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Abstract: Annexins (ANNSs), which are calcium (Ca?)-dependent and phospholipid-binding protein
families, are implicated in the regulation of plant growth and development as well as protection from
various stresses. However, little is known about ANNSs in Corydalis Saxicola, an endangered
benzylisoquinoline alkaloid (BIA)-riched herbaceous plant widely used in traditional Chinese
medicine and endemic to the calciphilic karst region in China. Here, nine CsANN genes were
identified from C. saxicola, and they were divided into three subfamilies based on the phylogenetic
analysis. The CsANNSs clustered into the same clade, sharing similar gene structures and conserved
motifs. The nine CsANN genes were located on five chromosomes, and their expansions were mainly
attributed to tandem duplication and segmental duplication. The CsANN transcripts showed variable
organ-specific and Ca*-responsive expression patterns. Further transient overexpression assays
showed that CSANNT1 could positively regulate the accumulation of BIA compounds in C. saxicola
leaves, probably through directly interacting with key BIA-biosynthesis-pathway enzymes or by
interacting with BIA-biosynthesis-regulating factors, such as MYBs. This study sheds light on profiles
and functions of the CsANN gene family and paves the way for unraveling the molecular mechanism
of BIA accumulation regulated by Ca?* through CsANNS.

Keywords: annexin; Corydalis saxicola; calcium; benzylisoquinoline alkaloid

1. Introduction

Corydalis saxicola Bunting, which belongs to the genus Corydalis within the Papaveraceae family,
is an endangered herbaceous plant widely used in traditional Chinese medicine due to its various
pharmacological activities, including anti-cancer, anti-inflammatory, antibacterial, antioxidant, and
analgesic properties [1-3]. These pharmacological activities of Yanhuanglian (the Chinese name of C.
saxicola) are primarily attributed to the presence of benzylisoquinoline alkaloid (BIA) compounds,
with dehydrocavidine (DHCA) identified as one of the key active ingredients [4,5]. As a species
endemic to the karst region in China, C. saxicola lives exclusively in or around rock crevices and
demonstrates good adaptability to the arid, infertile, and calcium-rich soils, which are the typical
karst environments [6]. However, both its narrow, stringent karst-adapted habitat and the imbalance
of large market demand make it endangered [6-8]. Therefore, understanding the adaptation
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mechanism of C. saxicola in calcium-rich karst habitats, as well as the regulatory molecular
mechanism of the key active BIAs, such as DHCA, in C. saxicola, are considered as two of the most
efficient and promising approaches for the conservation and utilization of this endangered medicinal
plant.

Annexins (ANNSs) are evolutionarily conserved, water-soluble proteins [9]. The plant ANNSs,
which can bind to or insert into cell membranes and regulate the homeostasis of free Ca?" in the
cytoplasm, are the members of voltage-gated Ca?* channels [10]. In addition, it has peroxidase as well
as ATPase/GTPase activities, which give ANNs functional specificity [11,12]. The core structures of
plant ANNSs are characterized by a N-terminal region and a C-terminal region [12]. The short N-
terminal region comprises approximately a dozen amino acids and is commonly as the site for
secondary modifications, including phosphorylation, nitrosylation, S-glutathionylation, and N-
myristoylation, which are regulated by various signaling pathways [9,13,14]. Biochemical
experiments have demonstrated that the N-terminal domain modulates different ANN properties
through its allosteric mechanism [9,15]. The C-terminal region of plant ANNSs contains four
conservative ANN repeats, each repeat containing about 70 amino acid residues and then folding
into five a helices [16]. Specifically, both of the repeats I and IV include a motif of GXGT-(38 variable
amino acid residues)-D/E, which was considered as a Ca?* binding site [17]. However, compared to
that in the repeat I, this motif is less conserved in the repeat IV [18]. Recently, the ANN families have
been identified in many plant species, including Carica papaya, Glycine max, Oryza sativa, Raphanus
sativus, Vitis vinifera, Zea mays, and so on [19-23]. These ANNs are ubiquitously distributed across
various plant tissues, including embryos, seedlings, roots and tubers, stems, hypocotyls and
cotyledons, leaves, inflorescences, fruits, vascular systems, and phloem sap [24-28], demonstrating
their wide involvements in regulating of biochemical and cellular processes, plant growth and
development, and response to biotic and abiotic stresses [9-11,14].

