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Abstract: Satellite-based data classification performance remains a challenge for research community 

in the field of land use/land cover mapping. Here we investigated supervised per-pixel classifications 

performance under different scenarios, based on single and seasonal multispectral data combinations 

of different sensors (Landsat-8 OLI and Sentinel-2 MSI). In case of Landsat, seasonal spectral indices 

(EVI and NDMI) were included. A typical Mediterranean watershed with a complex landscape 

comprised of various forest and wetland ecosystems, crops, artificial surfaces, and lake water was 

selected to test our approach. All available geospatial data from national databases (Forest Map, LPIS, 

Natura2000 habitats, cadastral parcels, etc.) are used as ancillary data for classification training and 

validation. We examined and compared the performance of ML, RF, KNN and SVM classifiers under 

different scenarios for land use/land cover mapping, according to Copernicus Land Cover (CLC2018) 

nomenclature. In total, eight land use/land cover classes were identified in Landsat-8 OLI and nine in 

Sentinel-2a MSI for an acceptable overall accuracy over 85%. A comparison of the overall classification 

accuracies shows that Sentinel-2a overall accuracy was slightly higher than Landsat-8 (96.68% vs. 

93.02%). Respectively, the best-performed algorithm was ML in Sentinel-2 while in Landsat-8 was 

KNN. However, machine-learning algorithms have similar results regardless the type of sensor. We 

concluded that best classification performances achieved using seasonal multispectral data. Future 

research should be oriented towards integrating time-series multispectral data of different sensors and 

geospatial ancillary data for land use/land cover mapping. 

Keywords: image classification; land use/land cover mapping; accuracy assessment; Landsat-8; 

Snetinel-2 

 

1. Introduction 

Land cover represents the characteristics of earth surface shaped by various natural agents or 

anthropogenic interventions. From earth-observation perspective, the term “land cover” defines the 

land types (i.e. vegetation, water bodies, crops, built-up areas, etc.) which can be detected from a 

distance. Land cover is a critical variable for earth surface studies since it can be changed over time 

[1]. On the contrary, the term “land use” refers to the way a particular land is used involving the 

associated economic purpose of this use [2]. Both concepts are interrelated. For example, a land cover 

type such as a forest may support a series of land uses (e.g. timber production, recreation, rangeland, 

etc.) while a land use such as agroforestry may include a series of land cover types (e.g. forests, 

plantations, annual crops, etc.). In this research, they are used complementary to depict all kind of 

existing land cover or land use types within the study area. 

Land use/land cover information is essential for management and monitoring of natural 

resources, modeling, spatial planning, land administration and sound decision-making. Satellite-
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based classification provides land use/land cover spatial-explicit information and map generation at 

global, national or regional scales. However, medium-resolution (Landsat-like, 10–30 m) is more 

adequate to detect most human–nature interactions [3]. The opening of the Landsat archive in 2008 

[4] and the launch of Sentinel-2 in 2015 provide optical multispectral imagery data at medium-high 

resolution. Free and open access policy on this imagery promoted the development of new products 

and applications across space and time, especially in the domain of land use/land cover mapping. 

This data policy combined with the increase of computing power and concurrent reduction of costs, 

has facilitated large area mapping and expanded the number of users worldwide [5]. 

Due to the complexity of land use/land cover characterization, several studies have been mainly 

focused to methods for mapping a single land cover type (i.e. forests, wetlands, forest fires, 

agriculture, urban areas or water). For example, [6,7] for forests, [8] for urban areas, [9,10] for 

croplands, [11,12] for wetlands, using either Landsat or Sentinel imagery. However, multiple-class 

characterization required for simultaneous and spatially exhaustive mapping [13]. Thus, effective 

and efficient methods are required for satellite imagery classification to provide meaningful 

information regarding all land use/land cover within a specific area. 

A variety of classification approaches (unsupervised, supervised, parametric, non-parametric, 

object-oriented) has been developed and applied to derive land cover information with different 

degree of success. Per-pixel classification approaches remain the most popular in the analysis of 

satellite-derived imagery [14]. Here, we used supervised per-pixel classifications for multiple land 

use/land cover types mapping. 

In supervised approaches, reference data are required to characterize the variability of land 

cover across space and time and serve as reference dataset for training and validating classification 

models. A suitable reference data is a fundamental requirement in supervised image classification 

[15]. We use existing authoritative geospatial datasets of higher accuracy as a pool for training and 

validation. The reference datasets spans forestlands, cultivated fields, discontinuous urban fabric, 

built-up areas, and wetland habitat types. The classification scheme of land cover classes is based on 

Copernicus Land Cover (CLC) nomenclature [16]. Based on CLC2018 land use/land cover 

distribution, a stratified random sampling scheme is deployed to train the classifier and access 

classification accuracy. Classification accuracy depends on the satellite imagery, the classification 

algorithm being used, and the nature of training data as well [17].  

Four popular classifiers ML, RF, KNN and SVM selected, and their implementation in Erdas 

Imagine 2020 was used to run the experiments. Description and analysis on these classifiers can be 

found in the literature. For example, [18] for Bayesian classifiers; [19] for SVM; [20] for KNN; [21] for 

Random Forests. 

Maximum likelihood method is included in our research due to its wide application and use in 

commercial image-processing software [22]. On the other hand, the above machine learning 

algorithms have gained great attention for classifying land use/land cover types in the last decade. 

In recent evaluations, SVM and KNN, with the exception of Naïve Bayes (a Maximum 

Likelihood variant) performed similarly in per-pixel classification of 26 Landsat TM imagery 

10kmx10km blocks [23]. In a peri-urban and rural with heterogeneous land cover area in Vietnam, 

SVM produced the highest overall accuracy (OA) using Sentinel-2 MSI, followed consecutively by RF 

and KNN. However, all three classifiers showed a similar and high OA (over 93.85%) when the 

training sample size was large enough (>750 pixels/class) [24]. 

In this study, we test the above mentioned classifiers to derive land use/land cover information. 

