
Article Not peer-reviewed version

Resolving the Cosmological Constant

Problem: Black Hole Entropy and Finite

Geometry

Arkady Bolotin *

Posted Date: 18 February 2025

doi: 10.20944/preprints202502.1359.v1

Keywords: cosmological constant problem; vacuum catastrophe; dimensional analysis; Hubble length; black

hole entropy; finite geometry; hodons

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/3601398


Article
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Hole Entropy and Finite Geometry
Arkady Bolotin

Ben-Gurion University of the Negev, Beersheba (Israel); arkadyv@bgu.ac.il

Abstract: The cosmological constant problem remains one of the most profound mysteries in physics.
By effective field theory and dimensional analysis, Λ, the cosmological constant, is expected to be of
the order of the Planck mass squared. Accordingly, the product of Λ and the Planck length squared
must be nearly 1. By contrast, cosmological observations indicate that this product is close to the
square of the ratio of the Planck length to the Hubble length ℓH , meaning that Λ is of the order ℓ−2

H .
Thus, the cosmological constant problem can be framed as the question of how ℓH gets involved
in the prediction for Λ. The present paper demonstrates that such an involvement is a result of a
straightforward combination of the black hole entropy bound with the assumption of a finite number
of hodons, the fundamental elements of physical space.

Keywords: cosmological constant problem; vacuum catastrophe; dimensional analysis; Hubble length;
black hole entropy; finite geometry; hodons

1. Introduction
The cosmological constant problem is one of the most significant unsolved problems in physics.

Originally introduced as Λ by Albert Einstein in his field equations of General Relativity (GR) to allow
for a static universe, the cosmological constant (CC) corresponds to a constant energy density present
everywhere, both in regions of empty space (the vacuum) and in regions that contain matter and
radiation. Additionally, quantum field theory (QFT) posits that the vacuum is permeated with the
zero-point energy from quantum fluctuations. This suggests that the zero-point energy contributes to
the CC [1–3].

Now, recall that in effective field theory (EFT), it is common to estimate the contributions to
physical quantities based on the energy scale of the theory. The Planck mass mP represents the natural
energy scale where quantum gravitational effects become significant. On the other hand, the CC has
the dimensions of an inverse area (inverse square length). In natural units (h̄ = c = 1), the Planck mass
squared, m2

P, has dimensions of inverse length squared, which matches the dimensions of Λ. So, by
EFT and dimensional analysis, Λvac, the contribution from zero-point energy to Λ, is expected to be of
the order m2

P [4]. Accordingly, the product of Λvac and the Planck length squared, ℓ2
P, must be nearly 1:

Λvac · ℓ2
P ∼ 1 . (1)

This means that the CC is expected to be of order ℓ−2
P ∼ 1070 m−2. By contrast, cosmological observa-

tions deliver the number

Λvac · ℓ2
P ∼ 10−122 , (2)

which indicates that the value of the CC must be Λ ∼ Λvac ∼ 10−52 m−2, i.e., 122 orders of magnitude
smaller than predicted by EFT and dimensional analysis [5,6].

This significant discrepancy embodies the CC problem, underscoring a knowledge gap in our
understanding of the interplay between GR and quantum mechanics. To bridge this divide, various
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hypotheses and research methods are being explored, including modifications to GR, the introduction
of new particles or fields, and a better understanding of quantum field behavior in curved spacetime.

The CC problem can be stated in an alternative manner. Notably, as highlighted in works such as
[7,8], the value 10−122 is surprisingly close to the square of the ratio of the Planck length to the radius
of the observable universe. This radius is approximately equivalent to the Hubble length, defined as
ℓH ≡ c · H−1

0 (where H0 is the Hubble constant, i.e., the present value of the Hubble parameter H) [9].
Consequently, the product of Λvac and ℓ2

P can be expressed as:

Λvac · ℓ2
P ∼

(
ℓP
ℓH

)2
. (3)

Hence, the reason this product is nearly zero rather than close to one is that ℓP ∼ 10−35 m is very much
less than ℓH ∼ 1027 m. The challenge, therefore, lies in explaining how the Hubble length gets involved
in the prediction for Λvac.

