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Highlights: 

• Advancements in computational methods in in silico drug discovery have become a viable option. 

• Artificial intelligence and machine learning improve in silico drug discovery by swiftly analyzing data, 

predicting interactions, and optimizing candidates with precision. 

• The recent technological evolution from 1980 to 2024 of in silico methods is discussed. 

• We observed rising trends from big data to chemical space. 

• An executive summary is structured according to the most cited articles. 

• Milestones are assessed based on their respective timelines. 

Abstract: Background: The present review summarizes the state-of-the-art of in silico methods and techniques 

that are the most useful in drug discovery, their relationship with data science, as well as the successful 

application of data science, machine learning (ML) and artificial intelligence (AI) applications. A meta-analysis 

of the various technologies available is furthermore proposed as a guideline for the non-expert, reader relative 

to the several subject areas is also discussed in this article. The scope of this meta-analysis is to rank the enlisted 

technologies by their field of applications and to depict the latter according to knowledge accessibility, from 

students to experts. Method: The search strategy utilized for this review first produced a general collection of 

900 papers without duplications, which were subsequently streamlined and divided into two independent 

collections: the top 300 most-cited papers of all time (since 2000) and the papers with the highest interest for a 

systematic review analysis (high-impact exciting papers). Results: In Part 1, we discuss the most cited and 

quality 97 articles in these top 300 papers most relevant to the field of in silico drug discovery. The different 

disciplines are listed according to their industrial and economic incurred to society, independently from the 

“metric” results of how many new drug approvals (NDAs) each discipline has generated to date. Conclusion: 
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Big data, the ensemble of known items stored in publicly available databases, has improved our understanding 

of the many fates of a potential drug candidate during its development and even after its commercialization. 

Moreover, the combination of new screening techniques and “omics” with old drugs has led to a new paradigm 

in which the unknown knowledge of any biological molecule and its cellular structure, now plays an 

important role as a target for a series of yet-to-be-developed drugs: the chemical space. Furthermore, leveraging 

big data, data science, ML, and AI can revolutionize drug discovery by swiftly analyzing massive datasets, 

predicting efficacy and safety profiles, streamlining development, cutting costs, and boosting success rates for 

new drugs. AI also speeds up the search for promising drug candidates, advancing innovative therapies. 

Keywords: data science; big data; data mining; bioinformatics; chemometric; medicinal chemistry; targets; 

knowledge discovery; artificial intelligence; machine learning; deep learning; data integration; metadata; 

database; QSAR; collaborative drug discovery; structure-based drug design; ligand-based drug discovery; 

clinical trials; product development 

 

Graphical Abstract 

 

Legend: Timeline evolution and milestones of in silico methods in drug discovery. The main 

deviation from a typical pharmaceutical pipeline development is indicated in red. 

Executive Summary 
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Definition Drug discovery is a multidisciplinary science mainly devoted to bringing new chemical entities 

(NCEs) to the market for already-known medical applications. However, this process is very time-

consuming (10-12 years) and highly cost-sensitive (in the range of US $ billions). As a result, scientists 

have developed computational strategies to maximize the results and yield better and larger product 

portfolios using less time and less money. These computational strategies are referred to in silico 

methods (as well as computer-assisted methods) in the literature.    

Integrating AI, data science, and machine learning into drug discovery streamlines processes, 

accelerating timelines and optimizing resource allocation. These technologies analyze vast datasets, 

predict drug efficacy and safety, and enhance accuracy by integrating diverse information sources. 

This synergy has the potential to revolutionize pharmaceuticals, making drug discovery faster, cost-

effective, and more successful in delivering therapeutics to patients. 

Needs  The origin of in silico methods dates back to the late ’80s. At the time, medicinal chemists were 

required to produce evidence of structure-activity-relationship (SAR) from molecules within the 

same pharmacological class of therapeutical agents. This was, for all intents and purposes, essentially 

an academic exercise. In the ’90s, thanks to the advent of the graphical processor unit (GPU), 

researchers moved from 2D- to 3D- up to multidimensional SAR. This evolution allowed the boom 

of in silico methods mainly via two techniques: ligand-based fitting and target-based docking. The 

growing availability of commercial software as well as the open-approach to developing computer-

assisted visualization allowed generating an enormous body of publications in this field from a few 

hundred per year in the late ’80s to 10,000 per year in the late ’90s. This exponential growth of data 

prompted the launch of PubMedTM and DrugBankTM in the early 2000s. Following this trend, the 

largest and most prominent collection of crystallographic structures from Cambridge University has 

evolved to host several million chemical items and their respective chemical-physical information. 

Involuntarily, drug discovery entered the big data era.  

 

Opportunity During the study of new chemical entities (NCEs), medicinal chemists have several possibilities at 

their disposal to bring NCEs to the market as quickly as possible. Sometimes, the success story arrives 

via serendipity, other times by trial-and- error and, most recently, during clinical investigations via 

drug repurposing.  

Drug repurposing is one of those strategies that has improved mostly in the past ten years. 

A good example of this is the number of new approved drugs (NADs) granted by the USFDA during 

the COVID-19 pandemic crisis: 90% of these NADs have emerged as a result of drug repurposing. 

 

Gap One of the main forces driving the advance in drug discovery was the search for high selectivity of 

biological targets, following the principle: one molecule for one specific binding site.  

However, the inevitable overlap of data stemming from computational visualization, clinical trials, 

and medical reports has confirmed that this principle of one molecule for one binding site is an 

excellent theory in a perfect world, but in reality, highly difficult to achieve.   
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Introduction 

Drug discovery is a multidisciplinary science by which new chemical entities (NCE) are 

proposed for use as new therapeutical agents and to be administered during clinical trial phases until 

their final approval as new medications, also commonly known as active pharmaceutical ingredient 

(API) [1]. Drug design and drug discovery are long-established sciences, predating the emergence of 

informatics. These fields have developed autonomously and have been exhaustively analyzed and 

consolidated as comprehensively described in the historical overview by Pina in 2010 [2]. 

