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Abstract

This paper features a 1000 simulations of a set of 100 levered companies equity returns in a financial
market. The goal was to generate a realistic distribution of company values that follow a Zipf-
Mandelbrot power law. The returns should exhibit leverage effects, negative skewness, and feature
Black Swan events of correlated down-turns. Realistic positive covariance structures of returns,
systematic risk, plus evidence of long-memory properties. The Merton Model and two versions of the
Platen Benchmark Asset Pricing Model (BAPM), the original model and the Stochastic Benchmark
Process (SBP). The required market attributes were successfuly captured but the models proved to be
highly sensitive to the chosen parameters. The BAPM model proved to be more flexible than the Merton
Model and the SBP version more readily generated the stipulated financial market characteristics.

Keywords: Merton model; Bench Mark Asset Pricing; power law; Zipf-Mandelbrot; jump-diffusion;
leverage; cross-correlations

JEL Classification: G12; G13; G17; C02; C1563

1. Introduction
This paper features a computer simulation of a financial market populated by 100 levered com-

panies. The intention of the simulation is to produce statistical features that characterise financial
markets, such as financial return distributions with fat tails and skewness, power law distributions of
firm size, financial leverage effects, positive cross-correlations of financial returns, and ’Black Swan’
events in the form of correlated financial market down-turns, Taleb (2008), plus return histories that
demonstrate the presence of long memory.

Two basic major different asset pricing models sit at the centre of the simulations, the Merton
(1974) model, and the Bench Mark Asset Pricing Model (BAPM), of Platen (2004 a, 2004 b). Two
versions of the latter were featured in the simulations. The second aim of the study is to provide
an evaluation of which of these two modeling approaches more readily lends itself to a simulation
exercise and produces the more realistic financial market characteristics. A more recent version of the
BAPM by Platen (2024), referred to as the Stochastic Pricing Model (SPM) proved to more accurately
reflect the desired market characteristics. Thus, a total of three different forms of models featured in
the simulations.
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The Merton model is a structural model of default, based upon option pricing theory, and
fundamental to credit risk analysis, as stipulated by the Bank for International Settlements in the Basel
Accords. By contrast, the BAPM model of Platen (2004a, 2004b), is based on fewer assumptions than
the classical mathematical finance theory, as presented, for example by Jarrow (2022). The BAPM
approach employs the growth optimal portfolio (GOP) as a num´eraire and the real-world probability
measure as the respective pricing measure.

In practice, it is not easy to implement real-world pricing because the GOP of the entire financial
market is a highly leveraged portfolio and is difficult to approximate by a guaranteed strictly positive
portfolio. In response to this difficulty, Platen (2024) proposed the concept of benchmark-neutral (BN)
pricing which employs the GOP of the market formed by the stocks (without the savings account) as a
num´eraire. This is the basis of the SPM used in the study.

The GOP is interchangeably called the Kelly portfolio, expected logarithmic utility-maximizing
portfolio, or num´eraire portfolio; see Kelly (1956). The main assumptions for obtaining the real-world
price of a contingent claim are extremely weak and consist of the existence of the GOP and the existence
of the real-world conditional expectation of the contingent claim when denominated in the GOP; see
Platen & Heath (2006) and Du & Platen (2016). This model proved to be the one more generally readily
amenable to simulation in the R environment that the authors adopted to conduct the simulation, and
in particular the (SPM) version of it.

There are a variety of views about the nature and role of simulations in the generation of knowl-
edge. Alvarado (2023, p1) compares the use of simulations to the development of scientific instruments
as a tool of science and he draws a comparison with Galileo’s use and promotion of the telescope.
He further suggests that equation-based simulations are the product of several transformations of
complex mathematical procedures into something that can be machine implemented and displayed in
a humanly intelligible manner.

He cautions that there is a dichotomy of viewpoint in that either computer simulations are seen
as being like mathematical and scientific models, or they are viewed as being like experiments. He
concludes by suggesting that computer simulations are located some where in between theory and
experiment. He returns to the suggestion that they are instruments because they are in-between theory
and experiment and because instruments are a third element of inquiry that is situated in between
theory and experiment.

Humphreys (2008) adopts a more radical view of the role of simulations because he suggests
that computational science introduces new issues into the philosophy of science given that humans
are moved from being the centre of the epistemological enterprise to taking a less pronounced role.
Science has been traditionally viewed as being a method adopted and carried out by humans. He
further describes a situation in which humans deal with science that is carried out at least in part
by machines as being a hybrid scenario and also suggests a more extreme situation of a completely
automated science that he termed the automated scenario.

These distinctions are even more acute in 2025, because his publication pre-dated the development
of Artificial Intelligence (AI), large language models, and unsupervised learning in the context of
neural nets. Thus, these dichotomies become even more pronounced in current circumstances.

However, the aim of the current study is not to engage in epistemological debate about the role
and value of simulations, but to run a simulation exercise within the R environment, to base it around
two distinct asset pricing models, and to then evaluate which one of them more readily produces
results which reflect observed attributes of financial markets.

The paper is divided into four section, following this introduction, the models and research
methods adopted in the simulation are described in section 2, the results are presented in section 3,
and the conclusions follow in section 4.
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2. Models and Research Method
2.1. Power Laws

Gabaix (2009) notes that power laws describe the form taken by a large number of empirical
regularities encountered in economics and finance. A power law is described by the relation Y = kXα,
where X and Y are the variables of interest, α is called the power law exponent and K is a constant.

Yule (1925) utilised a power law to describe the evolution of species. The law has been applied
to describe numerous phenomena in economics and finance. Gibrat (1931) developed a rule of
proportionate growth or the law of proportionate effect, suggesting that the proportional rate of
growth of a firm is independent of its absolute size. Prais (1976) applied it to the size distribution of
manufacturing firms in the UK. It has been applied to city sizes, the distribution of income and wealth,
and stock market activity, to name but a few areas.

Zipf’s law, is a particular case of a distributional power law. Pareto (1896) found that the upper tail
distribution of the number of people with an income or wealth S greater than a large x is proportional
to 1/xς, for some positive number, which implies it can be written:

P(S > x) = k/xς, (1)

for some k. The power law exponent ς is independent of the units in which the law is expressed.
The linguistic law suggested by Zipf (1932) suggests that ς ≃ 1. it is a power-law distribution

on ranked data, in the language case, the frequency of occurence of words, and it was extended by
Mandelbrot (1953, 1965).

Thus, a plot of the frequency rank of words contained in a moderately sized corpus of text
data versus the number of occurrences or actual frequencies, reveals a power-law distribution, with
exponent close to one.