We explore classification performance under six different scenarios. The study investigates the 

performance of the above classifiers using Landsat-8 OLI and Sentinel-2 MSI across a heterogeneous 

Mediterranean watershed, based on the same available land cover reference, training and validation 

data per sensor. In case of Landsat, spectral indices (EVI and NDMI) were included. These indexes 

have been reported in the literature that improve land use/land cover classifications accuracies [25]. 

We evaluate classification performance for an area with complex landscape and investigate how 

single date and seasonal optical multispectral data impact land use/land cover classification accuracy. 
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2. Study area 

The test site is Mygdonia basin, which is located in Northern Greece. Its watershed covers an 

area of 190,285ha. It lies East of Thessaloniki city (40˚40΄56,49N and 23˚18΄21,15E, WGS84) at a 

distance of 41,6 km (Figure 1). The watershed is surrounded by mountains in the North (Mount 

Krousia) and in the South (Mount Cholomontas), by hills in the West and by Rentina Gorge and 

Kerdylia mount in the East. Its elevation ranges from 35m to 1,129m. At the center of the watershed, 

there are two lakes (Koronia and Volvi). The watershed is drained through seasonal and intermittent 

streams at these lakes. 

 

Figure 1. Location of study area (in blue) over VHR orthoimage of 2015. 

The two lakes along with their surrounding wetlands are listed as a Wetland of International 

Importance by the Ramsar Convention since 1975 (GR005: 16,388ha). Along with the valley of Rentina 

Gorge, they have been designated as Special Conservation Zones within the Natura2000 network 

(GR1220001 and GR1220003: 28,734.90ha) in 2017. These protected sites constitute a unique complex 

of interconnected natural ecosystems of lakes, seasonal streams, channels, riparian forests, shrubs, 

wet meadows and fields.  

At the southernmost end of the watershed, on the slopes of mount Cholomontas, there is a 

portion of another protected area (GR1270001). It has an area of 15,651.14ha dominated by beech, oak 

and pine forests. 

Non-irrigated arable lands are distributed across the watershed up to the productive forests in 

the south. Intensively cultivated lands, mainly irrigated, surround the wetland ecosystem. According 

to CLC2018, 49,28% of the watershed is under agricultural use while forestlands occupy 42,04%, 

water 5,46%, discontinuous urban fabric 1,31%, wetlands 1,17%, and developed areas only 0,33%. 

Most of the land under agricultural use is used as cropland (93,770 ha) while the area of perennial 

crops such as fruit and olive tree plantations and vineyards as well, account for only 0,65%. Irrigated 

lands cover 14,27% while non-irrigated 50,97% of croplands. Approximately 30,98% of forestlands 

are broadleaf forests, 2,73% are pine forests, 12,04% mixed forests, 36,80% shrubs and 10,10% 

transitional woodlands (Figure 2). 
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Figure 2. CLC2018 Land use/land cover types. 

The climate is considered temperate (Csa-Mediterranean mainland) with warm and dry 

summers and cool winters. The mean annual temperature is 22.6°C in summer and about 4°C in 

winter. The mean annual rainfall is 593mm according to the records of the last 40 years. 

3. Materials and Methods 

3.1. Satellite Imagery 

Landsat-8 Operational Land Imager (OLI) surface reflectance (C2L2) data were obtained from 

the United States Geological Survey website [26]. Two scenes (path/row: 183/032 and 184/032) 

required to cover entirely the study area. Following a search, cloud free (<10%) scenes were carefully 

selected for summer and winter seasons. Acquisitions dates were 01 July 2018 and 22 June 2018 for 

dry season and 28 January 2020 and 17 February 2019 for winter season. A mosaic contained six bands 

(blue, green, red, near infrared (NIR), shortwave infrared (SWIR 1, SWIR 2) was created at the study 

area limits. 

Sentinel-2 (L2a) MSI imagery downloaded from the Sentinels Scientific Data Hub [27]. Each 

product consists of 100x100 sq. km orthorectified granules or tiles. Four cloud free (<10%) granules 

required to cover entirely the study area, sensed in summer 2018, were selected (Table 1). 

The 13 spectral bands of Sentinel-2a span from the visible to SWIR spectrum, at 10m, 20m and 

60m spatial resolutions. The bands at 60m spatial resolution are dedicated primarily for detecting 

atmospheric features. Therefore, they have been excluded from the analysis [28]. A mosaic of ten 

bands (2-8, 8a, 11 and 12) was created at the watershed limits. Nearest neighbor interpolation was 

employed to downscale the spatial resolution of 20m bands at 10m. This process has been shown to 

perform very satisfactory compared to other approaches [29]. Both Landsat 8 OLI and Sentinel-2a 

image scenes are spatially registered to Universal Transverse Mercator (UTM)/World Geodetic 

System 1984 (WGS84) projection. 
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Table 1. Landsat-8 OLI & Sentinel-2a MSI scenes. 

Satellite Date Granule 
L

an
d

sa
t-

8 
O

L
I 

06-07.2018 
LC08_L2SP_183032_20180701_20200831_02_T1 

LC08_L2SP_184032_20180622_20200831_02_T1 

28.01.2020/17.02.2019 
LC08_L2SP_183032_20200128_20200823_02_T1 

LC08_L2SP_184032_20190217_20200829_02_T1 

S
em

ti
n

el
-2

a 
M

S
I 

03.07.2018 

L2A_T34TFK_A015820_20180703T092224 

L2A_T34TFL_A015820_20180703T092224 

L2A_T34TGK_A015820_20180703T092224 

L2A_T34TGL_A015820_20180703T092224 

05.12.2017 
L2A_T34TFK_A012817_20171205T092648 

L2A_T34TFL_A012817_20171205T092648 

12.12.2017 
L2A_T34TGK_A012917_20171212T091748 

L2A_T34TGL_A012917_20171212T091748 

3.2. Land Cover Reference Data 

A series of existing land cover reference data were retrieved from existing national databases 

(Table 2). 

Table 2. Geospatial land cover reference data. 