Historically, new drugs were discovered by identifying the active ingredients from traditional 

remedies such as plants or by serendipitous discovery, e.g. when the identification of the NCE as an 

API occurred outside of the scope of the main investigation as in the case of penicillin and ViagraTM 

[3]. 

Despite advances in technology and a better understanding of cellular pathophysiological 

signaling downstream, drug discovery remains both time-consuming (up to 10 years of the 

investigatory program) and capital-intensive (from $ US 800 million up to $ US 4 billion budget for 

The most recent trend in drug discovery is the multi-target drug approach (MTD). 

In this type of approach, the in silico methods are suitable to discriminate via ab initio the relationship 

between molecular activity, specific end-user population, and drug-drug (and drug-receptor) 

interaction upstream of clinical investigations. 

 

Moreover, the evolution of databases via web-based server applications has created a brand-new field 

in the search for novel drugs, called chemical space. 

 

Recommendation For more than a century, the R&D departments of the major pharmaceutical companies were known 

to be a highly secretive environment with tens of thousands of chemists working on individual and 

personalized clean benches, and not communicating outside of their close circle of team members. 

Today’s setting is completely different. The loss of patent protections for the most important 

blockbusters, and the legal dispute surrounding patents relating to drug repurposing uses has 

reduced the necessity for this “special environment” in the pharmaceutical industry. Consequently, 

there has been a large layoff of highly skilled pharmaceutical professionals. 

 

Paradoxically, computer-assisted technologies have not produced the expected number of novel 

solutions, and the emergence of artificial intelligence (AI) now requires a new generation of skilled 

scientists in this new area going from data science to network pharmacology. 

 

Moreover, given the implicit difficulty in finding such multi-task medicinal chemists, the current 

R&D departments of the major pharmaceutical companies are increasingly becoming 

incubators/accelerators of start-ups and consortiums of public-private partnerships in which the 

various stakeholders are invited to interact and collaborate, especially in remote mode. 

 

In silico methods have not only brought out the digitalization of pharmaceutical science, but the entire 

manner in which scientists think about the definition of drug-biology interactions. 

 

The next step of in silico methods is the merging of chemical laboratory automation and synthetic 

tissues (organ-on-chip). At this juncture, even clinical trial investigations will become obsolete, and 

will run purely via computers: i. e. in silico medicine. 
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just one new API). It is moreover a highly competitive and regulated sector. Therefore, from a purely 

financial perspective, drug discovery is an inefficient industrial process [4]. 

More recently, chemical libraries of small synthetic molecules, natural products, or botanical 

extracts are being screened via computer-aided systems (also known as virtual screening), allowing 

new opportunities for understanding receptor docking/fitting and the mechanism of action [5]. One 

of the results of this approach is to elucidate alternative pharmacological models for new medical 

indications, classified under the label of investigational new drug (IND). This type of drug discovery 

process, based on the finding of a new medical indication and subsequently applied to an already-

existent API, is commonly called drug repositioning (or repurposing) [6]. 

Traditional methods of discovering drugs have been effective, although they can take over 12 

years and cost approximately USD 1.8 billion from identifying a lead candidate to conducting clinical 

trials [7]. Moreover, the attrition rate of candidate drugs can reach as high as 96% [7]. In recent times, 

in silico approaches have gained increasing consideration due to their ability to hasten the drug 

discovery process in terms of time, labor, and expenses. Owing to novel computational methods, 

several new drug compounds have been successfully developed. 

Lately, an increasing number of scientists are delving into computer-assisted drug discovery 

(CADD) methods to address the challenges of conventional experimental approaches, such as scale, 

time, and cost [8]. 

In silico methods refer to the current practice of drug discovery via the use of specific software, 

artificial intelligence (AI), together with. IT infrastructures such as high-speed computer systems, 

web-based servers/databases, and cloud. These methods thus differ from traditional drug discovery 

approaches performed through biological assays defined as in vitro methods, versus pre-clinical and 

clinical trials or in vivo methods. 

In general, scientists are well-equipped to handle large sets of data comprising several thousand 

molecules and their properties. Specifically, chemists are trained to re-elaborate large data sets of 

compounds (and information related to these compounds) for their classification purposes before 

and after applying statistical regressions, as long as there is an evident rationale: namely, pattern 

recognition and molecular clustering [9–11]. Both of these techniques are crucial in terms of drug 

delivery, as well as aiding in the design [8], optimization, and understanding of delivery systems [12]. 

The ensemble of data spanning all possible compounds pertaining to chemistry and its applications 

is called chemical space [13]. 

Nevertheless, the ever-increasing amount of data being collected in public 

repositories/databases, having reached such proportions in terms of volume and velocity, has led in 

the last decade to the advent of a new science called big data [14,15]. The main difference between 

large datasets and big data is the total lack in the latter of any apparent homogeneity among the data 

per se [14–16]. In 2018, the number of single chemical entities available for in silico screening 

overpassed the symbolic threshold of 1 billion compounds. Furthermore, contract research 

organizations (CROs) offering drug discovery services are already announcing the target of 8 billion 

chemical entities for the year 2024 [17]. Certain academic teams are even proposing virtual libraries 

in the range of 11 billion chemical entities [18,19]. The elements of big data are, by definition, a 

combination of structured, semi-structured, and unstructured datasets. In this review, we discuss 

how big data is affecting the productivity of chemists working in drug discovery and development, 

as well as offer an explanatory overview of the rationale and impact of the various selected topics in 

this field [20]. 

