hungary. Földtani 

Közlöny, 151(1), 65. https://doi.org/10.23928/foldt.kozl.2021.151.1.65 
39. Li, G. (2016). Sensible heat thermal storage energy and exergy performance evaluations. Renewable and 

Sustainable Energy Reviews, 53, 897–923. https://doi.org/10.1016/j.rser.2015.09.006 
40. Liu, A. (刘奥迪), Li, J. (李靖), Bi, J. (毕剑飞), Chen, Z. (陈掌星), Wang, Y. (王岩), Lu, C. (卢春昊), Jin, Y. (

金衍), & Lin, B. (林伯韬). (2024). A novel reservoir simulation model based on physics informed neural 
networks. Physics of Fluids, 36(11), 116617. https://doi.org/10.1063/5.0239376 

41. Mádl-Szőnyi, J., & Tóth, J. (2009). A hydrogeological type section for the Duna-Tisza Interfluve, 
Hungary. Hydrogeology Journal, 17, 961–980. https://doi.org/10.1007/s10040-008-0421-z 

42. Matos, C. R., Carneiro, J. F., & Silva, P. P. (2019). Overview of Large-Scale Underground Energy Storage 
Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. Journal of 
Energy Storage, 21, 241–258. https://doi.org/10.1016/j.est.2018.11.023 

43. Menear, K., Duplyakin, D., Oliver, M. C., Shah, M., Martin, M. J., Martinek, J., Nithyanandam, K., & 
Ma, Z. (2023). One System, Many Models: Designing a Surrogate Model for Sulfur Thermal Energy 
Storage: Preprint. Renewable Energy. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2025 doi:10.20944/preprints202504.2474.v1

https://doi.org/10.20944/preprints202504.2474.v1


 22 of 23 

 

44. ModelMuse: A Graphical User Interface for Groundwater Models | U.S. Geological Survey. (2024). 
https://www.usgs.gov/software/modelmuse-a-graphical-user-interface-groundwater-models 

45. Nádor, A., Kujbus, A., & Tóth, A. (2022). Geothermal Energy Use, Country Update for Hungary. 
European Geothermal Congress 2022, 1–13. 

46. Oerlemans, P., Drijver, B., Koenen, M., Koornneef, J., Dinkelman, D., & Godschalk, B. (2022). First field 
results on the technical risks and effectiveness of mitigation measures for the full scale HT-ATES demonstration 
project in Middenmeer. 

47. Osundare, O., Teodoriu, C., Falcone, G., & Ichim, A. (2018). Estimation of Plugging and Abandonment 
Costs Based on Different EU Regulations with Application to Geothermal Wells. 

48. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, 
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., & Cournapeau, D. (2011). Scikit-learn: Machine 
Learning in Python. MACHINE LEARNING IN PYTHON. 

49. Pellegrini, M., Bloemendal, M., Hoekstra, N., Spaak, G., Andreu Gallego, A., Rodriguez Comins, J., 
Grotenhuis, T., Picone, S., Murrell, A. J., & Steeman, H. J. (2019). Low carbon heating and cooling by 
combining various technologies with Aquifer Thermal Energy Storage. Science of The Total Environment, 
665, 1–10. https://doi.org/10.1016/j.scitotenv.2019.01.135 

50. Qin, J., Song, J., Tang, Y., Rui, Z., Wang, Y., & He, Y. (2023). Well applicability assessment based on 
fuzzy theory for CO2 sequestration in depleted gas reservoirs. Renewable Energy, 206, 239–250. 
https://doi.org/10.1016/j.renene.2023.01.090 

51. Raimi, D., Krupnick, A. J., Shah, J.-S., & Thompson, A. (2021). Decommissioning Orphaned and 
Abandoned Oil and Gas Wells: New Estimates and Cost Drivers. Environmental Science & Technology, 
55(15), 10224–10230. https://doi.org/10.1021/acs.est.1c02234 

52. REN21. (2019). RENEWABLES 2019 GLOBAL STATUS REPORT. https://www.ren21.net/gsr-2019 
53. Rohmer, J., Armandine Les Landes, A., Loschetter, A., & Maragna, C. (2023). Fast prediction of aquifer 

thermal energy storage: A multicyclic metamodelling procedure. Computational Geosciences, 27(2), 223–
243. https://doi.org/10.1007/s10596-023-10192-8 

54. Sommer, W., Valstar, J., van Gaans, P., Grotenhuis, T., & Rijnaarts, H. (2013). The impact of aquifer 
heterogeneity on the performance of aquifer thermal energy storage. Water Resources Research, 49(12), 
8128–8138. https://doi.org/10.1002/2013WR013677 

55. Stricker, K., Grimmer, J. C., Egert, R., Bremer, J., Korzani, M. G., Schill, E., & Kohl, T. (2020). The 
Potential of Depleted Oil Reservoirs for High-Temperature Storage Systems. Energies, 13(24), Article 24. 
https://doi.org/10.3390/en13246510 

56. Survey, U. S. G. (2023). Mineral commodity summaries 2023. https://doi.org/10.3133/mcs2023 
57. Szanyi, J. D., Kovács, B., & Abdulhaq, H. A. (2025). Harnessing geothermal energy in Hungary. 