2. Zel’dovich’s Ansatz
To address this challenge, the paper [8] proposes utilizing Zel’dovich’s Ansatz. This hypothesis,
proposed by Yakov Zel’dovich, asserts that the observable vacuum energy density ρvac originates from
the gravitational energy of virtual particle-antiparticle pairs generated and annihilated in the vacuum
state. In keeping with this ansatz, the paper suggests that

ρvac(ℓ) ∼
G · m2(ℓ)

ℓ
· 1
ℓ2 , (4)

where ρvac(ℓ) and m(ℓ) represent the vacuum energy density and the mass of the particles, respectively,
as perceived at a particular length scale ℓ. Defining m(ℓ) and Λvac(ℓ) as

m(ℓ) ∼ h̄
c · ℓ , (5)

Λvac(ℓ) ∼
G
c4 · ρvac(ℓ) , (6)

one easily gets

Λvac(ℓ) · ℓ2
P ∼

(
ℓP
ℓ

)6
. (7)

According to the studies [10,11], the minimum observable length scale is not the Planck length itself
but a much larger one derived from the Bekenstein-Hawking entropy (black hole entropy) bound,
namely,

ℓmin = 3
√
ℓ · ℓ2

P . (8)

By substituting ℓ by ℓmin in Eq. (7) and assuming that the CC is taken at the radius of the observable
universe, and therefore

Λvac ≡ Λvac(ℓH) , (9)
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the result (3) is obtained:

Λvac · ℓ2
P ∼

 ℓP

3
√
ℓ · ℓ2

P

6

=

(
ℓP
ℓH

)2
. (10)

To critically evaluate this inference, it is essential to consider the established critiques of Zel’dovich’s
Ansatz. A primary criticism suggests that the ansatz may oversimplify the intricate interactions
inherent in QFT, neglecting to account for all variables that affect vacuum energy density [12]. As a
result, more comprehensive models may be necessary to accurately capture this phenomenon.

Additionally, some critics argue that Eq. (8) captures an unconditional uncertainty associated
with a single geodesic [13]. They assert that relying on the uncertainty of just one geodesic length to
assess the intrinsic uncertainty of the space-time metric is misguided. To accurately determine this
intrinsic uncertainty, one must account for the simultaneous uncertainties of all geodesics or, at the
very least, a pertinent subset of them. Ignoring the correlations among these uncertainties could lead
to a substantial overestimation of the uncertainties in spacetime curvature.

Notwithstanding this criticism, the black hole bound entropy seems promising for understanding
Eq. (3).

3. Causal Set Theory
In the paper [14], Eq. (3) is derived using the concept of a fluctuating cosmological constant based on
the causal set hypothesis. Specifically, the CC is proposed to oscillate around zero as:

Λ = Λ + ∆Λ , (11)

where Λ = 0 is the mean value of Λ and ∆Λ is the magnitude of its fluctuations stemming from the
underlying discreteness of spacetime. This discreteness results in a finite number N of spacetime
elements, making spacetime volume V directly reflect this count. Assuming fluctuations in N are
of Poisson-type, the typical magnitude of fluctuations in the spacetime volume V is expected to be
∆V = ±

√
V .

Suppose that Λ can be determined to a certain extent, with fluctuations ∆Λ decreasing as V
increases. Consequently,

∆Λ ∼ 1√
V

. (12)

Since a volume in spacetime (which has 4 dimensions) scales with the fourth power of the Hubble
length ℓH , one finds

Λ = ∆Λ ∼ 1
ℓ2

P
, (13)

which results in Eq. (3).
It is important to recognize that the assumption of Λ = 0 may not be consistent with contemporary

understanding [15]. This assumption suggests that, on average, the contribution from zero-point energy
offset other contributions, which appears to be quite improbable. Alternatively, assuming Λ = 0
would indicate the existence of a mechanism or principle that, on average, suppresses the impact of
zero-point energy on the cosmological constant to zero – a concept that lacks support from established
physics.

One significant criticism pertains to the discrete nature of spacetime in causal set theory [16].
This inherent discreteness may conflict with the continuous spacetime observed at macroscopic scales.
Consequently, this raises important questions regarding how the discrete structure of causal sets can
lead to the familiar, continuous spacetime characterized by GR [17].
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Despite the criticism, the concept of a finite number of spacetime elements seems to have promise
in clarifying Eq. (3).

In the present paper, it will be demonstrated that Eq. (3) is precisely what one obtains by a
straightforward combination of the black hole entropy bound with the assumption of a finite number
of the fundamental elements of physical space.

4. Finite Geometry
We will begin by defining a discrete space as one in which the number of the fundamental

elements within any reasonably shaped (e.g., convex) region of finite volume is finite. As is customary,
these fundamental elements will be referred to as hodons [18,19]. In the context of discrete geometry,
hodons are regarded as the smallest, indivisible units constituting the fabric of the universe.

For any finite geometry proposal to be taken seriously, it must address three critical issues: defining
a distance function, managing anisotropy, and identifying hodons.

Firstly, defining a distance function needs to resolve the “Pythagoras trouble”, an objection raised
by Weyl [20]. This objection argues that any regular (non-overlapping) tiling of space with randomly
shaped hodons would not approximate Euclidean geometry because Pythagoras’ Theorem would not
hold, even approximately.

Second, managing anisotropy involves handling direction-dependent properties in finite geometry.
The isotropy problem exists because any regular hodon shape will have preferred directions, making a
discrete space inherently anisotropic.

