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Affiliation 1; e‐mail@e‐mail.com 

Abstract: The evaluation of machine unlearning has become  increasingly  significant as machine 

learning  systems  face  growing demands  for privacy,  security,  and  regulatory  compliance. This 

paper focuses on categorizing and analyzing evaluation metrics for machine unlearning, essential 

for assessing the success of unlearning processes. We divide the metrics into three key dimensions: 

unlearning  effectiveness,  unlearning  efficiency,  and  model  utility.  Unlearning  effectiveness 

examines  the degree  to which data  is  removed  from  the model, utilizing methods  such as data 

removal  completeness, privacy  leakage detection, and perturbation analysis  to  ensure  thorough 

data erasure. Unlearning efficiency considers metrics like time to unlearn, computational cost, and 

scalability, which are crucial for maintaining system performance in real‐time environments. Model 

utility metrics, including accuracy retention, robustness, and fairness, ensure that unlearning does 

not  compromise  the model’s  predictive  capabilities.  Through  this  categorization, we  present  a 

comprehensive  framework  for  evaluating  machine  unlearning,  providing  a  foundation  for 

developing unlearning techniques that balance privacy, performance, and regulatory needs across 

diverse industries, particularly finance. 

Keywords: machine unlearning; privacy; finance; graph neural network 

 

1. Introduction 

Machine unlearning has emerged as a critical area of research, addressing the need to remove 

specific data points or entire datasets from trained models without requiring retraining from scratch. 

With growing concerns over data privacy, such as those driven by regulations like the General Data 

Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA), unlearning techniques 

provide a solution for erasing data in compliance with legal and ethical mandates. However, simply 

removing  data  is  insufficient without  a  robust  evaluation  framework  to measure  the  success  of 

unlearning. This paper  categorizes  and discusses  the  evaluation metrics  for machine unlearning 

under three key dimensions: unlearning effectiveness, unlearning efficiency, and model utility. By 

exploring these aspects, we aim to define a comprehensive methodology for evaluating unlearned 

methods and demonstrate their importance with real‐world applications. 

2. Literature Review 

[1] and [2] has provided a summary of the most relevant research on federated unlearning. [3] 

has proved that GNN is very successful in representing complex relationships in machine learning. 

When GNN  framework  is  combined with  treasury  [4]  and  crypto  trading  [5],  it  becomes  very 

powerful. There are many successful academic and commercial models for machine unlearning. [6] 

[7]  [8] use unique methods called PROJECTOR and GRAPHEDITOR.  In PROJECTOR  [6],  it uses 

projection  techniques  to  remove  specific  nodes,  ensuring  no  trace  in  the model  parameters.  In 

GRAPHEDITOR  [7],  it  manages  dynamic  graphs  and  enables  node/edge  deletion  and  feature 

updates. The next major categories is the guaranteeing certified unlearning. The most famous is the 

CEU  framework  [9]  [10], which  introduces a  single‐step update methodology  for  the  removal of 

specific edges [1].   

[2] and [1] summarize approximate unlearning into two classes: data‐driven approximation and 

model‐driven approximation. Both approaches aim to remove the influence of specific data points 
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from machine learning models, but they differ in their methodologies and the specific components 

of the learning system they target.   

While machine unlearning has been widely studied with various models, metric  to evaluate 

machine unlearning has rarely been discussed. [11], [12] and [13] uses relearn time as the main metric 

to evaluate the unlearning effectiveness. The re‐learn time is the number of epochs required for the 

unlearned model to regain the same accuracy as before. Most other literature indicates that using the 

re‐learn time solely based on reaching or surpassing the original accuracy would be misleading.   

3. Unlearning Effectiveness 

Unlearning  effectiveness measures  how well  the model  has  forgotten  the  target  data.  The 

ultimate goal is for the model to behave as if the unlearned data never existed in its training process. 

Several  metrics  have  been  proposed  to  assess  unlearning  effectiveness,  each  focusing  on  the 

completeness and integrity of the unlearning process. Below, we explore the main metrics in detail. 