Datasts Source Date Scale Data provider 

Agricultural fields LPIS 2018 1:5.000 HC1 

Habitats Natura2000 2017 1: 5.000 HC 

Urban zones Forest Map 2021 1:5.000 HC 

Forest/Non forest lands Forest Map 2021 1:5.000 HC 

Forest Stands Forest Management Plans 2007-2018 1:20.000 HFS2 

Built-up areas and roads Cadastral database 2021 1:1.000 HC 
1 Hellenic Cadastre, 2 Hellenic Forest Service. 

Land use/land cover types in 2018 for the entire watershed were obtained from European 

Copernicus Program (Corine Land Cover product-CLC 2018). In Europe, CORINE Land Cover (CLC) 

provides harmonized and comprehensive maps of land cover and land use change at European level 

[30] (Buttner, 2014). The program was established by the European Commission (EU) in 1990 for 

facilitating policy making at European level. The most recent CLC2018 comprises of 44 thematic 

classes at the third level with a minimum mapping unit (MMU) of 25 Ha for areal features, and 5 Ha 

for changes, respectively. It is an excellent tool for strategic analysis and planning at European level. 

However, CLC’s thematic content comprises a mixture of land cover and land use classes. In addition, 

its MMU serves well the needs of the European Union but is not suited for national or local detailed 

land use/land cover mapping [31].  

Information regarding plantations and vineyards either irrigated or non-irrigated retrieved from 

the Land Parcel Identification System (LPIS). However, these data refer only to parcels for which 

there are individual claims for subsidies made by farmers and receive European Union Aid [32]. 

Therefore, they do not represent the entire number of cultivated fields within the entire watershed. 

Information on habitat types acquired through the national large-scale Natura2000 database. We 

retrieved spatial-explicit information on the habitat types and vegetation species dominated the wetland. 

Forestlands retrieved from the Forest Map national program. Forest Map is a very-high-

resolution diagram at the scale of 1:5,000, depicting forests and non-forests, according to the current 

legislative framework of Greece [33]. Furthermore, we obtained available forest management plans, 

from the Hellenic Forest Service to retrieve information on (co)dominant forest species at the stand 

level and land use types within managed forests. However, forestlands within the available plans 
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cover only a portion of forests equal to 26,857ha (28% of forestlands, according to the Forest Map). 

Forestlands outside plans are mainly unmanaged of different structure and crown cover, distributed 

across the watershed and comprised of degraded broadleaf forests (mixed or not), evergreen shrubs, 

and reforested pine forests. 

3.3. Sampling design 

A stratified random sampling design is adopted. Copernicus CLC18 product used as the basis 

for sampling units distribution across all identified classes. Based on these classes, the sample size 

estimated to be equal to 2,356 for a required thematic accuracy of 85%. The samples distributed 

randomly, proportional to CLC2018 class area (Table 3). 

Table 3. Sample distribution per CLC2018 class. 

No Code Class Area (ha) # Sample points 

1 112 Discontinuous urban fabric 2,501.82 37 

2 121 Industrial or commercial zones 443.74 6 

3 122 Road and rail networks and associated land 752.93 11 

4 131 Mineral extraction sites 161.03 2 

5 211 Non-irrigated arable land 47,798.64 699 

6 212 Permanently irrigated arable land 13,381.79 196 

7 221 Vineyards 129.21 2 

8 222 Fruit trees 71.24 1 

9 223 Olive trees 404.69 6 

10 231 Pastures 1,092.00 16 

11 242 Complex cultivation patterns 5,083.44 74 

12 243 Land principally occupied by agriculture 25,811.16 378 

13 311 Broadleaf forest 24,783.86 362 

14 312 Coniferous forest 2,180.58 31 

15 313 Mixed forest 9,630.05 141 

16 321 Natural grasslands 5,878.48 85 

17 323 Sclerophyllous vegetation 29,441.81 431 

18 324 Transitional woodland/shrub 8,082.38 117 

19 331 Beaches, dunes, sand 572.6 8 

20 411 Inland marshes 1,660.55 24 

21 512 Water bodies 10,397.98 152 

  Total 190,285.09 2,356 

3.4. Training data 

Based on the above sample distribution, sampling plots were defined at the pixel spatial 

resolution (30x30m) of Landsat imagery. Each random point was located at the center of the 

respective pixel using a gridded fishnet on Landsat-8. Each plot was divided into 3x3 pixels to 

coincide with Sentinel-2a spatial resolution (10m).  

Land cover reference data were processed to generate the following seven thematic datasets with 

the highest accuracy: Based on the Forest Map, we excluded non-forest areas and created a dataset 

exclusively for forests. In areas, where the forest dataset overlapped with forest management plans, 

we extracted information on forests (brooadleaf, needleaf or shrubs) at the stand level, based on the 

dominant species. In wetlands, we excluded forestlands based on the above forest dataset. Then, we 

create a natural habitats (inland marshes, shrubs, wet meadows and high reeds) dataset, excluding 

all other land use/land cover types, based on their unique Natura2000 database 4-digit codes. 
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Discontinued urban fabric (small towns and villages) areas extracted from urban zones provided by 

the Forest Map. A dataset regarding roads and built-up areas generated by processing the cadastral 

database. Plantation trees (olive, fruit and forest ones) and vineyards extracted from the LPIS 

database. The last generated dataset consist of crops either irrigated or non-irrigated.  

In addition, Google Earth high-resolution (2019) imagery was used for visual interpretation of 

each plot, based on physiognomic attributes (color, shape, size, pattern and texture). This 

orthoimagery was the closest existing one to satellite imagery acquisition dates. 

Based on the above interpretation, cross-referenced by each of the thematic datasets, each plot 

was assigned a land use/land cover unique type. Thus, a consistent large database was generated for 

selection of training data. 

3.4. Classification 

Four classification methods were applied, one parametric (ML) and three machine learning 

classifiers, KNN, RF and SVM. All procedures in this study were implemented using the Erdas 

Imagine 2020 commercial software. 

