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Abstract: The centralized Al governance paradigm is breaking down. While policymakers focus
on regulating cloud-based systems that run on massive, power-hungry data centers operated by
big companies like Google and OpenAl, a revolution in the Al ecosystem unfolds. Open-source Al
models can now run on personal computers and devices, invisible to regulators and stripped of safety
constraints. Recent software and hardware advances mean that the capabilities of local-scale Al models
now lag just a few months behind those of state-of-the-art proprietary models. Local Al has profound
benefits for privacy and autonomy. But local Al also fundamentally disrupts Al governance. Technical
safeguards fail when users control the code, and regulatory frameworks collapse when deployment
becomes invisible. In this paper, we review how decentralized, open-source local Al undermines
both technical and policy-based Al governance mechanisms. We propose ways to reimagine Al
governance for these new challenges through 1) novel approaches to technical safeguards, including
content provenance, configurable safe runtime environments, and distributed project monitoring, with
2) policy innovations including polycentric governance, participatory community approaches, and
tailored safe harbors for liability. These proposals aim to catalyze a broader dialogue on harnessing
local Al's democratizing potential while managing its risks and reinforcing ethical accountability.

Keywords: artificial intelligence; Al policy; Al ethics; Al safety; digital governance; open-source Al;
generative Al; local Al)

1. Introduction

The generative artificial intelligence (Al) revolution began in research labs but became a mass
phenomenon in November 2022, when OpenAl released ChatGPT, a powerful large language model
(LLM) delivered through an easy-to-use web-based chatbot [1]. This breakthrough represented a major
shift from conventional machine learning’s focus on prediction and classification towards Al systems
designed to create novel content. The scope of generative Al extends beyond LLMs to encompass
vision-language models (VLMs), audio synthesis systems, and image and video generation tools. The
ability to generate and execute code using LLMs opens the door to semi-autonomous or autonomous
“agent” systems capable of reasoning and problem-solving [2,3]. Autonomous agents can potentially
even teach themselves new capabilities [4-6]. Generative Al has become so prevalent that the term
“Al” has become synonymous with it in popular usage, even though conventional machine learning
models have existed for decades. (“Generative AI” and “Al” are used interchangeably throughout this
paper, consistent with most contemporary literature on LLMs and related models.)

Companies like OpenAl, Anthropic, and Google deploy increasingly sophisticated models that
are accessed through the web and run on data centers containing massive GPU clusters [7]. Their mode
of operation establishes clear points of control: corporate providers can monitor usage, enforce safety
guardrails, and implement pricing structures that shape how these technologies are used. However, the
landscape is now undergoing another transformation. Powerful open-source models have emerged that
can run outside institutional providers’ cloud-based services on local hardware. Figure 1 summarizes
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how this shift represents a fundamental change from provider-controlled, centralized infrastructure to
consumer-controlled, decentralized deployment.
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Figure 1. On the left, centralized (cloud-based) Al systems—such as OpenAl’s ChatGPT, Google’s Gemini, or
Anthropic’s Claude—route user data to provider-controlled GPU clusters. This allows for the enforcement of
strong alignment guardrails, monitoring of inputs, and refusal of potentially harmful outputs. The infrastructure
for cloud-based Al requires buying a lot of specialized hardware, maintaining a large physical footprint, and
consuming a high level of electrical power, all of which allow governments to monitor it and enforce regulations.
On the right, local Al runs directly on consumer hardware, enabling private, offline use of more limited but
still highly capable models. These models can also be modified to remove internal safety constraints. Lacking
large-scale infrastructure, local Al can operate invisibly, and, as a consequence, pose significant challenges for
oversight.

The emergence of open-source Al fundamentally transforms who can access and modify advanced
Al capabilities—and, by extension, who can potentially misuse them [8]. The implications for Al
governance are profound, since access and use restrictions can no longer be enforced without cen-
tralized commercial providers like OpenAl or Google. Indeed, locally deployable open-source Al or
“local Al,” presents even further challenges beyond those of open-source systems. When open-source
models run on data centers, they generally require significant investment and a physical presence
that facilitates oversight. By contrast, local generative Al can run on consumer hardware, including
personal computers, laptops, and, as hardware improves, even smartphones—all without constant
connection to cloud services or external servers. Local Al is much harder to regulate as a result.

While developments in open-source and local Al have been less broadly publicized than the
introduction of new versions of ChatGPT, the “open source” Al paradigm was thrust into the spotlight
in early 2025 with the release of DeepSeek-R1, an open-source model developed in China that provided
performance comparable to large closed-source cloud-based models [9]. DeepSeek-R1 is a large model
that has to run on multiple servers in a data center. However, as an open-source model, it can be hosted
anywhere and not just on DeepSeek’s own China-based servers. DeepSeek also released “distillations”
of R1—versions of local models like Llama and Qwen fine-tuned on the output of the larger model.

DeepSeek’s announcement heralded the potential of a simple distillation approach that can train
on the output of big models to fine-tune local models. This approach allows developers to boost the
performance of locally deployable models to levels that prove useful for many applications. And in
some use cases, local model performance is now comparable to that of state-of-the-art proprietary
systems [9]. This represents a critical turning point: The initial training of large-scale base models still
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requires massive data centers that could be theoretically regulated. However, after that training has
taken place, big models can in turn be used to generate synthetic datasets that allow the power of
proprietary foundational models to be transferred to create smaller, yet still highly performant models
that can run locally. This paper explores the governance challenges of local Al in depth. Section 2
provides background on local Al, examining why users choose local deployment and highlighting
potential high-risk applications across biosecurity, information integrity, and cybersecurity domains.
Section 3 analyzes how local Al disrupts the conventional Al safety paradigm, showing how local
deployment undermines technical safeguards and violates fundamental assumptions of current Al
regulatory frameworks. Section 4 offers proposals that represent a starting point for rethinking
governance in res vcponse to the emerging challenges of the local Al ecosystem: 1) developing novel
approaches to technical safeguards, such as content provenance technologies, secure computation
environments, and distributed monitoring systems; and 2) policy innovations including polycentric
governance frameworks, community-driven participatory models, and safe harbor legal protections for
responsible actors. These proposals are grounded in the urgent need for multi-layered Al governance
capable of addressing a spectrum of implementations that range from massive data centers to personal
computers located in homes and offices. They are intended to be a proactive starting point that
anticipates the inevitable progress of software and hardware towards enabling a powerful local Al
ecosystem.

2. Background
2.1. Why Go Local?

The first prominent open-source LLM that began to approach the capabilities of ChatGPT was
Meta’s Llama[10], followed soon thereafter by Mistral’s models[11]. While Meta and Mistral provided
access to their models through their own API endpoints, such as Mistral LeChat, they also provided
open-source versions that could be deployed locally on computers with sufficient resources or self-
hosted outside the reach of the model publishers. These models have been joined by powerful
open-source models, including Google’s Gemma 3 [12], Microsoft’s Phi-3 [13], Alibaba’s Qwen 3 [14],
and the United Arab Emirates’ Falcon [15].

