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Abstract: The changing of land use and land cover (LULC) are both affected by climate and
human activity and affect climate, biological diversity, and human well-being. Accurate and timely
information about the LULC pattern and change is crucial for land management decision-making,
ecosystem monitoring, and urban planning, especially in developing economies undergoing
industrialization, urbanization, and globalization. Biodiversity degradation and urban expansion
in eastern China are research hot-spots. However, the influence of LULC changes on the region
remains largely unexplored. Here, an object-based and multi-temporal image analysis approach
was developed to detect how LULC changes during 1985-2015 in the Tiaoxi watershed (Zhejiang
province, eastern China) using Landsat TM and OLI data. The main objective of this study is to
improve the accuracy of unsupervised change detection from object-based and multi-temporal
images. To this end, a total of seven LULC maps are generated with multi-temporal images. A
random stratified sample design was used for assessing change detection accuracy. The proposed
method achieved an overall accuracy of 91.86%, 92.14%, 92.00%, and 93.86% for 2000, 2005, 2010,
and 2015, respectively. Nevertheless, the proposed method, in conjunction with object-oriented
and multi-temporal satellite images, offers a robust and flexible approach to LULC changes
mapping that helps with emergency response and government management. Urbanization and
agriculture efficiency are the main reasons for LULC changes in the region. We anticipate that this
freely available data will improve the modeling for surface forcing, provide evidence of changes
in LULC, and inform water-management decision-making.

Keywords: Land use and land cover; Classification; Object-based change detection; Multi-
temporal image analysis; Landsat; Tiaoxi

1. Introduction

Land use and land cover (LULC) changes are important ingredients in global envi-
ronmental change [1]. Land cover is an essential climate variable that impacts numerous
environmental processes and patterns ranging from albedo and hence climate to zoo-
geographic distributions and hence patterns of biodiversity. Such changes are usually
caused by human activities (e.g., deforestation, urbanization, agriculture intensification,
overgrazing, and subsequent land degradation), however, natural factors can also con-
tribute to these changes [2]. People’s responses to economic opportunities, as mediated
by institutional factors, drive land-cover changes [3]. The rapid development of the
economy requires LULC information for the efficient management of the environment
and living conditions. Therefore, the time series of legacy land use maps are needed for
the quantification of changes [4]. The phenological information for vegetation derived
from multi-seasonal imagery is very useful for mapping tree species [5,6], forest cover
[7,8], crop types [9,10], bush encroachment [11], grassland [12], and LULC changes
[13,14].

Nowadays, the amount and availability of multi-temporal images are experiencing
a fast increase. This is due to the increasing number of space missions, the increases
in data temporal resolution, as well as free accessible data policy adopted for missions
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like Landsat and Sentinel. Multi-temporal image analysis (MTIA) becomes more eco-
nomically viable. Besides, new data analysis paradigms such as deep learning [15-17]
are being used to classify and discriminate multi-temporal images. Rather than tradi-
tional classifiers such as the maximum likelihood classifier, discriminative classifiers
based on k-nearest neighbor (KNN), support vector machine (SVM), extreme learning
machine (ELM) and random forest (RF) play important roles in supervised classification.
MTIA technology has been prompted to play a key role in the study of LULCs under
anthropogenic influences such as urban expansion and deforestation [18].

The traditional change detection method is pixel-based image analysis (PBIA). It
detects the occurrence of changes based on the comparison of pixels without considera-
tion of spatial context or membership to real-world objects. Object-based image analysis
(OBIA), which operates at the scale of real-world objects rather than pixels, offers a
means of analyzing Earth observation (EO) data in a realistic context and integrating
associated ancillary information to support real-world applications [19]. Object-based
image mapping reduces noise in the original image (i.e., erroneous pixel values, often re-
ferred to as the "salt and pepper" effect) to characterize the features of interest effectively
[20], and these can exploit landscape features to increase the accuracy and usability of
EO-derived products [19]. The advantage of object-based classification is that it groups
neighboring pixels into meaningful areas according to their spatial and spectral [21].
According to the most recent studies, OBIA methods have been more effective and
reliable than the traditional PBIA methods for image processing [22-26].