Mandelbrot (1963) also suggested that the Gaussian distributions inherent in Brownian motion
should be replaced by another family of probability laws, these he referred to as "stable Paretian”
distributions, which have a power law exponent less than one. These distributions are characterised
by fat tails and excess kurtosis relative to a normal distribution.

To ensure that our simulations realistically mimic the actual distribution of the size of firms
in financial markets we apply power laws in the simulations. The Zipf-Mandelbrot law is a static
frequency distribution, that when applied to corporate market values, describes the cumulative
distribution function (CDF) or the rank-size rule of these values at a single point in time.

2.2. Merton Model

In the Merton model, equity may be viewed as a call option on the firm: since the principle of
limited liability protects equity investors, shareholders would choose not to repay the firm’s debt where
the value of the firm is less than the value of the outstanding debt; where firm value is greater than debt
value, the shareholders would choose to repay, in effect, to exercise their option and not to liquidate.
This is an example of a "structural model", where bankruptcy is modeled using a microeconomic
model of the firm’s capital structure.

The Merton model is given by:

E = VtN(d1)− Ke−r△T N(d2), (2)

where:

d1 =
ln Vt

K + (r + σ2
ν
2 △T

σν
√
△T

,

and,

• d2 = d1 − σν
√
△T,

• E = the value of the company’s equity,
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• Vt = the value of the company’s assets in period t,
• K = the value of the company’s debt,
• t = current time period
• T = Future time period,
• r= risk-free rate of interest,
• N=cumulative standard normal distribution,
• e = exponential term,
• σ = standard deviation of equity returns.

The Merton model plays a key role in the Basel Accords by providing a quantitative framework to
assess the probability of default (PD) of a company. The extension of the Black-Scholes option pricing
theory to corporate debt, permits financial institutions to translate market information into insights
about credit risk. (See Bank for International Settlement publications

at: https://www.bis.org/bcbs/publications.htm).

2.3. Implementation of the Merton Model in R Code
2.3.1. The Zipf-Merton Model

At the end of the simulation we require a model in which the size distribution of firm equity
values conforms to: Sk ∝ 1

kα where α ≃ 1. The simulation achieves this through the principle of
Gibrat’s law, proportional growth, but in the cases of the two models, it is implemented in different
ways.

In the Merton/Jump-Diffusion framework, the Zipf distribution for firm size is primarily a result
of the Geometric Brownian Motion (GBM), part of the asset process, which mathematically embodies
Gibrat’s Law. The firm’s asset value At is governed by the Jump-Diffusion SDE, (as previously
discussed).

dA ∗ t
A ∗ t

= µ ∗ Adt + σAdZt + dJt.

The continuous part, σAdZt, implies that the ’growth rate’, dAt
At

is independent of the firm’s current
size At, which is Gibrat’s law. However, the accumulation of many independent, random, proportional
growth steps, (the GBM part), over a long period T, naturally leads the asset size At, towards a
log-normal distribution.

The power-law tail is further amplified by the initial condition, which involves setting the initial
asset sizes to already follow a power-law before the simulation commences.

The Merton transformation, Et = f (At) is highly convex. This non-linearity selectively amplifies
the relative sizes of the largest firms while punishing the smaller, high-debt firms, thereby helping to
stabilize the Zipf tail. In the final ’Equity Value’ Et, the primary driver is the stochastic component of
the GBM (σA), ensuring that the randomness driving firm size is proportional to the size itself. The
final term is a jump term described below in section 2.4.3.

The combination of the processes outined in Table 1 generate the stylized facts describing the
financial market that are the goal of the simulation. The Jump-Diffusion asset process is an important
component of this.

The simulation using the Merton model embodies the following key features:

• Non-Linearity (Et = f (At)): The Merton formula is a convex function of At. Since the equity is a
call option, a small drop in At when the firm is close to default (At ≃ D causes a much larger
proportional drop in Et.
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Table 1. Summary of Assumptions and Methods adopted in the Merton Model Simulation

Assumption Implication for Simulation

No Arbitrage The core principle that allows option pricing to be
used for equity valuation.

Debt is Zero-Coupon The firm has a single debt liability, D that matures at
a specific time T, requiring a single payment.

Complete Information At and σA are observable (or estimable) by the
market.

Risk-Neutral Valuation The formula uses the risk-free rate r because the
underlying asset process
(Jump-Diffusion) is implicitly priced in a
risk-neutral world when applying
option theory.

Default Mechanism Default occurs only at maturity T if AT < D. .
Equity holders walk away, and ET = 0. Otherwise,
equity holders receive AT − D.

Asset Process In the original Merton model the firm’s assets (At)

follow a Geometric Brownian Motion. In the
simulation, this is replaced by a more realistic
Jump-Diffusion Process.

• Negative Skewness: The Jump-Diffusion process ensures that the fundamental Asset Value At

has the potential for large, sudden negative shocks (the jumps). When these shocks occur, the
non-linear Merton transformation greatly amplifies the resultant negative returns for equity
holders, leading to the negative skewness in equity returns.

• Leverage Effect: When At drops (due to a jump or continuous movement), the ratio At
Dt

decreases,
pushing the firm closer to default. This effectively increases the firm’s financial leverage (risk of
ruin). The Merton model correctly reflects this by showing a corresponding increase in equity
volatility for the next period, which is the definition of the Leverage Effect observed in financial
data.

This setup successfully generates the Zipf Law (due to the growth dynamics on At) and the Leverage
Effect/Negative Skew (due to the Jump-Diffusion At combined with the Merton Et non-linearity).

One potential problem, encountered in the initial set-up of the R code used to generate the
simulation, was the problem of very small equity values. This meant that potentially the firm could
default in the early stages of the simulation and generate missing values (NAs) when it’s value was
set to zero. Calculations within R do not always readily accommodate missing values. To avoid this
problem in the initialization of the simulations the firm equity values were set within narrow bands.

We also set a cap on equity returns in the process of the simulation to prevent plot distortion from
extreme events.

2.4. Benchmark Asset Pricing Model

The BAPM is a framework for asset pricing that incorporates a more general approach to evaluat-
ing financial assets. Platen’s BAPM, often referred to using the GOP or Benchmark Portfolio St, is an
important framework that addresses limitations in classical models like Black-Scholes by explicitly
incorporating stochastic volatility and market incompleteness. The core mathematical framework of
the BAPM is that it defines the dynamics of any primary asset (Xt) by relating it to the Benchmark
Asset St, which is the GOP—the unique portfolio that achieves the maximum expected long-term
growth rate among all investable assets.