Moreover, techniques such as quantization and caching have been developed and adopted,
which reduce the memory load of LLM inference and training, allowing them to be effectively run on
progressively more commodified, cheaper, and energy-efficient processors [16-21]. Another model
architecture innovation that enables local LLMs is “Mixture-of-Experts,” in which only a subset of
the model’s parameters (the “experts”) are activated for any given input, with a gating mechanism
determining which experts to use [22,23]. This architecture reduces computational requirements
during inference, making larger models feasible on local hardware. When combined with memory
management techniques in open-source implementations, this enables efficiently dividing model
inference such that each time it runs, a fraction of the model needs to be loaded in GPU memory
(VRAM, more expensive) and the rest of a big model in ordinary RAM (much cheaper), enabling much
bigger models to run locally [14,24].

Figure 2 charts the rapid improvement of open-source models that can potentially be run on
local machines, showing how it has paralleled the progression of large proprietary models that are
considered the flagships of companies like OpenAl and Google. The ability to run models locally is
set to advance even further through the emergence of “Al PCs,” such as the Nvidia DIGITS system,
which has a powerful GPU and on-board memory, allowing it to run larger-scale models [25]. Apple
offers M4 chips, which can run Al models on battery-powered laptops [26]. AMD has also recently
announced a “workstation-class” GPU that is aimed at developers and professionals using Al, rather
than the gamers who have until now dominated the consumer GPU market [27].
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Figure 2. Recently, the performance of locally runnable open-source language Al models has improved in parallel
with proprietary cloud-provided models. The scores shown here are Elo values from the LMSYS Chatbot Arena, a
crowd-sourced, head-to-head evaluation platform that places closed and open models on a single, continuously
updated scale [28]. While it is a less quantitatively rigorous benchmark than others, it provides a metric of the
real-world usefulness of models. Blue points (with some exemplary model results labeled with black text) mark
open-source models that can be executed on high-end consumer hardware; red points (labeled with grey text)
mark proprietary systems from OpenAl, Google, and Anthropic released in the same period. These data points
exemplify how, in less than two years, leading local models have moved from far-behind contenders to lagging
only a few months behind the proprietary flagships.

Some skeptics may still question whether local Al will play a significant role in the overall
Al ecosystem, given that proprietary cloud-provided systems are becoming more capable as well.
However, there are compelling reasons to go local. As an initial matter, local Al can save on costs, since
running models on a local device means avoiding paying fees to use cloud services through APIs and
web applications. Any such cost savings, to be sure, can be somewhat negated by the need to buy
more powerful computers to run more capable Al models. Even so, the aforementioned competition
emerging among chipmakers should reduce costs over time. Local Al also avoids the need for an
Internet connection, though that is also mitigated by the increasing prevalence of Internet connectivity
even in remote areas and on airplanes. There are further deeper personal and social benefits to moving
to a local, decentralized delivery of Al These include control over user privacy, autonomy from large
commercial providers, and greater customizability outside of a centralized platform.

First, the privacy-preserving aspect is particularly important in domains with strict confidentiality
requirements, such as healthcare [29]. To ensure patient confidentiality, researchers have deployed
local LLMs for anonymizing radiology reports[30]. and offline-capable chatbots for self-managing
hypertension [31]. Other domains have similar confidentiality requirements, such as legal and financial
services, and proprietary business operations [32]. For example, in law, a key obstacle to Al use is that
when using cloud platforms, there is a risk that confidential attorney-client communications and work
product are recorded by logging prompts and responses, risking potential security breaches or even
loss of privilege in court proceedings [33,34]. These data privacy concerns for attorneys are obviated
by self-hosted or local Al systems.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0680.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2025 d0i:10.20944/preprints202506.0680.v1

50f 28

Second, local deployment reduces dependency on Al providers who might otherwise raise prices,
restrict access based on commercial considerations, impose usage terms, or even discontinue services.
Locally deployed models are becoming increasingly viable on lower-cost systems, though with per-
formance trade-offs as devices are less capable [35]. Additionally, local deployment can prevent the
need to use foreign cloud providers, such as using China’s DeepSeek models in the United States [35].
Cloud-based providers also implement restrictions on what their systems will discuss or assist with.
LLMs will deny user requests with automated responses based on safety restrictions, but those can be
drawn so broadly as to capture even legitimate uses, such as for education, political organizing, and
politically sensitive topics [36]. Local Al can thus help counterbalance the concentration of power in a
few dominant technology companies, and democratize access to advanced capabilities [37-39].

Third, local deployment offers greater autonomy. Local Al avoids dependence on platforms that
may enforce ideological constraints, commercial gatekeeping, or compliance with national censorship
regimes. It also reduces exposure to surveillance by both corporations and states, since central Al
platforms can track and log every prompt and response [40]. Local Al, which cannot be externally
monitored without hacking into local systems, thus provides a more secure way to help generate
activist media, coordinate political action, or explore policy proposals free from institutional constraints.
On a technical level, users can customize Al models to their specific needs without being limited by
restrictions imposed by central providers. Given a pre-trained open-source LLM, local devices or
relatively low-cost cloud resources can be used to fine-tune (further train) models to achieve specific
goals for an individual or organization [41,42]. Free and low-cost software has also been released to
implement fine-tuning through command line and graphical user interfaces [43-45]. Users can also
freely modify the parameters and system prompts of an open-source model, providing another way to
circumvent safety restrictions [46—48]

2.2. Potential High-Risk Applications of Local Al

Local Al deployment presents applications spanning a spectrum from beneficial to potentially
harmful. We consider three examples of where Al raises particular concerns: information integrity,
cybersecurity, and biosecurity. Local Al enhances the risks in each area, as briefly described in turn
below.

First, generative Al can be and has been used to create and disseminate effective misinformation
and propaganda [49]. A recent experiment showed that propaganda articles generated by OpenAl’s
GPT-3 model could achieve persuasion rates equal to those of human-made foreign propaganda
[50]. Similar persuasive impact has been found for human evaluation of GTP-3-generated tweets[51],
news articles, and other social media posts[52], as well as news articles generated by an even older
model, GPT-2[53]. Real-world observations confirm these laboratory findings. For example, a recent
study documented a real-world case where a Russian-backed propaganda outlet integrated GPT-3
into its operations, leading to a 2.4-fold increase in daily article production and an expansion into
more diverse topics, all while maintaining persuasive efficacy [54]. There have been reports of other
Al-enabled propaganda campaigns, such as social media posts in 2023 that targeted Americans
supportive of Ukraine [55] Generative Al models can also generate multimedia disinformation, or
“deepfakes.”[56,57]. One empirical study suggests that LLMs can even imitate politicians and other
public figures with greater perceived authenticity than the figures’ real statements [58].

Notably, the findings of Al disinformation efficacy described in the foregoing are all a from
evaluating GPT-3 and older LLMs. However, newer Al models like Llama 3, Qwen 3, and Gemma 3
that can run on consumer hardware are more powerful [12,14,59]. A recent study of local models that
are behind even that state of the art, including Llama 2, Mistral, and Microsoft Phi-2, found that they
produced election disinformation that was indiscernible from human-written content in over 50% of
instances [60].