3.1. Data Removal Completeness 

Data removal completeness evaluates the degree to which the impact of the unlearned data has 

been eradicated from the model. This can be quantitatively assessed using influence functions, which 

help  in  understanding  how  much  a  particular  data  point  affects  the  modelʹs  predictions.  [14] 

developed influence functions to estimate the importance of a training example in determining the 

modelʹs output. This technique can be adapted for unlearning, wherein the goal is to ensure that the 

influence of unlearned data is diminished or eliminated. 

Another common method is to test the modelʹs predictions on the unlearned data points after 

the unlearning process. If the model behaves similarly to how it would if it had never encountered 

those data points, the unlearning can be considered successful. For example, if a model trained on a 

medical dataset is required to forget sensitive patient data, testing it on those records should show 

no trace of their previous influence on predictions. 

3.2. Privacy Leakage 

Privacy leakage refers to how much residual information about the unlearned data can still be 

extracted  from  the model. Even  after unlearning,  there  is  a possibility  that  sensitive  information 

remains  embedded  in  the modelʹs weights  or  parameters,  a  phenomenon  that  poses  significant 

privacy  risks. Membership  inference  attacks  (Shokri  et  al.,  2017)  are  a useful  tool  for  evaluating 

privacy  leakage. These  attacks  try  to  infer whether  specific data points were part of  the modelʹs 

training set by observing the modelʹs outputs on these points. A well‐unlearned model should make 

it impossible for attackers to distinguish whether the data point was ever in the training set. 

Membership inference is particularly important in scenarios like social media platforms, where 

users might request the deletion of personal data. A system that poorly unlearns data could still leak 

private user information through queries, thus violating user privacy despite apparent compliance 

with deletion requests. 

3.3. Influence Reduction 

A more fine‐grained measure of unlearning effectiveness is influencing reduction. This metric 

evaluates  the extent  to which  the gradients associated with  the unlearned data points have been 

neutralized. Researchers often use gradient‐based methods to calculate the contribution of each data 

point  to  the  modelʹs  parameter  updates.  By  comparing  the  gradient  profiles  before  and  after 

unlearning, practitioners can determine whether the data has been fully neutralized from the model’s 

learning trajectory. 

3.4. Perturbation Analysis 

Perturbation analysis offers another perspective on unlearning effectiveness. In this approach, 

small perturbations are introduced to the unlearned data, and the model’s response is examined. If 
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the model’s predictions shift significantly in response to minor changes, it indicates that the data still 

exerts influence on the model. This can be especially relevant in machine learning models used for 

high‐stakes decision‐making, such as credit scoring models, where it is vital that the removed data 

has no lingering effect on future predictions. 

The key idea is to monitor how sensitive the modelʹs predictions are to these minor changes. If 

the model still reacts significantly to the perturbed data,  it indicates that the original data has not 

been  fully  removed  from  the model’s memory. For example,  if a minor change  in  the customer’s 

income leads to a noticeable shift in the predicted credit score, the model may still retain residual 

knowledge of the forgotten data. In a successful unlearning process, the model should show minimal 

or no changes in predictions when confronted with such perturbations, implying that it has genuinely 

forgotten the data. This technique is useful for high‐stakes applications, like healthcare or finance, 

where  lingering  effects  of  sensitive  data  could  lead  to  privacy  violations  or  biased  predictions, 

undermining both regulatory compliance and ethical standards. 

While perturbation analysis has been broadly discussed in machine learning contexts, specific 

documented examples of  its use  in the  financial  industry  to evaluate machine unlearning are still 

emerging. However,  the concept can be  readily applied  to  financial models  that  rely on sensitive 

personal or  transactional data. A relevant hypothetical example could  involve a machine  learning 

model used in credit scoring or fraud detection. 

Consider a financial institution that uses a machine learning model to assess creditworthiness 

by  analyzing  customer data,  such  as  income, debt  levels,  and  transaction  history.  If  a  customer 

requests that their data be removed, perhaps due to GDPR compliance, the model needs to undergo 

unlearning. In such a case, perturbation analysis could be used to verify whether the customer’s data 

has been fully unlearned. 

Let’s say a credit scoring model uses features like income, loan history, and payment behavior 

to predict a credit score. After a customer requests data removal, perturbation analysis would involve 

making  small  changes  to  the  customer’s  financial data,  such  as  adjusting  their  income by  a  few 

percentage points or altering transaction patterns slightly. The modelʹs credit score predictions are 

then analyzed to see if these small perturbations result in significant shifts in the score. 