We tested the utility of single-dated (summer 2018) and combination of summer-winter spectral 

bands of Landsat-8 OLI and Sentinel-2a MSI as data input, developing six different scenarios. Two of them 

refer to the use of spectral indices (EVI and NDMI) with single-date and seasonal Landsat-8 OLI spectral 

bands. EVI is sensitive to vegetation intra-annual variations while NDMI is sensitive to moisture content. 

They both used for different types of vegetation and irrigated fields discrimination. We acknowledged 

that many other different combinations of spectral and temporal features or approaches could be used. 

We decided to limit our research to the aforementioned features in our analysis. 

In the initial phase, we tested numerous iterations of classifications with different combinations 

and number of land use/land cover classes on both types of imagery. However, classification 

performance was unacceptable (<85%) for over ten classes in both types of imagery. Land cover 

classification accuracy is affected by the number of classes identified. Overall classification accuracy 

decreases by increasing the number of classes [34].  

Therefore, we adopted a classification scheme of 9 classes using Sentinel-2a and 8 classes using 

Landsat-8 OLI (Table 4). Rare and small-sized classes either grouped to form new classes or 

integrated to existing large enough classes. For example, vineyards, fruit and olive trees integrated 

to arable non-irrigated lands. Mineral extraction sites, discontinued urban fabrics, and 

industrial/commercial classes form a new class entitled as “Artificial Surfaces”. Classes such as, land 

principally occupied by agriculture, complex cultivated patterns, were deleted. They are generic land 

use/land cover types and include several other land types. 

During the process, we selected 3,535 training data (polygons) for Landsat-8 OLI and 2,753 for 

Sentinel-2a MSI classification. We defined a set of training polygons by random sampling 70% of the 

points selected for class validation. This data is then used to train supervised classification 

algorithms. The remaining 30% of samples was used for classification validation(Table 4). 

Training polygons were manually generated at random locations of sample plots taking in 

account that cover types should be spectrally homogeneous. For this reason, in many cases, we forced 

to generate training polygons away from sample locations. We avoided long and thin training 

polygons. Small polygons tend to be prone to edge effect. Moreover, we selected more training 

polygons in areas where land cover reference data was missing or in highly heterogeneous areas, in 

order to increase classification accuracy. The generation of training data in areas where land cover 

reference data are missing proved to be an issue. Their selection was based on our expert knowledge 

of the study area in relation to spectral data.  
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Table 4. Description of training data and control points. 

Satellite imagery Classes 
Training

data 

No of 

pixels 
% of total pixels Control points 

L
an

d
sa

t-
8 

O
L

I 

Artificial surfaces 170 3,771 0.18% 92 

Non-irrigated arable land 650 21,726 1.03% 368 

Permanently irrigated land 177 7,433 0.35% 82 

Broadleaf forest 490 16,169 0.76% 189 

Needleleaf forest 98 1,486 0.07% 61 

Shrubs 473 16,664 0.79% 383 

Reeds 130 497 0.02% 56 

Permanent freshwater lakes 87 980 0.05% 29 

Total 2,275 68,726 3.25% 1,260 

Study Area  2,116,028   

S
en

ti
n

el
-2

 M
S

I 

Artificial surfaces 83 6,088 0.03% 41 

Non-irrigated arable land 594 112,992 0.59% 254 

Permanently irrigated land 139 12,449 0.07% 45 

Broadleaf forest 459 104,017 0.55% 113 

Needleleaf forest 89 2,637 0.01% 40 

Shrubs 385 29,562 0.16% 195 

Reeds 62 6,739 0.04% 17 

Roads 30 1,017 0.01% 23 

Permanent freshwater lakes 130 116,113 0.61% 54 

Total 1,971 391,614 2.06% 782 

Study Area  19,050,300   

3.5. Accuracy assessment 

All classifiers were tested on the entire watershed based on the same training and validation 

data per sensor. We evaluated classification performance using the Overall Accuracy (OA), 

Producers’ Accuracy (PA), Users’ Accuracy (UA) and Kappa Coefficient (KC). For accuracy 

assessment, we selected 1,260 validation points for Landsat-8 OLI and 782 points for Sentinel-2A MSI. 

3.5.1. Landsat-8 scenarios 

In scenario 1, we used single date Landsat-8 imagery acquired in summer. The ML classifier 

produced a slight higher overall accuracy (91.67%) comparing to machine learning classifiers (Table 5). 

In terms of class accuracy, the best results for ML achieved for water bodies, non-irrigated arable land 

and shrubs. However, needleleaf forest and high reeds have the lowest user accuracy and K-coefficient. 

Needleleaf forest is confused with broadleaf forest in mixed-forest areas. Moreover, unsuccessful 

reforested pine forests are confused with tall sclerophylous vegetation (evergreen shrubs). 

Very dense high reeds in wetlands are confused with broadleaf forest in the hillsides showing 

similar spectral signature. The low producer accuracy reported in high reeds class is also an issue for 

all machine learning classifiers. 
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Table 5. Landsat-8 scenario 1 classification accuracy metrics. 

 Classes PA UA KC 
M

L
 

Artificial surfaces 92.39% 83.33% 0.8202 

Broadleaf forest 84.66% 93.02% 0.9179 

Needleleaf forest 93.44% 76.00% 0.7478 

Non-irrigated arable land 93.21% 96.08% 0.9446 

Permanent freshwater lakes 96.43% 100.00% 1,0000 

Permanently irrigated land 93.90% 96.25% 0.9599 

High reeds 100.00% 64.44% 0.6361 

Shrubs 91.38% 93.33% 0.9042 

Overall accuracy 91.67% 0.8946 

K
N

N
 

Artificial surfaces 82.61% 90.48% 0.8973 

Broadleaf forest 89.95% 79.07% 0.7538 

Needleleaf forest 81.97% 86.21% 0.8551 

Non-irrigated arable land 91.58% 93.09% 0.9024 

Permanent freshwater lakes 100.00% 100.00% 1.0000 

Permanently irrigated land 86.59% 92.21% 0.9167 

High reeds 34.48% 100.00% 1.0000 

Shrubs 91.91% 88.44% 0.8339 

Overall accuracy 89.05% 0.8598 

R
F

 