Plants in karst areas generally have the tolerance to drought and calciphilic characteristics
[29,30]. Our previous studies found that the cultivated C. saxicola plants had the ability to endure the
treatment of high concentrations of exogenous CaClz solutions for nearly a month at least, and the
contents of DHCA in the roots of C. saxicola were significantly enhanced after the treatments.
Nevertheless, how extracellular Ca? signaling was recognized and converted into intracellular ones
to regulate the biosynthesis of DHCA in C. saxicola is largely unknown. As plant ANNs are members
of voltage-gated Ca? channels and are involved in Ca? uptake and transport, we speculated that
ANNSs in C. saxicola (CsANNs) might be one of the key executors during this process.

In this study, a global survey of the nine ANN genes in the C. saxicola genome was conducted.
The physicochemical properties, conserved motifs, gene structures, and cis-elements in the promoter
regions of CsANNs were identified. In addition, the homologous ANN genes from different species
were determined based on a collinearity analysis. Furthermore, the expression profiles of all nine
CsANNSs in different tissues and under CaCl: treatments were analyzed. The transient overexpression
assays demonstrated that CsANN1 could induce the accumulation of DHCA in the leaves of C.
saxicola. In summary, the present study might provide substantial useful information for the
understanding of CsANNSs as the key effectors during Ca? uptake and transport, and the role played
in the biosynthesis of DHCA in C. saxicola.

2. Results

2.1. Identification and Physicochemical Analysis of CSANNs

A total of nine candidate ANNs were identified in the C. saxicola genome. All these CsANNs
contained conserved ANN domains, indicating that these peptides were putative ANNS.
Subsequently, all nine CsANN genes were successfully cloned by PCR and verified by Sanger
sequencing. Consequently, these CsANNs were named as CsANN1-9 according to their chromosomal
localization (Table S1).
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Physicochemical property analysis results showed that the CsANN proteins contained 316 to
341 amino acids, with molecular weights (MWs) ranging from 35.48 kDa to 38.67 kDa (Table S1). The
hydrophilicities of the nine CsANN proteins were all below 0, indicating their hydrophilic nature.
The isoelectric points (pls) of CsANNT1, 5, 6, 7, and 9 were all below 7, indicating that they were acidic
hydrophilic proteins; the others were basic hydrophilic proteins. The protein instability indices of
CsANN1, 3, 4, 5, and 7 were below 40, and these are stable proteins; the others were unstable proteins.
The results of subcellular localization of CsANNSs predicted by different software were variable, but
most of them localized in the cytosol (Figure 1A).
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Figure 1. The heatmap of the subcellular localizations of CsANNSs (A) and multiple sequence alignments of

deduced amino acid sequences of ANN proteins from C. saxicola and Arabidopsis thaliana (B).

2.2. Sequences Alignment and Phylogenetic Analysis of ANNs

The amino acid sequence alignment results indicated that CSANN proteins contained four
conserved ANN repeats, each of which consisted of approximately 70 amino acids and was similar
to that of AtANN1 (Figure 1B). Particularly, the specific Ca?*-binding sites (G/KXGT-38-D/E), which
could functionally bind to phospholipid membranes, were characterized in the repeat I of CSANN]1,
5,7, and 9 (Figure 1B). In addition, a conserved peroxidase residue (ILAHR) was identified in
CsANN1, 5, and 9, indicating that they were likely to have peroxidase activity. Furthermore, the IRI
site, which could bind to F-actin, existed in the repeat III of CSANN1 and 9, and the DXXG site, which
could bind to GTP, was found in the repeat IV of CsANNI, 5, and 9 (Figure 1B).