The GOPt, St, is modeled as the sum of squares of N independent geometric Brownian Motions
(GBMs), Wi(t):
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St =
N

∑
i=1

W2
i (t). (3)

Where each Wi(t) follows a stochastic differential equation (SDE):

dWi(t) = Wi(t) · σW · dZi(t), (4)

where:

• Zi(t) are independent standard Wiener processes (Brownian motions).
• σWis a constant volatility parameter.

The idea behind the asset pricing equation is that the ratio of an asset’s price (Xt) to the Benchmark
price (St) is a martingale (Mt) under the Benchmark measure (PS). Platen models the asset price Xt

using the stochastic density equation (SDE):

dXt

Xt
= (r + βX · λS)dt + σX · dZt + βX · dSt

St
, (5)

where:

• r is the risk-free interest rate.
• λS is the market price of risk for the Benchmark Asset St.
• βXThe Benchmark Beta, representing the correlation and sensitivity of asset X′s returns to the

Benchmark S’s returns.
• The volatility of the Benchmark asset itself is stochastic: σS = 2√

St
.

In the R code used in both of the simulations for the Merton and BAPM models, the equity value (Et)

was modeled using a price-to-benchmark ratio Vt:

Et = At · Vt. (6)

The ratio Vt (the "Merton equity" in the structural model, or the "price-to-benchmark ratio" in the
BAPM simulation) is driven by the stochastic volatility derived from the St process, introducing the
leverage effect where volatility is time-varying and linked to the systemic risk of the market.

2.4.1. Key Assumptions of Platen’s BAPM

The BAPM moves away from the restrictive assumptions of the Black-Scholes model, allowing
for a more empirically realistic view of market dynamics. Table 2 provides a summary of the key
assumptions and their implications in the simulation of the BAPM.

When these characteristics and relationships are translated into R code for the purposes of the
simulation, typical market characteristics emerge more readily than is the case for the Merton model.

2.4.2. The BAPM Model

In the BAPM the generation of Zipf’s law is more ’direct’ and is a consequence of the standard
GBM that defines the firm’s assets in this context. In the BAPM simulation, the firm’s Asset Value At,
is modeled as a simple, correlated GBM (Step 4 in the first code snippet).

dAt

At
= µAdt + σAdZA,t.

This GBM explicitly assumes proportional growth, satisfying Gibrat’s Law.
The solution of this SDE is a log-normally distributed random variable:

A ∗ t = A ∗ 0 · exp[(µ ∗ A − 1
2

σ ∗ A2)t + σA · ZA,t].
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Table 2. Summary of Assumptions and Methods adopted in the BAPM Simulation

Assumption Implication for Simulation

Existence of a Benchmark (The GOP).
There exists a unique, attainable,
self-financing Growth Optimal
Portfolio St in the market. This
portfolio is a true
measure of the market, and its growth
rate Υ∗ is the maximum achievable
long-term growth rate.

Asset pricing is done relative to the St, not just the
risk-free rate, which is why the St-adjusted price is a
martingale.

Stochastic Volatility and
Incompleteness.
Market volatility is not constant but is
a stochastic process driven by St . This
allows for volatility clustering and fat
tails in returns, matching real-world
data.

Unlike Black-Scholes, the market is incomplete. Risk
cannot be perfectly hedged solely using the risk-free
asset and the underlying asset. The Benchmark St is
required to define a reference for pricing.

Generalized Risk Premium. The
expected excess return of any asset
over the risk-free rate is proportional to
its Benchmark Beta βXmultiplied by
the Benchmark’s excess growth rate λS.

This forms a generalized Capital Asset Pricing
Model (CAPM) where the market portfolio is
replaced by the GOPt, S . The risk premium is
based on the covariance with the St process.

Time-Dependent Distributions. The model, because of the St process, leads to asset
returns that are not log-normally distributed but
exhibit leptokurtosis (fat tails) and potentially
skewness, which is consistent with the empirical
evidence of financial returns.

Second block of code:

dAt

A
= µAdt + σAdZt + d

(
Nt

∑
j=1

(Yj − 1)

)
.

In the expression above, µA„ is the drift rate, or the expected return of the asset value, σA,is the
volatility of the continuous part of the equation, dZt,is a standard Weiner process or Brownian motion.
The final term is a jump term, described in the next subsection.

2.4.3. The Jump Process

The third term in the previous equation describes the jump term. Nt is a Poisson counting process
that dictates the number of jumps occurring up to time t, and Yj is the random size of the j-th jump,
modelled as a log-normal jump factor such that ln(Yj) is normally distributed.

The model is based on Kou (2002), who explains that his model is based on a double exponential
jump diffusion model. The model has the advantage of being ’arbitrage free’, in that it leads to
closed-form solutions for standard option prices, it is able to reproduce the leptokurtic feature of the
return distribution, responsible for the ’volatility smile’, and it is possible to interpret the jump part of
the model as the market response to outside news.

2.5. Extension of the BAPM to the Stochastic Pricing Model (SPM)

The BAPM (Platen 2004a, 2004b) models the price dynamics of an asset (Xt) as a product of a
benchmark process (St) and the relative price ratio (Vt).
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Xt = St · Vt.

The advantage is flexibility, as this framework permits (St) and (Vt) to be modeled by various
stochastic processes (e.g., Brownian motion, jump-diffusion, CIR process for volatility, etc.). The
BAPM’s main theoretical goal is to ensure the model produces asset prices that are growth-optimal
relative to the chosen benchmark, which addresses the fundamental economic issues of risk-neutral
pricing.

2.6. The SBP: A Specific Implementation

The Stochastic Benchmark Process SBP, Platen (2024) is a specific implementation of the BAPM
that defines the dynamics of the benchmark (St) using a sum of squared Ornstein-Uhlenbeck processes,
which is known to naturally generate several stylized facts. Table 3 describes key components of SBP.

Table 3. Key Features of SBP

Feature SBP Model (R Code) Rationale

Benchmark (St) (St) is the sum of N
independent Geometric
Brownian Motion (Wi)
processes.

This specific structure
naturally yields time-varying
volatility σS ∝ 1/

√
St

Vt Volatility The Vt process volatility
is explicitly derived from
the (St) volatility
(σVbase ∝ σS).

This links the asset’s risk directly
to the state of the benchmark,
ensuring the consistency of the
BAPM framework.

In the simulations that follow, we used two versions of BAPM, the base case BAPM and the SBP.

2.7. Comparison of the Generation of the Leverage Effect in the Merton Model and BAPM

The Merton/Jump-Diffusion Structural Model and the Platen (BAPM) achieve the empirically
observed leverage effect through fundamentally different economic and mathematical mechanisms.
The Leverage Effect is the empirical observation that volatility increases after negative returns and
decreases after positive returns.