AI and machine learning (ML), deep learning big data have now become integral components in 

advancing drug delivery systems [21–23]. These technologies offer innovative solutions for designing, 

optimizing, and personalizing drug delivery, leading to more efficient and effective therapeutic 

outcomes [14]. 

This large number of data, generated from genomics, proteomics and metabolomic sciences, 

combinatorial chemistry, and automated high-throughput screening (HTS), has led to a new trend in 

drug discovery for data integrations and data mining and its related disciplines [14]. The extremely 

vast use of public databases from all categories of end-users, ranging from professionals to students, 
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has compelled hosting server providers to release several versions of software capable of data mining 

and graphical visualization simultaneously, to better serve their users for the many possible 

applications including virtual screening. The main areas of these applications are known as 

bioinformatics and cheminformatics [25,26]. 

In this review, we discuss how big data is affecting the productivity of chemists working in drug 

discovery and development, as well as offer an explanatory overview of the rationale and impact of 

the various selected topics in this field. Additionally, we provide an execution summary to facilitate 

understanding and discuss the large amount of data. To better understand the various trends and 

global technological evolution of this vast and complex field of study, a meta-analysis of the literature 

is first proposed, starting from the year 2000. This review contributes as a crucial tool in identifying 

and examining patterns, themes, and developments that have emerged over the past two decades by 

delving into the extensive body of literature considering mostly cited papers in the areas. 

QSAR: Quantitative-Structure-Activity-Relationship 

The main purpose of CADD until the early 2000s was to understand the QSAR of therapeutic 

agents used in therapy as a means to introduce novel generations of the most selective drugs into the 

therapeutical arsenal. The result of this gold rush” has translated into more than 30,000 APIs currently 

available in pharmacies. 

CADD involves using computers to identify possible drug targets, screen large chemical 

libraries to find effective drug candidates, optimize candidate compounds, and assess their potential 

toxicity. Once these processes are digitally completed, the candidate compounds are then tested in 

vitro or in vivo to confirm their effectiveness. Consequently, CADD techniques can decrease the 

number of chemical compounds that need experimental evaluation while increasing the success rate 

by eliminating inefficient and toxic chemical compounds from consideration [27]. Pharmacophore 

modelling, QSARs, and AI have been the latest methods used in ligand-based virtual screening 

methodology [27]. 

Table 1 depicts the visual summary of the topics (disciplines and sub-disciples) discussed in this 

review. Each topic is listed as part of big data (pink color) or chemical space (grey color) according 

to the major relevance of the 300 most cited papers on in silico drug discovery chosen in this review. 

Key technology areas (blue) such as bioinformatics and cheminformatics are a common background 

for both big data and chemical space contents. The first result of the analysis of the evolution of big 

data assumed that one drug can be exclusively selective for one target. However, clinical evidence 

shows that this exclusivity and selectivity of one molecular target per drug is only theoretical. 

Drug repositioning is a growing approach to drug discovery powered by the necessity to 

achieve greater “approved medical use” for the same API that is on the verge of losing its intellectual 

property protection status, or already out of the market because it is de facto considered an old drug. 

In the past, drug repositioning was driven by serendipity as well as by the off-label use of both 

marketed and generic drugs by physicians in their clinical practice. However, there are ongoing 

efforts to systematically conduct drug repurposing. The tetracyclines are a prime example of old 

drugs that are still of interest for new medical purposes. Indeed, for more than 60 years of their 

history, tetracyclines have been used as antibiotics while in the last 20 years, they have also been used 

in anticancer treatment as well as for neuroprotection [28,29]. 

Table 1. Interplay of current technology and their applications in drug discovery. 
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 Chemical Space 

Methodology of the Meta-Analysis 

The carried out initial search spanned from January 2023 to May 2023 to identify the most 

qualified and cited papers from the early 2000s to 2022 related to technological evolution and trends 

from big data to chemical space for in silico methods in drug discovery. A total of 1475 articles were 

identified across the three databases, PubMed, Web of Science, and Embase. A comprehensive 

literature search was conducted to identify relevant articles pertaining to drug discovery, big data in 

chemical space, QSAR, drug repurposing, orphan drugs, multi-target drugs, and computer-aided 

drug design (CADD). The search spanned three major databases: PubMed, Web of Science, and 

Embase. Key terms, including "drug discovery," "big data to chemical space," "QSAR," "drug 

repurposing," "orphan drugs," "multi-target drugs," and "CADD," were used to retrieve potential 

articles. Subsequently, duplicates were removed to streamline the dataset, resulting in 900 unique 

articles. From the second pool of articles, the top 300 most cited papers from the early 2000s to 2022, 

providing an overview of the most influential works in the field. The second sub-collection aimed at 

a systematic review analysis and included articles deemed of significant interest for this study. The 

inclusion criteria for the meta-analysis were meticulously defined to ensure the relevance and 

reliability of the chosen articles in Figure 1. A total of 97 articles were selected for inclusion in the 

meta-analysis, adhering to the eligibility criteria outlined in the decision-making strategies presented 

in the accompanying table. 

The article selection process involved multiple stages of review and was conducted 

independently by the authors involved. Rigorous decision-making strategies were employed to 

ensure the precision and accuracy of the final selection of articles for inclusion in the meta-analysis. 
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This methodology employed a systematic and comprehensive approach to identify, select, and 

categorize articles for a meta-analysis, ensuring the robustness and reliability of the findings. 
S
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1475 articles were 

identified from 

PubMed, Web Of 

Science and Embase.

556 dublicated 

articles were 

removed.

57 articles were detected 

according to the identified lists 

of the selected articles1.

• 900 selected articles were 

overviewed.

• Eligibility criteria's2 were 

determined.

