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Abstract: The changing of land use and land cover (LULC) are both affected by climate and1

human activity and affect climate, biological diversity, and human well-being. Accurate and timely2

information about the LULC pattern and change is crucial for land management decision-making,3

ecosystem monitoring, and urban planning, especially in developing economies undergoing4

industrialization, urbanization, and globalization. Biodiversity degradation and urban expansion5

in eastern China are research hot-spots. However, the influence of LULC changes on the region6

remains largely unexplored. Here, an object-based and multi-temporal image analysis approach7

was developed to detect how LULC changes during 1985-2015 in the Tiaoxi watershed (Zhejiang8

province, eastern China) using Landsat TM and OLI data. The main objective of this study is to9

improve the accuracy of unsupervised change detection from object-based and multi-temporal10

images. To this end, a total of seven LULC maps are generated with multi-temporal images. A11

random stratified sample design was used for assessing change detection accuracy. The proposed12

method achieved an overall accuracy of 91.86%, 92.14%, 92.00%, and 93.86% for 2000, 2005, 2010,13

and 2015, respectively. Nevertheless, the proposed method, in conjunction with object-oriented14

and multi-temporal satellite images, offers a robust and flexible approach to LULC changes15

mapping that helps with emergency response and government management. Urbanization and16

agriculture efficiency are the main reasons for LULC changes in the region. We anticipate that this17

freely available data will improve the modeling for surface forcing, provide evidence of changes18

in LULC, and inform water-management decision-making.19

Keywords: Land use and land cover; Classification; Object-based change detection; Multi-20

temporal image analysis; Landsat; Tiaoxi21

1. Introduction22

Land use and land cover (LULC) changes are important ingredients in global envi-23

ronmental change [1]. Land cover is an essential climate variable that impacts numerous24

environmental processes and patterns ranging from albedo and hence climate to zoo-25

geographic distributions and hence patterns of biodiversity. Such changes are usually26

caused by human activities (e.g., deforestation, urbanization, agriculture intensification,27

overgrazing, and subsequent land degradation), however, natural factors can also con-28

tribute to these changes [2]. People’s responses to economic opportunities, as mediated29

by institutional factors, drive land-cover changes [3]. The rapid development of the30

economy requires LULC information for the efficient management of the environment31

and living conditions. Therefore, the time series of legacy land use maps are needed for32

the quantification of changes [4]. The phenological information for vegetation derived33

from multi-seasonal imagery is very useful for mapping tree species [5,6], forest cover34

[7,8], crop types [9,10], bush encroachment [11], grassland [12], and LULC changes35

[13,14].36

Nowadays, the amount and availability of multi-temporal images are experiencing37

a fast increase. This is due to the increasing number of space missions, the increases38

in data temporal resolution, as well as free accessible data policy adopted for missions39
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like Landsat and Sentinel. Multi-temporal image analysis (MTIA) becomes more eco-40

nomically viable. Besides, new data analysis paradigms such as deep learning [15–17]41

are being used to classify and discriminate multi-temporal images. Rather than tradi-42

tional classifiers such as the maximum likelihood classifier, discriminative classifiers43

based on k-nearest neighbor (KNN), support vector machine (SVM), extreme learning44

machine (ELM) and random forest (RF) play important roles in supervised classification.45

MTIA technology has been prompted to play a key role in the study of LULCs under46

anthropogenic influences such as urban expansion and deforestation [18].47

The traditional change detection method is pixel-based image analysis (PBIA). It48

detects the occurrence of changes based on the comparison of pixels without considera-49

tion of spatial context or membership to real-world objects. Object-based image analysis50

(OBIA), which operates at the scale of real-world objects rather than pixels, offers a51

means of analyzing Earth observation (EO) data in a realistic context and integrating52

associated ancillary information to support real-world applications [19]. Object-based53

image mapping reduces noise in the original image (i.e., erroneous pixel values, often re-54

ferred to as the "salt and pepper" effect) to characterize the features of interest effectively55

[20], and these can exploit landscape features to increase the accuracy and usability of56

EO-derived products [19]. The advantage of object-based classification is that it groups57

neighboring pixels into meaningful areas according to their spatial and spectral [21].58