Table 4 provides a summary of the differences in their generation in the two models used in the
simulation.
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Table 4. Comparison of the Generation of the Leverage Effect

Feature Merton/Jump-Diffusion
Model

Platen Benchmark Asset Pricing
Model (BAPM)

Mechanism Type Structural / Micro-Economic Systemic / Macro-Economic
Core Driver Financial Leverage Amplification. Stochastic Volatility (GOP).
Mathematical Cause The non-linearity (convexity)

of the Merton option pricing
function
Et = f (At)

The inversion of the
Benchmark Volatility
σS ∝ 1/

√
St

and the correlation between
St and Vt shocks.

Trigger Event A drop in the firm’s Asset
Value(At), regardless of
the cause
(continuous or jump).

A drop in the Benchmark
Asset (St)

(market-wide systemic
risk event).

Logic Chain At ↓⇒ Financial leverage ↑⇒
Equity Volatility ↑
(since equity
becomes a deeper out-of-the
money option on At).

St ↓=⇒ Market Volatility
σs ↑ .This high market
volatility is then directly
imported to drive
the asset’s
Equity Volatility.

Code Implementation Implicit: Generated by re-calculating
the option price Et based on the new, lower At

(Step 1 in the second code snippet).

Explicit: Generated by
setting œV ∝ σS

and using the global
market shock Zm

to drive Vt

(Steps 5 & 6 in the
first code snippet).

2.7.1. The Merton Leverage Effect

In this model, the leverage effect is a consequence of the firm’s capital structure and the debt
contract (financial leverage). The volatility of the firm’s equity (œE) is mathematically related to the
volatility of its assets (σA) by the derivative of the Merton formula:

σE = σA ·
(

At

Et

)
· N(d1),

where At/Et is the firm’s financial leverage ratio, and N(d1), which is the probability of survival,
or the call option delta, which represents the sensitivity of the equity to asset value changes.

When a negative equity return occurs and Et drops, financial leverage increases, and given that
all values in the expression are positive, the equity volatility σE, increases in the next period.

The inclusion of the Jump-Diffusion process simply ensures that the negative returns are frequent
and large enough to consistently trigger this structural leverage mechanism.

2.7.2. Platen BAPM: Systemic Volatility Effect (Stochastic Volatility) and Leverage Effect

In the BAPM, the leverage effect arises from the fundamental dynamics of the market’s benchmark
portfolio (St), which serves as the underlying source of market-wide stochastic volatility.

Key components of this are that the volatility of the Benchmark Asset (St) is inversely proportional
to its value:

σS ∝
1√
St

.
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In situations in which the market drops (St ↓) or the growth optimal portfolio experiences
negative returns, the market’s fundamental volatility σSincreases.

There is a direct asset volatility link in that the volatility of the price to benchmark ratio (Vt) that
ultimately drives the equity price Et is linked to the systemic market volatility σS:

σV ∝ σS.

Since the equity return is a combination of the Asset return (At) and the Vt process, a drop in the
market (St) leads to high systemic volatility (σS), which in turn leads to high subsequent volatility
in the equity returns. The negative correlation applied between the (St) innovation and Vt further
ensures that a market drop (St ↓) coincides with a drop in the price-to-benchmark ratio (Vt ↓),
locking in the asymmetric relationship between returns and volatility.

The BAPM provides a more fundamental explanation for the leverage effect, linking firm-level
volatility directly to the level of market-wide systemic risk.

2.8. The Modelling of Zipf-Mandelbrot Law

The Zipf-Mandelbrot law is a three-parameter generalization of the simpler Zipf’s law (Sk ∝
1/kα). It models the size (Sk) of an item (firm size or absolute return magnitude) based on its rank (k),
where ranks are ordered from largest to smallest (k = 1, 2, 3, ...).

The general formula is:

Sk =
C

(k + b)α
,

where:

• Sk The size (e.g., final equity value or absolute return magnitude) of the firm/event with rank k.
• k: The rank of the item (e.g., 1 for the largest firm, 2 for the second largest, etc.).
• α (Exponent): The critical parameter representing the slope in a log-log plot. For Zipf’s law to

hold, α should be close to 1.0.
• C (Constant): A scaling constant related to the size of the largest firm/event (k = 1).
• b (Mandelbrot Parameter): A parameter that shifts the rank and is used to account for deviations

from the strict power-law, especially for the top few ranks (the "head" of the distribution).

2.8.1. Linearization for Fitting: Log-Log Regression

Directly fitting the ZM model using non-linear least squares (nls in the R code) can be sensitive to
initial guesses and challenging for large datasets. A common method, which is employed to initiate
starting values, is to take the logarithm of the simpler Zipf relationship (Sk ∝ 1/kα):

ln(Sk ≈ ln(C)− α · ln(K).

This transforms the power-law relationship into a linear relationship in a log-log space:

Y = A + B · X,

where Y = ln(Sk), X = ln(k), slope B = −α, Y − Intercept A = ln(C).
The R code employed uses a linear fit (log_fit <- lm(log(Abs_Return) ~ log(rank), data = top_returns))

to get initial estimates for α and C before attempting the more complex Zipf-Mandelbrot fit.

2.8.2. Interpretation of the Fitted Parameters

The Zipf-Mandelbrot fit. is performed for two types of data in the simulation: Final Equity Size
and Absolute Return Magnitude.

Final Equity Size (analysis 3 in the R Code).

• Data: Sk = Final Equity Value at time T, ranked by size.
• Expected Result: For Gibrat’s law to hold perfectly, the fitted exponent α should be close to 1.
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– If α < 1.0 (flatter slope), it suggests growth is slightly less proportional than Gibrat’s Law
assumes, potentially favoring smaller firms.

– If α > 1.0 (steeper slope), it suggests growth is slightly more proportional than Gibrat’s Law
assumes, aggressively favoring the largest firms.

The log-log plot provides a strong visual confirmation, where the fitted line’s slope is the estimate of
−α.

Absolute Return Magnitude (Analysis 2 in the R Code )

• Data: Sk = Absreturn (magnitude of returns), ranked by size.
• Test: Does the magnitude of changes in firm size follow a power-law, indicating fat tails in the

return distribution?
• Expected Result: Financial data often exhibits a power-law in the tails of the return distribution.

The estimated exponent α is typically found to be between 2.5 and 3.5 (known as Pareto or Stable
distributions), indicating much fatter tails than the normal distribution (α would be ∞ ).

– A smaller α means fatter tails and more extreme events.
– The Jump-Diffusion model is designed specifically to generate these fat tails, which should

be reflected in a significantly small α value in this fit.

In summary, the Zipf-Mandelbrot model is the formal test that links the underlying Gibrat’s Law
assumption of the simulation to the empirically observed power-law distributions of firm size and
return magnitude.