Exclusion criteria:

• Irrelevant to the subject: 117

• Low-interested articles: 359

• Non-English articles: 16

• Articles without full-text: 36

• Conference papers: 72

97 articles were included 

in this meta-analysis.

900 articles were 

evaluated.

Exclusion criteria:

• Disproportion to this 

article: 60 

• Low-quality3: 78   

• Same idea and similar 

results: 41

• Incompatible to the 

technological gap4: 24

used keywords: drug discovery;

big data to chemical space;

QSAR; drug repurposing; orphan 

drugs; multi-target drugs;

CADD.

300 articles were 

evaluated.

53 articles5 were 

evaluated as the most 

interesting. 

According to the citation number in

• encompassing all topics

• database and web-based library

were evaluated.

1Same key-words were used 

for the detection. 

2Eligibility criterias were 

determined by considering the 

remaining articles.

3Structure of the article, up-to-date-information, 

and readability were evaluated.
4To emphasize the determined technological gap. 

5They were acknowledged in Table 

2-3.

 

Figure 1. Article inclusion and exclusion criteria with the numbers. 

Results 

General Consideration: “Quality” of the Data 

The definitions of big data and chemical space are primarily based on the sole notion of 

“quantity” of the data, their storage, and their various fields of application. To date, there are no 

means to convey a measure of the “quality” of the data that are part of big data and chemical space. 

Indeed, the interpretation of the validity (and reliability, accuracy, completeness, and 

consistency) of data is left to the researchers and the protocols established by their academic 

institutions [30,31]. 

While the goal of this review is not to delve into an extensive discussion regarding the “quality” 

of data, we nonetheless provide some details regarding the different sources of data and the overall 

relationship between the “quantity” of data and their impact on science and society [32], [33]. 

Given that the purpose of this review is to measure the “metric relevance” and the type of 

contribution of the different reported areas of interest, the absolute number of citations per article 

reported by Google Scholar is taken into consideration. 

There is a large body of research as to whether or not Google Scholar can be qualified as a 

suitable source of scientific information that has been produced from 2017 to 2022 [31,34]. The result 

of the present search is in support of Google Scholar over other providers [34], particularly in a case 
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such as the current meta-analysis aimed at measuring the impact on the web of each sub-field that 

comprises the very vast subject of in silico drug discovery. 

The mean number of published scientific papers per year in the field of drug discovery has 

dramatically grown at a pace of tenfold over the decades, passing from the range of hundreds/year 

in the late ‘80s to a few thousand/year in ’90, and more than tens of thousands per year in the 2000s. 

AI, ML, and deep learning techniques greatly improve data quality assessment in big data and 

chemical space. They identify issues like inconsistencies and missing values, automate cleansing, and 

prioritize data for validation. Deep learning extracts complex features, enhancing accuracy. 

Leveraging these techniques ensures data reliability, improving scientific research impact in drug 

discovery. By leveraging these advanced techniques, researchers can ensure the reliability and 

integrity of data within big data and chemical space, ultimately enhancing the effectiveness and 

impact of scientific research in drug discovery. 

For this review, the absolute number of citations per single article elaborated by Google Scholar 

is used to establish the impact of each selected article on the web. The dataset of the most cited papers 

reported herein has been limited to the first 300 papers in the field of drug discovery. The total 

amount of citations reported for these sole 300 papers corresponds to over 400,000 citations. The 

dataset chosen for this literature review is extremely significant in understanding the evolution and 

trends of in silico drug discovery over the last 22 years. It is reasonable to estimate that the chosen 

dataset is representative of more than 95% of all top-cited articles of the subject area. 

Validation of the Proposed Meta-Analysis 

The present meta-analysis involves the statistical synthesis of results from multiple studies to 

obtain a summary estimate of the effect size. In addition to the provided inclusion and exclusion 

criteria to maintain consistency and relevance in the studies selected, the latter are furthermore 

supported by other analyses such as VosViever as illustrated in Figure 2 which maps the analysis of 

the 100 most frequent keywords from over 1,000 articles published in peer-reviewed journals listed 

in Web of Science (2000-2022). This bibliometric analysis in the form of a network is very useful in 

gaining a better understanding of the interplay and degree of congruence among the various subject 

areas. 

 

Figure 2. Bibliometric map derived via the publicly-available software VosViewerTM of the 100 most 

frequent keywords from over 1,000 articles published in peer-reviewed journals listed in Web of 

Science (2000-2022). 
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The distribution of the keywords generated 5 different clusters of articles, depicted in red, green, 

yellow, blue and (purple, mauve). 

The keyword “prediction” emerged as the central point of this bibliometric map. Accordingly, 

the main purpose of in silico drug discovery is to predict a novel drug in terms of chemical structure 

and/or in terms of the mechanism of action. 

The bibliometric analysis in Figure 3. in the form of a network is highly useful in illustrating the 

interplay and degree of connection among the different subject areas. This visualization proposes 

how the information and interest of the articles based on “virtual screening” have shifted from 

metabolic analysis and pharmacokinetics (2010) to molecular mechanisms, web servers and COVID-

19, starting in 2016. 

Network Map 2: Focusing on “virtual screening” as one of the main topics in drug discovery. 

 

Figure 3. Bibliometric analysis illustrating the interplay and degree of congruence of the articles based 

on “virtual screening” that have migrated from metabolic analysis and pharmacokinetics (2010) to 

molecular mechanisms, web servers, and COVID-19, starting in2016. 

The use of a heatmap is one of the first steps of the rationalization process (cause vs. effect) in 

which researchers are looking for similarities between very close fields of investigation within the 

same subject domain, or area. 

The use of a color-shade gradient provides a visual interpretation of the degree of trends. 