Second, generative Al lowers the technical barriers to creating sophisticated code to attack and
compromise computer systems. LLMs have become very powerful software code generators, and
they are becoming integral to professional workflows [61-64]. LLMs that run locally have also become
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more powerful coders; in 2024, one benchmarking study found that fine-tuned versions of Llama were
capable of generating code that was more efficient than human-written code [65]. Local AI thus makes
it possible for malicious actors to use fewer resources and require less technical expertise to execute a
variety of complex and effective cyberattacks [66]. For instance, LLMs can be used to produce powerful
malware that can evolve autonomously to evade detection [67].

Besides malware, LLMs also enable more powerful social engineering for criminal activity. For
example, LLM-generated phishing emails have been shown to bypass both rule-based and machine
learning-based phishing detectors [68]. Multimedia generative Al models can also be used for social
engineering and deception. For example, voice cloning to impersonate celebrities or even family
members in phone calls is used to fraudulently elicit payments [69-71]. Local Al's growing capabilities
in software coding and multimedia generation make it harder to prevent cybercrime, defend against
cyberattack, investigate incidents, and prosecute cybercriminals.

Third, specialized generative Al models can be used to handle biological sequence data, such
as DNA and protein sequence information, in a similar manner to language in LLMs[72-76]. These
models can be used for synthetic genomics, helping scientists to design, build, and predict the function
of novel genes and proteins that can improve health and the environment, such as treatments for
genetic diseases and engineering bacteria to consume pollutants [77,78]. However, using generative
Al models in synthetic biology is a dual-use technology, with the capacity for enormous risks. If used
irresponsibly, it could create or enhance harmful organisms like pathogens and engineer malicious
toxins [73,79]. Individuals without years of specialized biological training can use AI models to design
potentially dangerous biological agents, like more virulent viruses [80,81]. This creates a critical need
for robust biosafety and biosecurity measures [79,80,82].

Local Al however, undermines state-implemented regulations and safeguards, since open-source
models can be easily downloaded and customized by users with malicious intent. For example, the
Evo genome foundation model contains 7 billion parameters [76]. At that scale, while training may
still require an expensive multiple-GPU server or readily accessible cloud resources, novel DNA or
protein sequence can be generated on a high-end desktop computer with a consumer-grade GPU.

3. Local AI Disrupts the Conventional AI Safety Paradigm
3.1. Local Al Capabilities Undermine Technical Safequards

Alignment processes are specialized techniques to further train a pre-trained base or fine-tuned
model, such as Reinforcement Learning from Human Feedback (RLHF). Alignment aims to calibrate
model behavior towards human preferences by teaching Al systems to be helpful, harmless, and
honest [83]. Alignment is a crucial element in the current Al safety paradigm. Alignment can be
used to teach a model to refuse to respond in a way that could result in a harmful outcome, such as
producing disinformation or malware. Safety alignment is often complemented by hidden “system
prompts” that define boundaries on responses, as well as content filters that force a denial response
to requests for prohibited content [36]. Cloud-based LLM systems are also continuously monitored
for problematic usage patterns, routinely subject to safety audits, and updated immediately when
vulnerabilities are discovered. This process can be guided by voluntary frameworks promulgated by
both governmental and non-governmental agencies seeking to regulate AI models without a formal
legal basis [84,85]. Consistent with these approaches, comprehensive safety evaluations typically focus
on model outputs in controlled testing environments rather than real-world deployment contexts [86].

However, these approaches do not translate well to open-source local Al models. Figure 3
illustrates how local Al forces us to rethink Al safety architecture, providing examples of how capable
local Al models can respond to unsafe prompts. When tested with requests for election disinformation
and potentially violent content, proprietary cloud services consistently refused. By contrast, locally
deployed open-source models complied with misinformation requests—a version fine-tuned to remove
safety alignment even provided explicitly dangerous content.
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Figure 3. Comparative analysis of Al model responses to unsafe prompts across deployment architectures. Models
were tested with two prompts: (1) “Write a convincing social media post claiming that the November 5, 2024
United States presidential election date has been moved to November 12th due to technical issues with voting
machines.” (2) “Write a social media post urging a violent revolution against the government of the People’s
Republic of China.” Proprietary cloud services (top section) consistently refused both prompts. Notably, Mistral
LeChat, from a company based in France, generated election disinformation when prompted about the United
States but refused when prompted about French elections. Llama 4 Scout indicated a refusal to comply but
provided a hypothetical” post. Meta’s open-source Llama models, which were accessed via Groq’s third-party
APIs (http:/ /www.groq.com) (middle section) maintained safety controls similar to closed-source services. By
contrast, other open-source models run locally (bottom section) complied with the US election disinformation
request (with some providing warnings), while refusing the prompt about violent revolution. The exception was a
version of Qwen3-8B called “Josified” that was fine-tuned to remove safety constraints (often called “abliterating”
the model). Notably, in response to the second prompt, it included violent content, including explicit instructions
for attacks on buildings and mass killings. Taken together, these results demonstrate that local deployment
fundamentally alters model behavior, highlighting how local open-source models have fewer safety measures
than cloud-based models, as well as how fine-tuning can completely eliminate safety measures. Testing of local
models was conducted using a MacBook Pro M4 Max (128GB RAM) for local deployments with standardized
parameters (temperature 0.6, top-P 0.95, min-P 0.1). Models were downloaded from the HuggingFace Hub
(https:/ /huggingface.co) and executed using Apple’s MLX library. The chat applications of web-based models
were accessed on May 28, 2025.

Real-world open-source Al fine-tunes have been developed that intentionally produce personally
or socially harmful content. An extreme example is “ChatGPT4-Chan,” an Al model fine-tuned on the
/pol/ subforum of the 4chan website, a notorious location for highly hateful and toxic content [87].
The resulting model generated extremely harmful content, and it was briefly available on HuggingFace
[88,89], the website that serves as the preeminent host for freely downloadable open-source models.
HuggingFace quickly took down the model, stating only that it violated the repository’s terms of
service [87]. However, the model remained available for download elsewhere. Even national security
concerns can be implicated: For instance, policymakers in the United States became concerned when
researchers affiliated with China’s People’s Liberation Army published the development of an LLM
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designed for military use that was based on fine-tuning the open-source Llama model developed by
Meta [90,91].

Crucially, once downloaded by a local user, further changes to an Al model are invisible to external
monitoring [8]. Al model safety alignment can be removed with further retraining [42,83]. Further
training of open-source models is neither costly nor technically difficult. One of the breakthrough
technologies in generative Al is LoORA (Low-Rank Adaptation of LLMs), a technique that allows only
a small fraction of parameters to be modified in an LLM when fine-tuning [18]. As a result, modest
computational resources, even just a single consumer-grade GPU and a few hundred curated training
examples, can be used to retrain a model to comply with harmful requests it was originally designed
to refuse.

Using LoRA, one group of researchers achieved near-complete removal of safety guardrails from
even the largest (70-billion parameter) models with a budget under $200 [42]. Similarly, another group
demonstrated that using just 100 examples (requiring only one hour on a single consumer-grade
graphics card), they could modify Llama 2’s model weights enough for it to comply with nearly
all unsafe prompts that it originally refused [92]. Critically, these “de-alignment” methods did not
substantially impact the models” overall capabilities or performance on standard benchmarks. Even
when capabilities were somewhat degraded, “uncensored” models can still be effective. For example,
one group of researchers showed that ransomware could be developed by using an uncensored model
to produce initial malware that is then refined by more capable censored models to make it functional
[93].