2.9. The Determination of Market-Related Risk or Cross-Correlation

The goal is to calculate the pairwise correlation coefficient (Ri,t) between the equity returns of
every single firm i and firm j over all simulated time periods.

A. Return Matrix Preparation.

1. Time Series Extraction: The simulation first extracts the time series of Equity Returns (Ri,t)for
every firm i (where i = 1, ..., N) across all time periods t (where t = 1, ..., T).

2. Wide Format Conversion: This data is organized into a large T × N matrix, R, where T is the
number of periods and Nis the number of firms.

R =



R1,1 R2,1 . . . RN,1

R1,2 R2,1 . . . RN,2

. . . .

. . . .

. . . .
R1,T R2,T . . . RN,T


The R code uses pivot_wider to create this matrix (returns_wide_clean)

B. Correlation Matrix Calculation
The correlation matrix (∑) is an N × N matrix where each off-diagonal element ∑i,j is the sample

correlation coefficient between the return series of firm i and firm j.
The correlation coefficient ρi,j is calculated using the standard formula:

ρi,j =
Cov(Ri, Rj)

σiσj
,

where Cov(Ri, Rj) is the sample covariance between the returns of firm i and firm j, and σi and
σjare the sample standard deviations of the returns for firm i and firm j.

The R code generates this directly using correlation_matrix <- cor(returns_wide_clean).

C. Heatmap Visualization and Interpretation
The heatmap provides an immediate visual answer to the question: To what degree are the returns

of all firms moving together?
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1. Color Intensity: The color gradient (e.g., green for positive, red for negative, white for zero)
visually represents the magnitude and sign of ρi,j.

2. Uniformity: A successful simulation of systemic risk should show a predominantly uniform
positive color across the off-diagonal elements, indicating that all firms are exposed to a common,
market-wide shock. This is characteristic of the real equity market.

2.9.1. Systematic Risk in the Simulation Models

The common, systemic component is introduced differently in the two simulation models, but the
heatmap should capture it equally well. The mechanisms adopted are presented in Table 5 below.

Table 5. The capturing of Systemic Risk

Model How Systemic Risk is Introduced What the Heatmap Confirms

Merton/Jump-Diffusion A single global market
shock (ZM)

is used to correlate both
the continuous
GBM component (Z)
and the jump magnitude
(J) across all firms via
Jump_Correlation_Rho
(set at 0.60)

If the Jump_Correlation
is high it suggests the
simulation successfully
generated a high,
uniform cross-correlation
among all firms.

Platen BAPM A single global market shock
(ZM) drives the
Asset(At) process and
also drives the
Benchmark (St) and
Vt processes.

Whether the combined
effects of the
At correlation and the
systemicSt volatility
successfully resulted in a
uniform positive
cross-correlation structure.

Many iterations of these models were simulated using slightly different parameter settings. The
results presented in the next section four represent those that the authors thought that best captured
market realities. The R Code reported reflects these settings.

2.10. Time Series Properties of the Models

The long memory properties of financial return series are characterized by the persistence of
observed autocorrelations over long time periods. This phenomenon has been observed in various
financial markets, including stock markets, FOREX, and commodity markets, and is higher at lower
frequencies (daily, weekly, and monthly). Engle (1982) used this feature to develop the autoregressive
conditional heteroskedasticity (ARCH) model which is a statistical model for time series data that
describes the variance of the current error term or innovation as a function of the actual sizes of
the previous time periods’ error terms. Bollerslev (1986) generalised the model to the generalised
autoregressive conditional heteroskedasticity (GARCH) model by introducing an auto-regressive
moving average (ARMA) component.

Another approach to measuring volatility is to measure it directly from observed price changes.
Realized volatility (RV), developed by Barndorff-Nielsen and Shephard (2002), is a statistical measure
that quantifies the actual variability or fluctuations in the price of an asset over a defined timeframe.
Unlike implied volatility, which reflects market expectations of future price movements, realized
volatility is based on observed historical data, usually high frequency within the day observations at 5
minute or 15 minute intervals.

Corsi (2009) introduced a simple and easy-to-implement model called the heterogeneous autore-
gressive (HAR) model. This model utilizes the past daily, weekly, and monthly RVs called 1, 5, and 22
lags, respectively, as variables to predict future volatility.
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The standard way to check for long memory in volatility is to plot the Autocorrelation Function
(ACF) of the squared returns (Returns)2 on a log-log scale. If the ACF exhibits a linear decay on
this plot, it indicates a power-law decay, which is the definition of long memory (or "slow decay"
of volatility correlations). We utilise this method to check the time-series properties of the returns
generated by the three different models used in the simulations.

3. Simulation Results
The objective of this study is to assess the efficacy of three distinct simulation methodologies

in replicating the primary stylized facts of equity returns and market structure. Specifically, we
compare a basic Merton Jump-Diffusion Model, a Simplified Benchmark Approach Process Model
(BAPM) with explicit leverage, and Platen’s advanced Stochastic Benchmark Process (SBP) BAPM.
This section presents the comparative results across six key properties: Fat-Tailedness (Kurtosis),
the Leverage Effect, Negative Skewness, the Zipf Power Law for firm size, market-wide positive
covariance structures, and the presence of long-memory in volatility. The comparison highlights not
only the successful emergence of these properties but also contrasts the theoretical superiority of the
SBP model, which generates volatility and leverage endogenously from its core structure, against
models that require these effects to be explicitly imposed.

3.1. Asset Pricing and Return behaviour

The three pricing models were fine-tuned by running numerous different simulation runs with
different parameter settings. The goal was to target the previously described market characteristics.
The R code reported matches the parameters used to generate the results reported. The authors
acknowledge the assistance of (Google) in the development and refinement of the R code used for this
analysis. The Merton model produced equity financial return characteristics with the values shown in
Table 6 below.

Table 6. Properties of the equity returns generated by the Merton Model.

Mean Standard Deviation Skewness Kurtosis Coefficient of Variation

0.001182 0.02296 0.497 172.5928 19.42

The measurements of the return, standard deviation and skewness appear to be reasonable, but
the kurtosis is far too high.

Table 7 presents the results for the BAPM model and shows that the means, standard deviation,
skewness and kurtosis have very reasonable and realistic values. The coefficient of variation is very
high with a value of 135.67, but this is because the daily mean is near zero, thus the ratio of volatility
(Std Dev) to mean is high.

Table 7. Properties of the equity returns generated by the BAPM Model.