China’s urbanization process has followed a unique course and transformed the
country since the early 1980s. Tremendous LULC changes have occurred in many coastal
regions of China such as the Yangtze River Delta region [27] and the Pearl River Delta
region [28]. Taihu Lake is the third-largest freshwater lake in China and serves as a
drinking water source for 30 million residents. It is also the region with the most rapid
economic development and the most intense land-use change. Tiaoxi River is one of
the main rivers connected to Taihu lake and contributes >60% of the source water [29].
The ecological environment of the Tiaoxi River basin has been seriously disturbed by
anthropogenic activities. The region is more representative of the eastern part of China.
Research in this region has helped to shed light on the urbanization process in eastern
China in recent years, and these experiences are useful for planning and management in
underdeveloped areas of central and western China.

Remote sensing (RS) and Geographic Information System (GIS) are two effective
tools for detecting and analyzing land cover and its changes over a certain period through
integrating spatial and temporal windows of the study area. To determine changes over
time, land cover maps for several different years are needed and resultant analysis helps
the respective administrator to understand the current landscape along with changing
patterns [30]. It also helps to understand and evaluate past management decisions as
well as predict possible effects of their current decisions before their implementation
[31]. The objective of this research was to utilize GIS and RS applications to find out
the extent of changes occurring over the last 30 years in the Tiaoxi watershed, China.
Additionally, the specific objectives included: (1) Delineating the watershed of Tiaoxi
River; (2) Detecting chronological LULC changes combined with MTLA and OBIA
methods in Tiaoxi watershed from 1985 to 2015; (3) Determining shift in LULC categories
through spatial comparison of LULC data produced (4) Exploring the potential of
combining GIS and RS to study the spatial distribution of different LULCs.

2. Study area

The Tiaoxi watershed, ranging from 30° 07'N to 31° 11'N latitude and from 119°
13’E to 120° 19E longitude, is part of the southern catchment of Taihu Lake, in the
northern part of Zhejiang Province, the eastern coast of China (Figure 1). The water-
shed covers 5,814 km? and has 2.3 million residents. This region is characterized by a
semitropical climate with an average annual temperature of 15.6 °C and rainfall of 1,460
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mm, respectively. The rainfall is highly seasonal, with 60-70% falls during spring and
summer. The region’s topography is slanted downward from southwest to northeast,
and the mountain heights decrease from 1,500 meters to merely 3-5 meters above the
sea level from southwest to northeast, with an open-pit mine whose elevation is only
minus 36 meters above sea level. Forest is the dominant land-use type in the study area
of the Tiaoxi watershed, which covers approximately 60% of the land within the basin.
Farmland, orchard, tea garden, surface waters, and urban areas occupy the rest of the
watershed [32]. As one of the most active areas in China’s economy, the agricultural
production structure of this region has gradually changed, and the planting of cash crops
has gradually replaced grain crops. In this study, land uses were categorized into the
following 6 groups including (1) Forest, (2) Farmland, (3) Garden-plot, (4) Built-up, (5)
Water, and (6) Barren, respectively. The forest includes pure bamboo forests, bamboo
mixed with Pine, and broad-leaved forest. Farmland mainly consists of rice paddies
and some vegetable fields. The garden-plot is dominated by tea plantations, as well
as economic shrubs such as blueberry, flowers, and nursery stock. Build-up includes
impervious surfaces such as roads, roofs, and other paved surfaces in urban and rural
areas. Water area includes rivers, lakes, reservoirs, and aquaculture ponds. Barren
land includes exposed soil from abandoned open-pit mines and some undeveloped
construction sites.

Starting in 1978, when China adopted its open-door policy, rapid socioeconomic
development and population growth occurred in the Tiaoxi watershed. The Gross
Domestic Product (GDP) was less than 0.7 billion RMB in 1978 but exceeded 206 billion
RMB in 2015. Remarkably, rapid socioeconomic development and a lack of land planning
led to a disorderly and large-scale rural settlement expansion for a long period [33],
which exerted significantly negative impacts on soil resources. Given these facts, the
Tiaoxi watershed is an atypical example as regards the characterization of the impacts of
anthropocentric activities on LULC in modern China.
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Figure 1. The location of Tiaoxi watershed, Zhejiang, China, DEM, and river lines.