To elucidate the evolutionary patterns and potential functions of CsANNs, we used the
neighbor-joining (N]J) method to construct a phylogenetic tree based on 111 ANN proteins from nine
species. As shown in Figure 2, all the ANNSs could be divided into four subfamilies according to the
phylogenetic tree analysis. CsANNs were distributed among all subfamilies except subfamily III, and
their distribution pattern was similar with other ANNs except two ones of C. yanhusuo (CyANN16
and CyANN24) (Figure 2). Among all nine CsANNs, CsANN1, 7, and 9 were classified within
subfamily I, CsANN2, 3, 4, 6, and 8 were assigned to subfamily IV, and only CsANN5 was
categorized under subfamily II (Figure 2). Typically, CsANNSs were initially grouped with CtANNs
and CyANNSs, followed by PtANNSs and AtANNSs within each clade, suggesting a closer evolutionary
relationship among CtANNs, CyANNs, and CsANNs (Figure 2). Conversely, the evolutionary
relationships among ANN proteins from C. saxicola, Hordeum vulgare, and O. sativa were found to be
the farthest (Figure 2). These findings indicated that CsSANNSs were more closely related to those of

Distributed under a Creative Com CC BY license.
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dicotyledons than those of monocotyledons, which was consistent with previous studies
[18,19,21,22].

Figure 2. The phylogenetic tree of the ANN proteins. At: Arabidopsis thaliana; Bo: Brassica oleracea; Br: Brassica
rapa; Ct: Corydalis tomentella; Cy: Corydalis yanhusuo; Hv: Hordeum vulgare; Os: Oryza sativa; Pt: Populus

tremula x Populus.

2.3. Conserved Motifs and Gene Structure of CSANNSs

The gene structure characteristics of CsANNs, and the conserved motifs and domain
compositions of CSANN proteins were analyzed and shown according to their phylogenetic
relationships (Figure 3A). Four or five motifs were characterized in CsANNSs, and motif 1~4 were
commonly identified in all CSANNSs (Figure 3B). CsSANN2 and CsANNS, two members of Subfamily
IV, lack motif 5, potentially causing functional loss (Figure 3B). Additionally, all CSANNs have four
ANN domains except CsANN2 and CsANNS, which lack one and two ANN domains, respectively
(Figure 3C). The exon-intron structural analysis showed that the number of exons within the CsANN
genes varied between 4 and 7 (Figure 3D). Notably, CsANN3 contained 7 exons, and CsANNS
contained 4 exons (Figure 3D). It should be mentioned that among all CsANNs, CsANN1 possesses
the longest introns (Figure 3D). Furthermore, CsANNs within the same evolutionary branches,
specifically subfamily I (CsANN1 and CsANN9) and subfamily IV (CsANN4 and CsANNG), exhibited
similar intron/exon patterns (Figure 3D).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 3. The phylogenetic relationship, conserved motifs, ANN domains of CSANN proteins, and the intron

and exon compositions of CSANN genes.

2.4. Chromosomal Location and Collinearity Analysis of CsANNs

A chromosomal location map was constructed to investigate the genetic divergence and
duplication within the CsANNs. Nine CsANN genes were identified and localized on five
chromosomes. The distribution of CSANNs on each chromosome appeared relatively independent
and irregular. Among these chromosomes, chromosome 8 contained the highest number of CsANN,
with three identified, followed by chromosomes 6 and 7, each with two CsANNs. Chromosomes 1
and 2 each contained a single CsANN gene (Figure 4A).

To further elucidate the expansion mechanism of the CsANN gene family, we performed
collinearity and duplication analyses using TBtools [31]. Intraspecific collinearity analysis revealed
the presence of one pair of collinear genes in C. saxicola (CsANN1-CsANNDY), both were attributed to
segmental duplication, and CsANNS3, 4, 5, and 6 came from tandem repetition (Figure 4B). These
indicate that segmental duplication events and tandem repetition events were pivotal for the
expansion of CsANNs during evolution.

To explore the underlying evolutionary mechanisms of CsANNSs, we selected five representative
angiosperm species, including A. thaliana, C. tomentella, H. vulgare, O. sativa, and P. tremula, to
construct collinearity analysis maps with C. saxicola. The analysis revealed that the CsANNs exhibited
the highest syntenic relationships with ANNSs in P. tremula (10), followed by C. tomentella (8), A.
thaliana (5), H. vulgare (4), and O. sativa (3) (Figure 5). Those results indicated that the ANN genes
from C. saxicola, P. tremula and C. tomentella had a close relationship. In addition, a greater number of
ANN homologous genes were identified in dicotyledons than those in monocotyledons (Figure 5).
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Figure 4. Location distribution of CsANN genes on C. saxicola chromosomes (A) and synteny analysis of CSANN

genes (B).
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Figure 5. Extra-genomic collinearity related to CsANN genes in A. thaliana, C. saxicola, C. tomentella, H. vulgare,