According to the most recent studies, OBIA methods have been more effective and59

reliable than the traditional PBIA methods for image processing [22–26].60

China’s urbanization process has followed a unique course and transformed the61

country since the early 1980s. Tremendous LULC changes have occurred in many coastal62

regions of China such as the Yangtze River Delta region [27] and the Pearl River Delta63

region [28]. Taihu Lake is the third-largest freshwater lake in China and serves as a64

drinking water source for 30 million residents. It is also the region with the most rapid65

economic development and the most intense land-use change. Tiaoxi River is one of66

the main rivers connected to Taihu lake and contributes >60% of the source water [29].67

The ecological environment of the Tiaoxi River basin has been seriously disturbed by68

anthropogenic activities. The region is more representative of the eastern part of China.69

Research in this region has helped to shed light on the urbanization process in eastern70

China in recent years, and these experiences are useful for planning and management in71

underdeveloped areas of central and western China.72

Remote sensing (RS) and Geographic Information System (GIS) are two effective73

tools for detecting and analyzing land cover and its changes over a certain period through74

integrating spatial and temporal windows of the study area. To determine changes over75

time, land cover maps for several different years are needed and resultant analysis helps76

the respective administrator to understand the current landscape along with changing77

patterns [30]. It also helps to understand and evaluate past management decisions as78

well as predict possible effects of their current decisions before their implementation79

[31]. The objective of this research was to utilize GIS and RS applications to find out80

the extent of changes occurring over the last 30 years in the Tiaoxi watershed, China.81

Additionally, the specific objectives included: (1) Delineating the watershed of Tiaoxi82

River; (2) Detecting chronological LULC changes combined with MTLA and OBIA83

methods in Tiaoxi watershed from 1985 to 2015; (3) Determining shift in LULC categories84

through spatial comparison of LULC data produced (4) Exploring the potential of85

combining GIS and RS to study the spatial distribution of different LULCs.86

2. Study area87

The Tiaoxi watershed, ranging from 30◦ 07′N to 31◦ 11′N latitude and from 119◦88

13′E to 120◦ 19′E longitude, is part of the southern catchment of Taihu Lake, in the89

northern part of Zhejiang Province, the eastern coast of China (Figure 1). The water-90

shed covers 5,814 km2 and has 2.3 million residents. This region is characterized by a91

semitropical climate with an average annual temperature of 15.6 °C and rainfall of 1,46092
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mm, respectively. The rainfall is highly seasonal, with 60-70% falls during spring and93

summer. The region’s topography is slanted downward from southwest to northeast,94

and the mountain heights decrease from 1,500 meters to merely 3-5 meters above the95

sea level from southwest to northeast, with an open-pit mine whose elevation is only96

minus 36 meters above sea level. Forest is the dominant land-use type in the study area97

of the Tiaoxi watershed, which covers approximately 60% of the land within the basin.98

Farmland, orchard, tea garden, surface waters, and urban areas occupy the rest of the99

watershed [32]. As one of the most active areas in China’s economy, the agricultural100

production structure of this region has gradually changed, and the planting of cash crops101

has gradually replaced grain crops. In this study, land uses were categorized into the102

following 6 groups including (1) Forest, (2) Farmland, (3) Garden-plot, (4) Built-up, (5)103

Water, and (6) Barren, respectively. The forest includes pure bamboo forests, bamboo104

mixed with Pine, and broad-leaved forest. Farmland mainly consists of rice paddies105

and some vegetable fields. The garden-plot is dominated by tea plantations, as well106

as economic shrubs such as blueberry, flowers, and nursery stock. Build-up includes107

impervious surfaces such as roads, roofs, and other paved surfaces in urban and rural108

areas. Water area includes rivers, lakes, reservoirs, and aquaculture ponds. Barren109

land includes exposed soil from abandoned open-pit mines and some undeveloped110

construction sites.111

Starting in 1978, when China adopted its open-door policy, rapid socioeconomic112

development and population growth occurred in the Tiaoxi watershed. The Gross113

Domestic Product (GDP) was less than 0.7 billion RMB in 1978 but exceeded 206 billion114

RMB in 2015. Remarkably, rapid socioeconomic development and a lack of land planning115

led to a disorderly and large-scale rural settlement expansion for a long period [33],116

which exerted significantly negative impacts on soil resources. Given these facts, the117

Tiaoxi watershed is an atypical example as regards the characterization of the impacts of118

anthropocentric activities on LULC in modern China.119
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Figure 1. The location of Tiaoxi watershed, Zhejiang, China, DEM, and river lines.