3. Materials and Methods
3.1. Data source

The period of study in this paper is from 1985 to 2015, and land use data were
obtained based on historical Landsat TM and OLI satellite images every season in 1985,
1990, 1995, 2000, 2005, 2010, and 2015. The detail of the satellite images is given below
(Table 1). To distinguish the main crops from the tea garden, multi-temporal images
were selected, including spring, summer, autumn, and winter [34]. The digital elevation
model (DEM) dataset and digital line graph (DLG) were both provided by the Chinese
National Bureau of Surveying and Mapping. The spatial resolution of satellite images
and DEM are at 30 x 30 m resolution. Urban planning and socioeconomic data were
used as driving factors of the LULC change detection process.
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Table 1. Different data types used in this study.
ID Data type Source Resolution Data cover
1 Landsat4TM USGS 30m 1989
2 Landsat5TM USGS 30 m 1985-2010
3 Landsat 8 OLI USGS 30 m 2015
4 Digital Orthophoto Chinese National Bureau of 1m 1985-2010
Map (DOM) Surveying and Mapping
5 Digital Elevation Chinese National Bureau of 30m
Model (DEM) Surveying and Mapping
6 Digital Line Graph Chinese National Bureau of 1:50000
(DLG) Surveying and Mapping
7 Zhejiang soil database  Zhejiang University 1:50000
8 City Planning Hangzhou/Huzhou Plan- 2015-2020
ning Bureau
9 Socioeconomic data 6 Counties statistical year- every 1984-2015
book year

3.2. Detection indexes

The Normalized Difference Vegetation Index (NDVI) [35], the Normalized Differ-
ence Water Index (NDWI) [34], and the Normalized Difference Built-up Index (NDBI)
[36] are the most commonly used indexes for detection vegetation, water, and built-up.
The NDVI, MNDWI, and NDBI are expressed as follows:

NDVI = (Nir — Red) / (Nir + Red) 1)
MNDWI = (Green — Mir) / (Green + Mir) 2)
NDBI = (Mir — Nir)/(Mir + Nir) ©)]

Where Green is a green band such as TM band 2 and OLI band 3, Red is a red band such
as TM band 3 and OLI band 4, Nir is a near-infrared band such as TM band 4 and OLI
band 5, and Mir is a mid-infrared band such as TM band 5 and OLI band 6.

3.3. Classification

This study implemented an object-based rule set that uses multi-temporal remote
sensing images, spectral bands, spectral indices, and geometry to characterize agricul-
tural and related LULC in the Tiaoxi watershed. The multi-seasonal remote sensing
data set consists of four image dates from a single year. Generally, multi-spectral and
seasonal imagery can largely support higher classification accuracy than single-date
imagery [37]. The first step of the analysis is to generate homogeneous image objects or
segments using the multi-resolution segmentation algorithm (MRSA) with parameters
of scale, color, shape, smoothness, and compactness in eCognition (Figure 2). In the
results of segmentation, the consistency of gray, the smoothing of the boundary, and the
connectivity are fulfilled [38]. Once the image is segmented, the value of the discriminant
feature that is going to be thresholded is calculated and stored for each segment as an
object variable. Then we move on to classifying the segments. We defined 6 classes of
LULC. We use threshold classification methods to identify water, build-up, barren, and
forest. Then we use a support vector machine (SVM) classifier to obtain farmland and
garden-plot.
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Figure 2. Segmentation parameters and main usage of each level.

3.4. Accuracy assessment

To know where and when LULC changes occur, the primary source for reference
data is Landsat images themselves [39]. High spatial resolution images from Google
Earth and ground-truth data can help manual interpretation of the land cover classes [40].
Their high spatial resolution helps determine LULC changes at longer time intervals.
Ground-truth data is used to evaluate how well the classification represents the real
world. A random stratified sample design was used for assessing change detection
accuracy [41].