Mean Standard Deviation Skewness Kurtosis Coefficient of Variation

0.00068 0.09226 0.3813 2.2174 135.67

Table 8 presents the results for the SPM model and again shows that the means, standard deviation,
skewness and kurtosis have very reasonable and realistic values. The coefficient of variation is very
high with a value of 197.97, but this is because the daily mean is near zero, thus the ratio of volatility
(Std Dev) to mean is high.
Table 8. Properties of the equity returns generated by the SPM Model.

Mean Standard Deviation Skewness Kurtosis Coefficient of Variation

0.000978 0.193623 0.5807 0.8015 197.97

To facilitate a comparison with actual market parameters we down-loaded a year’s worth of
adjusted daily closing prices for five major stocks in the Dow Jones Index, namely Apple, Microsoft,
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United Health Group, Visa and Johnson and Johnson, for one year terminating on 1st November 2025.
Their return properties are shown in Table 9.

Table 9. Financial Return Characteristics of Apple, Microsoft, United Health Group, Visa and
Johnson and Johnson.

Company Mean Standard Deviation Skewness Kurtosis Coefficient
of Variation

AAPL 0.0007946330 0.02044543 0.6238346 11.136530 25.72940
MSFT 0.0009565097 0.01515879 1.0108713 8.750040 15.84803
UNH -0.0019775136 0.03210627 -2.8401703 20.100734 16.23568

V 0.0006245149 0.01409472 -0.5467345 7.754523 22.56907
JNJ 0.0007134920 0.01223558 -0.7691757 8.999480 17.14887

The period considered has been marked by a great deal of uncertainty about the implications of
President Trump’s combined tariff and foreign policy. Nevertheless, the return behaviour for these five
companies is similar to the results of the Merton Model simulation with the exception of the value of
the kurtosis. The maximum kurtosis reported in Table 9 is that for United Health with a value of 20.1
whilst the simulation produced a value of 172, which is far too high.

Similarly, though the statistical properties of the BAPM model and SPM are very reasonable, the
values of the coefficients of variation, are far too high, for the previously mentioned reasons.

Figure 1 displays QQ plots of the return distributions generated by the three simulations and
shows how far they deviate from Gaussian distributions.

The QQ plots of the results of the three simulation models shown in Figure 1 reveal that all the
generated return distributions have fat tails, but the results of the Merton model deviates to a greater
degree from a Gaussian distribution, as was previously suggested by the high kurtosis value. This is
also confirmed by the plots of the three generated distributions which are shown in Figure 2.

The distributions generated by the BAPM and SPM models possesses fat tails but are generally
more realistic than the one produced by the Merton model. Why is this?

The problem lies in the fact that the Merton model is a structural model. This meant that to
achieve realistic simulations results we had to prevent too many firms defaulting at the start of the
simulation. This meant that at the start of the simulation we had to set the debt levels within narrow
bands using the following R code.

# FIX 1: Debt levels (D): Adjusted to prevent tiny equity values for small firms
D = A_0 * runif(NUM_FIRMS, 0.65, 0.85) -
(1 - runif(NUM_FIRMS, 0.7, 0.95)) * 100,

Furthermore, we set a strict cap on equity returns, using the following code:
# --- Step 3: Calculate Returns (for t > 1) and BIND results (Includes Return Cap Fix) ---
if (t > 1) {
# Fetch previous period’s equity value for return calculation
prev_equity <- simulation_results %>%
filter(time == t - 1) %>%
pull(Equity_Value)
period_data <- period_data %>%
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MertonModel

BAPM

SPM

Figure 1. QQ plots of the return distributions generated by the Merton Model, BAPM and SPM
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MERTON

BAPM

SPM

Figure 2. Plots of the return distributions produced by the Merton Model, BAPM and SPMsimula-
tions

# CRITICAL: This line creates the ’Equity_Return’ column
mutate(Equity_Return = ifelse(prev_equity <= 1e-6, 0, (Equity_Value - prev_equity) / prev_equity)) %>%
# FIX 2b: Capping returns to prevent plot distortion from extreme events
mutate(Equity_Return = pmin(0.5, pmax(-1, Equity_Return)))
} else {
period_data <- period_data %>%
mutate(Equity_Return = NA_real_)
}
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Even with the return cap set at a range between (0.5 and -1.0), the simulation generated distribution
is still heavily concentrated around 0, with the outliers clustered at the two boundaries, and this has
the effect of producing high kurtosis.

A further important factor driving the fat tails in the simulations is the correlated jump process.
To generate significant negative Skewness (the long left tail) and high Excess Kurtosis (fat tails),
simply relying on the random movement of individual firms (even within the non-linear Merton
framework) was not enough. It was necessary to explicitly introduce a Systemic Jump component—a
small probability of a large, correlated negative shock across all firms. This suggestss that market
crashes are primarily driven by systemic, shared risk factors, not just the aggregation of independent
idiosyncratic risks.

3.2. Zipf-Mandelbrot Law and the Size Distribution of Firms

We wanted to ensure that the size distribution of firms in the simulations followed the Zipf-
Mandelbrot law and conformed to what is observed in practice. The Zipf-Mandelbrot law is a static
frequency distribution and when applied to corporate market values, it describes the cumulative
distribution function (CDF) or the rank-size rule of these values at a single point in time. The law
implies: Scale Invariance, or the existence of a Power Law Tail. The distribution indicates that the
number of companies with market capitalization greater than M decays according to a power law (for
large M). This is often interpreted as evidence of a highly competitive or scale-free market structure,
where growth is largely independent of current size (Gibrat’s Law).

To verify this we downloaded the market capitalizations in US dollar terms of 3560 US companies
(accessed 21 October 2025 from https://companiesmarketcap.com/). We fitted the following model
using Maximum Likelihood estimation in R : MARKETCAPUSD ∼ C∗(RANK + beta)(−alpha). The
results are shown in Table 8.

Table 8. Zipf-Mandelbrot Power Law fitted to 3560 US Companies

Parameters estimate t value

C 5.749e+13 19.49***
alpha 1.459 99.91***
beta 4.407 40.55***

Pseudo R-Squared 0.9768
NB:*** indicates signicance at the one percent level.

The estimates of this model recorded in Table 8 suggest that all coefficients are significant at
the 1 percent level and the pseudo R-Squared statistic suggests that the model accounts for over 97
percent of the variance. The value of α is 1.459, and this is the estimated power-law exponent (or Zipf
exponent).

Since α>1, this indicates that the distribution is heavy-tailed but has a finite mean and a finite
variance. This value is typical for firm size distributions, which are often found to have exponents
greater than 1. The value of beta is 4.407. This is the Mandelbrot shift parameter. A positive β value
suggests the simple Zipf’s Law (β=0) would have over-predicted the size of the very largest firms
(Rank 1, 2, 3), and the shift is necessary to better model the entire distribution, specifically the head. C
is the scaling constant.