3. Materials and Methods120

3.1. Data source121

The period of study in this paper is from 1985 to 2015, and land use data were122

obtained based on historical Landsat TM and OLI satellite images every season in 1985,123

1990, 1995, 2000, 2005, 2010, and 2015. The detail of the satellite images is given below124

(Table 1). To distinguish the main crops from the tea garden, multi-temporal images125

were selected, including spring, summer, autumn, and winter [34]. The digital elevation126

model (DEM) dataset and digital line graph (DLG) were both provided by the Chinese127

National Bureau of Surveying and Mapping. The spatial resolution of satellite images128

and DEM are at 30 × 30 m resolution. Urban planning and socioeconomic data were129

used as driving factors of the LULC change detection process.130
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Table 1. Different data types used in this study.

ID Data type Source Resolution Data cover

1 Landsat 4 TM USGS 30 m 1989
2 Landsat 5 TM USGS 30 m 1985-2010
3 Landsat 8 OLI USGS 30 m 2015
4 Digital Orthophoto

Map (DOM)
Chinese National Bureau of
Surveying and Mapping

1 m 1985-2010

5 Digital Elevation
Model (DEM)

Chinese National Bureau of
Surveying and Mapping

30 m

6 Digital Line Graph
(DLG)

Chinese National Bureau of
Surveying and Mapping

1:50000

7 Zhejiang soil database Zhejiang University 1:50000
8 City Planning Hangzhou/Huzhou Plan-

ning Bureau
2015-2020

9 Socioeconomic data 6 Counties statistical year-
book

every
year

1984-2015

3.2. Detection indexes131

The Normalized Difference Vegetation Index (NDVI) [35], the Normalized Differ-
ence Water Index (NDWI) [34], and the Normalized Difference Built-up Index (NDBI)
[36] are the most commonly used indexes for detection vegetation, water, and built-up.
The NDVI, MNDWI, and NDBI are expressed as follows:

NDVI = (Nir− Red)/(Nir + Red) (1)

MNDWI = (Green−Mir)/(Green + Mir) (2)

NDBI = (Mir− Nir)/(Mir + Nir) (3)

Where Green is a green band such as TM band 2 and OLI band 3, Red is a red band such132

as TM band 3 and OLI band 4, Nir is a near-infrared band such as TM band 4 and OLI133

band 5, and Mir is a mid-infrared band such as TM band 5 and OLI band 6.134

3.3. Classification135

This study implemented an object-based rule set that uses multi-temporal remote136

sensing images, spectral bands, spectral indices, and geometry to characterize agricul-137

tural and related LULC in the Tiaoxi watershed. The multi-seasonal remote sensing138

data set consists of four image dates from a single year. Generally, multi-spectral and139

seasonal imagery can largely support higher classification accuracy than single-date140

imagery [37]. The first step of the analysis is to generate homogeneous image objects or141

segments using the multi-resolution segmentation algorithm (MRSA) with parameters142

of scale, color, shape, smoothness, and compactness in eCognition (Figure 2). In the143

results of segmentation, the consistency of gray, the smoothing of the boundary, and the144

connectivity are fulfilled [38]. Once the image is segmented, the value of the discriminant145

feature that is going to be thresholded is calculated and stored for each segment as an146

object variable. Then we move on to classifying the segments. We defined 6 classes of147

LULC. We use threshold classification methods to identify water, build-up, barren, and148

forest. Then we use a support vector machine (SVM) classifier to obtain farmland and149

garden-plot.150
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Figure 2. Segmentation parameters and main usage of each level.