4. Results
4.1. Accuracy assessment

For accuracy assessment, 2800 points were searched randomly from Google Earth
and Digital Orthophoto Map for a random point table. From these points, the error
matrix was produced to assess errors in the final classification. The summary of the
error matrix of the Tiaoxi watershed for the years 2000, 2005, 2010, and 2015 are shown
in Table 2, Table 3, Table 4, and Table 5 respectively. Due to the lack of historical data,
the accuracy test of the first three periods of land use maps was not performed. The
overall accuracy for supervised classification images of 2000, 2005, 2010, and 2015 was
found to be 91.86%, 92.14%, 92.00%, and 93.86%, and Kappa value for those years was
0.9039, 0.9071, 0.9055, and 0.9261 respectively. These Kappa values depict that land use
classification accuracy is acceptable [42].
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Table 2. Error matrix showing the accuracy of 2000 supervised land use classification.
Reference Data PA UA
Classified Barren Build Forest Garden Farmland Water | Total (%) (%)
Data plot
Barren 92 11 0 5 0 0 108 92.0 85.2
Build 4 133 0 2 0 0 139 88.7 95.7
Forest 2 1 139 3 0 4 149 92.7 93.3
Garden plot | 1 2 10 87 3 1 104 87.0 83.7
Farmland 0 2 1 3 97 0 103 97.0 94.2
Water 1 1 0 0 0 95 97 95.0 97.9
Table 3. Error matrix showing the accuracy of 2005 supervised land use classification.
Reference Data PA UA
Classified Barren Build Forest Garden Farmland Water | Total (%) (%)
Data plot
Barren 93 7 0 5 0 0 105 93.0 88.6
Build 5 140 0 2 0 0 147 93.3 95.2
Forest 1 0 139 3 0 2 145 92.7 95.9
Garden plot | 0 1 10 85 5 2 103 85.0 82.5
Farmland 0 1 1 5 95 0 102 95.0 93.1
Water 1 1 0 0 0 96 98 95.0 98.0
Table 4. Error matrix showing the accuracy of 2010 supervised land use classification.
Reference Data PA UA
Classified Barren Build Forest Garden Farmland Water | Total (%) (%)
Data plot
Barren 90 8 0 3 1 0 102 90.0 88.2
Build 4 136 0 1 0 0 141 90.7 96.5
Forest 2 1 135 4 0 2 144 90.0 93.8
Garden plot | 2 2 13 88 1 1 107 88.0 82.2
Farmland 1 2 2 4 98 0 102 98.0 91.6
Water 1 1 0 0 0 97 99 97.0 98.0
Table 5. Error matrix showing the accuracy of 2015 supervised land use classification.
Reference Data PA UA
Classified Barren Build Forest Garden Farmland Water | Total (%) (%)
Data plot
Barren 93 12 0 1 0 0 106 93.0 87.7
Build 3 133 1 1 1 0 139 88.7 95.7
Forest 0 0 142 7 1 0 150 94.7 94.7
Garden plot | 2 0 4 86 8 1 101 86.0 852
Farmland 1 4 3 3 90 3 104 90.0 86.5
Water 1 1 0 2 0 96 100 96.0 96.0

4.2. Land use classification and Temporal changes

It was expected that the results of land use mapping of the Tiaoxi watershed would
provide information on (a) distribution of land use categories and (b) identification and
estimation of land use changes over the past 30 years. During the field survey, the study
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area’s land uses were categorized into the following 6 groups including (1) Forest, (2)
Farmland, (3) Garden-plot, (4) Built-up, (5) Water, and (6) Barren, respectively. In 1985,
the first year of this study, the top three land cover classes were forest, farmland, and
garden plot, which covered respectively, 62.6%, 28.1%, and 3.7% of the land area in the
Tiaoxi watershed (Table 6 and Figure 3). The forest class is mostly concentrated in the
southwest mountains part of the study area; the farmland is mainly in the northern
plains; the garden plot is distributed throughout the northwestern part of the watershed,
in a transitional area between forest and farmland. Results show, over the past three
decades, due to the urbanization process and agriculture upgrading: 1) the five urban
areas (Huzhou, Changxing, Anji, Deqing, and Linan) had been expanding significantly,
a large number of cultivated land and orchard were transformed into build-up land;
2) cropland and forest land were swallowed by garden-plot such as fruit trees and tea
trees; 3) farmland loss is not only due to urban areas outward expansion but also to the
transformation of rural arable land. The distribution of various land use classes for the
years 1985, 1990, 1995, 2000, 2005, 2010, and 2015 and their change scenarios between
different time frames are shown in Table 7 and Figure 4, respectively.