If, after unlearning, the model’s predictions are still sensitive to these minor adjustments in the 

customer’s data, it indicates that the unlearning process was incomplete. For instance, if increasing 

the income of the removed customer by 5% still changes the predicted credit score significantly, it 

means the model has retained some knowledge of that individual’s profile. Conversely, if the model 

shows no significant response to these changes, it suggests that the data has been properly forgotten. 

Similarly,  in  fraud  detection,  financial models  analyze  transaction  data  to  identify  unusual 

patterns  that  may  indicate  fraudulent  activities.  After  unlearning  the  transaction  history  of  a 

particular customer, perturbation analysis can be applied by making slight changes to the removed 

transaction records (e.g., changing the transaction amount or time) and checking  if the model still 

flags  them  as  fraud  or  non‐fraud.  If  the  model’s  predictions  remain  unchanged  despite  the 

perturbations, it suggests the customer’s data has been successfully unlearned. 

While  documented  uses  of  perturbation  analysis  for  machine  unlearning  in  the  financial 

industry are still developing,  the  technique  is gaining relevance as data privacy  laws,  like GDPR, 

necessitate  secure  and  verifiable  data  removal.  Financial  institutions  could  increasingly  employ 

perturbation analysis in unlearning scenarios to ensure compliance with data protection regulations 

and to maintain customer trust by guaranteeing that sensitive financial data is genuinely forgotten 

from their models. 

4. Unlearning Efficiency 

While ensuring that the data is forgotten is paramount, the efficiency of the unlearning process 

is equally important. In many real‐world applications, models are frequently updated, and retraining 

from scratch is computationally prohibitive. Therefore, metrics that measure the resource efficiency 

of unlearning  techniques are crucial.  [15],  [16],  [17]  [18] and  [19] use unlearn speed  to access  the 
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unlearning efficiency. It measures the time difference between unlearning and naïve restraining. The 

larger the difference, the fast the system can restore its privacy, security and utility.   

Time to unlearn is the most straightforward efficiency metric and measures the duration it takes 

to complete the unlearning process. In practice, this metric is especially relevant in large‐scale systems 

where  unlearning  requests  may  be  frequent.  In  a  financial  services  application,  for  instance, 

regulators might require firms to remove sensitive data from models that drive algorithmic trading. 

If  the  unlearning  process  takes  too  long,  it  could  lead  to  delays  in  compliance  and  significant 

operational risks. You can find examples of using time to unlearn at [11], [12] and [13]. 

Methods like approximate unlearning [14] and federated unlearning aim to reduce this time by 

only modifying parts of the model directly related to the unlearned data rather than retraining the 

entire model from scratch. The more efficient the unlearning, the better suited the approach is for 

practical, large‐scale applications. 

Beyond time, computational cost refers to the hardware and energy resources consumed during 

unlearning.  High‐dimensional  models,  especially  deep  neural  networks,  require  considerable 

computational power, and reducing this cost is critical in environments where models are continually 

updated. Federated learning scenarios, for example, demand low‐latency unlearning processes that 

can  run  efficiently on decentralized devices with  limited  computational  resources.  In  such  cases, 

unlearning should incur minimal computational overhead, making lightweight methods like ʺlocal 

unlearningʺ in federated systems highly desirable. To quantify computational cost, researchers track 

metrics such as memory usage, energy consumption, and processing time on GPUs or CPUs. These 

metrics are especially relevant  for  large‐scale, cloud‐based models, where cost‐efficient operations 

are essential for both economic and environmental sustainability. 

Scalability measures how well  the unlearning process adapts  to growing amounts of data or 

increasingly complex models. Efficient unlearning should maintain performance even as the model 

scales up in size. For instance, an image recognition model used in self‐driving cars might need to 

unlearn  specific objects or  features.  If  the unlearning  technique  cannot handle  large‐scale model 

updates  without  a  significant  drop  in  performance,  it  becomes  impractical  for  real‐world  use. 

Techniques  like machine  learning pruning  and  efficient gradient updates  are often  employed  to 

maintain scalability while minimizing computational costs. 