Artificial surfaces 81.52% 88.24% 0.8731 

Broadleaf forest 89.42% 87.11% 0.8484 

Needleleaf forest 85.25% 89.66% 0.8913 

Non-irrigated arable land 92.12% 91.37% 0.8782 

Permanent freshwater lakes 100.00% 100.00% 1.0000 

Permanently irrigated land 89.02% 86.90% 0.8599 

High reeds 75.86% 84.62% 0.8425 

Shrubs 89.82% 89.12% 0.8437 

Overall accuracy 89.68% 0.8684 

S
V

M
 

Artificial surfaces 85.87% 96.34% 0.9605 

Broadleaf forest 91.53% 77.58% 0.7362 

Needleleaf forest 63.93% 90.70% 0.9022 

Non-irrigated arable land 97.01% 91.54% 0.8805 

Permanent freshwater lakes 100.00% 100.00% 1.0000 

Permanently irrigated land 89.02% 93.59% 0.9314 

High reeds 0.00% 0.00% -0.0236 

Shrubs 87.99% 87.08% 0.8144 

Overall accuracy 88.41% 0.8509 

In scenario 2, we used single date Landsat-8 OLI combined with EVI and NDMI in-dices 

acquired in summer as well. Again, the ML classifier produced the highest overall accuracy (90.95%) 

over machine learning classifiers (Table 6). The contribution of indices in the classification process is 

not sufficient. The performance of all machine classifiers is similar and close to ML overall accuracy. 
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Table 6. Landsat-8 scenario 2 classification accuracy metrics. 

 Classes PA UA KC 
M

L
 

Artificial surfaces 94.57% 82.08% 0.8066 

Broadleaf forest 84.13% 91.91% 0.9048 

Needleleaf forest 95.08% 73.42% 0.7207 

Non-irrigated arable land 90.22% 96.51% 0.9507 

Permanent freshwater lakes 98.21% 100.00% 1.0000 

Permanently irrigated land 95.12% 92.86% 0.9236 

Reeds 96.55% 73.68% 0.7306 

Shrubs 91.12% 91.60% 0.8793 

Overall accuracy 90.95% 0.8857 

K
N

N
 

Artificial surfaces 82.61% 91.57% 0.9090 

Broadleaf forest 89.42% 80.09% 0.7658 

Needleleaf forest 83.61% 83.61% 0.8277 

Non-irrigated arable land 91.03% 93.31% 0.9056 

Permanent freshwater lakes 100.00% 100.00% 1.0000 

Permanently irrigated land 87.80% 92.31% 0.9177 

Reeds 31.03% 100.00% 1.0000 

Shrubs 92.69% 88.09% 0.8289 

Overall accuracy 89.13% 0.8608 

R
F

 

Artificial surfaces 82.61% 92.68% 0.9211 

Broadleaf forest 88.89% 87.05% 0.8476 

Needleleaf forest 85.25% 89.66% 0.8913 

Non-irrigated arable land 93.21% 91.47% 0.8795 

Permanent freshwater lakes 100.00% 100.00% 1,0000 

Permanently irrigated land 89.02% 86.90% 0.8599 

Reeds 72.41% 87.50% 0.8721 

Shrubs 91.38% 90.21% 0.8593 

Overall accuracy 90.40% 0.8773 

S
V

M
 

Artificial surfaces 85.87% 95.18% 0.9480 

Broadleaf forest 92.06% 84.47% 0.8172 

Needleleaf forest 73.77% 88.24% 0.8764 

Non-irrigated arable land 96.74% 91.75% 0.8835 

Permanent freshwater lakes 100.00% 100.00% 1.0000 

Permanently irrigated land 90.24% 93.67% 0.9323 

Reeds 0.00% 0.00% -0.0236 

Shrubs 89.30% 86.36% 0.8041 

Overall accuracy 89.37% 0.8632 

In scenario 3, we used multi-dated Landsat-8 OLI (summer and winter). For the first time, all 

classifiers have an overall accuracy slightly over 90% (Table 7). In this scenario, KNN produced the 

highest overall accuracy (91.90%) followed by ML, SVM and RF (Table 7). Accuracy in all classes is 

improved except those of needleleaf forests and high reeds. 
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Table 7. Landsat-8 scenario 3 classification accuracy metrics. 

 Classes PA UA KC 
M

L
 

Artificial surfaces 96.74% 80.18% 0.7862 

Broadleaf forest 83.07% 92.90% 0.9165 

Needleleaf forest 98.36% 66.67% 0.6497 

Non-irrigated arable land 93.75% 98.57% 0.9798 

Permanent freshwater lakes 98.21% 100.00% 1.0000 

Permanently irrigated land 98.78% 94.19% 0.9378 

High reeds 100.00% 74.36% 0.7375 

Shrubs 88.77% 94.44% 0.9202 

Overall accuracy 91.75% 0.8962 

K
N

N
 

Artificial surfaces 93.48% 92.47% 0.9188 

Broadleaf forest 91.53% 80.84% 0.7746 

Needleleaf forest 78.69% 96.00% 0.9580 

Non-irrigated arable land 94.57% 96.67% 0.9529 

Permanent freshwater lakes 100.00% 100.00% 1.0000 

Permanently irrigated land 95.12% 96.30% 0.9604 

High reeds 68.97% 86.96% 0.8665 

Shrubs 91.12% 91.12% 0.8725 

Overall accuracy 91.90% 0.8968 

R
F

 

Artificial surfaces 78.26% 90.00% 0.8921 

Broadleaf forest 87.30% 89.19% 0.8728 

Needleleaf forest 85.25% 92.86% 0.9249 

Non-irrigated arable land 95.38% 87.97% 0.8301 

Permanent freshwater lakes 100.00% 98.25% 0.9816 

Permanently irrigated land 96.34% 87.78% 0.8693 

High reeds 65.52% 79.17% 0.7868 

Shrubs 87.99% 91.33% 0.8754 

Overall accuracy 90.40% 0.8773 

S
V

M
 

Artificial surfaces 82.61% 93.83% 0.9334 

Broadleaf forest 84.13% 86.41% 0.8402 

Needleleaf forest 78.69% 92.31% 0.9192 

Non-irrigated arable land 96.20% 92.91% 0.8999 

Permanent freshwater lakes 100.00% 100.00% 1.0000 

Permanently irrigated land 96.34% 84.04% 0.8293 

High reeds 79.31% 88.46% 0.8819 

Shrubs 90.34% 89.64% 0.8511 

Overall accuracy 90.56% 0.8793 

In scenario 4, we used multi-dated Landsat-8 OLI (summer and winter) combined with the 

respective EVI and NDMI indices. Overall accuracy of all classifications improved but show similar 

results. The KNN classifier produced the highest overall accuracy (93.02%) (Table 8). 
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Table 8. Landsat-8 scenario 4 classification accuracy metrics. 

