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Highlights:

e Advancements in computational methods in in silico drug discovery have become a viable option.

e Artificial intelligence and machine learning improve in silico drug discovery by swiftly analyzing data,
predicting interactions, and optimizing candidates with precision.

o The recent technological evolution from 1980 to 2024 of in silico methods is discussed.

o  We observed rising trends from big data to chemical space.

e An executive summary is structured according to the most cited articles.

e  Milestones are assessed based on their respective timelines.

Abstract: Background: The present review summarizes the state-of-the-art of in silico methods and techniques
that are the most useful in drug discovery, their relationship with data science, as well as the successful
application of data science, machine learning (ML) and artificial intelligence (Al) applications. A meta-analysis
of the various technologies available is furthermore proposed as a guideline for the non-expert, reader relative
to the several subject areas is also discussed in this article. The scope of this meta-analysis is to rank the enlisted
technologies by their field of applications and to depict the latter according to knowledge accessibility, from
students to experts. Method: The search strategy utilized for this review first produced a general collection of
900 papers without duplications, which were subsequently streamlined and divided into two independent
collections: the top 300 most-cited papers of all time (since 2000) and the papers with the highest interest for a
systematic review analysis (high-impact exciting papers). Results: In Part 1, we discuss the most cited and
quality 97 articles in these top 300 papers most relevant to the field of in silico drug discovery. The different
disciplines are listed according to their industrial and economic incurred to society, independently from the
“metric” results of how many new drug approvals (NDAs) each discipline has generated to date. Conclusion:
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Big data, the ensemble of known items stored in publicly available databases, has improved our understanding
of the many fates of a potential drug candidate during its development and even after its commercialization.
Moreover, the combination of new screening techniques and “omics” with old drugs has led to a new paradigm
in which the unknown knowledge of any biological molecule and its cellular structure, now plays an
important role as a target for a series of yet-to-be-developed drugs: the chemical space. Furthermore, leveraging
big data, data science, ML, and Al can revolutionize drug discovery by swiftly analyzing massive datasets,
predicting efficacy and safety profiles, streamlining development, cutting costs, and boosting success rates for
new drugs. Al also speeds up the search for promising drug candidates, advancing innovative therapies.

Keywords: data science; big data; data mining; bioinformatics; chemometric; medicinal chemistry; targets;
knowledge discovery; artificial intelligence; machine learning; deep learning; data integration; metadata;
database; QSAR; collaborative drug discovery; structure-based drug design; ligand-based drug discovery;
clinical trials; product development
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Legend: Timeline evolution and milestones of in silico methods in drug discovery. The main
deviation from a typical pharmaceutical pipeline development is indicated in red.

Executive Summary
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Definition

Drug discovery is a multidisciplinary science mainly devoted to bringing new chemical entities
(NCEs) to the market for already-known medical applications. However, this process is very time-
consuming (10-12 years) and highly cost-sensitive (in the range of US § billions). As a result, scientists
have developed computational strategies to maximize the results and yield better and larger product
portfolios using less time and less money. These computational strategies are referred to in silico
methods (as well as computer-assisted methods) in the literature.

Integrating Al, data science, and machine learning into drug discovery streamlines processes,
accelerating timelines and optimizing resource allocation. These technologies analyze vast datasets,
predict drug efficacy and safety, and enhance accuracy by integrating diverse information sources.
This synergy has the potential to revolutionize pharmaceuticals, making drug discovery faster, cost-

effective, and more successful in delivering therapeutics to patients.

Needs

The origin of in silico methods dates back to the late "80s. At the time, medicinal chemists were
required to produce evidence of structure-activity-relationship (SAR) from molecules within the
same pharmacological class of therapeutical agents. This was, for all intents and purposes, essentially
an academic exercise. In the "90s, thanks to the advent of the graphical processor unit (GPU),
researchers moved from 2D- to 3D- up to multidimensional SAR. This evolution allowed the boom
of in silico methods mainly via two techniques: ligand-based fitting and target-based docking. The
growing availability of commercial software as well as the open-approach to developing computer-
assisted visualization allowed generating an enormous body of publications in this field from a few
hundred per year in the late ‘80s to 10,000 per year in the late '90s. This exponential growth of data
prompted the launch of PubMed™ and DrugBank™ in the early 2000s. Following this trend, the
largest and most prominent collection of crystallographic structures from Cambridge University has
evolved to host several million chemical items and their respective chemical-physical information.

Involuntarily, drug discovery entered the big data era.

Opportunity

During the study of new chemical entities (NCEs), medicinal chemists have several possibilities at
their disposal to bring NCEs to the market as quickly as possible. Sometimes, the success story arrives
via serendipity, other times by trial-and- error and, most recently, during clinical investigations via
drug repurposing.

Drug repurposing is one of those strategies that has improved mostly in the past ten years.

A good example of this is the number of new approved drugs (NADs) granted by the USFDA during
the COVID-19 pandemic crisis: 90% of these NADs have emerged as a result of drug repurposing.

Gap

One of the main forces driving the advance in drug discovery was the search for high selectivity of
biological targets, following the principle: one molecule for one specific binding site.

However, the inevitable overlap of data stemming from computational visualization, clinical trials,
and medical reports has confirmed that this principle of one molecule for one binding site is an

excellent theory in a perfect world, but in reality, highly difficult to achieve.
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The most recent trend in drug discovery is the multi-target drug approach (MTD).
In this type of approach, the in silico methods are suitable to discriminate via ab initio the relationship
between molecular activity, specific end-user population, and drug-drug (and drug-receptor)

interaction upstream of clinical investigations.