B Forests
Garden-plot
Farmland

g B Water
048 S B Built-up

Figure 3. Segmentation parameters and main usage of each level (Land use and land cover
classification in Tiaoxi watershed during 1985 and 2015).
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Figure 4. Segmentation parameters and main usage of each level Temporal dynamics of the net
land cover changes in Tiaoxi watershed between 1985 and 2015 based on remote sensing images.

Table 6. Land use and land cover changes in Tiaoxi watershed from 1985 to 2015.

Classification 1985 1990 1995 2000 2005 2010 2015
Forest Area(km?) 3658.9 3703.1 3642.2 3578.3 3446.0 3280.0 2903.9
Percentage (%) 62.6 634 623 612 590 561 49.7
Farmland Area(km?) 1642.5 1451.5 1244.7 962.5 821.8 6509 439.8
Percentage (%) 28.1 248 213 165 141 111 75
Garden-plot  Area(km?) 218.7 335.0 516.0 758.6 929.0 1150.0 1555.1
Percentage (%) 3.7 5.7 8.8 13.0 159 19.7 26.6
Built-up Area(km?) 138.6 1619 236.8 302.8 4053 4804 598.1
Percentage (%) 2.4 2.8 4.1 52 6.9 8.2 10.2
Water Area(km?) 168.5 180 1814 208.8 210.1 2409 228.6
Percentage (%) 2.9 3.1 3.1 3.6 3.6 4.1 39
Barren Area(km?) 141 99 20.2 304 29.0 391 1158

Percentage (%) 0.2 0.2 0.3 0.5 0.5 0.7 2.0
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Table 7. Absolute loss (km?2), absolute gain (km?), net change (km?), and annual change rate
(km? - y~1) for all land cover types for different periods between 1985 and 2015.

1985- 1990- 1995- 2000- 2005- 2010- annual
1990 1995 2000 2005 2010 2015 change
rate

Forest gain 103.0 40.1 28.6 80.7 30.4 5.0
loss  58.9 1006 927 2117 1972  381.0
gross 1619  140.7 1213 2924 2275 3860 443
net 442 -604  -641  -131.0 -166.8 -376.1 -25.1
rate 8.8 -121 -128 262 -334  -752
Farmland gain 769 49.9 31.7 73.2 2.6 0.0
loss 2678 2567 3139 213.9 172.9 211.6
gross 344.7 3066 3456 2871 1755 2116 557
net -190.8 -206.8 -2822 -140.6 -170.2 -211.6 -40.1
rate -382 414 564  -281  -340 423
Garden-plot gain 140.1 2055 2546 2771 2748 5223
loss 243 24.4 12.0 108.0 527 116.6
gross 1645 2300 2666 3851 3275 6389 67.1
net 1158  181.1 2426 169.1 2221 4057 445
rate  23.2 36.2 48.5 33.8 444 81.1
Built-up gain 25.6 86.3 74.4 103.4 824 129.2
loss 2.3 11.8 8.4 0.8 7.9 11.6
gross 27.9 98.1 82.8 1042  90.3 1409 181
net 233 74.5 66.0 1026 744 117.6 153
rate 4.7 14.9 13.2 20.5 14.9 23.5
Water gain 427 43.0 62.9 49.9 45.2 27.3
loss  31.1 41.6 35.3 48.7 14.7 39.0
gross 73.8 84.6 98.2 98.5 59.9 66.3 16.0
net 11.6 1.4 27.5 1.2 30.5 -11.7 20

rate 2.3 0.3 55 0.2 6.1 -2.3

Barren gain 2.5 12.9 19.2 15.9 13.1 79.3
loss 6.6 2.7 9.1 17.2 31 31
gross 9.1 15.6 28.3 33.0 16.3 82.4 6.2
net 4.1 10.2 10.1 -1.3 10.0 76.1 3.4
rate  -0.8 2.0 2.0 -0.3 2.0 15.2

Forest was swallowed by farmland and garden-plot in the first five years (Figure
5A), With the promulgation and implementation of relevant laws, the rate of conversion
of forest land to farmland has been effectively suppressed. However, the law does not
prohibit the conversion of forest land into the garden-plot. As a result, a large amount of
forest land has been transformed into the garden-plot under the demand for economic
benefits (Figure 5B ~F). Even more worrying is that the rate of decrease is increasing.