Third, identifying hodons involves determining their measurable attributes. Unlike continuous
geometry points, which lack size, volume or any other quantifiable characteristic, hodons in finite
geometry must have measurable properties. The problem is determining which attributes to identify
with hodons.

Various ways to define a distance function and tackle anisotropy have been suggested (see for
example [21]). However, instead of adopting any of these methods, the paper [22] suggests representing
a finite geometry using classical (continuous) space. This representation involves modelling or
interpreting a discrete, or finite, geometric structure within the familiar framework of continuous
classical geometry, such as Euclidean space. Specifically, this entails mapping or translating the discrete
elements and properties of a finite geometry into the continuous framework of classical geometry.

Such an approach appears especially sensible as it closely mirrors the measurement process in
quantum mechanics. This analogy can be understood through several key points:

1. Interpretation through Classical Physics: In quantum mechanics, a classical measuring apparatus
is essential for interpreting and understanding quantum results in terms of classical physics. The
act of measurement collapses the quantum wave function, producing a definite outcome that can be
comprehended within the framework of classical physics.

2. Connecting Quantum Phenomena with Classical Experiences: Without a classical measuring
apparatus, it would be problematic to connect quantum phenomena with our everyday classical
experiences. The apparatus acts as a bridge, translating the abstract, probabilistic nature of quantum
mechanics into tangible, observable results that align with our classical intuition.

3. Representation of Finite Geometry: Similarly, in the context of finite geometry, a classical measuring
apparatus – by being part of our everyday continuous domain – provides a means to represent a finite
geometry of quantum scale using classical (continuous) space. This allows us to apply our classical
understanding of lengths, angles, and distances to discrete space-time.

4. Connecting Finite Geometry with Continuous Experiences: Without classical geometry, it would be
problematic to connect the finite geometric nature of space with our everyday continuous experiences.
Classical geometry serves as an interpretive framework that enables us to make sense of a discrete
space within the context of a continuous geometrical model.
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Thus, just as a classical measuring apparatus is crucial for translating quantum phenomena into
classical terms, classical geometry is essential for bridging the gap between finite geometry and our
continuous spatial experiences. This analogy underscores the importance of classical frameworks in
making sense of complex, abstract domains and highlights the interconnectedness of different areas of
physics.

To address the problem of identifying hodons, it seems reasonable to apply Wheeler’s idea that
the fundamental building blocks of reality are informational rather than material, known as the “It
from Bit” concept [23]. In line with this concept, each hodon, as a fundamental component of the
universe, should be identified with a bit of information.

Since a hodon is essentially a unit of information, it does not require a definite shape when
represented in classical space. Consequently, questions about aspects of a hodon, such as its boundary,
are not applicable.

This implies that in classical space, the representation of exactly n hodons within a region can
only be estimated probabilistically. Thus, one can only assess the likelihood that a particular region of
classical space contains n hodons (n bits of information).

To be consistent with the causal set hypothesis [24], the correspondence between the underlying
finite geometric structure of physical space and the classical space that represents it can be defined via
a Poisson process of “sprinkling”. This process uses a Poisson distribution to determine the number of
hodons (units of information) mapped into a given region of classical space. This ensures that hodons
are distributed randomly and independently.
In particular, the probability of sprinkling n hodons into a classical region of measure M, where M
represents a general measure of a region, which could be specified as area (A) or volume (V) depending
on the context, is

P(n) =
(ρM ·M)n · e−ρM ·M

n!
, (14)

where ρM is the density of the sprinkling, so that the product ρM · M is the expected number of
hodons mapped into the classical region.

5. Black Hole Entropy Bound
Consider a Riemannian manifold R (i.e., a smooth manifold equipped with a Riemannian metric,

which allows for the measurement of lengths, angles, and distances). Let R be a region in R and δR
its boundary, with measures V(R) and A(δR) respectively. Then, provided that ρV(R) · V(R) and
ρA(δR) · A(δR) are the expected numbers of hodons (i.e., the expected amount of information) mapped
into the region R and its boundary δR, the expected entropy in R and δR can be defined as:

H(R) = kB · ρV(R) · V(R) , (15)

H(δR) = kB · ρA(δR) · A(δR) . (16)

If R is the region of a black hole and δR is the event horizon (the boundary of the region of a black
hole), then the entropy assigned to the black hole to comply with the laws of thermodynamics as
interpreted by external observers (known as the Bekenstein-Hawking entropy or black hole entropy
[25,26]) is given by

SBH = kB · 1
4ℓ2

P
· A(δR) . (17)
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Assuming that 1
4ℓ2

P
·A(δR) is the expected number of hodons mapped onto the boundary δR and that

a black hole is the most entropic object one can put inside the boundary δR, we find

N
(
V(R)

)
≤ 1

4ℓ2
P
· A(δR) , (18)

where N
(
V(R)

)
= ρV(R) ·V(R) is the expected number of hodons mapped inside the boundary δR.