Moreover, the evolution of databases via web-based server applications has created a brand-new field

in the search for novel drugs, called chemical space.

Recommendation For more than a century, the R&D departments of the major pharmaceutical companies were known
to be a highly secretive environment with tens of thousands of chemists working on individual and
personalized clean benches, and not communicating outside of their close circle of team members.
Today’s setting is completely different. The loss of patent protections for the most important
blockbusters, and the legal dispute surrounding patents relating to drug repurposing uses has
reduced the necessity for this “special environment” in the pharmaceutical industry. Consequently,

there has been a large layoff of highly skilled pharmaceutical professionals.

Paradoxically, computer-assisted technologies have not produced the expected number of novel
solutions, and the emergence of artificial intelligence (Al) now requires a new generation of skilled

scientists in this new area going from data science to network pharmacology.

Moreover, given the implicit difficulty in finding such multi-task medicinal chemists, the current
R&D departments of the major pharmaceutical companies are increasingly becoming
incubators/accelerators of start-ups and consortiums of public-private partnerships in which the

various stakeholders are invited to interact and collaborate, especially in remote mode.

In silico methods have not only brought out the digitalization of pharmaceutical science, but the entire

manner in which scientists think about the definition of drug-biology interactions.

The next step of in silico methods is the merging of chemical laboratory automation and synthetic

tissues (organ-on-chip). At this juncture, even clinical trial investigations will become obsolete, and

will run purely via computers: i. e. in silico medicine.

Introduction

Drug discovery is a multidisciplinary science by which new chemical entities (NCE) are
proposed for use as new therapeutical agents and to be administered during clinical trial phases until
their final approval as new medications, also commonly known as active pharmaceutical ingredient
(API) [1]. Drug design and drug discovery are long-established sciences, predating the emergence of
informatics. These fields have developed autonomously and have been exhaustively analyzed and
consolidated as comprehensively described in the historical overview by Pina in 2010 [2].

Historically, new drugs were discovered by identifying the active ingredients from traditional
remedies such as plants or by serendipitous discovery, e.g. when the identification of the NCE as an
API occurred outside of the scope of the main investigation as in the case of penicillin and Viagra™
[3].

Despite advances in technology and a better understanding of cellular pathophysiological
signaling downstream, drug discovery remains both time-consuming (up to 10 years of the
investigatory program) and capital-intensive (from $ US 800 million up to $ US 4 billion budget for
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just one new API). It is moreover a highly competitive and regulated sector. Therefore, from a purely
financial perspective, drug discovery is an inefficient industrial process [4].

More recently, chemical libraries of small synthetic molecules, natural products, or botanical
extracts are being screened via computer-aided systems (also known as virtual screening), allowing
new opportunities for understanding receptor docking/fitting and the mechanism of action [5]. One
of the results of this approach is to elucidate alternative pharmacological models for new medical
indications, classified under the label of investigational new drug (IND). This type of drug discovery
process, based on the finding of a new medical indication and subsequently applied to an already-
existent AP], is commonly called drug repositioning (or repurposing) [6].

Traditional methods of discovering drugs have been effective, although they can take over 12
years and cost approximately USD 1.8 billion from identifying a lead candidate to conducting clinical
trials [7]. Moreover, the attrition rate of candidate drugs can reach as high as 96% [7]. In recent times,
in silico approaches have gained increasing consideration due to their ability to hasten the drug
discovery process in terms of time, labor, and expenses. Owing to novel computational methods,
several new drug compounds have been successfully developed.

Lately, an increasing number of scientists are delving into computer-assisted drug discovery
(CADD) methods to address the challenges of conventional experimental approaches, such as scale,
time, and cost [8].

In silico methods refer to the current practice of drug discovery via the use of specific software,
artificial intelligence (Al), together with. IT infrastructures such as high-speed computer systems,
web-based servers/databases, and cloud. These methods thus differ from traditional drug discovery
approaches performed through biological assays defined as in vitro methods, versus pre-clinical and
clinical trials or in vivo methods.

In general, scientists are well-equipped to handle large sets of data comprising several thousand
molecules and their properties. Specifically, chemists are trained to re-elaborate large data sets of
compounds (and information related to these compounds) for their classification purposes before
and after applying statistical regressions, as long as there is an evident rationale: namely, pattern
recognition and molecular clustering [9-11]. Both of these techniques are crucial in terms of drug
delivery, as well as aiding in the design [8], optimization, and understanding of delivery systems [12].
The ensemble of data spanning all possible compounds pertaining to chemistry and its applications
is called chemical space [13].

Nevertheless, the ever-increasing amount of data being collected in public
repositories/databases, having reached such proportions in terms of volume and velocity, has led in
the last decade to the advent of a new science called big data [14,15]. The main difference between
large datasets and big data is the total lack in the latter of any apparent homogeneity among the data
per se [14-16]. In 2018, the number of single chemical entities available for in silico screening
overpassed the symbolic threshold of 1 billion compounds. Furthermore, contract research
organizations (CROs) offering drug discovery services are already announcing the target of 8 billion
chemical entities for the year 2024 [17]. Certain academic teams are even proposing virtual libraries
in the range of 11 billion chemical entities [18,19]. The elements of big data are, by definition, a
combination of structured, semi-structured, and unstructured datasets. In this review, we discuss
how big data is affecting the productivity of chemists working in drug discovery and development,
as well as offer an explanatory overview of the rationale and impact of the various selected topics in
this field [20].

Al and machine learning (ML), deep learning big data have now become integral components in
advancing drug delivery systems [21-23]. These technologies offer innovative solutions for designing,
optimizing, and personalizing drug delivery, leading to more efficient and effective therapeutic
outcomes [14].