Farmland net loss 1202.3 km? from 1985 to 2015, the area ratio fell from 28.1% to
7.5%, which means nearly three-quarters of the arable land has been lost. Farmland was
swallowed by urban areas expanding outside and garden-plot. The policy of returning
farmland to forests has converted much illegal farmland into forest land and garden-plot.

In contrast, the garden-plot area increased seven-fold, from 218.7 km? to 1,555 km?>.
The first 15 years (1985~2000) of the expansion of the garden-plot was transformed from
farmland (Figure 5A, B and C), and the last 15 years (2001~2015) from the forest (Figure
5D, E and F).

The build-up land area quadrupled from 138.6 km? to 598.1 km? over 30 years and
grew by 15.3 km? per year, increasing at an average annual rate of 9.55%. At the same
time, the urban population increased from 0.22 million to 1.20 million. The population
density was 42.5 persons per hectare in 2015, decreasing at an average annual rate of
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-5.2% since 1985. Build-up land area extension rate is more than 20 km? per year in the
period of 2000~2005 and 2010 2015, the rate of growth has slowed in 2005 2010 because
of the restrictions imposed by national policies on urban development [43]. The first 20
years (1985~2005) of the expansion of the build-up were from farmland (Figure 5A, B, C,
and D), and the last 10 years (2005~2015) from the garden-plot (Figure 5E and F).

Due to the construction of reservoirs and the popularity of fishponds, the area of
water has been increasing from 168.5 km? to 228.6 km? during 1985 2015, which means
increased by 34.5%. Over the past three decades, the increase in water area has mainly
resulted from the transformation of farmland (Figure 5).

Figure 5. Land use and land cover changes in the Tiaoxi watershed between 1985 to 2015. (The

direction of the arrows in the chord diagram indicates a change from the original land cover class
to a new land cover class. The size of the arrows represents the land use and land cover change
area).

4.3. Spatial distribution of LULC changes

The spatial analysis distinguished the same six time periods as found in the tem-
poral analysis. 1.5 x 1.5 km fishing nets were constructed by ArcGIS 10.5 to divide the
study area into 2761 units. The intensity of LULC changes for build-up, garden-plot,
farmland, and forest was calculated (Figure 6). In addition to urban expansion, the loss
of farmland and the expansion of garden-plot are the main manifestations of LULC
changes in the Tiaoxi watershed. At the early stages of Chinese economic reform, urban
and rural development was slow, only a few scattered areas had been converted to
build-up (Figure 6A). The period of housing commercialization also coincided with
a period of rapid urbanization in the Tiaoxi watershed. During this period, the five
central cities continued to expand (Figure 6B, C, and D). As the country put forward the
new rural construction policies in 2005, the speed of rural construction is surging, The
conversion of building land takes place in the vast area of the Tiaoxi watershed (Figure
6E and F). From 1985 to 2000, the garden-plot cover fraction increased in the northwest
mountainous region (Figure 6G, H, and I). The reclamation for garden-plot speed was
significantly limited in the northwest region due to the administrative restrictions of the
government in the first decade of the new millennium, at the same time, seedlings were
planted in the eastern part of the watershed (Figure 6] and K). From 2010 to 2015, the
garden-plot cover fraction increased all over the watershed (Figure 6L). In the first two
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time periods, between 1985 and 1995, the areas of farmland decreased by 11.6%, a change
that was largely confined to the northwest and southern mountainous region (Figure
6M and N). Between 1995 and 2015, the loss of farmland was concentrated around cities
such as Changxing, Huzhou, Anji, Deqing, Linan, and Yuhang (Figure 60, P, Q, and
R). In comparison with the total forest area (62.6%), the net change in forest cover was
relatively small (12.9%), but the spatial dynamic was considerable. In the first period, the
forest area slightly increased at a speed of 0.24% per year distributed evenly throughout
the watershed (Figure 6S). In the second and the third period, the forest area began
to lose at a slight speed of -0.33% and -0.35% per year (Figure 6T and U). Since the
beginning of the new millennium, the loss of forests in suburban areas has accelerated
(Figure 6V). As a result of the implementation of the policy of returning farmland to
forests, some areas of forest area recovery (Figure 6V and W). In the last period, plenty
of forest land has been converted into economic crops including tea plantations and fruit
trees (Figure 6X).