Primary Outcomes of this Meta-Analysis 

The primary objective of this meta-analysis was to determine the qualitative and quantitative 

ranking/classification among the different disciplines of in silico drug discovery: for example, 

research centers and authors that are involved in the development of software for predictive measure 

of drugs involved in the development of predictive analytics software for drug monitoring/drug 

discovery are not necessarily involved in the elaboration of databases or chemical space concepts. 

The second objective of this meta-analysis was to understand the relationship and the impact of 

data science methods in ‘in silico’ drug discovery, if any. 

As shown in Figures 4 and 5 below, the findings of the present meta-analysis provide a measure 

of the impact of the different fields and approach methods within the same subject domain. The most 
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important discriminant is the total number of citations and the ponderal numbers per year, also 

commonly known as weighted value per year. 

 

Figure 4. The impact of the different studies involved in in silico drug discovery. This heatmap reports 

the weighted values, which are extrapolated according to the 300 most cited papers in the respective 

fields. The full data is available in the Excel file in the supplementary section. Each cell represents the 

ponderal number per year of absolute citations (Google Scholar Number) of the 300 most cited papers 

on in silico drug discovery. Additional details regarding the use of the weighted values/year are 

discussed in the text and the table of reference is reported in an Excel file. 

 

Figure 5. Visualization of (A) the sum of total publications per year and (B) their impact on the most 

cited articles over time. Total number of publications reported in PubMed about drug discovery (A). 

Results of the analysis of trends for the same time span (B). The different periods are depicted by 

dashed curves. Each color shows one of the five different periods that have emerged from the meta-

analysis: purple, red, orange, brown, and green. The blue columns show the relative importance of 

the 300 selected papers, (on year per year basis). The numbers reported in this lower portion of panel 

B, are the same as those reported in the heatmap. 
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Although the total number of publications reported in PubMed has grown exponentially over 

the last two decades, with very minimal yearly reduction in pace, analysis of the data depicted in 

Figures 3 and 4B highlight five very distinct periods unequivocally related to the different trends and 

having specific impacts on scientific publications. This portrayal of the different trends is a result of 

the different keywords and topics of the 300 most cited publications as reported from Google Scholar, 

namely: 

Period#1: 2000 – 2005, with a maximum in 2004: 59/300 articles for more than 145 K citations 

Period#2: 2006 – 2010, with a maximum in 2008: 64/300 articles for more than 130 K citations 

Period#3: 2011 – 2014, with a maximum in 2013: 50/300 articles for more than 100 K citations 

Period#4: 2015 – 2017, with a maximum in 2016: 46/300 articles for more than 95 K citations 

Period#5: 2018 – 2022, with a maximum in 2021: 79/300 articles for more than 160 K citations 

Other extrapolated data from the several technological areas cited so far in this review: 

Artificial Intelligence: 8 articles – ca 6,000 citations 

Bioinformatics: 33 articles – ca 110,000 citations 

Chemiometrics: 28 articles – ca 22,000 citations 

Natural Molecule: 11 articles – ca 22,000 citations 

Predictive Models : 84 articles – ca 85,000 citations 

Drug Design Software: 15 articles – ca 16,000 citations 

Chemical Space : 14 articles – ca 14,000 citations 

Database: 35 articles – 100,000 citations 

Drug Repurposing: 16 articles – ca 33,000 citations 

Muti-Target Drugs: 16 articles – ca 8,000 citations 

QSAR: 40 articles – ca 35,000 citations 
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     –      
• Database (Cambridge, PubMed)
• Binding affinity
• QSAR (Chemical Similarity vs 
Diversity) 
• HIV
• Bioinformatics
• Target-Based Discovery
•

     –     
• Translational Bioinformatics
• Database (DrugBank,PubChem)
• QSAR (Drug-like Concept)
• Drug Repurposing
•

     –     
• Database (OpenBabel, 
• QSAR (Orphan Drug, 
• Personalized Medicine
• Drug Repurposing
• Network/System Pharmacology
• Big data and Chemical Space
•

     –     
• Database (ChEMBL, 
• IBM WATSON
• Virtual screening
•

     –     
• Artificial Intelligence
• Data-Driven Conceptualization
• Antibodies
• COVID-19
•

59/300 articles were 
selected, cited more 
than 145k times

70/300 articles were 
selected, cited more 
than 84k times

48/300 articles were 
selected. cited more 
than 59k times

47/300 articles were 
selected, cited more 
than 58k times

76/300 articles were 
selected, cited more 
than 48k times

 

Figure 6. Variation in topics used in the field of in silico drug discovery methods over time. The 

relative impacts of each time period over the entirely different subject areas were taken into 

consideration. 

The average number of drugs approved (NDA) by the USFDA per year since 1980 was 43 (series 

1) while the average number of new chemical entities (NCE) per year was 14 (series 2) over the same 

time period (Figure 7, panel A). The difference in terminology NDA vs. NCE lies in the fact that an 

NDA can be a second-generation drug or any other modification (and/or bioisotere) of a previously 
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approved NCE structure, although NCE is referred to as a chemical moiety of the NDA. The USFDA 

assesses candidate drugs under final review with two different designations from a panel of experts. 

Of note, until 2012, the near totality of the NCEs was designated under the category of “Small 

Molecules”, while after 2012 antibodies, large peptides, and proteins were introduced as NCEs. 

However, as can be seen in Figure 5B, the very large availability of data did not necessarily lead to an 

increase in the number of approved drugs nor the variety of chemical structures of the novel 

approved therapeutics. 

 

Figure 7. Visualization of (A) the average number of drugs approved (NDA) by the USFDA per year, 

and (B) big data. 

Table 2. List of the most cited papers encompassing all topics. 