This large number of data, generated from genomics, proteomics and metabolomic sciences,
combinatorial chemistry, and automated high-throughput screening (HTS), has led to a new trend in
drug discovery for data integrations and data mining and its related disciplines [14]. The extremely
vast use of public databases from all categories of end-users, ranging from professionals to students,
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has compelled hosting server providers to release several versions of software capable of data mining
and graphical visualization simultaneously, to better serve their users for the many possible
applications including virtual screening. The main areas of these applications are known as
bioinformatics and cheminformatics [25,26].

In this review, we discuss how big data is affecting the productivity of chemists working in drug
discovery and development, as well as offer an explanatory overview of the rationale and impact of
the various selected topics in this field. Additionally, we provide an execution summary to facilitate
understanding and discuss the large amount of data. To better understand the various trends and
global technological evolution of this vast and complex field of study, a meta-analysis of the literature
is first proposed, starting from the year 2000. This review contributes as a crucial tool in identifying
and examining patterns, themes, and developments that have emerged over the past two decades by
delving into the extensive body of literature considering mostly cited papers in the areas.

QSAR: Quantitative-Structure-Activity-Relationship

The main purpose of CADD until the early 2000s was to understand the QSAR of therapeutic
agents used in therapy as a means to introduce novel generations of the most selective drugs into the
therapeutical arsenal. The result of this gold rush” has translated into more than 30,000 APIs currently

available in pharmacies.
CADD involves using computers to identify possible drug targets, screen large chemical

libraries to find effective drug candidates, optimize candidate compounds, and assess their potential
toxicity. Once these processes are digitally completed, the candidate compounds are then tested in
vitro or in vivo to confirm their effectiveness. Consequently, CADD techniques can decrease the
number of chemical compounds that need experimental evaluation while increasing the success rate

by eliminating inefficient and toxic chemical compounds from consideration [27]. Pharmacophore
modelling, QSARs, and Al have been the latest methods used in ligand-based virtual screening
methodology [27].

Table 1 depicts the visual summary of the topics (disciplines and sub-disciples) discussed in this
review. Each topic is listed as part of big data (pink color) or chemical space (grey color) according

to the major relevance of the 300 most cited papers on in silico drug discovery chosen in this review.
Key technology areas (blue) such as bioinformatics and cheminformatics are a common background
for both big data and chemical space contents. The first result of the analysis of the evolution of big
data assumed that one drug can be exclusively selective for one target. However, clinical evidence
shows that this exclusivity and selectivity of one molecular target per drug is only theoretical.

Drug repositioning is a growing approach to drug discovery powered by the necessity to
achieve greater “approved medical use” for the same API that is on the verge of losing its intellectual
property protection status, or already out of the market because it is de facto considered an old drug.
In the past, drug repositioning was driven by serendipity as well as by the off-label use of both
marketed and generic drugs by physicians in their clinical practice. However, there are ongoing
efforts to systematically conduct drug repurposing. The tetracyclines are a prime example of old
drugs that are still of interest for new medical purposes. Indeed, for more than 60 years of their
history, tetracyclines have been used as antibiotics while in the last 20 years, they have also been used
in anticancer treatment as well as for neuroprotection [28,29].

Table 1. Interplay of current technology and their applications in drug discovery.
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Methodology of the Meta-Analysis

The carried out initial search spanned from January 2023 to May 2023 to identify the most
qualified and cited papers from the early 2000s to 2022 related to technological evolution and trends
from big data to chemical space for in silico methods in drug discovery. A total of 1475 articles were
identified across the three databases, PubMed, Web of Science, and Embase. A comprehensive
literature search was conducted to identify relevant articles pertaining to drug discovery, big data in
chemical space, QSAR, drug repurposing, orphan drugs, multi-target drugs, and computer-aided
drug design (CADD). The search spanned three major databases: PubMed, Web of Science, and
Embase. Key terms, including "drug discovery,” "big data to chemical space,” "QSAR," "drug
repurposing,” "orphan drugs," "multi-target drugs,” and "CADD," were used to retrieve potential
articles. Subsequently, duplicates were removed to streamline the dataset, resulting in 900 unique
articles. From the second pool of articles, the top 300 most cited papers from the early 2000s to 2022,
providing an overview of the most influential works in the field. The second sub-collection aimed at
a systematic review analysis and included articles deemed of significant interest for this study. The
inclusion criteria for the meta-analysis were meticulously defined to ensure the relevance and
reliability of the chosen articles in Figure 1. A total of 97 articles were selected for inclusion in the
meta-analysis, adhering to the eligibility criteria outlined in the decision-making strategies presented
in the accompanying table.

The article selection process involved multiple stages of review and was conducted
independently by the authors involved. Rigorous decision-making strategies were employed to
ensure the precision and accuracy of the final selection of articles for inclusion in the meta-analysis.
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This methodology employed a systematic and comprehensive approach to identify, select, and
categorize articles for a meta-analysis, ensuring the robustness and reliability of the findings.
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Figure 1. Article inclusion and exclusion criteria with the numbers.

Results
General Consideration: “Quality” of the Data

The definitions of big data and chemical space are primarily based on the sole notion of
“quantity” of the data, their storage, and their various fields of application. To date, there are no
means to convey a measure of the “quality” of the data that are part of big data and chemical space.

Indeed, the interpretation of the validity (and reliability, accuracy, completeness, and
consistency) of data is left to the researchers and the protocols established by their academic
institutions [30,31].