 Classes PA UA KC 
M

L
 

Artificial surfaces 100.00% 80.70% 0.7918 

Broadleaf forest 83.60% 94.61% 0.9366 

Needleleaf forest 96.72% 72.84% 0.7146 

Non-irrigated arable land 92.66% 98.27% 0.9756 

Permanent freshwater lakes 98.21% 100.00% 1.0000 

Permanently irrigated land 98.78% 92.05% 0.9149 

High reeds 100.00% 78.38% 0.7787 

Shrubs 91.38% 94.34% 0.9187 

Overall accuracy 92.46% 0.9050 

K
N

N
 

Artificial surfaces 95.65% 93.62% 0.9311 

Broadleaf forest 91.01% 84.73% 0.8203 

Needleleaf forest 80.33% 96.08% 0.9588 

Non-irrigated arable land 95.11% 96.69% 0.9532 

Permanent freshwater lakes 100.00% 100.00% 1,0000 

Permanently irrigated land 95.12% 95.12% 0.9478 

High reeds 82.76% 100.00% 1,0000 

Shrubs 92.69% 91.49% 0.8778 

Overall accuracy 93.02% 0.9109 

R
F

 

Artificial surfaces 78.26% 93.51% 0.9300 

Broadleaf forest 87.83% 90.71% 0.8907 

Needleleaf forest 85.25% 91.23% 0.9078 

Non-irrigated arable land 96.20% 90.77% 0.8696 

Permanent freshwater lakes 100.00% 100.00% 1.0000 

Permanently irrigated land 97.56% 89.89% 0.8918 

High reeds 93.10% 90.00% 0.8976 

Shrubs 90.86% 92.06% 0.8860 

Overall accuracy 91.67% 0.8936 

S
V

M
 

Artificial surfaces 88.04% 96.43% 0.9615 

Broadleaf forest 85.71% 90.50% 0.8883 

Needleleaf forest 81.97% 92.59% 0.9222 

Non-irrigated arable land 96.20% 94.15% 0.9174 

Permanent freshwater lakes 100.00% 100.00% 1.0000 

Permanently irrigated land 97.56% 90.91% 0.9028 

High reeds 96.55% 87.50% 0.8721 

Shrubs 91.91% 90.03% 0.8567 

Overall accuracy 92.30% 0.9017 

3.5.2. Sentinel-2A 

In scenario 1, we used single-dated Sentinel-2a imagery. RF classifier produced slightly higher 

OA (93.86%) compared to ML and KNN (Table 9) which have similar results. SVM classifier has the 

lowest overall accuracy. The best results achieved for water bodies, broadleaved forests, needleleaf 

forests and non-irrigated arable lands. The lowest class producers’ accuracy is observed for roads in 

SVM and high reeds in KNN. However, high reeds class accuracy was low in SVM as well.  
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Table 9. Sentinel-2a scenario 1 classification accuracy metrics. 

 Classes PA UA KC 
M

L
 

Artificial surfaces 92.68% 88.37% 0.8773 

Broadleaf forest 94.69% 99.07% 0.9892 

Needleleaf forest 97.50% 79.59% 0.7849 

Non-irrigated arable land 89.76% 97.85% 0.9682 

Water bodies 96.30% 100.00% 1.0000 

Permanently irrigated land 100.00% 93.75% 0.9337 

High reeds 94.12% 94.12% 0.9399 

Roads 100.00% 79.31% 0.7868 

Shrubs 93.85% 90.15% 0.8687 

Overall accuracy 93.48% 0.9188 

K
N

N
 

Artificial surfaces 75.61% 100.00% 1.0000 

Broadleaf forest 96.46% 95.61% 0.9487 

Needleleaf forest 95.00% 84.44% 0.8361 

Non-irrigated arable land 96.06% 92.78% 0.8930 

Water bodies 100.00% 100.00% 1.0000 

Permanently irrigated land 97.78% 93.62% 0.9323 

High reeds 52.94% 81.82% 0.8141 

Roads 86.96% 86.96% 0.8656 

Shrubs 93.33% 93.81% 0.9176 

Overall accuracy 93.48% 0.9178 

R
F

 

Artificial surfaces 82.93% 89.47% 0.8889 

Broadleaf forest 97.35% 94.83% 0.9395 

Needleleaf forest 97.50% 95.12% 0.9486 

Non-irrigated arable land 96.06% 91.73% 0.8775 

Water bodies 100.00% 100.00% 1.0000 

Permanently irrigated land 91.11% 93.18% 0.9277 

High reeds 94.12% 94.12% 0.9399 

Roads 73.91% 94.44% 0.9428 

Shrubs 91.79% 95.21% 0.9362 

Overall accuracy 93.86% 0.9227 

S
V

M
 

Artificial surfaces 92.68% 84.44% 0.8358 

Broadleaf forest 97.35% 84.62% 0.8202 

Needleleaf forest 75.00% 78.95% 0.7781 

Non-irrigated arable land 94.49% 93.02% 0.8967 

Water bodies 98.15% 98.15% 0.9801 

Permanently irrigated land 86.67% 97.50% 0.9735 

High Reeds 58.82% 90.91% 0.9071 

Roads 65.22% 93.75% 0.9356 

Shrubs 89.23% 91.58% 0.8878 

Overall accuracy 90.66% 0.8824 

In scenario 2, we used multi-dated Sentinel-2a imagery (summer and winter). The ML classifier 

produced the highest overall accuracy (96.68%). Machine learning classifiers produced lower but 

similar results (Table 10). We observed that roads class is confused with artificial surfaces class, 

especially within urban areas. In addition, the class of shrubs is confused partially with non-irrigated 

lands, whereas small-sized fields are surrounded by shrubs. 
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Table 10. Sentinel-2a scenario 2 classification accuracy metrics. 