Num

ber 
Topic Title First author Year 

Citati

ons 

Ref 

1 

Bioinformatics 

Initial sequencing and analysis of the 

human genome 

HG 

Consortium 2001 28696 

[35] 

2 

Database 

The Cambridge Structural Database: a 

quarter of a million crystal structures and 

rising 

FH Allen 2002 14390 

[36] 

3 

Bioinformatics 

Bioconductor: open 

software development for 

computational biology 

and bioinformatics 
 

RC 

Gentleman 
2004 13462 

[37] 

4 Database The human genome browser at UCSC WJ Kent 2002 10583 [38] 

5 Database The Cambridge structural database CR Groom 2016 7366 [39] 

6 Database OpenBabel: An open chemical toolbox NM O Boyle 2011 6735 [40] 

7 
Bioinformatics 

A review of feature selection techniques in 

bioinformatics 
Y Saeys 2007 5556 

[41] 
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8 

Software 

CHARMM General Force Field (CGenFF): A 

force field for drug-like molecules 

compatible with the CHARMM all-atom 

additive biological force fields 

K 

Vanommesla

eghr 

2010 5130 

[42] 

9 

Bioinformatics 

The Perseus computational platform for 

comprehensive analysis of omics data S Tyanova 2016 5068 

[43] 

10 

Database 

DrugBank 5.0: a major update to the 

DrugBank database for 2018 
DS Wishart 2018 4951 

[44] 

11 

Bioinformatics 

Accurate whole human genome sequencing 

using reversible terminator chemistry DR Bentley 2001 4691 

[45] 

12 

Database 

Glide:  A New Approach for Rapid, 

Accurate Docking and Scoring. 2. 

Enrichment Factors in Database Screening 

TA Halgren 2004 4234 

[46] 

13 

Model Predict 

Lead- and drug-like compounds: the rule-

of-five revolution 
CA Lipinski 2004 4213 

[47] 

14 

Model Predict 

Drug-like properties and the causes of poor 

solubility and poor permeability 
CA Lipinski 2000 3912 

[48] 

15 

Bioinformatics 

Biopython: freely available Python tools for 

computational molecular biology and 

bioinformatics 

PJA Cock 2009 3885 

[49] 

16 
Database 

PubChem substance and compound 

databases 
S Kim 2016 3853 

[50] 

17 Bioinformatics The druggable genome AL Hopkins 2002 3851 [51] 

18 Model Predict Drug discovery: a historical perspective J Drews 2000 3582 [52] 

19 

Database 

New software for searching the Cambridge 

Structural Database and visualizing crystal 

structures 

IJ Bruno 2002 3581 

[53] 

20 

Database 

DrugBank: resource in silico drug discovery 

and exploration 
DS Wishart 2006 3544 

[54] 

21 

Bioinformatics 

From genomics to chemical genomics: new 

developments in KEGG 
M Kaneshisa 2006 3473 

[55] 

22 

Chemical Space 

Network pharmacology: the next paradigm 

in drug discovery 
AL Hopkins 2008 3438  

[56] 

23 

Database 

ChEMBL: a large-scale bioactivity database 

for drug discovery 
A Gaulton 2012 3390 

[57] 

24 

Database 

HMDB 3.0--The Human Metabolome 

Database in 2013 
DS Wishart 2012 3061 

[58] 

25 

QSAR  

Random forest: a classification and 

regression tool for compound classification 

and QSAR modelingD 

V Svetnik 2003 3052 

[59] 

26 

Database 

HMDB 4.0: the human metabolome 

database for 2018 
DS Wishart 2018 2928 

[60] 
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27 Drug 

Repositioning 

Drug repositioning: identifying and 

developing new uses for existing drugs 
TT Ashburn 2004 2914 

[61] 

28 

Database 

DrugBank: a knowledgebase of drugs, drug 

actions, and drug targets 
DS Wishart 2008 2785 

[62] 

 

Figure 8. Tree map of the most cited papers reported by topics. 

Table 3. List of the most cited papers in Database and Web-based Library. 

Number Title First Author Year Citation Reference 

1 The Cambridge Database: a quarter of a million 

structure and rising 
FH Allen 2002 14390 

[36] 

2 The Human Genome Browser at UCSC WJ Kent 2002 10583 [38] 

3 New software for searching the Cambridge 

Structural Database and visualizing crystal 

structures 

IJ Bruno 2002 3581 

[53] 

4 Glide:  A New Approach for Rapid, Accurate 

Docking and Scoring. 2. Enrichment Factors in 

Database Screening 

TA Halgren 2004 4234 

[46] 

5 DrugBank: a comprehensive resource for in silico 

drug discovery and exploration 
DS Wishart 2006 3544 

[54] 

6 BindingDB: a web-accessible database of 

experimentally determined protein-ligand binding 

affinities 

T Liu 2007 1663 

[63] 

7 ChEBI: a database and ontology for chemical entities 

of biological interest 

K 

Deglyarenko 
2007 1155 

[64] 

8 PubChem: Integrated platform of small molecules 

and biological actives 
EE Bolton 2008 1537 

[65] 

9 DrugBank: a knowledgebase for drugs, drug actions, 

and drug targets 
DS Wishart 2008 2785 

[62] 

10 PubChem: a public information system for analyzing 

bioactivities of small molecules 
Y Wang 2009 1317 

[66] 
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11 DrugBank 3.0: a comprehensive resource for 

‘OMICS’ research on drugs 
C Knox 2010 2034 

[67] 

12 Conformer Generation with OMEGA: Algorithm 

and Validation Using High Quality Structures from 

the Protein Databank and Cambridge Structural 

Database 

PCD 

Hawkins 
2010 1367 

[68] 