(A) (B) () W] (E) (F)
. / K . L '\ '\_
m 0] (K) |

© ()} ! ()

(N), ZF () ﬁ Q (R)

() ) (W) ;X (

80% 40% 0% - 40% - 80%
Figure 6. Spatial distribution land cover changes for Build-up(A to F), Garden plot (G to L),
Farmland (M to R), and Forest (S to X) in Tiaoxi watershed for six periods:1985~1990 (A, G, M, S),
1990~1995 (B, H, N, 1), 1995~2000 (C, I, O, U). 2000~2005 (D, ], P, V), 2005~2010(E, K, Q, W), and
2010~2015 (E, L, R, X). Blue indicates a decreasing fraction and red an increasing fraction.).

5. Discussion

The causes of LULC changes in the Tiaoxi watershed included urbanization, re-
gional population growth, and agriculture efficiency improvement.

5.1. Urbanization

China’s rapid urbanization has attracted international attention. The level of urban-
ization in the Tiaoxi watershed increased from 10.3% in 1978 to 44.9% in 2015. It’s a real
challenge to soil protection and food security. During the past four decades, China has
experienced the largest and fast industrialization and urbanization in the world. Tiaoxi
watershed LULC changes are the symbols of China’s urbanization. Urban expansion
in the area has led to the conversion of farmland and forest land into the impermeable
surface. However, the social structure of population aging and the migration of younger
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people to cities has caused rural development limitations. In the future, the expansion
rate of small and medium-sized towns will be further reduced or even reversed.

5.2. Regional population growth

Development and migration are related. Economy growth in China is highly uneven
at both provincial and prefectural levels. The study area is one of the most economically
developed regions in China, attracting most immigrants in past decades. Expanding
population needs urban expansion to provide basic services, infrastructure, and housing.
Forestland and farmland around the old city face increasing pressures from growing
populations and urban expansion. Regional competition ability will be an important
driving force for land use transformation in this area.

5.3. Agriculture efficiency improvement

Before 1978, when China adopted a planned economy, agricultural productivity
was low, the product category was unitary, Trade-in grain and other agricultural prod-
ucts were strictly controlled or prohibited. With the opening of the market and the
liberalization of the ban on trade in agricultural products, agricultural land in econom-
ically developed areas is gradually transformed into land for cash crops, which will
produce higher economic value. Land scarcity changes land-labor ratios, driving up the
intensity of cultivation and where possible, shifting production toward the market and
to higher-value products. The threat of a food crisis forced the government to implement
the Dynamic Balance of Total Farmland Area (DBTFA) policy in 1998, with the overall
goal of maintaining at least 120 million arable hectares by 2020. The development of
science and technology has brought about an increase in grain production. The demand
for farmland is decreasing. For these reasons, the total area of arable land will remain
unchanged or decrease very slowly in the future.

6. Conclusions

We developed a method for remote-sensing LULC changes detection that uses
multi-temporal high-resolution imagery. The method applies an Object-based approach
using geostatistical features obtained from four seasons images as input data to support
vector machine (SVM) algorithm. The accuracy of the classification was consistently
high. The accuracy of Land classification is crucial to identify the characteristics of the
land and make reasonable use of land resources. LULC changed significantly from
1985 to 2015 due to intensive human activities, proved by dramatic construction of
land and garden-plot expansion and large shrinkage of forest land and farmland. The
areas with the greatest intensity of LULC changes are concentrated in the surrounding
areas of cities and towns. LULC changes in the Tiaoxi watershed are a microcosm of
China’s social development and urbanization in the past decades. Author Contributions:
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