O. sativa, and P. tremula.

2.5. Analysis of Cis-Acting Elements in CSANN Promoters

To further investigate the response of CsANNs to stresses, we used PlantCARE to extract cis-
acting elements involved in plant hormone regulation and abiotic stress response from 2.0 kb 5’
upstream regions of CsANNs [32]. As shown in Figure 6, five main categories of cis-acting elements
were predicted, including oxidative stress- (ARE-motif), cold stress- (LTR-motif), drought stress-
(MBS-motif), light- (Box 4, GATA-motif, G-Box, G-Box, GT1-motif, TCT-motif), and plant hormone-
(abscisic acid response element, ABRE; methyl jasmonate response element, CGTCA-motif, TGACG-
motif; gibberellin response element, GARE-motif, P-box; auxin response element, TGA-element)
responsive elements. All CsANNs, except CsANN4, contain light-responsive elements. Cis-acting
elements associated with hormonal responses were also found in all CSANN promoters, except
CsANN1. CsANN1, 7, and 4 contain elements related to drought response. CSANN4, 7, and 9 contain
elements related to low temperature response. Only CsANN7 promoters have been identified as a
role involved in the antioxidant response. In addition, the GTGGC-motif was only present in
CsANN9. The TGACG-motif, which was suggested to be involved in the methyl jasmonate response,
appeared only in CsANN3. The P-box, one of the gibberellin response elements, was present in the
promoters of CSANN4 and CsANNY. The GARE-motif was present in the promoters of CSANNS and
CsANNQ9. It should be mentioned that all CsANNs had MYB transcription factor binding sites (Table
S2). All the observations indicated that CSANN genes might be involved in environmental stress
response and hormone regulation, and play essential roles in physiological and developmental
processes of C. saxicola.
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https://doi.org/10.20944/preprints202505.1673.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2025 d0i:10.20944/preprints202505.1673.v1

7 of 21
—— CsANN7 — § — s
ARE
— CsANN3 —f— — -4 . 44— -
I cG T A-morif
{ CsANNG +—+-H —4 40D s
csanvt —HH—8—H4——4—0—— -;zl'l{'-mmif
. .‘ i [ TGACG-motif
1] - CoANNS . i . . . _' -TGA-elcman
L CsANN2 —{_}—' H . —. Gi-box
’ I mBs
— CsANNS _(_“_.._.'._“ ._ ._ o .' " I GATA-moiif
— caanvi 4——4—-4 s - |

— CsANNG ” —.— —_— —.-..—.— _.\\._. - GARE-motif

B G1GGC-motir
5 3
I T T T T T T T T T 1 - AT-rich element

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 6. The distribution of cis-acting elements in promoters of CSANNs.

2.6. Tissue-Specific Expression Profile of CsANNs

The quantitative real time PCR (qRT-PCR) analysis results indicated that the expression patterns
of the CsANNs were variable in different tissues of C. saxicola. As shown in Figure 7, the CsANN2,
CsANN3, CsANN4, and CsANNS were greatly expressed in flowers, suggesting their potentially
significant biological role in flowering phase transition or flowering organ development. CSANN5
and CsANNG6 were particularly highly expressed in the stems, indicating that they might be involved
in the development of the stems of C. saxicola. We also observed that some CsANN genes (CsANN2,
CsANN?7, and CsANNS) displayed high expression in fruit pods of C. saxicola. Interestingly, CsSANNI,
CsANN3, CsANN4, and CsANN9 showed relatively high accumulation in the roots of C. saxicola.
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Figure 7. Relative expression (RE) levels of CsANNSs in different tissues of C. saxicola. R: roots, S: ems, LS: lateral

stems, ML: mature leaves, YL: young leaves, FP: fruit pods, F: flowers.

2.7. The Effects of Exogenous CaClz Treatments on C. saxicola Seedlings

In order to investigate whether Ca? influences the growth and development of C. saxicola,
different concentrations of exogenous CaCl> were used to treat one-month-old C. saxicola seedlings.
As shown in Figure 8A-C, the calcium content, proline content, and soluble sugar content of C. saxicola
leaves were significantly increased with the elevation of exogenous CaClz concentrations (P < 0.05).
In addition, significant differences in the DHCA content in the stems, leaves, and roots of C. saxicola
after treatments were also observed (P < 0.05), and the content of DHCA in roots was much higher
than that in stems and leaves (Figure 8D-F). Interestingly, the high concentration of exogenous CaClz
significantly induced the accumulation of DHCA in the roots of C. saxicola (Figure 8F).