While the goal of this review is not to delve into an extensive discussion regarding the “quality”
of data, we nonetheless provide some details regarding the different sources of data and the overall
relationship between the “quantity” of data and their impact on science and society [32], [33].

Given that the purpose of this review is to measure the “metric relevance” and the type of
contribution of the different reported areas of interest, the absolute number of citations per article
reported by Google Scholar is taken into consideration.

There is a large body of research as to whether or not Google Scholar can be qualified as a
suitable source of scientific information that has been produced from 2017 to 2022 [31,34]. The result
of the present search is in support of Google Scholar over other providers [34], particularly in a case
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such as the current meta-analysis aimed at measuring the impact on the web of each sub-field that
comprises the very vast subject of in silico drug discovery.

The mean number of published scientific papers per year in the field of drug discovery has
dramatically grown at a pace of tenfold over the decades, passing from the range of hundreds/year
in the late ‘80s to a few thousand/year in "90, and more than tens of thousands per year in the 2000s.
Al ML, and deep learning techniques greatly improve data quality assessment in big data and
chemical space. They identify issues like inconsistencies and missing values, automate cleansing, and
prioritize data for validation. Deep learning extracts complex features, enhancing accuracy.
Leveraging these techniques ensures data reliability, improving scientific research impact in drug
discovery. By leveraging these advanced techniques, researchers can ensure the reliability and
integrity of data within big data and chemical space, ultimately enhancing the effectiveness and
impact of scientific research in drug discovery.

For this review, the absolute number of citations per single article elaborated by Google Scholar
is used to establish the impact of each selected article on the web. The dataset of the most cited papers
reported herein has been limited to the first 300 papers in the field of drug discovery. The total
amount of citations reported for these sole 300 papers corresponds to over 400,000 citations. The
dataset chosen for this literature review is extremely significant in understanding the evolution and
trends of in silico drug discovery over the last 22 years. It is reasonable to estimate that the chosen
dataset is representative of more than 95% of all top-cited articles of the subject area.

Validation of the Proposed Meta-Analysis

The present meta-analysis involves the statistical synthesis of results from multiple studies to
obtain a summary estimate of the effect size. In addition to the provided inclusion and exclusion
criteria to maintain consistency and relevance in the studies selected, the latter are furthermore
supported by other analyses such as VosViever as illustrated in Figure 2 which maps the analysis of
the 100 most frequent keywords from over 1,000 articles published in peer-reviewed journals listed
in Web of Science (2000-2022). This bibliometric analysis in the form of a network is very useful in
gaining a better understanding of the interplay and degree of congruence among the various subject
areas.

Network Map 1: Visualization of key topics and their relative occurrence in drug discovery.
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Figure 2. Bibliometric map derived via the publicly-available software VosViewer™ of the 100 most
frequent keywords from over 1,000 articles published in peer-reviewed journals listed in Web of
Science (2000-2022).
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The distribution of the keywords generated 5 different clusters of articles, depicted in red, green,
yellow, blue and (purple, mauve).

The keyword “prediction” emerged as the central point of this bibliometric map. Accordingly,
the main purpose of in silico drug discovery is to predict a novel drug in terms of chemical structure
and/or in terms of the mechanism of action.

The bibliometric analysis in Figure 3. in the form of a network is highly useful in illustrating the
interplay and degree of connection among the different subject areas. This visualization proposes
how the information and interest of the articles based on “virtual screening” have shifted from
metabolic analysis and pharmacokinetics (2010) to molecular mechanisms, web servers and COVID-
19, starting in 2016.

Network Map 2: Focusing on “virtual screening” as one of the main topics in drug discovery.
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Figure 3. Bibliometric analysis illustrating the interplay and degree of congruence of the articles based
on “virtual screening” that have migrated from metabolic analysis and pharmacokinetics (2010) to
molecular mechanisms, web servers, and COVID-19, starting in2016.

The use of a heatmap is one of the first steps of the rationalization process (cause vs. effect) in
which researchers are looking for similarities between very close fields of investigation within the
same subject domain, or area.

The use of a color-shade gradient provides a visual interpretation of the degree of trends.

Primary Outcomes of this Meta-Analysis

The primary objective of this meta-analysis was to determine the qualitative and quantitative
ranking/classification among the different disciplines of in silico drug discovery: for example,
research centers and authors that are involved in the development of software for predictive measure
of drugs involved in the development of predictive analytics software for drug monitoring/drug
discovery are not necessarily involved in the elaboration of databases or chemical space concepts.

The second objective of this meta-analysis was to understand the relationship and the impact of
data science methods in ‘in silico” drug discovery, if any.

As shown in Figures 4 and 5 below, the findings of the present meta-analysis provide a measure
of the impact of the different fields and approach methods within the same subject domain. The most
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important discriminant is the total number of citations and the ponderal numbers per year, also
commonly known as weighted value per year.