3.4. Accuracy assessment151

To know where and when LULC changes occur, the primary source for reference152

data is Landsat images themselves [39]. High spatial resolution images from Google153

Earth and ground-truth data can help manual interpretation of the land cover classes [40].154

Their high spatial resolution helps determine LULC changes at longer time intervals.155

Ground-truth data is used to evaluate how well the classification represents the real156

world. A random stratified sample design was used for assessing change detection157

accuracy [41].158

4. Results159

4.1. Accuracy assessment160

For accuracy assessment, 2800 points were searched randomly from Google Earth161

and Digital Orthophoto Map for a random point table. From these points, the error162

matrix was produced to assess errors in the final classification. The summary of the163

error matrix of the Tiaoxi watershed for the years 2000, 2005, 2010, and 2015 are shown164

in Table 2, Table 3, Table 4, and Table 5 respectively. Due to the lack of historical data,165

the accuracy test of the first three periods of land use maps was not performed. The166

overall accuracy for supervised classification images of 2000, 2005, 2010, and 2015 was167

found to be 91.86%, 92.14%, 92.00%, and 93.86%, and Kappa value for those years was168

0.9039, 0.9071, 0.9055, and 0.9261 respectively. These Kappa values depict that land use169

classification accuracy is acceptable [42].170
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Table 2. Error matrix showing the accuracy of 2000 supervised land use classification.

Reference Data PA UA
Classified
Data

Barren Build Forest Garden
plot

Farmland Water Total (%) (%)

Barren 92 11 0 5 0 0 108 92.0 85.2
Build 4 133 0 2 0 0 139 88.7 95.7
Forest 2 1 139 3 0 4 149 92.7 93.3
Garden plot 1 2 10 87 3 1 104 87.0 83.7
Farmland 0 2 1 3 97 0 103 97.0 94.2
Water 1 1 0 0 0 95 97 95.0 97.9

Table 3. Error matrix showing the accuracy of 2005 supervised land use classification.

Reference Data PA UA
Classified
Data

Barren Build Forest Garden
plot

Farmland Water Total (%) (%)

Barren 93 7 0 5 0 0 105 93.0 88.6
Build 5 140 0 2 0 0 147 93.3 95.2
Forest 1 0 139 3 0 2 145 92.7 95.9
Garden plot 0 1 10 85 5 2 103 85.0 82.5
Farmland 0 1 1 5 95 0 102 95.0 93.1
Water 1 1 0 0 0 96 98 95.0 98.0

Table 4. Error matrix showing the accuracy of 2010 supervised land use classification.

Reference Data PA UA
Classified
Data

Barren Build Forest Garden
plot

Farmland Water Total (%) (%)

Barren 90 8 0 3 1 0 102 90.0 88.2
Build 4 136 0 1 0 0 141 90.7 96.5
Forest 2 1 135 4 0 2 144 90.0 93.8
Garden plot 2 2 13 88 1 1 107 88.0 82.2
Farmland 1 2 2 4 98 0 102 98.0 91.6
Water 1 1 0 0 0 97 99 97.0 98.0

Table 5. Error matrix showing the accuracy of 2015 supervised land use classification.

Reference Data PA UA
Classified
Data

Barren Build Forest Garden
plot

Farmland Water Total (%) (%)

Barren 93 12 0 1 0 0 106 93.0 87.7
Build 3 133 1 1 1 0 139 88.7 95.7
Forest 0 0 142 7 1 0 150 94.7 94.7
Garden plot 2 0 4 86 8 1 101 86.0 85.2
Farmland 1 4 3 3 90 3 104 90.0 86.5
Water 1 1 0 2 0 96 100 96.0 96.0

4.2. Land use classification and Temporal changes171

It was expected that the results of land use mapping of the Tiaoxi watershed would172

provide information on (a) distribution of land use categories and (b) identification and173

estimation of land use changes over the past 30 years. During the field survey, the study174
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area’s land uses were categorized into the following 6 groups including (1) Forest, (2)175

Farmland, (3) Garden-plot, (4) Built-up, (5) Water, and (6) Barren, respectively. In 1985,176

the first year of this study, the top three land cover classes were forest, farmland, and177

garden plot, which covered respectively, 62.6%, 28.1%, and 3.7% of the land area in the178

Tiaoxi watershed (Table 6 and Figure 3). The forest class is mostly concentrated in the179

southwest mountains part of the study area; the farmland is mainly in the northern180

plains; the garden plot is distributed throughout the northwestern part of the watershed,181

in a transitional area between forest and farmland. Results show, over the past three182

decades, due to the urbanization process and agriculture upgrading: 1) the five urban183

areas (Huzhou, Changxing, Anji, Deqing, and Linan) had been expanding significantly,184

a large number of cultivated land and orchard were transformed into build-up land;185

2) cropland and forest land were swallowed by garden-plot such as fruit trees and tea186

trees; 3) farmland loss is not only due to urban areas outward expansion but also to the187

transformation of rural arable land. The distribution of various land use classes for the188

years 1985, 1990, 1995, 2000, 2005, 2010, and 2015 and their change scenarios between189

different time frames are shown in Table 7 and Figure 4, respectively.190

Figure 3. Segmentation parameters and main usage of each level (Land use and land cover
classification in Tiaoxi watershed during 1985 and 2015).
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Figure 4. Segmentation parameters and main usage of each level Temporal dynamics of the net
land cover changes in Tiaoxi watershed between 1985 and 2015 based on remote sensing images.