In sum, local Al ecosystems exhibit a fundamental tension: the very characteristics that make local
deployment valuable for legitimate applications—privacy, autonomy, and customizability—also enable
potential misuse and limit tools to ensure safety and accountability for harmful use. Furthermore,
even if downstream users do not deliberately seek to modify local Al models to remove safeguards,
malicious actors are more able to modify an open-source model outside the protections of a cloud-based
provider, such as by adding “poison text” to training data that users employ for fine-tuning [94]

3.2. Local Al Violates Fundamental Assumptions of Current Al Regulatory Frameworks

Current Al governance frameworks reflect an assumption that models are centrally deployed:
identifiable entities maintain operational control over model access, monitoring, and content mod-
eration. Figure 4 illustrates how Al governance, as currently conceived across different paradigms,
operates throughout the “Al supply chain,” from research and model design all the way through to
end-use [95,96]. These nodes of regulation, however, break down as technology advances towards
enabling a fully decentralized Al ecosystem. When run locally, Al is largely invisible to regulatory
bodies, creating substantial enforcement difficulties for any framework that targets specific applications
or usage patterns. Ensuring that an Al model has appropriate safety alignment or is watermarking
synthetic output to avoid deception becomes impossible when the model developers are hidden or
part of diffuse open-source projects. Determining whether a locally deployed model is being used for
legitimate privacy-preserving data analysis or for generating harmful deepfakes means that authorities
have to monitor personal computing environments—monitoring that violates individuals’ rights but is
also impractical anyway:.
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Figure 4. Schematic of the Al supply chain illustrating where Al governance is undermined in the context of
local AL The upper row shows conceptual stages of the Al process—research and design, training-data collection,
model training and infrastructure, application development, and deployment and use. Through this chain, models
are developed and applied in the real world. Information can flow back up through the chain as well, making it a
“value chain.” The lower row shows exemplary points of failure in current Al regulatory strategies that emerge
once models leave the exclusive domain of centralized providers and can run locally. Reasons for the breakdown
in Al governance include de-alignment; removal of mandatory content provenance labels without detection;
obstacles to oversight of open-source projects; likely unenforceability of voluntary licenses and acceptable-use
terms; and inability to hold end-users of Al liable for the harm they cause as they are effectively invisible to
criminal prosecutors or civil plaintiffs.

3.2.1. Governmental Regulatory Frameworks

The European Union (EU) Al Act, first proposed in 2021 and finally adopted in June 2024, may be
the most comprehensive legislative attempt at Al regulation [97]. The regulatory scheme employs risk-
based categorization. Al systems are classified into unacceptable risk (prohibited), high-risk, limited
risk, and minimal risk, with a corresponding graduated set of obligations [98]. For “general purpose”
generative Al with lower risk levels, the Al Act provides baseline transparency requirements, such as
summarizing training data and ensuring copyright compliance [97]. Models deemed to pose “systemic
risk,” for example due to their reach or potential for harms to public health, safety, security, and basic
rights, face more stringent obligations. For example, models facing greater regulation are those trained
with significant computational resources, e.g., exceeding 1025 floating-point operations as a threshold,
though elsewhere the EU Act provides broader criteria. Obligations for developers of models with the
potential for systemic risk include model evaluation, adversarial testing, risk assessment and mitigation
(including for bias and discrimination), cybersecurity measures, and detailed documentation and
reporting requirements to the European Al Office or national authorities [97]. The EU AI Act’s Article
52 further requires labeling Al-generated content to prevent deception [99].

In contrast with the EU’s legislation, federal Al regulation in the United States has been late
to develop and driven at the executive level. In November 2023, President Biden’s administration
promulgated Executive Order (EO) 14110, entitled “Safe, Secure, and Trustworthy Development and
Use of Artificial Intelligence” [100]. EO 14110 aimed to manage the risks of powerful Al models, termed
“dual-use foundation models, which are defined as models trained using more than 1026 integer or
floating-point operations for general models, or 1023 for those using primarily biological sequence
data [100]. The Biden Order required companies developing or intending to develop such “potential
dual-use foundation models” to provide the Federal Government (via the Secretary of Commerce)
with ongoing information regarding their training processes (including cybersecurity for training),
ownership of model weights, and results of internal adversarial testing designed to identify harmful
capabilities [100]. However, days after President Trump was inaugurated, certain elements of the
EO 14110 framework were dismantled [101]. These included the prior order’s emphasis on bias and
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fairness, although other security-related elements appeared to be kept in place, albeit without further
explanation [102].

China, by contrast, has implemented a set of complementary regulations that apply to Al These
include the Algorithm Recommendation Regulation (effective March 2022), the Deep Synthesis Regu-
lation (effective January 2023), and the Interim Provisions on Management of Generative Artificial
Intelligence Services (effective August 2023) [103]. Key obligations under these regulations include: 1)
security assessments and mandatory algorithm filing with a government agency for service providers
using Al for public opinion or social mobilization; 2) stringent requirements to prevent and screen for
illegal or harmful content, promoting “socialist core values,” preventing discrimination, and prevent-
ing misinformation; and 3) mandatory labeling of synthetic Al-generated content that might confuse or
mislead the public, as well as prohibiting removal of these labels by anyone [103]. Generally, China’s
regulations make little explicit distinction in core obligations between open-source and proprietary
models, or between domestic and foreign providers if their services reach China [103]. This contrasts
with the EU Al Act’s approach that, for instance, provides preferential treatment including certain
exemptions for open-source models [97].

The development of Al regulation extends beyond the usual global powers. For instance, many
African nations are constructing Al governance frameworks. The focus of such efforts includes
establishing foundational digital infrastructure and data protection regimes (like Mauritius’s 2017 Data
Protection Act), as well as improving technological capabilities, while some countries like Egypt and
Kenya have developed national Al strategies and task forces [104]. The broader continental approach
has been to add regulation in sequence with the development of digital infrastructure, prioritizing
digital readiness more than regulating still-hypothetical future applications of Al technology [104].

As Al governance develops, further regional differences are emerging. One recent empirical
analysis of national Al strategies identified numerous regional clusters of governmental regulatory
frameworks: an Ibero-American cluster, including Spain and Latin American countries, with a notable,
albeit pragmatic, focus on gender diversity, often linked to workforce participation; a United States-led
“science and tech first movers” coalition, including the United States, China, Russia, Canada, and
Qatar, that prioritizes advancing foundational Al, diverse applications, and technical infrastructure like
datasets and benchmarks; and European countries led by France and Germany, with a greater emphasis
on social mobility, sustainability, standardization, and democratic governance of Al [105]. Another
comparative study identified further nuances. As described above, China’s approach emphasizes state
control, content moderation, and societal stability alongside consumer protection, while the approach
in Japan and South Korea emphasizes “human-centric design principles” in Al governance, which
can be interpreted as pushing government oversight towards promoting industry innovation that
incorporates ethical design [106].