A plot of the fit of the model to the 3560 companies is shown in Figure 3.
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Figure 3. Plot of Zipf-Mandelbrot Power Law fitted to 3560 US Companies

Table 9 shows the Zipf-Mandelbrot regression models fitted to the simulations generated by the
two models. The fitted values are significant at the 1 percent level. Plots of the Zipf-Mandelbrot power
law fits for the two simulation model outputs are shown in Figure 4. The theoretical value of the slopes
shown in Figure 4 should be 1. The slope for the Merton Model is 1.158 whilst that for the SPM model
is 1.244. Both are close to their theoretical values though the Merton Model is a slightly better fit.

The fit for the BAPM model is poor and the regression was eventually fitted to the absolute value
of returns, however, the plot in Figure 4 is to actual firm size.

Table 9. Zipf-Mandelbrot Power Law fitted to the simulated equity capitalizations generated by the
two models.

Merton Model
Parameters estimate t value

C 1.475943 27.227***
alpha 0.442571 60.428***
beta 3.57604 8.737***

BAPM
Parameters estimate t value

C 4.699851 105.73***
alpha 0.229898 121.93***
beta 0.010000 0.125

SPM
Parameters estimate t value

C 7.43078 13.98***
alpha 0.32826 28.82***
beta 59.61363 10.42***

NB:*** indicates signicance at the one percent level
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Merton

BAPM

SPM

Figure 4. Zipf-Mandelbrot Power Law fitted to the simulated equity capitalizations generated by
the three models.

The standard theoretical Zipf-law implies an alpha value that aprroximates 1 and a beta value
that is zero. The regression values reported in Table 9 reflect that the alpha parameter in the Zipf-
Mandelbrot Law, relates to the slope of the log-log plot which had slopes of 1.158 for Merton and
1.224 for SPM, and this controls the distribution’s tail behavior—specifically, how fast the market
capitalization drops off as firm rank increases.

A lower alpha value of 0.44 and 0.33 respectively, implies a flatter slope on the log-log plot
compared to the theoretical alpha value of 1. This means the simulated market is less concentrated
than expected. The drop in market capitalization from the largest firm (Rank 1) to the smaller firms
(Rank 2, 3, etc.) is slower than expected. In a highly concentrated market (high alphas), a few firms
dominate, but in the simulation results for both models, the wealth is distributed more evenly among
the largest firms.

The Simplified BAPM (Model 2) provided mixed results regarding the power-law stylized facts,
demonstrating the critical need for the sophisticated Stochastic Benchmark Process (SBP) structure.
While the model successfully captured the Fat-Tailed property of returns, yielding a highly significant
power-law exponent of alpha of 0.2299 for absolute returns magnitude, it fundamentally failed to
replicate the Zipf Law for firm size. The linear fit on the final equity capitalization (size) produced an
exponent of alpha = 24.241 (Figure 4), which diverges drastically from the empirical expectation of
an alpha of approximately 1.0. This failure illustrates that simply enforcing the Et = AtVt structure
and adding an explicit leverage term is insufficient to model the realistic growth dynamics that lead to
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power-law wealth concentration. This contrast highlights the theoretical necessity of the SBP (Model 3),
which successfully generated a realistic size exponent of alpha 1.244 through its endogenous volatility
and growth mechanisms.

3.3. The Leverage Effect

Figure 5 reports plots of the leverage effects produced by the three models. All three models
successfully reproduce the Leverage Effect, where volatility increases following negative returns
(Figure 5). While the Merton model and the Simplified BAPM (Model 2) show this asymmetry, they
achieve it through either an explicit negative correlation or an ad-hoc volatility formula, respectively.
The true theoretical contribution is found in the SBP Model (Model 3), where the leverage effect
emerges endogenously from the multiplicative Et = AtVt structure and the underlying SBP process
itself. This endogenous generation of a complex stylized fact provides strong evidence that the SBP
framework accurately captures the fundamental, self-reinforcing relationship between a firm’s equity
value and its risk profile, making it the most theoretically robust of the three approaches.

MERTON

BAPM

SPM

Figure 5. Leverage effects produced by the three models, Merton, BAPM and SPM
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3.4. Systematic Risk (Covariance Structure)

A crucial test for any market simulation is the ability to generate realistic Systematic Risk—the
small but positive cross-sectional correlation observed between individual firm returns. The simulated
Covariance Structure (Figure 6)

MERTON

BAPM

SPM

Figure 6. Heatmap of Systematic Risk Covariance Structure

for the BAPM model confirms success in this area.The heatmap visually demonstrates that the
off-diagonal elements of the correlation matrix are predominantly small and positive, clustering near
the white/light-green regions (near 0.0 to 0.5). This realistic pattern of low, positive average correlation
confirms that the introduction of a shared Global Market Shock ZM via the correlation parameter
Correlation_RHO_BM successfully embeds systematic risk into the asset dynamics (At). This outcome
contrasts sharply with models that rely solely on uncorrelated Brownian motions, underscoring the
BAPM’s capacity to transition successfully from firm-specific dynamics to a realistic, interacting market
ecosystem.
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3.5. Time-Series Properties of Simulation Returns

We first analysed the time-series properties of the S&P500 Index by downloading five years of
daily adjusted closing prices on the index from Yahoo finance (accessed on 9/11/2025), calculating
the return series, squaring them as a proxy for volatility. We then performed linear regression on the
log-log data, the slope of this line is the negative of the power law exponent (beta). The result of this
analysis for the S&P500 Index is shown in Figure 7. The slope is 0.724 in Figure 7, confirming the
presence of long memory.

Figure 7. Long Memory Properties Squared Returns S&P500 Index

The same analysis was then applied to the results of the three simulation models. The coding
sequence had to be slightly different for the three models. In the Merton Model code segment calculates
the index returns differently than the BAPM and SBP models. In the Merton model, we simply pull all
individual firm returns into a vector called ’all_returns’ and calculate the mean/std dev based on that.
In the BAPM/SBP model, we calculate a time series of the Market-Cap Weighted Index Return and
call that vector ’index_returns_by_day’. The long memory code in the BAPM/SBP models is based on
the single time series of market index returns to test its volatility clustering properties, not a collection
of all individual returns.

The results of running the same analyses on the three simulation models is shown in Figure 8.
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Merton

BAPM

SPM

Figure 8. Long Memory Properties of Squared Returns for the three Simulation Models

The results in Figure 8 suggest that the BAPM model is the most successful in capturing the long
memory properties of time-series of returns. Its beta value is the highest of the three, with a value of
0.488, followed by MERTON with a value of 0.371, and then SPM with a value of 0.046. This suggests
that SPM is not successful in capturing long memory effects.