Fields ‘00|01 |02 |03 04 | 05| 6 |07 | 08 | 09 | 10 | ‘11 | ‘12 ‘6|17 | 18 |19 | 20 | ‘21 | 22
Chemical Space oo jf2|0/|0 0 | 0 |0 2 o| 0|0 o|lo|o0o|oO 0|0
Natural Molecules 0 0 0|0 0 3 0 0 0 0 0 1 0 0 0|0 0
Multi-Targets Drug 0 0 0 0 0 1 1 3 1 1 2 1 1 1 1 1 1 0 0
Drug Repurposing 0 0 0 0 0 0 0 0 0 1] 2 0 1 0 0 0 (1] 2 0 2 1
Database/Server o|Jojoj|o0]| o0 0| 0| 3 2 o|lojo0o]|]o0)|0]|oO o|lo|o0o |0 0O N 0
Artificial Intelligence 0 0 0 0 0 1] 1] 1] 0 0 1] 1 0 0 o 0 3 1] 0
QSAR 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1] 0 0 0 0 0
Predictive models 1 (1|1 g 0 0 1 3 |2 1 2|1 0|0)2)]2]|0 ofof|o|o| 0|2
Bioinformatics 0 [ R ] N 0 1 2 1 2 1 1 3|0 1|0 0|2 |0o|0|0)|0]|O
Drug Design Software 0 0 8 1 1 3 2 2 2 1 0 0 1 3 1 1 1 1 0
TOTAL 1 6 8 8 9 5 0 3
Color-shade legend of the heatmap
o +10% +25% +50% [ +75% | +100% [ +125% [ +150% | +200% | +2s0% | +300% ]
o 1 2 3 4 5 6 7 8 9 10

Figure 4. The impact of the different studies involved in in silico drug discovery. This heatmap reports
the weighted values, which are extrapolated according to the 300 most cited papers in the respective
fields. The full data is available in the Excel file in the supplementary section. Each cell represents the
ponderal number per year of absolute citations (Google Scholar Number) of the 300 most cited papers
on in silico drug discovery. Additional details regarding the use of the weighted values/year are

discussed in the text and the table of reference is reported in an Excel file.

|

I B | Impact of different trends on the overall publications of drug discovery in silico

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20— 21SNm0l

Figure 5. Visualization of (A) the sum of total publications per year and (B) their impact on the most
cited articles over time. Total number of publications reported in PubMed about drug discovery (A).
Results of the analysis of trends for the same time span (B). The different periods are depicted by
dashed curves. Each color shows one of the five different periods that have emerged from the meta-
analysis: purple, red, orange, brown, and green. The blue columns show the relative importance of
the 300 selected papers, (on year per year basis). The numbers reported in this lower portion of panel
B, are the same as those reported in the heatmap.
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Although the total number of publications reported in PubMed has grown exponentially over
the last two decades, with very minimal yearly reduction in pace, analysis of the data depicted in
Figures 3 and 4B highlight five very distinct periods unequivocally related to the different trends and
having specific impacts on scientific publications. This portrayal of the different trends is a result of
the different keywords and topics of the 300 most cited publications as reported from Google Scholar,
namely:

Period#1: 2000 — 2005, with a maximum in 2004: 59/300 articles for more than 145 K citations

Period#2: 2006 — 2010, with a maximum in 2008: 64/300 articles for more than 130 K citations

Period#3: 2011 — 2014, with a maximum in 2013: 50/300 articles for more than 100 K citations

Period#4: 2015 — 2017, with a maximum in 2016: 46/300 articles for more than 95 K citations

Period#5: 2018 — 2022, with a maximum in 2021: 79/300 articles for more than 160 K citations

Other extrapolated data from the several technological areas cited so far in this review:

Artificial Intelligence: 8 articles — ca 6,000 citations

Bioinformatics: 33 articles — ca 110,000 citations

Chemiometrics: 28 articles — ca 22,000 citations

Natural Molecule: 11 articles — ca 22,000 citations

Predictive Models : 84 articles — ca 85,000 citations

Drug Design Software: 15 articles — ca 16,000 citations

Chemical Space : 14 articles — ca 14,000 citations

Database: 35 articles — 100,000 citations

Drug Repurposing: 16 articles — ca 33,000 citations

Muti-Target Drugs: 16 articles — ca 8,000 citations

QSAR: 40 articles — ca 35,000 citations
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2000 - 2005
° Database (Cambridge, PubMed)
. Binding affinity 59/300 articles were
. QSAR (Chemical Similarity vs selected, cited more
Diversity) than 145k times
° HIV
. Bioinformatics
o Target-Based Discovery
[ ]

2006 - 2010
Translational Bioinformatics

70/300 articles were
selected, cited more
Database (DrugBank,PubChem) than 84k times
QSAR (Drug-like Concept)
Drug Repurposing

2011 -2014 48/300 articles were
¢ Database (OpenBabel, selected. cited more
. QSAR (Orphan Drug, ‘ than 59k times
. Personalized Medicine
. Drug Repurposing
. Network/System Pharmacology
. Big data and Chemical Space
[ ]

47/300 articles were
2015 - 2017 selected, cited more
. Database (ChEMBL, than 58k times
. IBM WATSON
. Virtual screening |.
[ ]

2018 - 2022 76/300 articles were
Artificial Intelligence selected, cited more
Data-Driven Conceptualization than 48k times

.

. Antibodies

[ CovID-19

.

= Bioinformatics = Drug Design Software = Predictive Models Chemical Space = Drug Repurposing
= Database = Multi-Targets Drug = Natural Molecule = Artificial Intelligence = QSAR

Figure 6. Variation in topics used in the field of in silico drug discovery methods over time. The
relative impacts of each time period over the entirely different subject areas were taken into
consideration.