We then analyzed the FPKM values of CsANNSs based on the transcriptomic data. It was found
that, except for CsANN2 and CsANNS, the FPKM values of other CsANNs showed significant changes
with the increase of CaClz concentration (P < 0.05) (Figure 8G-O). Especially, the FPKM values of
CsANN1 and CsANN?9 are positively correlated with calcium concentration (Figure 8G, O).
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Figure 8. The effects of exogenous CaCl: treatments on C. saxicola seedlings. A-C: The calcium content, proline
content, and soluble sugar content in mature leaves of C. saxicola under the treatments of different CaClz
concentrations. D-F: The DHCA content in stems, mature leaves, and roots of C. saxicola under the treatments of
different CaClz concentrations. G-O: Relative expression levels of CsANNSs treated with different concentrations
of CaCla.

2.8. CsANNs Correlated with DHCA Biosynthesis

According to the predicted biosynthetic pathway of DHCA, C-methyltransferases (CMTs), O-
methyltransferases (OMTs), and berberine bridge enzyme-likes (BBELs) were involved in the
transition of cheilanthifoline into DHCA [33]. In order to elucidate the relationship between CsANNss
and the above key enzymes involved in the DHCA biosynthesis, we conducted a correlation analysis
among CsCMTs, CsOMTs, CsBBELs, and CsANNs. An interaction network that comprised 34 nodes
and 66 relational pairs with high correlations (R = 0.8 and P < 0.05 or R < -0.8 and P < 0.05) was
identified. Among them, four major sub-networks (CsANN1, CsANN5, CsANN6, CsANN9), which
collectively included 48 relational pairs and 25 nodes, were summarized (Figure S2). For CsANNI,
the connectivity number is 9, and it shows significant correlation with the expression of 3 CsOMTs
and 6 CsBBELs. Similarly, the connectivity number for CsANN9 is 11, which is significantly correlated
with the expression of 5 CsOMTs and 6 CsBBELs (Figure S2).

As is mentioned above, the transcripts of both CSANN1 and CsANN9 were not only relatively
high in the roots of C. saxicola, but also positively correlated with the content of DHCA in the roots
of C. saxicola treated by exogenous CaClz solutions. Furthermore, the expression of CsANNI and
CsANNO had high correlations with the expression of DHCA-biosynthetic-related genes (Figure S2).
These indicated that CSANN1 and CsANN9 might play positive roles in the biosynthesis of DHCA.

To confirm this speculation, transient overexpression assays of CsANNI and CsANN9 were
conducted in C. saxicola leaves, respectively (Figure 9A). The transcript levels of CsSANNI and
CsANNQ9 in C. saxicola leaves infiltrated with CsANN1-pCAMBIA1301 and CsANN9-pCAMBIA1301
increased significantly compared to the empty vector, respectively (Figure 9B, Figure S3A).
Furthermore, the contents of Cheilanthifoline and DHCA in C. saxicola leaves infiltrated with
CsANN1-pCAMBIA1301 were also significantly increased compared to the empty vector (Figure 9C,
D). However, compared to the empty vector, the contents of Cheilanthifoline and DHCA in C. saxicola
leaves infiltrated with CsANN9-pCAMBIA1301 did not show significant difference (Figure S3B, C).
These results suggested that CsANN1 but not CsSANN9 might play a positive role in the biosynthesis
of DHCA.
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Figure 9. The transient overexpression and functional analysis of CSANNI1. (A) The schematic diagram of
infiltration of C. saxicola leaves with CSANN-pCAMBIA1301 or EV. (B) Expression profiles of CSANN1 and other
genes in C. saxicola leaves infiltrated with CsANNI1-pCAMBIA1301 or EV. (C) Changes in BIA contents in C.
saxicola leaves infiltrated with CSANNI-pCAMBIA1301 or EV. (D) Statistic analysis of BIA contents in C. saxicola
leaves infiltrated with CsANN1-pCAMBIA1301 or EV.