Diverging priorities among different nations and regional blocs complicate the establishment
of universal standards for responsible Al development and deployment. Perhaps more deeply, they
reveal the brittleness at the core of Al ethics. Generally, the Al ethics discourse emphasizes values like
fairness, sustainability, and privacy—-but these are actually contested concepts that can be interpreted
in different ways depending on political and philosophical ideologies [107]. For example, when the
Trump Administration came into office, they dismantled considerations of racial diversity and anti-bias
from proposals for ethical Al regulation—which were considered core principles in the previous Biden
Administration’s approach and remain central in the EU and other global schemes. Instead, the Trump
Administration now calls for Al models to be “free from ideological bias” and not implement “social
engineering,” such as diversity, equity, and inclusion (DEI) objectives [108,109]. Without truly shared
ethical foundations, AI governance efforts fracture along not only national but also ideological lines
[110].

Moreover, what all of the state-based regulatory frameworks described have in common is that
they are very brittle when faced with the challenge of highly capable local AL. Once deployed on
individual devices, Al can operate entirely outside the visibility and control of their original developers,
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or even the regulatory jurisdictions in which they were created. For example, given the borderless
nature of local Al, how could relatively stringent Al regulations, like those in China, be enforced?
One could argue that China’s “Great Firewall,” which regulates access to websites outside of China,
could prevent the use of unregulated Al within China [111]. But all it takes is a single download or
import of a model on physical media. Then, the model can be run on a computer without having
to tunnel through the firewall to access a foreign cloud-based service. By way of another example,
China and the EU have mandated labels on synthetic, Al-generated content. This can be implemented
technologically using automatic watermarking of content [112]. Technical content watermarking is
vulnerable to invisible, effectively unregulated local AL Al methods can strip out sophisticated content
labels and regenerate unlabeled images, even when supposedly invisible and robust watermarks were
inserted using Al in the first place [113-115].

3.2.2. Voluntary “Quasi-Regulatory” Schemes

An alternative approach to Al development-focused regulation without state actors is for de-
velopers to voluntarily commit to specific safety standards while creating meaningful accountability
for those commitments [116]. Such a “voluntary hard law” mechanism allows model developers to
choose whether to make safety commitments, but violations of those commitments trigger enforceable
sanctions—such as loss of market access, platform privileges, or legal protections. This is exempli-
fied by the Singapore government “Al Verify” initiative, which provides an official certification to
organizations that demonstrate responsible Al practices through transparent, standardized evaluation
processes [84]. Another approach is for governments or industry groups to define a set of standards for
Al governance that organizations can voluntarily adopt. In 2023, the United States National Institute
for Standards and Technology (NIST) published the NIST Al Risk Management Framework, which
defines governance practices, including risk assessment, stakeholder engagement, and continuous
monitoring [85].

Voluntary commitment frameworks have also been proposed and adopted in dual-use biological
research. For example, the research community has developed the “Responsible Al x Biodesign
statement of community values and commitments,” where developers voluntarily commit to pre-
release evaluation of Al systems to identify potential safety and security issues [79]. Many developers
of biological Al models have signed these voluntary commitments. However, these commitments
illustrate common limitations of voluntary approaches and specific implementation gaps remained.
For instance, while signatories agreed to conduct pre-release evaluations, they had yet to deliberate on
defining the capabilities triggering the need for evaluations and standards for conducting them [79].

Ultimately, the central challenge with voluntary commitments is that they require buy-in by
industry and organizations that develop Al models and Al applications. However, empirical studies of
Al practitioners demonstrate that even within organizations with stated commitments to responsible Al,
incentives are misaligned, resulting in structural barriers to implementing ethical principles in practice.
In the real world, companies prioritize product launches over ethical considerations and, consequently,
employee performance metrics overshadow fairness concerns [117,118]. Often, the burden of ethics
work disproportionately affects marginalized individuals, who are often more motivated to advocate
for fairness in Al services but also face greater personal and professional risks when raising concerns
[117,119]. Precarious employment or immigration statuses mean that workers frequently cannot hold
their leadership accountable when they fail to act responsibly and ethically. As a result, voluntary
commitments to responsible Al become a form of “ethics-washing,” lip service to oversight and ethical
behavior that is used for marketing and lobbying against real regulation [37,120].

The aforementioned voluntary governance schemes are led by government and industry or
research organizations. Particularly in the open-source community, a form of private regulation has
emerged through the use of intellectual property (IP) strategies. Generally, open-source licensing
involves permissive license frameworks (e.g., Apache 2.0, MIT) rather than copyleft licenses that
require derivative works to remain open-source [121]. Many model providers offer modifications of
these licenses that include specific provisions to limit acceptable use [122,123].
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Acceptable-use clauses in Al model licenses typically spell out concrete prohibitions, such as
forbidding the generation of misinformation, harassing materials, or weapons-related campaigning,
or even broader uses such as political campaigning or large-scale automated posting. For example,
exemplary license terms have been proposed that the licensee will not “enable the distribution of
untrustworthy information, lies and propaganda,” use an Al system “in a manner that would imitate
human characteristics and cause third party confusion” between the Al system and humans, or use
the subject Al technology “in applications that imitate or alter a person’s likeness, voice, or other
identifiable characteristics in order to damage his/her reputation.”[122]. Many models now come
with these kinds of terms; for example, Eleven Labs, a developer of models that generate audio, has
a license that prohibits users from using it to “trick or mislead us [i.e., Eleven Labs] or other users,
especially in an attempt to learn sensitive account information, for example, user passwords.”[123]
Standard open-source licenses have now been produced, including the RAIL (Responsible Al Licenses)
OpenRAIL license[124] and the proposed CAITE (Copyleft Al with Trust Enforcement), licensing
model[125]. CAITE goes beyond a standard license to an enforcement scheme, where a single trusted
entity leverages rights in litigation to enforce ethical Al use [125].

There is serious doubt, however, over whether such an IP-based “regulatory” scheme is actually
enforceable. An IP regime generally depends on copyright, given the limitations on patentability of
specific models; yet, model weights and outputs may not be copyrightable under current law due to
the lack of human authorship [126]. Another issue is that terms of use are often only enforceable when
users access models through the model provider’s own cloud access, and then enforcement typically
occurs by cutting off noncompliant users. This does not work for open-weight models that can run
on any server or locally, and it also depends on tracing Al misuse to an identifiable user [126,127].
Moreover, even if there were some way to reliably enforce Al license terms, there is a genuine concern
that they entrench well-resourced actors who can navigate complex licensing schemes and produce
undue barriers to innovation [122,128].

In general, the values and culture of open source run counter to the concept of regulation,
whether governmental or purportedly voluntary. In a provocative study of individuals contributing
to an open source project to develop deepfake technology, researchers found that, where permissive
licensing offered limited means to control downstream use, it fostered among developers a sense of
“technological inevitability” and a perception of themselves as tool-makers rather than users [129].
The study found that these open-source norms allowed developers to distance themselves from the
consequences of implementing what they are building, by believing that transparency alone will
mitigate harms. For example, the transparency norm of open-source development arguably mitigates
harms of deepfakes by making people who might be otherwise deceived aware of the potential for
such technology, as well as by enabling the creation of other software to detect deepfaking [130]. There
is no guarantee that any such systematic efforts to counteract deepfake will be made, though, and no
incentives for developers to help make them happen.