The average number of drugs approved (NDA) by the USFDA per year since 1980 was 43 (series
1) while the average number of new chemical entities (NCE) per year was 14 (series 2) over the same
time period (Figure 7, panel A). The difference in terminology NDA vs. NCE lies in the fact that an
NDA can be a second-generation drug or any other modification (and/or bioisotere) of a previously


https://doi.org/10.20944/preprints202405.0601.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2024

d0i:10.20944/preprints202405.0601.v1

14

approved NCE structure, although NCE is referred to as a chemical moiety of the NDA. The USFDA
assesses candidate drugs under final review with two different designations from a panel of experts.
Of note, until 2012, the near totality of the NCEs was designated under the category of “Small
Molecules”, while after 2012 antibodies, large peptides, and proteins were introduced as NCEs.
However, as can be seen in Figure 5B, the very large availability of data did not necessarily lead to an
increase in the number of approved drugs nor the variety of chemical structures of the novel
approved therapeutics.
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Figure 7. Visualization of (A) the average number of drugs approved (NDA) by the USFDA per year,

and (B) big data.
Table 2. List of the most cited papers encompassing all topics.
Num . . . Citati | Ref
Topic Title First author Year
ber ons
1 Initial sequencing and analysis of the | HG [35]
Bioinformatics | human genome Consortium 2001 | 28696
2 The Cambridge Structural Database: a [36]
quarter of a million crystal structures and | FH Allen 2002 | 14390
Database rising
3 Bioconductor: open [37]
software development for RC
Bioinformatics ) ) 2004 | 13462
computational biology Gentleman
and bioinformatics
4 Database The human genome browser at UCSC W] Kent 2002 | 10583 [38]
5 Database The Cambridge structural database CR Groom 2016 7366 [39]
6 Database OpenBabel: An open chemical toolbox NM O Boyle 2011 6735 [40]
7 . . A review of feature selection techniques in [41]
Bioinformatics L ) Y Saeys 2007 5556
bioinformatics
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8 CHARMM General Force Field (CGenFF): A K [42]
force field for drug-like molecules
) ) Vanommesla 2010 5130
compatible with the CHARMM all-atom h
eghr
Software additive biological force fields 8
9 The Perseus computational platform for [43]
Bioinformatics | comprehensive analysis of omics data S Tyanova 2016 5068
10 DrugBank 5.0: a major update to the ) [44]
DS Wishart 2018 4951
Database DrugBank database for 2018
11 Accurate whole human genome sequencing [45]
Bioinformatics | using reversible terminator chemistry DR Bentley 2001 4691
12 Glide: A New Approach for Rapid, [46]
Accurate  Docking and Scoring. 2. | TA Halgren 2004 4234
Database Enrichment Factors in Database Screening
13 Lead- and drug-like compounds: the rule- [47]
CA Lipinski 2004 | 4213
Model Predict of-five revolution
14 Drug-like properties and the causes of poor [48]
) . . CA Lipinski 2000 | 3912
Model Predict solubility and poor permeability
15 Biopython: freely available Python tools for [49]
Bioinformatics | computational molecular biology and | PJA Cock 2009 3885
bioinformatics
16 PubChem substance and compound ) [50]
Database S Kim 2016 3853
databases
17 Bioinformatics | The druggable genome AL Hopkins 2002 3851 [51]
18 Model Predict Drug discovery: a historical perspective J Drews 2000 3582 [52]
19 New software for searching the Cambridge [53]
Structural Database and visualizing crystal | IJ] Bruno 2002 3581
Database structures
20 DrugBank: resource in silico drug discovery . [54]
DS Wishart 2006 3544
Database and exploration
21 From genomics to chemical genomics: new . [55]
M Kaneshisa 2006 3473
Bioinformatics | developments in KEGG
22 Network pharmacology: the next paradigm 56
, . P &Y Paracdis | AL Hopkins 2008 | 3438 | O
Chemical Space | in drug discovery
23 ChEMBL: a large-scale bioactivity database [57]
A Gaulton 2012 3390
Database for drug discovery
24 HMDB 3.0--The Human Metabolome [58]
DS Wishart 2012 3061
Database Database in 2013
25 Random forest: a classification and [59]
QSAR regression tool for compound classification | V Svetnik 2003 3052
and QSAR modelingD
26 HMDB 4.0: the human metabolome [60]
DS Wishart 2018 2928
Database database for 2018



https://doi.org/10.20944/preprints202405.0601.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2024

d0i:10.20944/preprints202405.0601.v1

16
27 Dru Dru repositioning:  identifyin and 61
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. DS Wishart 2008 2785
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Figure 8. Tree map of the most cited papers reported by topics.
Table 3. List of the most cited papers in Database and Web-based Library.
Number Title First Author | Year | Citation | Reference
1 The Cambridge Database: a quarter of a million [36]
FH Allen 2002 14390
structure and rising
The Human Genome Browser at UCSC W] Kent 2002 10583 [38]
New software for searching the Cambridge [53]
Structural Database and visualizing crystal | IJ Bruno 2002 3581
structures
4 Glide: A New Approach for Rapid, Accurate [46]
Docking and Scoring. 2. Enrichment Factors in | TA Halgren 2004 4234
Database Screening
5 DrugBank: a comprehensive resource for in silico [54]
DS Wishart 2006 3544
drug discovery and exploration
6 BindingDB: a  web-accessible database  of [63]
experimentally determined protein-ligand binding | T Liu 2007 1663
affinities
7 ChEBI: a database and ontology for chemical entities | K [64]
. . 2007 1155
of biological interest Deglyarenko
8 PubChem: Integrated platform of small molecules [65]
EE Bolton 2008 1537
and biological actives
9 DrugBank: a knowledgebase for drugs, drug actions, . [62]
DS Wishart 2008 2785
and drug targets
10 PubChem: a public information system for analyzing [66]
. L Y Wang 2009 1317
bioactivities of small molecules
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11 DrugBank 3.0: a comprehensive resource for [67]
C Knox 2010 2034
‘OMICS’ research on drugs
12 Conformer Generation with OMEGA: Algorithm [68]
and Validation Using High Quality Structures from | PCD 2010 1367
the Protein Databank and Cambridge Structural | Hawkins
Database
13 Open Babel: An open chemical toolbox NM O Boyle 2011 6735 [40]
14 ChEMBL.: a large-scale bioactivity database for drug [57]
] A Gaulton 2012 3390
discovery
15 HMDB 3.0—The Human Metabolome Database in . [58]
DS Wishart 2012 3061
2013
16 ZINC: a free tool to discover chemistry for biology | JJ Irwin 2012 2481 [69]
17 ChEMBL.: a large-scale bioactivity database for drug [57]
) A Gaulton 2012 1782
discovery
18 DrugBank 4.0: Shedding new light on drug [70]
V Law 2014 2103
metabolism
19 The Cambridge structural database CR Groom 2016 7366 [39]
20 PubChem substance and compound databases S Kim 2016 3853 [50]
21 The ChEMBL database in 2017 A Gaulton 2017 1731 [71]
22 DrugBank 5.0: a major update to the DrugBank [44]
DS Wishart 2018 4951
database for 2018
23 HMDB 4.0: the human metabolome database for [60]
DS Wishart 2018 2928
2018
24 PubChem 2019 update improved access to chemical [72]
S Kim 2019 2380
data
25 PubChem in 2021: new data content and improved [73]
S Kim 2021 1657
web interfaces
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Figure 9. Tree map of the sub-categories of the main topic: DATABASE/Web-based Library. The list
of the most cited papers encompassing all topics for Cambridge Crystallography, DrugBank,
PubChem, HGBUCSC, HMDB, OpenBabel, ChEMBL, Glide, and ZINC are shown.