 Classes PA UA KC 
M

L
 

Artificial surfaces 95.12% 92.86% 0.9246 

Broadleaf forest 98.23% 98.23% 0.9793 

Needleleaf forest 95.00% 88.37% 0.8775 

Non-irrigated arable land 97.24% 99.20% 0.9881 

Water bodies 96.30% 100.00% 1.0000 

Permanently irrigated land 100.00% 97.83% 0.9769 

High reeds 94.12% 80.00% 0.7956 

Roads 100.00% 92.00% 0.9176 

Shrubs 94.87% 96.35% 0.9514 

Overall accuracy 96.68% 0.9584 

K
N

N
 

Artificial surfaces 80.49% 97.06% 0.9690 

Broadleaf forest 94.69% 88.43% 0.8648 

Needleleaf forest 95.00% 92.68% 0.9229 

Non-irrigated arable land 96.06% 93.13% 0.8982 

Water bodies 100.00% 100.00% 1.0000 

Permanently irrigated land 88.89% 83.33% 0.8232 

High reeds 94.12% 88.89% 0.8864 

Roads 86.96% 90.91% 0.9063 

Shrubs 88.72% 95.05% 0.9341 

Overall accuracy 92.71% 0.9085 

R
F

 

Artificial surfaces 90.24% 82.22% 0.8124 

Broadleaf forest 93.81% 90.60% 0.8901 

Needleleaf forest 95.00% 82.61% 0.8167 

Non-irrigated arable land 97.24% 90.81% 0.8639 

Water bodies 100.00% 100.00% 1.0000 

Permanently irrigated land 91.11% 83.67% 0.8268 

High reeds 88.24% 93.75% 0.9361 

Roads 65.22% 100.00% 1.0000 

Shrubs 84.62% 98.21% 0.9762 

Overall accuracy 91.82% 0.8972 

S
V

M
 

Artificial surfaces 90.24% 84.09% 0.8321 

Broadleaf forest 95.58% 86.40% 0.841 

Needleleaf forest 92.50% 94.87% 0.946 

Non-irrigated arable land 96.06% 95.69% 0.9361 

Water bodies 98.15% 98.15% 0.9801 

Permanently irrigated land 95.56% 93.48% 0.9308 

High reeds 88.24% 83.33% 0.8296 

Roads 73.91% 80.95% 0.8038 

Shrubs 88.21% 95.56% 0.9408 

Overall accuracy 92.84% 0.9813 

4. Results 

Table 11 shows the obtained overall accuracy per classifier and sensor in each developed 

scenario. In reference to Landsat-8 OLI classification, KNN was the best classifier in scenario 4, 

achieving the highest OA=93.02%. In this case, KC reached the highest value (0.9227). Under the same 

scenario, the ML classifier reached the second highest OA=92.46%, followed by SVM with 

OA=92.30%, and RF with OA=91.67%. 
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Table 11. Overall classification accuracy per scenario. 

Classification 

scenarios (2018) 
Bands/Indices Seasons Type of classifier OA KC 

L
an

d
sa

t-
8 

O
L

I 

Scenario 1 6 bands (B2-B7) S 

ML 91.67% 0.8946 

K-NN 89.05% 0.8598 

RF 89.68% 0.8684 

SVM 88.41% 0.8509 

Scenario 2 
6 bands (B2-B7) +  

EVI + NDMI 
S 

ML 90.95% 0.8857 

KNN 89.13% 0.8608 

RF 90.40% 0.8773 

SVM 89.37% 0.8632 

Scenario 3 12 bands (B2-B7) S+W 

ML 91.75% 0.8962 

KNN 91.90% 0.8968 

RF 89.76% 0.8692 

SVM 90.56% 0.8793 

Scenario 4 
12 bands (B2-B7) +  

EVI + NDMI 
S+W 

ML 92.46% 0.9050 

KNN 93.02% 0.9109 

RF 91.67% 0.8936 

SVM 92.30% 0.9017 

S
en

ti
n

el
-2

A
 Scenario 1 10 bands (2-8, 8A, 11-12) S 

ML 93.48% 0.9188 

KNN 93.48% 0.9178 

RF 93.86% 0.9227 

SVM 90.66% 0.8824 

Scenario 2 10 bands (2-8, 8A, 11-12) S+W 

ML 96.68% 0.9584 

KNN 92.71% 0.9085 

RF 91.82% 0.8972 

SVM 92.84% 0.9103 

In scenario 4, all classifiers achieved the highest OA among all previous scenarios with minor 

variations (<1%) due to sufficient training data. Thus, we concluded that the use of multi-dated 

multispectral seasonal Lansdat-8 OLI data combined with spectral indices increases the performance 

and overall accuracy of classification for land use/land cover mapping. However, the contribution of 

spectral indices (EVI and NDMI) in classification performance was not significant (+1%) in all 

scenarios. The resulted classified maps is presented in Figure 3. 
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Figure 3. Land use/land cover map 2018 (KNN, Landsat-8 OLI). 

In reference to Sentinel-2a MSI classification, the ML classifier has the highest OA=96.68% under 

scenario 2, when intra-annual seasonal multispectral data is used (Figure 4). It is observed that the 

OA of ML is higher than the OA of RF (OA=93.86%) which ranked first in scenario 1. In scenario 2, 

the SVM classifier produced the highest accuracy (OA=92.84%), followed by KNN (OA=92.71%) and 

RF (OA=91.82%). We observed a major variation amongst ML and machine learning classifiers 

performance. The OA of ML is higher (>4%) than machine learning classifiers. 
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Figure 4. Land use/land cover map 2018 (ML, Sentinel-2a). 