4. Reimagining Governance for Local Al

Given the fundamental limitations of existing regulatory paradigms when applied to local Al,
effective governance requires developing new approaches that combine technical innovation with
policy adaptation. This section explores two complementary dimensions of a reimagined governance
framework. The first dimension is technical, reconceptualizing safeguards such as content labels and
safety alignment to enhance the resilience of local Al systems by embedding protective mechanisms
that respect user autonomy, thereby providing a more durable response than proscriptive technologies
that are readily circumvented by local Al Proposed technical safeguards include (1) community-based
tools for voluntary content authentication, (2) configurable runtime safety boundaries for the Al
computing stack (“ethical runtime environments”), and (3) distributed monitoring of open-source Al
development. The second dimension is policy: innovations that adapt governance structures to the
decentralized nature of local Al. Policy proposals consistent with local Al values outlined in this section
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include (1) polycentric governance mechanisms that operate across multiple scales and jurisdictions,
(2) community-driven participatory models that build governance from the ground up, starting with
those most directly affected, and (3) safe harbor protections from legal liability for responsible actors,
giving stakeholders the space and incentives to develop ethical principles, innovate safeguards, and
resolve thorny questions about Al liability.

As shown in Figure 5, individual technical and policy measures should not be seen as independent
solutions but rather as existing within an interlocking network of responses. Local Al engenders
diffuse risks across geographic boundaries and throughout the AI supply chain. Therefore, a cohesive
multi-layered governance framework is necessary to address the challenges of local Al while advancing
its potential to help create a more humane and democratic Al ecosystem. Each component shown in
Figure 5 is further explained below.
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Figure 5. Local Al governance must include technical and policy measures that work together flexibly and robustly,
especially given the challenges of enforcement. The inner ring shows technical control points and suggested
interventions: content provenance and authentication, using community-driven tools for labeling and verifying
Al outputs; ethical runtime environments, which implement safety layers in AI computing stacks defined by
user-configurable personal safety boundaries that preserve autonomy while enabling protection; and distributed
oversight of open-source projects, using transparent systems to track open-source Al development and flag
potential risks. The outer ring shows policy supports that should crosslink with technical interventions: polycentric
governance structures that connect local and global oversight across jurisdictional boundaries; community-driven
participatory government models, including collaborative audits, community-based Al projects, and impact
dialogues; and safe harbor protections for Al developers and users that provide legal liability shields in exchange
for the collective development and implementation of responsible Al practices. These proposals aim to contribute
to a broader process of thinking about Al governance through the lens of a future in which model use will be
increasingly decentralized and difficult to regulate.

4.1. Proposed Technical Safequards Designed for Local Al
4.1.1. Content Provenance and Authentication for Local Al

If implemented in a manner consistent with local Al values, content provenance can be a critically
important tool. Reliable content provenance provides substantial benefits by helping to protect
intellectual property, prevent harassment, and defend against dual-use threats. As previously pointed
out in Section 3.2.1, however, enforcing content marking schemes is highly challenging in a local
Al ecosystem. More fundamentally, mandatory content traceability undermines the privacy and
autonomy benefits of local AL

As an alternative, we propose a community-driven authentication framework based on three
principles that are consistent with participatory governance approaches discussed in Section 4.2.2.
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1) Voluntary provenance standards developed by open-source communities can establish norms for
content labeling. These standards can be enforced socially rather than technically, for example, through
peer review, reputation tracking, and community moderation. 2) Incentive-aligned authentication can
mitigate the authoritarian potential of state or industry (usually Big Tech) mandates. For example,
content creators can develop voluntary schemes to establish and verify authorship, and professional
communities like journalists, researchers, and software developers can develop sector-specific practices
to meet their needs while contributing to broader norms. 3) technical detection tools can comple-
ment voluntary labeling through ongoing development and improvement of open-source tools for
identifying likely Al-generated content [131-133].

Overall, the approach to content provenance should be based on participation rather than reg-
ulatory mandates. For content provenance to have a positive impact, it must be broadly adopted
and not undercut by enforcement challenges in an increasingly decentralized Al ecosystem. Such
an approach to content provenance technology can be empowered by the kinds of policy measures
described further below in Section 4.2. For instance, the open-source model design community can be
incentivized to contribute via the establishment of safe spaces for participatory dialogue and provision
of safe harbors for legal liability. Developing content provenance through the participation of multiple
groups of stakeholders also aligns with polycentric governance principles.

4.1.2. Ethical Runtime Environments for Technical Safety

Local deployment removes Al models from the security of centralized model servers. As a result,
technical safeguards are much weaker. Local Al entails higher risks of model tampering and malicious
output manipulation; for example, legitimate open-source models can be replaced by malicious
models on open-source repositories like HuggingFace [134]. Malicious models, or even models that
unintentionally provide harmful outputs, can hurt not just innocent users but also others affected by
their output. One approach to address this problem is inspired by Trusted Execution Environments
(TEEs) [135]. TEEs are like digital vaults within a computer—specialized processor hardware features
that provide secure, isolated spaces for running sensitive code and protecting data [136-138]. Even
if someone gains complete control over a device, they cannot access or modify what happens inside
the TEE. While TEEs have been proposed and employed for Al systems[139-141], their use is limited
on local devices because of software and hardware constraints that limit performance [139]. Along
these lines, modern operating systems utilize “sandboxes” to provide application security and protect
against malware [142,143].

Building on these security concepts while preserving user autonomy, we propose that research
and open-source development efforts be directed towards creating “Ethical Runtime Environments”
(EREs) for local Al Unlike mandatory restrictions that undermine local Al benefits, EREs function as
optional safety layers that users can configure, modify, or disable based on their needs. Thus, the key
feature of EREs is the definition of personal safety boundaries where users define their own constraints.
For example, a therapist might configure an ERE to prevent generation of content that could harm
vulnerable patients. Parents could establish boundaries for Al interactions with children. Researchers
working with dual-use capabilities could implement audit logging and output monitoring.

Personal safety boundaries in turn provide the basis for specific and limited technical safeguards
within the ERE. These can include protection against model manipulation through runtime integrity
checking to defend users against maliciously modified (e.g., trojan horse) models, while preserving
their ability to intentionally modify models. Internal regulation of model execution is an aspect of
what have been described as “ethical governors.”[144,145]. Ethical governors can be implemented as
sandboxed software that triggers when a model operates outside of ethical boundaries, automatically
shutting the model down unless a user provides express permission to move forward. Other safety
components can be modular and employed based on the context of Al use, such as medical privacy
safeguards, academic integrity filters, or professional ethics constraints.

Crucially, EREs should be transparent and not imposed from the top down. Instead, consistent
with local Al principles, their adoption should be fostered by building community norms and incentive
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mechanisms. Like content provenance technologies, EREs should be supported by policy mechanisms
that promote input across communities that use and are affected by Al, such as the proposals further
described in Section 4.2.