Discussion, Limitations/Uncertainty

The availability of the many compounds documented to date (accounting for active fragments
of small and large molecules) has allowed exposure to a myriad of hypotheticals. The most significant
result of the “OMICS age” is the growing amount of information introduced by genomics and
proteomics in real-time. This wealth of data has provided innumerable targets that could theoretically
combine with as many hits for an equal number of active pharmaceutical ingredients [74].

In 2002, Oprea proposed a dataset of one million compounds tested via HTS. However, it would
appear that the probability of a compound reaching market status is one in a million [169] .

A mere 10 years later, PubChem had attained 89 million chemical entities in its database such
that 89 new drugs could theoretically be obtained as a maximum for this dataset, or one could search
for different targets in the same dataset and obtain 89 new drugs every time [75,76].

Millions of scientists from very different domains are familiar with the theory known as the
“Lock-Key Model”, the father of which is the 1908 Nobel Prize for Medicine laureate, Sir Paul Ehrlich.
The concept that one key can open a lock is at the forefront of molecular pharmacology and, in the
last ten years, has evolved into a much more complex paradigm in which a specific key (drug) can
unlock a series of locks not necessarily interrelated, exactly as in the case of a master key.

Sir Paul Ehrlich was aware that there is no dogma in science; in fact, he was the first to introduce
the concept of Zauberkugel ("magic bullet”). The technology that has been available in the last ten
years has shown the full applicability of this paradigm, more than a hundred years after its
enunciation, under the terminology of multi-target drugs.

Period #1 — “Testing the reliability of database vs. the selectivity concepts.”

Until the development of web-based library resources, the only force leading the global field of
in silico drug discovery was the analysis, via homemade software, of Quantitative-Structure-Activity-
Relationship (QSAR) studies, albeit via a limited private library of just a few thousand structures. The
principle behind the QSAR analysis was based on the chemical similarity of proven therapeutic
agents for the same diseases.



https://doi.org/10.20944/preprints202405.0601.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2024 d0i:10.20944/preprints202405.0601.v1

19

The availability of the first large web-based database, such as PubMed, compelled researchers
to introduce new methods in drug discovery, namely data mining and data integration.

In 2004, Pearsons and others [77] designed a good example of data integration among various
libraries, from genes vs. a series of bioactive compounds, to link these results to very specific cellular
targets or at least to understand whether any correlated pathways existed.

In 2005, Csermely and coll., [78] had already noted that despite the availability of new digital
tools in drug discovery, the additional amount of data was not contributing to generating more
therapeutical options. On the other hand, they began confirming the new paradigm of multi-target
drugs which was the real novelty of this new era of computer-assisted drug design. As stated by the
authors:

“At present, the goal is to:

(1) find a target of suitable function.

(ii) identify the ‘best binder’ by high-throughput screening of large combinatorial libraries
and/or by rational drug design based on the three-dimensional structure of the target.

(iii) provide a set of proof-of-principle experiments.

(iv)  develop a technology platform that predicts potential clinical applications.

However, despite all the careful studies and the considerable drug-development efforts
undertaken, the number of successful drugs and novel targets did not increase appreciably during
the past decade.”

Period #2 — “Looking for applications of novel drugs inside an old pharmacological space.”

In 2006, a multi-disciplinary team from Pfizer, [79] published a first-ever map of the known
pharmacological space at the time. The purpose of this colossal work was to plot the direction or best
fitting of more than 275,000 biologically active compounds vs. a library of 1,000 molecular targets.
The result of this experience was the introduction of the concepts of chemical promiscuity of
therapeutic agents for the same disease and degrees of draggability of cellular targets.

Another interesting novelty of this type of approach is the maturity of bioinformatics and

translational bioinformatics.

On another hand, the ensemble of this new evidence of non-pre-determinability of the biological
effect, or the obvious lack of exclusive selectivity for the “target”, has induced the purists of the
quantitative structure activity-relationship (QSAR) realm to introduce additional dimensions of

interactions. The QSAR hence shifted from a mere proprieties of the molecular scaffold (2D) up to
induced conformation of the target via environmental forces (3D up to 6D), Lill 2007 [80] and Furches
2010 [81].