5. Model Utility 

Once data has been unlearned,  itʹs  critical  to  ensure  that  the  remaining model  continues  to 

perform effectively. A key challenge in machine unlearning is maintaining the modelʹs utility, i.e. the 

ability to generate accurate predictions on unseen data without the unlearned data points. Several 

metrics help in assessing model utility post‐unlearning. Research in [20], [21] and [15] emphasize that 

performance of the unlearning model should be consistent before and after the process. By removing 

data from the trained model may deteriorate its performance, which should be avoided. Therefore, it 

is motivated to evaluate the utility of the unlearned model to ensure it is functionable after applying 

model. 

Accuracy retention refers to how much of the model’s original predictive accuracy is preserved 

after  the unlearning process.  Ideally,  the unlearning procedure should affect only  the predictions 

related  to  the unlearned data while  leaving  the model’s overall accuracy  intact. For example,  if a 

financial forecasting model unlearns data from a certain time period, the model should still accurately 

predict market  trends  from  other  periods. Various  approaches,  such  as  selective  retraining  and 

incremental  learning,  have  been  proposed  to  ensure minimal  loss  in model  accuracy.  Selective 

retraining focuses only on the parts of the model influenced by the unlearned data, thus preserving 

the modelʹs knowledge of the remaining dataset. 

Robustness  refers  to  the model’s  stability  and  reliability  after  the unlearning process.  If  the 

model becomes too sensitive or brittle following data removal, it indicates that the unlearning process 

has compromised its generalization capabilities. One way to assess robustness is through adversarial 

testing, where  the model  is exposed  to slightly perturbed  inputs  to check whether  its predictions 
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remain consistent. A robust model should be able  to maintain performance across different  input 

variations, even after unlearning. 

Fairness is another critical metric in evaluating model utility post‐unlearning. The removal of 

data can introduce unintended biases or exacerbate existing ones. This is particularly important in 

applications  where  fairness  is  paramount,  such  as  hiring  algorithms  or  lending  decisions.  For 

instance,  if  a  machine  learning  model  used  for  job  recruitment  unlearns  data  from  a  specific 

demographic group, the remaining model should not display biased outcomes against that group. 

Techniques like fairness‐aware unlearning focus on ensuring that unlearning does not compromise 

the modelʹs  fairness, making  it crucial  for applications where equitable outcomes are a  legal and 

ethical necessity. 

Machine  learning models are  frequently updated with new data. Consistency across updates 

measures how smoothly the model integrates new data without significant shifts in behavior after 

unlearning. For example, in recommender systems, unlearning user preferences for specific products 

should not cause the system to lose its ability to make relevant recommendations for other users. A 

consistent  model  maintains  its  behavior  across  various  updates  and  unlearning  events,  thus 

preserving its overall reliability. 

6. Conclusions 

This paper presents a structured framework for evaluating machine unlearning through three 

distinct  categories  of metrics:  unlearning  effectiveness,  efficiency,  and model  utility.  Evaluation 

metrics play a critical  role  in determining  the success of machine unlearning  techniques, and our 

framework emphasizes their importance in ensuring that the unlearning process  is both thorough 

and efficient, without compromising the performance of the model. Unlearning effectiveness metrics, 

such as data removal completeness, privacy leakage detection, and perturbation analysis, help verify 

that the data has been genuinely erased from the model. Metrics for unlearning efficiency, including 

time to unlearn and computational cost, ensure that the process is computationally feasible, even in 

large‐scale, dynamic environments like financial markets. Finally, model utility metrics assess how 

well the model maintains its accuracy, robustness, and fairness after unlearning, ensuring that the 

removal of data does not degrade the modelʹs overall performance. 

By focusing on these evaluation metrics, this paper highlights their central role in developing 

and refining unlearning algorithms, especially in sensitive applications where privacy is paramount. 

In the financial industry, for instance, effective evaluation metrics can help ensure that credit scoring 

models  or  fraud  detection  systems  can  forget  specific  user  data  while  continuing  to  function 

accurately and efficiently. As machine unlearning techniques evolve, the metrics presented here will 

guide the development of future algorithms that not only meet regulatory and privacy demands but 

also preserve the utility and efficiency of machine learning models. Future research should continue 

to  refine  these  metrics,  addressing  trade‐offs  between  unlearning  effectiveness  and  efficiency, 

particularly in more complex, decentralized, or federated learning environments. 
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