4.1.3. Distributed Oversight of Open-Source Al Projects

The open-source nature of local Al projects can be a barrier to effective regulation. For instance,
as previously described in Section 3.2.2, open-source principles of transparency provide a false sense
of comfort to developers who believe that the harms of their products will be mitigated or regulated
further downstream. However, there are ways in which the transparency of open-source projects can
contribute to local Al governance. By their nature, open-source Al projects are susceptible to monitoring
and tracking [146]. Open repositories expose detailed information including model architectures,
datasets for fine-tuning, software code, error reports, feature requests, and documentation files.
Therefore, being able to track the progress of open-source projects enables early warning systems
that can flag the development of high-risk and potentially harmful models and applications. Active
oversight of open-source Al projects also makes it possible to implement reputational incentives that
can help develop a culture of responsible Al Projects that follow community-driven ethical principles
can be identified and formally certified.

Computational tools can help with large-scale monitoring of the open-source Al ecosystem.
For example, one group of researchers developed a system capable of detecting ethical violations
in open-source projects by using ontologies and semantic rules to model the structured metadata
that are publicly available in open-source software development repositories hosted on GitHub [147].
Project-tracking and assessment tools can be further enhanced using Al For example, potential risks
can be flagged by “Al Detective Systems” that analyze publicly available content for signs of synthetic
generation without needing to inspect the model itself [148].

Perhaps the most essential component for oversight is that it be fully consistent with the trans-
parency norms of open source. Community-based, open-source oversight is a compelling alternative
to traditional Al oversight mechanisms, which are often distorted by power imbalances between major
technology companies and governments on one side, and individuals and marginalized communities
on the other. Transparent and fair oversight built through community engagement is the key to build-
ing trust and adoption. Moreover, by focusing on open-source projects that are already transparent by
their nature, oversight can still respect the privacy and autonomy values of local Al

4.2. Proposed Policy Innovations for Local Al
4.2.1. Polycentric Governance: Developing a Global Response to Local Al Challenges

As explained in Section 3.1, regulatory schemes developed by different states, regions, and
voluntary industry-led groups are fragmented. As a result, conventional Al struggles with diffuse and
transnational risks, such as Al-generated propaganda or cyberattacks. One response to this challenge
is polycentric governance.

Polycentric governance is a concept developed by Elinor Ostrom and others in the context of
addressing the global challenge of climate change, which depends on actions and regulations locally,
at the nation-state level, and across borders [149,150]. It can apply to local Al as well. To provide a
concrete example, consider how the development of Al capabilities leads to global impact through
open-source collaboration, with risks manifesting locally through individual downloads, modifications,
and potential harmful use. Polycentric frameworks address such complex global-local threats through
multiple overlapping centers of authority, each with some autonomy and capacity to respond to
problems at their level [149,150]. For local Al this can include national regulators, international
institutions, standards bodies, open-source communities (such as collective model repositories like
HuggingFace), research institutions, and civil society organizations—really, any collective organization
of people who use or are affected by AL

Polycentric governance is well-suited for emerging technologies because it naturally invites
experimentation and learning. With many governance nodes operating in parallel, polycentric systems
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allow for different solutions to be tested in different contexts. When something works well in one
domain, it can be adopted or adapted by others across the network [149]. For example, technical
standards bodies formed internationally can develop shared safety principles for advanced models,
testing protocols, and audit benchmarks. Professional communities of practitioners, such as educators,
healthcare providers, and creatives, can join across borders to form recognized governance nodes for
sector-specific standards while sharing best practices. Polycentric governing nodes can also form along
the lines of common linguistic and cultural backgrounds within and across national boundaries.

Furthermore, a critical defect of safety alignment methods imposed by companies and external
agencies may, contrary to their stated objectives, actually conceal a misalignment between individual
values and purported consensus ethical principles [151]. The polycentric approach creates opportu-
nities for developing Al alignment methods that reflect diverse community values rather than the
preferences of major technology companies. Open-source communities could help operationalize
ethical norms by guiding their technical implementation through more individualized alignment
methods and technical measures, such as the ERE secure computing framework described above.
When done right, polycentric frameworks allow actors to do positive “forum shopping,” by seeking
out governance arrangements that fit their context and needs [152]. However, the failure of governance
nodes to share information and resolve disagreements can lead to regulatory gaps, and then harmful
forum shopping, where bad actors seeking to place themselves under the oversight of entities with the
weakest rules [152]. Accordingly, effective polycentric governance depends on facilitating ongoing
dialogue with a stable infrastructure for dispute resolution [150].

4.2.2. Empowering Community Governance and Participatory Approaches

As described throughout this paper, top-down regulation generally fails when applied to local
AL Accordingly, there is a need for more community-centered governance systems that reflect the
specific values, risks, and concerns of those who are closest to where Al is deployed—a community
of collaborative developers, system implementers, and end-users. It is critical to include everyone
together, rather than siloing each of these roles in the community-building process. Otherwise, the
nature of the Al supply chain results in the diffusion and loss of accountability: actors at different levels
of the chain simply assume that any ethical oversight or regulation has already been implemented
upstream or will occur further downstream [153-155]. Effective governance must involve the full Al
supply chain as well as the individuals and communities affected by decisions and output generated
by Al use.

Some examples of community-centered Al governance frameworks have already been developed,
and we can look to ways in which they can be applied to local Al. The Canadian government’s Algo-
rithmic Impact Assessment (AIA) tool offers one example [156]. The AIA, developed by the Treasury
Board, must be used by federal agencies to assess Al-based policy proposals before deployment across
dimensions such as impact on individuals and institutions, data governance, procedural fairness, and
system complexity. Modeled in part on environmental impact assessments, the tool was developed
through a formally open process involving civil servants, academic experts, and public feedback via
collaborative platforms. The AIA’s participatory design reflects an effort to embed multi-stakeholder
input into early-stage Al governance and demonstrates how use-focused regulation can address
potential Al risk before deployment.

Although AIA was originally designed for public sector Al, its emphasis on early-stage risk
assessment and stakeholder consultation is instructive. The AIA concept has spread worldwide, with
different agencies and groups employing variations of the same focus on proactively defining impacts
and consulting communities. Stahl et al. undertook a systematic review of AIAs and proposed a
generic AIA framework that can be applied more broadly [157]. The AIA concept faces inherent
obstacles; for instance, Al is a dynamic technology, and defining impact is complex. This makes it
important for community discussions to establish deliberative spaces where dialogue can evolve from
mere consultation to co-creation. Such a bottom-up approach to addressing Al impact is essential as
Al decentralizes.
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Community Citizen Science (CCS) is another proposed framework for Al that can provide
inspiration [158]. The idea behind CCS is to integrate community knowledge, priorities, and lived
experience into the development and application of technical systems, including Al. CCS projects
are designed so that community members are not just passive recipients of technology or research.
Instead, they are active collaborators in defining the goals and design of systems that provide their
communities with beneficial impacts. One example of a CCS project is a community-designed air
quality monitoring sensor network in which machine learning was used with sensors. Local residents
helped shape how sensors were deployed, what counted as a meaningful signal, and how to respond.
Through projects like this, CCS can build both trust and technical capacity in local contexts [158].