The above relation represents the black hole entropy bound in the context of finite geometry.

6. Cosmological Constant
Recall that according to QFT, each point in space is associated with the zero-point energy given by

E0 = h̄ω
2 , where ω is the angular frequency. If we assume that space is discrete, this implies that each

unit of information (i.e., hodon) must also be identified with the zero-point energy E0 in accordance
with QFT.

Allowing that all angular frequencies ω are alike, the vacuum energy present in the volume V(R)

can be expressed as the sum of all hodons mapped into V(R):

Evac
(
V(R)

)
= ∑

k

h̄ωk
2

=
h̄ω

2
· N

(
V(R)

)
. (19)

As acknowledged, on large scales, the space in which the universe exists is well approximated as
three-dimensional and flat [27]. Given this, the Riemannian manifold R representing the universe can
be considered to have a flat geometry, meaning its Riemannian metric corresponds to the standard
Euclidean space. Similarly, the region RU of R representing the space of the observable universe can
be viewed as a 3-dimensional Euclidean ball with the radius RU ≈ 3ℓH .

Naturally, the vacuum energy present in the observable universe can be expressed as the product
of the vacuum energy density ρvac and the volume of the observable universe V(RU):

Evac
(
V(RU)

)
= ρvac · V(RU) , (20)

where

ρvac =
c4Λvac

8πG
. (21)

Conceding that the characteristic length L(R) defining the linear scale of the region R is the ratio of
the region’s volume V(R) to the area A(δR) of the region boundary, i.e.,

L(R) =
V(R)

A(δR)
, (22)

and assuming that the angular frequency ω is given by the expression

ω =
2πc

L(R)
, (23)

the expected number of hodons mapped into the observable universe can be evaluated as

N
(
V(RU)

)
=

2
h̄ω

· Evac
(
V(RU)

)
=

Λvac

ℓ2
P

· V2(RU)

8π2 · A(δRU)
. (24)
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Substituting this evaluation into the black hole entropy bound (18), we find

Λvac ≤ 2π2 · 1
L2(RU)

. (25)

Since the order of magnitude of 2π2 is 101 and the linear scale of a 3-dimensional Euclidean ball with
the radius RU is defined as

L(RU) =
RU
3

≈ ℓH , (26)

we finally get

Λvac ≲ 101 · 1
ℓ2

H
. (27)

This indicates that the predicted upper limit of Λvac is reasonably close to the observed limit, Λvac ∼
ℓ−2

H . To be precise, the predicted and observed values that Λvac can reach are within an order of
magnitude of each other.

7. Concluding Remarks
It is instructive to consider what classical region models (represents) a single hodon.
From the assumption that 1

4ℓ2
P
·A(δR) is the expected number of hodons mapped onto the bound-

ary δR follows that a region of area 4ℓ2
P represents a single hodon on a surface. In symbols,

A(δRhodon) = 4ℓ2
P . (28)

Supposing that this region is a sphere, its radius must be

Rhodon =
ℓP√

π
. (29)

To find what region represents a single hodon in space, we can use the black hole entropy bound.
Indeed, since

V(Rhodon) =
V(RU)

N
(
V(RU)

) , (30)

from Eq. (18) it follows that

V(Rhodon) ≥
V(RU) · 4ℓ2

P
A(δRU)

. (31)

Thus, a region representing a single hodon in the space of the observable universe has the volume:

V(Rhodon) ≳ ℓH · 4ℓ2
P . (32)

Again, supposing that this region is a sphere, its radius ought to be:
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Rhodon ≳
3

√
3ℓH · ℓ2

P
π

. (33)

Comparing this with Eq. (29) reveals that the radius of A(δRhodon), the surface area of the sphere
representing a single hodon, differs from the radius of V(Rhodon), the volume of the same sphere. This
nonsensical situation shows that a true discrete geometry cannot be represented by classical space. In
particular, a hodon cannot be represented by a regularly shaped region in Euclidean geometry.

Using the prediction(27) and the volume of a single hodon V(Rhodon), the upper limit on the
product of Λvac and ℓ2

P can be estimated by dimensional analysis as

Λvac · ℓ2
P ∼

ℓ6
P

V2(Rhodon)
. (34)

Where a hodon to be represented in Euclidean space by a sphere of the Planck volume V(Rhodon) ∼ ℓ3
P,

the product Λvac · ℓ2
P would be of order 1 making it “the worst theoretical prediction in the history of

physics” [28]. However, due to the irrepresentability of hodon in continuous space, such a prediction
is not applicable.

In conclusion, the theoretical framework of finite geometry, along with the black hole entropy
bound, appears to capture key elements needed to solve the cosmological constant problem. Nonethe-
less, further refinement may enhance the precision of Λvac prediction.
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