Table 6. Land use and land cover changes in Tiaoxi watershed from 1985 to 2015.

Classification 1985 1990 1995 2000 2005 2010 2015

Forest Area(km2) 3658.9 3703.1 3642.2 3578.3 3446.0 3280.0 2903.9
Percentage (%) 62.6 63.4 62.3 61.2 59.0 56.1 49.7

Farmland Area(km2) 1642.5 1451.5 1244.7 962.5 821.8 650.9 439.8
Percentage (%) 28.1 24.8 21.3 16.5 14.1 11.1 7.5

Garden-plot Area(km2) 218.7 335.0 516.0 758.6 929.0 1150.0 1555.1
Percentage (%) 3.7 5.7 8.8 13.0 15.9 19.7 26.6

Built-up Area(km2) 138.6 161.9 236.8 302.8 405.3 480.4 598.1
Percentage (%) 2.4 2.8 4.1 5.2 6.9 8.2 10.2

Water Area(km2) 168.5 180 181.4 208.8 210.1 240.9 228.6
Percentage (%) 2.9 3.1 3.1 3.6 3.6 4.1 3.9

Barren Area(km2) 14.1 9.9 20.2 30.4 29.0 39.1 115.8
Percentage (%) 0.2 0.2 0.3 0.5 0.5 0.7 2.0
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Table 7. Absolute loss (km2), absolute gain (km2), net change (km2), and annual change rate
(km2 · y−1) for all land cover types for different periods between 1985 and 2015.

1985-
1990

1990-
1995

1995-
2000

2000-
2005

2005-
2010

2010-
2015

annual
change
rate

Forest gain 103.0 40.1 28.6 80.7 30.4 5.0
loss 58.9 100.6 92.7 211.7 197.2 381.0
gross 161.9 140.7 121.3 292.4 227.5 386.0 44.3
net 44.2 -60.4 -64.1 -131.0 -166.8 -376.1 -25.1
rate 8.8 -12.1 -12.8 -26.2 -33.4 -75.2

Farmland gain 76.9 49.9 31.7 73.2 2.6 0.0
loss 267.8 256.7 313.9 213.9 172.9 211.6
gross 344.7 306.6 345.6 287.1 175.5 211.6 55.7
net -190.8 -206.8 -282.2 -140.6 -170.2 -211.6 -40.1
rate -38.2 -41.4 -56.4 -28.1 -34.0 -42.3

Garden-plot gain 140.1 205.5 254.6 277.1 274.8 522.3
loss 24.3 24.4 12.0 108.0 52.7 116.6
gross 164.5 230.0 266.6 385.1 327.5 638.9 67.1
net 115.8 181.1 242.6 169.1 222.1 405.7 44.5
rate 23.2 36.2 48.5 33.8 44.4 81.1

Built-up gain 25.6 86.3 74.4 103.4 82.4 129.2
loss 2.3 11.8 8.4 0.8 7.9 11.6
gross 27.9 98.1 82.8 104.2 90.3 140.9 18.1
net 23.3 74.5 66.0 102.6 74.4 117.6 15.3
rate 4.7 14.9 13.2 20.5 14.9 23.5

Water gain 42.7 43.0 62.9 49.9 45.2 27.3
loss 31.1 41.6 35.3 48.7 14.7 39.0
gross 73.8 84.6 98.2 98.5 59.9 66.3 16.0
net 11.6 1.4 27.5 1.2 30.5 -11.7 2.0
rate 2.3 0.3 5.5 0.2 6.1 -2.3