13 Open Babel: An open chemical toolbox NM O Boyle 2011 6735 [40] 

14 ChEMBL: a large-scale bioactivity database for drug 

discovery 
A Gaulton 2012 3390 

[57] 

15 HMDB 3.0—The Human Metabolome Database in 

2013 
DS Wishart 2012 3061 

[58] 

16 ZINC: a free tool to discover chemistry for biology JJ Irwin 2012 2481 [69] 

17 ChEMBL: a large-scale bioactivity database for drug 

discovery 
A Gaulton 2012 1782 

[57] 

18 DrugBank 4.0: Shedding new light on drug 

metabolism 
V Law 2014 2103 

[70] 

19 The Cambridge structural database CR Groom 2016 7366 [39] 

20 PubChem substance and compound databases S Kim 2016 3853 [50] 

21 The ChEMBL database in 2017 A Gaulton 2017 1731 [71] 

22 DrugBank 5.0: a major update to the DrugBank 

database for 2018 
DS Wishart 2018 4951 

[44] 

23 HMDB 4.0: the human metabolome database for 

2018 
DS Wishart 2018 2928 

[60] 

24 PubChem 2019 update improved access to chemical 

data 
S Kim 2019 2380 

[72] 

25 PubChem in 2021: new data content and improved 

web interfaces 
S Kim 2021 1657 

[73] 
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Figure 9. Tree map of the sub-categories of the main topic: DATABASE/Web-based Library. The list 

of the most cited papers encompassing all topics for Cambridge Crystallography, DrugBank, 

PubChem, HGBUCSC, HMDB, OpenBabel, ChEMBL, Glide, and ZINC are shown. 

Discussion, Limitations/Uncertainty 

The availability of the many compounds documented to date (accounting for active fragments 

of small and large molecules) has allowed exposure to a myriad of hypotheticals. The most significant 

result of the “OMICS age” is the growing amount of information introduced by genomics and 

proteomics in real-time. This wealth of data has provided innumerable targets that could theoretically 

combine with as many hits for an equal number of active pharmaceutical ingredients [74]. 

In 2002, Oprea proposed a dataset of one million compounds tested via HTS. However, it would 

appear that the probability of a compound reaching market status is one in a million [169] . 

A mere 10 years later, PubChem had attained 89 million chemical entities in its database such 

that 89 new drugs could theoretically be obtained as a maximum for this dataset, or one could search 

for different targets in the same dataset and obtain 89 new drugs every time [75,76]. 

Millions of scientists from very different domains are familiar with the theory known as the 

“Lock-Key Model”, the father of which is the 1908 Nobel Prize for Medicine laureate, Sir Paul Ehrlich. 

The concept that one key can open a lock is at the forefront of molecular pharmacology and, in the 

last ten years, has evolved into a much more complex paradigm in which a specific key (drug) can 

unlock a series of locks not necessarily interrelated, exactly as in the case of a master key. 

Sir Paul Ehrlich was aware that there is no dogma in science; in fact, he was the first to introduce 

the concept of Zauberkugel ("magic bullet"). The technology that has been available in the last ten 

years has shown the full applicability of this paradigm, more than a hundred years after its 

enunciation, under the terminology of multi-target drugs. 

Period #1 – “Testing the reliability of database vs. the selectivity concepts.” 

Until the development of web-based library resources, the only force leading the global field of 

in silico drug discovery was the analysis, via homemade software, of Quantitative-Structure-Activity-

Relationship (QSAR) studies, albeit via a limited private library of just a few thousand structures. The 

principle behind the QSAR analysis was based on the chemical similarity of proven therapeutic 

agents for the same diseases. 
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The availability of the first large web-based database, such as PubMed, compelled researchers 

to introduce new methods in drug discovery, namely data mining and data integration. 

In 2004, Pearsons and others [77] designed a good example of data integration among various 

libraries, from genes vs. a series of bioactive compounds, to link these results to very specific cellular 

targets or at least to understand whether any correlated pathways existed. 

In 2005, Csermely and coll., [78] had already noted that despite the availability of new digital 

tools in drug discovery, the additional amount of data was not contributing to generating more 

therapeutical options. On the other hand, they began confirming the new paradigm of multi-target 

drugs which was the real novelty of this new era of computer-assisted drug design. As stated by the 

authors: 

“At present, the goal is to: 

(i) find a target of suitable function. 

(ii) identify the ‘best binder’ by high-throughput screening of large combinatorial libraries 

and/or by rational drug design based on the three-dimensional structure of the target. 

(iii) provide a set of proof-of-principle experiments. 

(iv) develop a technology platform that predicts potential clinical applications. 
However, despite all the careful studies and the considerable drug-development efforts 

undertaken, the number of successful drugs and novel targets did not increase appreciably during 

the past decade.” 

Period #2 – “Looking for applications of novel drugs inside an old pharmacological space.” 

In 2006, a multi-disciplinary team from Pfizer, [79] published a first-ever map of the known 

pharmacological space at the time. The purpose of this colossal work was to plot the direction or best 

fitting of more than 275,000 biologically active compounds vs. a library of 1,000 molecular targets. 

The result of this experience was the introduction of the concepts of chemical promiscuity of 

therapeutic agents for the same disease and degrees of draggability of cellular targets. 

Another interesting novelty of this type of approach is the maturity of bioinformatics and 

translational bioinformatics. 

On another hand, the ensemble of this new evidence of non-pre-determinability of the biological 

effect, or the obvious lack of exclusive selectivity for the “target”, has induced the purists of the 

quantitative structure activity-relationship (QSAR) realm to introduce additional dimensions of 

interactions. The QSAR hence shifted from a mere proprieties of the molecular scaffold (2D) up to 

induced conformation of the target via environmental forces (3D up to 6D), Lill 2007 [80] and Furches 

2010 [81]. 