Period #3 — “Data-driven drug discovery.”

The most successful result of the early 2010s in the field of drug discovery has been in admitting
that one approved drug can have multiple medical indications. This new paradigm based on the
concept of drug repurposing produced a record number of 37 designated and marketed orphan drugs
in only two years, from 2009-2010, Muthyala [82] .

The easy access to large libraries and real-time collaborative platforms with the major
pharmaceutical companies, together with the possibility of exchanging clinical information for new
medical indications without incurring legal issues, has fueled the exponential growth of publications
and thematic journals. The results of this enormous amount of data unintentionally catapulted drug
discovery into the big data era (Lusher 2014 [83]).

Paradoxically, these same digital tools, which were introduced to facilitate in silico drug
discovery, also became somewhat of an obstacle requiring the introduction of a new class of
researcher to be added to the medicinal chemists’ team, namely the data scientist dedicated to
managing and streamlining big data [84].

Period #4 — “Druggability: one drug and many targets”

The growing consensus for muti-target drugs and the search for specific genetic targets
dramatically changed the perspective and the scope of the medicinal chemist [85]. The total lack of
target selectivity is not due to the chemical moiety per se but rather to the dominant concept of
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network pharmacology and phenotypic selection [86]. While medicinal chemists usually rely on some
version of the “lock and key” paradigm to design novel therapeutics, modern pharmacology
recognizes that the mid- and long-term effects of a given drug on a biological system may depend
not only on specific ligand-target recognition events but also on the influence of the repeated
administration of a drug on cell-gene signature (Talevi 2015 [87], Lavecchia, 2016 [88]).

Period #5 — “Re-discovering the Use of Natural Molecules for Complex Diseases.”

Since 2018, drug repositioning methods have been leading the success of the entire sector of in
silico drug discovery, including the search for remedies for COVID-19 treatment. Indeed, COVID-19
is unequivocally a complex disease, consisting not only of a simple viral infection but a complicated

framework of symptoms and unpredictable transmissibility (as a result of the variants) with varying
outcomes [89] according to the different patient populations (de Oliviera et al. 2018 [90], Ramsay et
al. 2018 [91]).

Other fields of interest in this period include neurology [92], with Alzheimer’s disease leading
the topics for drug repurposing (Mesiti 2019 et al. (2019) [93]), as well as two other areas related to
namely seizures (Geets et al. (2019) [94]) and depression Buenz et al. (2018) [92].

In totally different pathways, cannabinoids (and Cannabis extracts) have resulted in a very
interesting natural remedy owing to the success of Epidolex™ in the treatment of seizures in children
Namdar et al. (2020) [95] [96].

Finally, following the re-discovering of natural therapy, the latest success in time is the drug
repurposing of classical abuse/recreational psychedelics such as psilocybin (and dried “magic
mushrooms” powder) for depression and PTDS (Mullowney et al. (2023) [97]).

Conclusion

The significant role of in silico tools has increased exponentially in the last ten years and has
markedly revolutionized the field of CADD and brought about technological evolution and recent
trends that have galvanized the search for new drugs. All in all, the search approach employed in this
review initially yielded a comprehensive set of 900 non-duplicated papers. In Part 1, our focus shifts
to the examination of the top 300 papers, identifying the most cited and high-quality 97 articles
pertinent to the realm of in silico drug discovery.

A final consideration should also be given as to how these technological trends are affecting the
socio-economic aspects of pharmaceutical companies, including;:

e Big Data: Data Science, Data Integration and Data Mining

The result of these disciplines is the continuing improvement in IT infrastructure and software.
Incorporating advanced Al and ML techniques can enhance in silico drug discovery by rapidly
analyzing vast amounts of data, predicting molecular interactions, and optimizing drug candidates
with higher precision and efficiency.

e Cheminformatics: classification, pattern recognition and clustering

The result of these disciplines is the improvement in current knowledge regarding the mechanisms
of actions of drugs owing to a better understanding of their QSAR.

e Bioinformatics and Translational Bioinformatics

The result of these disciplines is the seeking of new molecular targets and alternative
physio/pathological mechanisms downstream. In particular, these disciplines are pivotal for the
understanding of epigenetics and meta-genomics phenomena.

e Drug Repurposing

The primary scope of this discipline is the life extension of expired patent applications. In practice,
the controversy related to patent issues and the ensuing transfer of Drug Master Files (DMF) have
accelerated the need for collaborative models among pharmaceutical stakeholders. The result is the

shrinking of the required internal R&D workforce.
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e Chemical Space

The chemical space is the ensemble of all possible chemical structures, which is believed to contain
up to several billion molecules of potential interest for drug discovery as mentioned in this review.
One proposed means to explore chemical space is based on the selection of virtual libraries of
common scaffold-tree algorithms (grouping) that are overlapped to other “organized maps” of
chemical-physical information (pharmacokinetics) and/or chemical interactions
(pharmacodynamics). The result of this “spatial analysis” has been used in the last 20 years to
generate a new discipline known as Network Medicine or Network Pharmacology. Conversely to
drug repurposing strategies in which one molecule (“old API”) is investigated for a new medical
indication following the principle of one drug for one targe the results in Network Pharmacology
approaches to drug discovery are completely different. Indeed, in terms of the definition of chemical
space, there are billions of potential drugs that could virtually match billions of targets. The best
matching combinations are hence known as multi-target drugs (MTD), including in Food, Aroma,

and other fields.
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