Barren gain 2.5 12.9 19.2 15.9 13.1 79.3
loss 6.6 2.7 9.1 17.2 3.1 3.1
gross 9.1 15.6 28.3 33.0 16.3 82.4 6.2
net -4.1 10.2 10.1 -1.3 10.0 76.1 3.4
rate -0.8 2.0 2.0 -0.3 2.0 15.2

Forest was swallowed by farmland and garden-plot in the first five years (Figure191

5A), With the promulgation and implementation of relevant laws, the rate of conversion192

of forest land to farmland has been effectively suppressed. However, the law does not193

prohibit the conversion of forest land into the garden-plot. As a result, a large amount of194

forest land has been transformed into the garden-plot under the demand for economic195

benefits (Figure 5B ~F). Even more worrying is that the rate of decrease is increasing.196

Farmland net loss 1202.3 km2 from 1985 to 2015, the area ratio fell from 28.1% to197

7.5%, which means nearly three-quarters of the arable land has been lost. Farmland was198

swallowed by urban areas expanding outside and garden-plot. The policy of returning199

farmland to forests has converted much illegal farmland into forest land and garden-plot.200

In contrast, the garden-plot area increased seven-fold, from 218.7 km2 to 1,555 km2.201

The first 15 years (1985~2000) of the expansion of the garden-plot was transformed from202

farmland (Figure 5A, B and C), and the last 15 years (2001~2015) from the forest (Figure203

5D, E and F).204

The build-up land area quadrupled from 138.6 km2 to 598.1 km2 over 30 years and205

grew by 15.3 km2 per year, increasing at an average annual rate of 9.55%. At the same206

time, the urban population increased from 0.22 million to 1.20 million. The population207

density was 42.5 persons per hectare in 2015, decreasing at an average annual rate of208
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-5.2% since 1985. Build-up land area extension rate is more than 20 km2 per year in the209

period of 2000~2005 and 2010 2015, the rate of growth has slowed in 2005 2010 because210

of the restrictions imposed by national policies on urban development [43]. The first 20211

years (1985~2005) of the expansion of the build-up were from farmland (Figure 5A, B, C,212

and D), and the last 10 years (2005~2015) from the garden-plot (Figure 5E and F).213

Due to the construction of reservoirs and the popularity of fishponds, the area of214

water has been increasing from 168.5 km2 to 228.6 km2 during 1985 2015, which means215

increased by 34.5%. Over the past three decades, the increase in water area has mainly216

resulted from the transformation of farmland (Figure 5).217

Figure 5. Land use and land cover changes in the Tiaoxi watershed between 1985 to 2015. (The
direction of the arrows in the chord diagram indicates a change from the original land cover class
to a new land cover class. The size of the arrows represents the land use and land cover change
area).

4.3. Spatial distribution of LULC changes218

The spatial analysis distinguished the same six time periods as found in the tem-219

poral analysis. 1.5 × 1.5 km fishing nets were constructed by ArcGIS 10.5 to divide the220

study area into 2761 units. The intensity of LULC changes for build-up, garden-plot,221

farmland, and forest was calculated (Figure 6). In addition to urban expansion, the loss222

of farmland and the expansion of garden-plot are the main manifestations of LULC223

changes in the Tiaoxi watershed. At the early stages of Chinese economic reform, urban224

and rural development was slow, only a few scattered areas had been converted to225

build-up (Figure 6A). The period of housing commercialization also coincided with226

a period of rapid urbanization in the Tiaoxi watershed. During this period, the five227

central cities continued to expand (Figure 6B, C, and D). As the country put forward the228

new rural construction policies in 2005, the speed of rural construction is surging, The229

conversion of building land takes place in the vast area of the Tiaoxi watershed (Figure230

6E and F). From 1985 to 2000, the garden-plot cover fraction increased in the northwest231

mountainous region (Figure 6G, H, and I). The reclamation for garden-plot speed was232

significantly limited in the northwest region due to the administrative restrictions of the233

government in the first decade of the new millennium, at the same time, seedlings were234

planted in the eastern part of the watershed (Figure 6J and K). From 2010 to 2015, the235

garden-plot cover fraction increased all over the watershed (Figure 6L). In the first two236
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time periods, between 1985 and 1995, the areas of farmland decreased by 11.6%, a change237

that was largely confined to the northwest and southern mountainous region (Figure238