Period #3 – “Data-driven drug discovery.” 

The most successful result of the early 2010s in the field of drug discovery has been in admitting 

that one approved drug can have multiple medical indications. This new paradigm based on the 

concept of drug repurposing produced a record number of 37 designated and marketed orphan drugs 

in only two years, from 2009-2010, Muthyala [82] . 

The easy access to large libraries and real-time collaborative platforms with the major 

pharmaceutical companies, together with the possibility of exchanging clinical information for new 

medical indications without incurring legal issues, has fueled the exponential growth of publications 

and thematic journals. The results of this enormous amount of data unintentionally catapulted drug 

discovery into the big data era (Lusher 2014 [83]). 

Paradoxically, these same digital tools, which were introduced to facilitate in silico drug 

discovery, also became somewhat of an obstacle requiring the introduction of a new class of 

researcher to be added to the medicinal chemists’ team, namely the data scientist dedicated to 

managing and streamlining big data [84]. 

Period #4 – “Druggability: one drug and many targets” 

The growing consensus for muti-target drugs and the search for specific genetic targets 

dramatically changed the perspective and the scope of the medicinal chemist [85]. The total lack of 

target selectivity is not due to the chemical moiety per se but rather to the dominant concept of 
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network pharmacology and phenotypic selection [86]. While medicinal chemists usually rely on some 

version of the “lock and key” paradigm to design novel therapeutics, modern pharmacology 

recognizes that the mid- and long-term effects of a given drug on a biological system may depend 

not only on specific ligand-target recognition events but also on the influence of the repeated 

administration of a drug on cell-gene signature (Talevi 2015 [87], Lavecchia, 2016 [88]). 

Period #5 – “Re-discovering the Use of Natural Molecules for Complex Diseases.” 

Since 2018, drug repositioning methods have been leading the success of the entire sector of in 

silico drug discovery, including the search for remedies for COVID-19 treatment. Indeed, COVID-19 

is unequivocally a complex disease, consisting not only of a simple viral infection but a complicated 

framework of symptoms and unpredictable transmissibility (as a result of the variants) with varying 

outcomes [89] according to the different patient populations (de Oliviera et al. 2018 [90], Ramsay et 

al. 2018 [91]). 

Other fields of interest in this period include neurology [92], with Alzheimer’s disease leading 

the topics for drug repurposing (Mesiti 2019 et al. (2019) [93]), as well as two other areas related to 

namely seizures (Geets et al. (2019) [94]) and depression Buenz et al. (2018) [92]. 

In totally different pathways, cannabinoids (and Cannabis extracts) have resulted in a very 

interesting natural remedy owing to the success of EpidolexTM in the treatment of seizures in children 

Namdar et al. (2020) [95] [96]. 

Finally, following the re-discovering of natural therapy, the latest success in time is the drug 

repurposing of classical abuse/recreational psychedelics such as psilocybin (and dried “magic 

mushrooms” powder) for depression and PTDS (Mullowney et al. (2023) [97]). 

Conclusion 

The significant role of in silico tools has increased exponentially in the last ten years and has 

markedly revolutionized the field of CADD and brought about technological evolution and recent 

trends that have galvanized the search for new drugs. All in all, the search approach employed in this 

review initially yielded a comprehensive set of 900 non-duplicated papers. In Part 1, our focus shifts 

to the examination of the top 300 papers, identifying the most cited and high-quality 97 articles 

pertinent to the realm of in silico drug discovery. 

A final consideration should also be given as to how these technological trends are affecting the 

socio-economic aspects of pharmaceutical companies, including: 

• Big Data: Data Science, Data Integration and Data Mining 

The result of these disciplines is the continuing improvement in IT infrastructure and software. 

Incorporating advanced AI and ML techniques can enhance in silico drug discovery by rapidly 

analyzing vast amounts of data, predicting molecular interactions, and optimizing drug candidates 

with higher precision and efficiency. 

• Cheminformatics: classification, pattern recognition and clustering 

The result of these disciplines is the improvement in current knowledge regarding the mechanisms 

of actions of drugs owing to a better understanding of their QSAR. 

• Bioinformatics and Translational Bioinformatics 

The result of these disciplines is the seeking of new molecular targets and alternative 

physio/pathological mechanisms downstream. In particular, these disciplines are pivotal for the 

understanding of epigenetics and meta-genomics phenomena. 

• Drug Repurposing 

The primary scope of this discipline is the life extension of expired patent applications. In practice, 

the controversy related to patent issues and the ensuing transfer of Drug Master Files (DMF) have 

accelerated the need for collaborative models among pharmaceutical stakeholders. The result is the 

shrinking of the required internal R&D workforce. 
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• Chemical Space 

The chemical space is the ensemble of all possible chemical structures, which is believed to contain 

up to several billion molecules of potential interest for drug discovery as mentioned in this review. 

One proposed means to explore chemical space is based on the selection of virtual libraries of 

common scaffold-tree algorithms (grouping) that are overlapped to other “organized maps” of 

chemical-physical information (pharmacokinetics) and/or chemical interactions 

(pharmacodynamics). The result of this “spatial analysis” has been used in the last 20 years to 

generate a new discipline known as Network Medicine or Network Pharmacology. Conversely to 

drug repurposing strategies in which one molecule (“old API”) is investigated for a new medical 

indication following the principle of one drug for one targe the results in Network Pharmacology 

approaches to drug discovery are completely different. Indeed, in terms of the definition of chemical 

space, there are billions of potential drugs that could virtually match billions of targets. The best 

matching combinations are hence known as multi-target drugs (MTD), including in Food, Aroma, 

and other fields. 
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their great support and continuous coaching in leading the year-long journey behind this systematic review of 

the literature. 
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