4. Conclusions
4.1. Technical Conclusions

The objective of this study is to assess the efficacy of three distinct simulation methodologies in
replicating the primary stylized facts of equity returns and market structure.

Specifically, we compare a basic Merton Jump-Diffusion Model, a Simplified Benchmark Approach
Process Model (BAPM) with explicit leverage, and Platen’s advanced Stochastic Benchmark Process
(SBP) BAPM.

The results consist of the comparative performance across six key properties: Fat-Tailedness (Kur-
tosis), the Leverage Effect, Negative Skewness, the Zipf Power Law for firm size, market-wide positive
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covariance structures, and the presence of long-memory in volatility. The comparison highlights not
only the successful emergence of these properties but also contrasts the theoretical superiority of the
SBP model, which generates volatility and leverage endogenously from its core structure, against
models that require these effects to be explicitly imposed.

The results consist of the simulations of these three separate models: the Merton Model, BAPM
and SPM. Namely, realistic financial return characteristics including skewness, kurtosis and fat tails,
systematic risk, correct size distributions, and long-memory effects in risk.

We designed the simulation to attempt to capture the Zipf-Mandelbrot power law characteristics
that typify the size distribution of the equity values of actual firms. The behaviour of financial returns
was expected to display leverage effects. Firms in aggregate are expected to display positive systematic
risk (covariance structure). The simulated financial return series are also expected to display the long
memory time-series properties, that GARCH, RV and the HAR model are constructed on.

Table 10 summarizes the performance of the three simulation models in relation to these target
objectives. Table 10 suggests the dominance of SBP, and the eventual results also hide the fact that
there had to be more conditions imposed in the R coding of the Merton model. This was to ensure that
it ran smoothly, did not crash because it generated to many missing values (NAs), yet produced the
desired market effects.

All three models successfully reproduce the Leverage Effect, where volatility increases following
negative returns (Figure 5). While the Merton model and the Simplified BAPM (Model 2) show this
asymmetry, they achieve it through either an explicit negative correlation or an ad-hoc volatility
formula, respectively. No model generated negative skewness. The other major failure of SBP was in
long-memory effects.

Table 10: Summary of Simulation Results

Stylized Fact Empirical
Expectation

Merton
(Model 1)

BAPM
(Model 2)

SBP
(Model 3)

Conclusion

Size
Distribution
(α)

α ≈ 1.0 Success
(α = 1.158)

Fails
(α = 24.24)

Success
(α = 1.244)

Merton is
superior

Negative
Skewness

Skewness <
0

Fail
Skewness >
0

Fail
Skewness >
0

Fail
Skewness >
0

All Fail

Fat Tails
(kurtosis)

Kurtosis > 0 Too extreme
(kurtosis =
172.59)

Success
(kurtosis =
0.3813)

Success
(Kurtosis =
0.8015)

SBP is
superior

Leverage
Effect

Negative
Returns ↑
Volatility

Success Success
(Explicit)

Success
(Endogenous)

All
succeed

Systematic
Risk
Correlation
Structure

Positive
Correlation

Success
Heatmap
white to
green.

Fail.
Heatmap
white to red.

Success.
Heat map
mainly
green

SBP is
superior.

Long
Memory
Effects

Positive β

power slope
Success
(β = 0.371)

Success
(β = 0.48)

Failure
(β = 0.046)

BAPM is
superior

The true theoretical contribution is found in the SBP Model (Model 3), where the leverage effect
emerges endogenously. Another complication is that even when simulation’s random seeding is set to

the same value, the outcomes of each run of the simulations are stochastic.
Nevertheless, a pattern emerges from the simulations which seems to favour the SBP model as the one

which more readily captures market characteristics.
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4.2. Policy Implications

The simulation results lead to three major implications, primarily due to the SBP Model’s ability to
correctly model market structure α and correlation structure.

1. Risk Management: Systemic Contagion
The ability of the SBP model (Model 3) to correctly replicate the Systematic Risk Correlation
Structure is its most vital implication.

• The Flawed Models (Merton & BAPM): These models either fail to generate a consistently
positive correlation (BAPM is a "Fail" despite its explicit link, suggesting its mechanism is
unstable) or are structurally simple, providing an incomplete view of systemic risk. The
Merton model’s failure on the Zipf Law means its distribution of wealth and risk is wrong,
making it impossible to correctly estimate the impact of a shock on the largest, most critical
firms.

• The SBP Advantage: The SBP model successfully generates a positive correlation structure
("Heat map mainly green"). This means the SBP model is superior for:
- Stress Testing: Accurately simulating how a global shock (like the ZM factor in the R code)
transmits through the system, hitting all firms simultaneously, a critical function for central
banks and large financial institutions.

2. Portfolio Management: Diversification Limits
The results directly challenge the assumptions used in standard portfolio optimization (like
CAPM), which rely on the Normal Distribution and limited correlation.

• Non-Normality Risk: The Fat Tails (Kurtosis) success in all models, especially the high
excess kurtosis in Merton (172.59) and the positive values in BAPM (0.3813) and SBP (0.8015),
implies that extreme events (tail risk) are far more probable than a Gaussian model predicts.

• The Practical Implication: Investors using these models must:

– Increase Capital Reserves: Standard Value-at-Risk (VaR) calculations, which assume
normality, will dangerously underestimate the required capital to withstand losses.

– Acknowledge Limits of Diversification: The successful simulation of Systematic Risk
means that simply increasing the number of firms does not eliminate all risk, as the
majority of returns are driven by correlated market movements.

3. Economic Policy & Market Structure
The Zipf Law result is central to understanding the competitive dynamics of the economy.

• BAPM’s Fatal Flaw: The BAPM’s failure on the size distribution (α = 24.241) means it
is structurally incapable of modeling an economy with a few large firms dominating the
market, which is the reality. The α value of 24.241 suggests an implausibly egalitarian market
structure.

• The SBP’s Necessity: The SBP’s success (α approx 1.244) implies that any economic or policy
model attempting to forecast the long-term growth, concentration of wealth, or anti-trust
issues must use a framework similar to the SBP. It demonstrates that the structure Et = AtVt

is required to generate the necessary super-linear growth of the largest firms that leads to
the power-law size distribution.

In summary, while the BAPM offers the best fit for Long Memory (β = 0.48), the SBP Model is the
most practically useful model because it successfully captures the three most crucial structural

features necessary for real-world risk and growth analysis. It captures the correct market
concentration (α approx 1), the correct correlation structure (Systemic Risk), and the leverage effect is
endogenous. Endogenous Leverage Effect. This means that it allows for more accurate stress testing
and a better understanding of the wealth distribution in a market dominated by a few large entities.
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