Geological Society, London, Special Publications, 555(1), SP555-2024–22. https://doi.org/10.1144/SP555-
2024-22 

58. Szanyi, J., Kovacs, B., & Scharek, P. (2009). Geothermal energy in Hungary: Potentials and barriers. Eur. 
Geol., 27, 15–19. 

59. Szanyi, J., Medgyes, T., Kóbor, B., & Pál-Molnár, E. (2015). Technologies of injection into sandstone 
reservoirs: Best practices, case studies. GeoLitera; Institute of Geosciences, University of Szeged. 
https://publicatio.bibl.u-szeged.hu/13471/ 

60. Tang, D. W. S., & Rijnaarts, H. H. M. (2023). Dimensionless Thermal Efficiency Analysis for Aquifer 
Thermal Energy Storage. Water Resources Research, 59(11), e2023WR035797. 
https://doi.org/10.1029/2023WR035797 

61. Topór, T., Słota-Valim, M., & Kudrewicz, R. (2023). Assessing the Geothermal Potential of Selected 
Depleted Oil and Gas Reservoirs Based on Geological Modeling and Machine Learning Tools. Energies, 
16(13), Article 13. https://doi.org/10.3390/en16135211 

62. Tóth, J., & Almási, I. (2001). Interpretation of observed fluid potential patterns in a deep sedimentary 
basin under tectonic compression: Hungarian Great Plain, Pannonian Basin. Geofluids, 1(1), 11–36. 
https://doi.org/10.1046/j.1468-8123.2001.11004.x 

63. USGS. (2022). Techniques and Methods (Techniques and Methods) [Techniques and Methods]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2025 doi:10.20944/preprints202504.2474.v1

https://doi.org/10.20944/preprints202504.2474.v1


 23 of 23 

 

64. Van Der Roest, E., Beernink, S., Hartog, N., Van Der Hoek, J. P., & Bloemendal, M. (2021). Towards 
Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface 
Seasonal Heat Storage. Energies, 14(23), 7958. https://doi.org/10.3390/en14237958 

65. Varga, A., Bozsó, G., Garaguly, I., Raucsik, B., Bencsik, A., & Kóbor, B. (2019). Cements, Waters, and 
Scales: An Integrated Study of the Szeged Geothermal Systems (SE Hungary) to Characterize Natural 
Environmental Conditions of the Thermal Aquifer. Geofluids, 2019, 1–21. 
https://doi.org/10.1155/2019/4863814 

66. Vass, I. (2025). Well abandonment cost estimates for Hungary (personal communication). 
67. Vass, I., Tóth, T. M., Szanyi, J., & Kovács, B. (2018). Hybrid numerical modelling of fluid and heat 

transport between the overpressured and gravitational flow systems of the Pannonian Basin. 
Geothermics, 72, 268–276. https://doi.org/10.1016/j.geothermics.2017.11.013 

68. WEF. (2021). 5 green energy milestones from around the world. World Economic Forum. 
https://www.weforum.org/agenda/2021/04/renewables-record-capacity-solar-wind-nuclear/ 

69. Winterleitner, G., Schütz, F., Wenzlaff, C., & Huenges, E. (2018). The Impact of Reservoir 
Heterogeneities on High-Temperature Aquifer Thermal Energy Storage Systems. A Case Study from 
Northern Oman. Geothermics, 74, 150–162. https://doi.org/10.1016/j.geothermics.2018.02.005 

70. World Energy Outlook 2021 – Analysis. (2021). IEA. https://www.iea.org/reports/world-energy-outlook-
2021 

71. Zhu, S., Shi, X., Yang, C., Bai, W., Wei, X., Yang, K., Li, P., Li, H., Li, Y., & Wang, G. (2024). Site selection 
evaluation for salt cavern hydrogen storage in China. Renewable Energy, 120143. 
https://doi.org/10.1016/j.renene.2024.120143 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2025 doi:10.20944/preprints202504.2474.v1

https://doi.org/10.20944/preprints202504.2474.v1