5. Conclusions 

The aim of this work was to analyze the performance and accuracy of different classification 

classifiers (ML KNN, RF and SVM) and evaluate Landsat-8 OLI and Sentinel-2A MSI imagery for the 

identification and mapping of land use/land cover types in a highly heterogeneous Mediterranean site. 

Based on the results, the achieved overall classification accuracies for both satellite imagery was 

acceptable (>85%) and the performance of selected machine learning classifiers was quite similar and 

statistically not significant in all scenarios. The best performing classifier is ML using seasonal bi-

temporal Sentinel-2a imagery (OA 96.68%). This OA is higher than the best performing classifier 

KNN (93.02%) using seasonal bi-temporal Landsat-8 OLI imagery combined with spectral indices 

EVI and NDMI. Following a visual assessment of the respective classified map by the ML classifier, 

we realize that it overestimates artificial surfaces (Figure 4). Artificial surfaces are confused with high 

reflectance bare soils or open areas with no vegetation cover across the watershed. However, this 

finding cannot be supported by the respective confusion matrix (Table 12). 

As far the performance of machine learning methods, we believe that more training data are 

required in case of Sentinel-2a classification. Machine learning methods require enough training 

samples to make optimum decisions [23]. However, the high spatial variability and spatial structure 

of the study area (small-sized area and sparsely land cover classes) affects the selection of proper 

training data. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2023                   doi:10.20944/preprints202307.1043.v2

https://doi.org/10.20944/preprints202307.1043.v2


 18 

 

In terms of class user’s accuracy, the lowest accuracy observed for High reeds (80%) followed by 

Needleleaf forests (88,37), according to confusion matrix in scenario 2 (Table 12). High reeds are 

commonly confused with shrubs in the wetlands, whereas they form mixed associations with shrubs 

(Tamarix sp.). In areas of unsuccessful reforestation with pine trees, needleleaf forests are confused 

with evergreen shrubs. 

Table 12. Confusion matrix for the best scenario 2 (Sentinel-2a ML classification). 
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T
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PA 

(%) 

UA 

(%) 
KC 

Artificial surfaces 39 0 0 1 1 0 1 0 0 42 95.12 92.86 0.9246 

Broadleaf forest 0 111 0 0 0 0 0 0 2 113 98.23 98.23 0.9793 

Needleleaf forest 0 2 38 0 0 0 0 0 3 43 95.00 88.37 0.8775 

Non-irrigated arable land 0 0 0 247 1 0 0 0 1 249 97.24 99.20 0.9881 

Permanent freshwater lakes 0 0 0 0 52 0 0 0 0 52 96.30 100.0 1.0000 

Permanently irrigated land 0 0 0 1 0 45 0 0 0 46 100.0 97.83 0.9769 

High reeds 0 0 0 0 0 0 16 0 4 20 94.12 80.00 0.7956 

Roads 2 0 0 0 0 0 0 23 0 25 100.0 92.00 0.9176 

Shrubs 0 0 2 5 0 0 0 0 185 192 94.87 96.35 0.9514 

Total 41 113 40 254 54 45 17 23 195 782 96.68 0.9584 

In reference to Landsat-8 (scenario 4), the lowest class users’ accuracy observed for Broadleaf 

forests (84,73%). This can be explained by the existing mixed formations of low in height broadleaf 

trees with shrubs, which span the watershed. PA’s lowest accuracy 80,33% observed for Needleleaf 

Forests and 82,76% for High Reeds.  

We would recommend the classifier KNN using Landsat-8 imagery for land use/land cover 

mapping. However, we would be prudent with the application of the ML classifier using Sentinel-2 

imagery. Machine learning algorithms are stable and produce similar results in all scenarios.  

This paper presents a methodology for testing different classifiers for land use/land cover 

mapping of a high heterogeneous and complex landscape. It also includes a process for processing 

available geospatial databases, and a multi-source training data preparation. Integration of intra-

annual temporal-spectral data into classification produces land use/land cover maps of high 

accuracy. This study represents an important step toward multiple-class land use/land cover 

mapping using spectral-temporal Landsat-8 or Sentinel-2 features by providing a quantitative 

assessment on classification accuracy. Our work contributes to the evaluation of classification 

algorithms for updating Copernicus Land Cover product. It documents that major classes at the 3rd 

level of Copernicus nomenclature, such as urban fabric, roads, irrigated and non-irrigated lands, 

broadleaf or needleleaf forests, shrubs, water bodies, large enough streams and wetlands vegetation 

can be classified with high accuracy based on seasonal multispectral data. 

We believe that more research is required in the domain of land use/land cover mapping. Future 

research should be oriented towards the development of novel methods by integrating ancillary 

geospatial data or by integrating time-series spectral-temporal data into a classification model for 

land use/land cover mapping. 
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Table 13. Confusion matrix for scenario 4 (Landsat-8 KNN classification). 
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(%) 

UA 

(%) 
KC 

Artificial surfaces 88 0 0 6 0 0 0 0 94 95.65 93.62 0.9311 

Broadleaf forest 0 172 7 0 0 2 4 18 203 91.01 84.73 0.8203 

Needleleaf forest 0 2 49 0 0 0 0 0 51 80.33 96.08 0.9588 

Non-irrigated arable land 3 1 0 350 0 0 0 8 362 95.11 96.69 0.9532 

Permanent freshwater lakes 0 0 0 0 56 0 0 0 56 100.0 100.0 1.0000 

Permanently irrigated land 0 2 0 0 0 78 0 2 82 95.12 95.12 0.9478 

High reeds 0 0 0 0 0 0 24 0 24 82.76 100.0 1.0000 

Shrubs 1 12 5 12 0 2 1 355 388 92.69 91.49 0.8778 

Total 92 189 61 368 56 82 29 383 1260 93.02 0.9109 
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