6M and N). Between 1995 and 2015, the loss of farmland was concentrated around cities239

such as Changxing, Huzhou, Anji, Deqing, Linan, and Yuhang (Figure 6O, P, Q, and240

R). In comparison with the total forest area (62.6%), the net change in forest cover was241

relatively small (12.9%), but the spatial dynamic was considerable. In the first period, the242

forest area slightly increased at a speed of 0.24% per year distributed evenly throughout243

the watershed (Figure 6S). In the second and the third period, the forest area began244

to lose at a slight speed of -0.33% and -0.35% per year (Figure 6T and U). Since the245

beginning of the new millennium, the loss of forests in suburban areas has accelerated246

(Figure 6V). As a result of the implementation of the policy of returning farmland to247

forests, some areas of forest area recovery (Figure 6V and W). In the last period, plenty248

of forest land has been converted into economic crops including tea plantations and fruit249

trees (Figure 6X).250

Figure 6. Spatial distribution land cover changes for Build-up(A to F), Garden plot (G to L),
Farmland (M to R), and Forest (S to X) in Tiaoxi watershed for six periods:1985~1990 (A, G, M, S),
1990~1995 (B, H, N, I), 1995~2000 (C, I, O, U). 2000~2005 (D, J, P, V), 2005~2010(E, K, Q, W), and
2010~2015 (F, L, R, X). Blue indicates a decreasing fraction and red an increasing fraction.).

5. Discussion251

The causes of LULC changes in the Tiaoxi watershed included urbanization, re-252

gional population growth, and agriculture efficiency improvement.253

5.1. Urbanization254

China’s rapid urbanization has attracted international attention. The level of urban-255

ization in the Tiaoxi watershed increased from 10.3% in 1978 to 44.9% in 2015. It’s a real256

challenge to soil protection and food security. During the past four decades, China has257

experienced the largest and fast industrialization and urbanization in the world. Tiaoxi258

watershed LULC changes are the symbols of China’s urbanization. Urban expansion259

in the area has led to the conversion of farmland and forest land into the impermeable260

surface. However, the social structure of population aging and the migration of younger261
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people to cities has caused rural development limitations. In the future, the expansion262

rate of small and medium-sized towns will be further reduced or even reversed.263

5.2. Regional population growth264

Development and migration are related. Economy growth in China is highly uneven265

at both provincial and prefectural levels. The study area is one of the most economically266

developed regions in China, attracting most immigrants in past decades. Expanding267

population needs urban expansion to provide basic services, infrastructure, and housing.268

Forestland and farmland around the old city face increasing pressures from growing269

populations and urban expansion. Regional competition ability will be an important270

driving force for land use transformation in this area.271

5.3. Agriculture efficiency improvement272

Before 1978, when China adopted a planned economy, agricultural productivity273

was low, the product category was unitary, Trade-in grain and other agricultural prod-274

ucts were strictly controlled or prohibited. With the opening of the market and the275

liberalization of the ban on trade in agricultural products, agricultural land in econom-276

ically developed areas is gradually transformed into land for cash crops, which will277

produce higher economic value. Land scarcity changes land-labor ratios, driving up the278

intensity of cultivation and where possible, shifting production toward the market and279

to higher-value products. The threat of a food crisis forced the government to implement280

the Dynamic Balance of Total Farmland Area (DBTFA) policy in 1998, with the overall281

goal of maintaining at least 120 million arable hectares by 2020. The development of282

science and technology has brought about an increase in grain production. The demand283

for farmland is decreasing. For these reasons, the total area of arable land will remain284

unchanged or decrease very slowly in the future.285

6. Conclusions286

We developed a method for remote-sensing LULC changes detection that uses287

multi-temporal high-resolution imagery. The method applies an Object-based approach288

using geostatistical features obtained from four seasons images as input data to support289

vector machine (SVM) algorithm. The accuracy of the classification was consistently290

high. The accuracy of Land classification is crucial to identify the characteristics of the291

land and make reasonable use of land resources. LULC changed significantly from292

1985 to 2015 due to intensive human activities, proved by dramatic construction of293

land and garden-plot expansion and large shrinkage of forest land and farmland. The294

areas with the greatest intensity of LULC changes are concentrated in the surrounding295

areas of cities and towns. LULC changes in the Tiaoxi watershed are a microcosm of296

China’s social development and urbanization in the past decades. Author Contributions:297
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