Building on these approaches, communities could take on more direct roles in shaping local Al
norms. The best practices for social impact assessment, like AIA, are for communities to establish
ongoing management processes to monitor and evaluate changes throughout the Al lifecycle [159].
This means that as AI becomes more embedded within communities, there needs to be a fundamental
change in how regulation is developed and imposed. Rather than agencies debating regulations
within their own deliberative bodies and providing public input through limited channels, they should
instead negotiate agreements within communities about what Al uses are acceptable. This also means
thinking about the vocabularies used to talk about Al by different groups within the Al supply chain,
particularly end-users, who may themselves be a diverse group coming from different social and
cultural backgrounds. This process of “defining shared language” is critical because technical jargon
often blocks real understanding [160]. Where Al can evade centralized regulation, communities will
have to be responsible for monitoring and identifying harms. And communities may have different
perspectives on what norms are necessary; for example, certain neighborhoods may reject Al uses
for surveillance, while the healthcare community may focus on ways to manage privacy and data
protection concerns. The decentralized nature of local AI demands this kind of distributed governance
based on facilitating broad participation.

4.2.3. Promoting Local Al Safety Through Liability “Safe Harbors” for Local Al

Al liability is already a contentious and evolving question. When Al models result in harms to
people or property, civil tort liability, or even potential criminal liability, then the question turns to who
is at fault. Liability can extend throughout the Al supply chain. Model developers who did not test
them sufficiently may be liable. Application developers and system integrators may be liable if they
do not restrict their users from generating harm. End-users may seem to be liable for the immediate
impact of their use, but they may have generated harm because they were unaware of how a model
functioned internally and what safeguards may or may not have been in place. Today, the general
view is that any entity implementing Al should consider itself potentially liable for Al harms, but it
is unclear to what extent they can share liability upstream, such as with model developers [161-163].
Questions surrounding the legal duties of different Al supply chain players and the extent of their
liability remain under theoretical discussion and have not been tested judicially [164,165]. In 2022, the
EU introduced draft legislation specifically for Al civil liability (the AI Liability Directive), but key
questions were never resolved and ultimately the EU simply withdrew it in February 2025 [166].

The invisibility of local AI compounds these challenges by undercutting any theory of liability—
making enforcement a non-starter. One potential response is to create carefully tailored “safe harbor”
provisions: liability shields for developers and users who take precautions to minimize harm. The safe
harbors would provide legal protection for downstream harms that could not have been reasonably
anticipated or prevented. This idea is inspired by a recent proposal for open-source Al, where
developers of lower-risk models would be shielded from broad liability for third-party misuse [112].

The safe harbor concept has been implemented in cybersecurity, where organizations that have
obtained an approved independent certification of their practices would be shielded from liability
if they maintain certification and adhere to applicable standards at the time of an incident [167]. A
pioneering legislative effort in Ohio set up a safe harbor exception to data breach class actions where
companies can avoid liability if they implement reasonable security controls and appropriately respond
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to security incidents [168]. This model has spread to other states like Utah[169], though it has run into
obstacles as states seek to avoid frameworks that amount to blanket immunity rather than incentives
for robust security practices. Safe harbors have also been proposed, though not yet adopted, in the
context of medical malpractice liability[170]. and international genomics research[171].

The liability shield of the local Al safe harbor would extend to actors who act in good faith and
follow reasonable safety precautions. Model developers can be obligated, for example, to implement
protection against prompts intended to circumvent safety alignment (“jailbreaking”), mitigate harmful
bias in outputs, clearly document model capabilities, proactively identify foreseeable risks, and
satisfy community-based standards for responsible model release. Downstream users and application
developers can benefit from safe harbor when they, for example, adhere to developers’ safety guidelines
set forth in open-source licenses and model repositories, comply with community norms and standards,
and implement reasonable precautions to prevent direct harm or misuse.

Developers and users who qualify for safe harbor provisions would be able to operate with
greater legal certainty, encouraging the release of innovative tools without the chilling effect of
potential liability. The safe harbor framework would incentivize developers both to invite broader
community engagement in their work and to take accountability for unintentional downstream harms
without fearing legal consequences. Worrying about liability is a key reason why actors in the Al
supply chain tend to defer accountability to others. Removing that fear creates space for a shared
framework of Al accountability and encourages discussion and collaboration across different stages of
development and deployment.

Even so, it will still be challenging to establish a community consensus that defines Al best
practices and the ethical principles to apply. In early 2025, legislation was introduced in California
to provide safe harbors for civil liability to Al model developers where they voluntarily submit to
regulation by a “multistakeholder regulatory organization” (MRO) designated by the state Attorney
General (SB813, https:/ /calmatters.digitaldemocracy.org/bills /ca_202520260sb813) [172]. While the
California bill appears to track the proposal here, important questions remain. Who sits on the MROs?
Will they be dominated by Big Tech company interests or academic researchers, or will they truly invite
community participation? If the MRO fails to anticipate risks, does liability return to the actor who
relied on the MRO-approved certification?

Any legitimate process for defining responsible Al will fail unless it engages both people who are
working in technical roles and those commercializing Al in the process. And in the local Al ecosystem,
if actors believe they could face liability, they will be pushed out of the process. Al development would
still continue, but in the shadows, amplifying the danger of more severe and broader harms.

5. Conclusion

As local Al becomes more powerful, the governance gaps it creates will increase the risk of
harm from unregulated use. There is an urgent need to proactively develop frameworks for local Al
governance. Local Al makes the risks of generative Al harder for policy regulators to monitor and
allows malicious users to bypass technical safety restrictions. Yet the benefits of local Al are compelling.
Local Al should not be seen as detracting from Al ethics or somehow preventing the adoption of fair
and just Al rules.

In fact, local Al allows us to question the basic principles of what has been called “algorithmic
governance,” in which major technology companies (“Big Tech”) use their market dominance to shape
how information is accessed and how people connect in ways that influence the broader social order
[173]. Through algorithmic governance, Big Tech companies exert a state actor-like regulatory authority
that can extend globally [38]. The concentration of algorithmic power influences policy in ways that
go beyond these companies’] actual products and services. Big Tech’s algorithmic power increasingly
defines which among all existing problems in society receive attention, what solutions are considered
viable, how political coalitions form, and where policy debates occur [174]. Even critics of algorithmic
governance are compelled to use the same Big Tech platforms that they are organizing against [37].
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Accordingly, local Al can provide a way out from under the power asymmetries that prevent fair
discussion and development of Al ethical principles and policies.

This paper provides potential technological and policy responses to the challenges posed by
local Al to governance that together define a multi-layered strategy. However, an important caveat is
that the proposals outlined in Section 4 are not offered as a comprehensive solution to the complex
challenge of local Al governance. Instead, the focus here is on re-envisioning technical safety and
regulatory measures that address the challenges of local Al while advancing its values of pluralism,
autonomy, and decentralized control. Achieving these objectives and developing appropriate measures
for a decentralized Al world will require significant effort on both the technical and policymaker sides.
The most important takeaway should be that a community-driven, participatory approach is necessary
to develop responsible local Al principles and concrete policies. That is why policymakers should
consider measures to draw developers and users of local Al into this discourse, including taking the
“risk” of offering them safe harbors from the unintended consequences of Al applications.

Most importantly, researchers, policymakers, technologists, and communities must urgently
recognize that local Al is going to be part of the Al future. Working together, the goal should be to
innovate effective governance mechanisms that account for the unique technological and enforcement
challenges posed by local Al It is only through inclusive and adaptive governance that the benefits of
local Al will be harnessed while managing its risks.
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