2.9. Yeast Two Hybrid Assay and Protein Interaction Networks of the CsANNSs

Numerous proteins could form dimers, polymers or more complicated complexes to execute
biological processes in vivo [34,35]. In order to explore whether CsANNSs could form homodimers or
heterodimers, yeast two-hybrid assays were conducted. As shown in Figure 10A, similar to the
negative control pBD, the yeast cells carrying the tested vectors could not grow on the selective solid
medium lacking Tyrosine (Trp) but containing 5-Bromo-4-chloro-3-indoxyl-a-D-galactopyranoside
(X-a-gal) and Aureobasidin A (AbA), indicating that all CsANNSs had no auto-activation activities in
Y2HGold cells (Figure 10A). Further assays indicated that either the yeast cells containing the pair of
cotransformed indicated plasmids could grow on the selective medium containing X-a-gal and AbA,
indicating that none of these CsANNSs could form homodimers or heterodimers in yeast cells (Figure
10B).

We then utilized the STRING database and TBtools to further reveal the interactions between
CsANNSs and other proteins. The results showed that the interaction patterns of CsANN1 with
proteins closely resemble those of AtANN1 (Figure 10C). Proteins interacting with AtANNT1 include
the DEAD-box ATP-dependent RNA helicase (AtRH11, 37, 52) belongs to the DDX3/DED1 subfamily
of DEAD box helicase family; probable cyclic nucleotide-gated ion channel (AtCNGC1, 6) belongs to
the cyclic nucleotide-gated cation channel; the tetraspanin-8 (AtTET8) belongs to the tetraspanin
family; the hyperosmolarity-gated non-selective cation channel (AtOSCA1) belongs to the CSC1
family, among others. Similarly, the interaction patterns of CSANN9 with proteins are similarities to
those of AtANN2. AtANN2 is predicted to interact with AtTET8; RGG repeats nuclear RNA binding
protein C (AtRGGC); RGG repeats nuclear RNA binding protein B (AtRGGB) belongs to the RGGA
protein family; UDP-glucose 6-dehydrogenase 4 (AtUGD4) belongs to the UDP-glucose/GDP-
mannose dehydrogenase family, and other proteins. Furthermore, the interaction network of
CsANNSs suggested potential interactions with proteins such as Glucose-6-phosphate isomerase
(GPI); GDP-mannose transporter GONST1 (GDP-Man); ATP dependent RNA helicase DDX3X
(DDX3X), among others (Figure 10C). These results indicated that CSANN proteins might be
involved in various physiological functions, including transcriptional regulation, RNA stability,
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signal transduction, mRNA transport, Golgi secretion, maintenance of cellular osmotic balance,
synthesis of cell wall precursors, as well as regulation of calcium channels.
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Figure 10. Yeast two hybrid assay and protein interaction networks of the CSANNSs. A: Transactivation assay.
SD/-Trp: SD medium without Trp, SD/-Trp/+X/+A: SD medium without Trp supplemented with X-a-gal at a
concentration of 40 ng/mL, AbA at a concentration of 100 ng/mL. B: Yeast two hybrid assay. DDO: SD medium
without Trp and Leu; TDO: SD medium without Trp, Leu, and His; QDO: SD medium without Trp, Leu, His
and Ade. C: The protein interaction networks of the CsANNSs.

3. Discussion

3.1. The Structure of CSANNs Were Conserved

The ANNSs had been identified and functionally analyzed in a variety of plant species, including
model plants and crops, but the informations about ANN gene families in medicinal plants were
scarce [19,21-23,36,37]. In this study, nine CsANN genes were identified based on the genome and
transcriptome data of C. saxicola, an endangered herbaceous plant that exclusively lived in Chinese
karst landforms and was widely used in traditional Chinese medicine. All the CSANN proteins have
four typical ANN domains, except CsANN2 and CsANNS, which lacked one and two ANN domains,
respectively (Figure 3C). It is well known that a highly conserved sequence (G/KXGT-38-D/E) for
binding sites of type II Ca?* is present in each ANN domain in vertebrates [10]. However, the type II
Ca? binding sites were absent in the repeats II and III in plant ANNs [9]. Our results also showed
that repeats II and III of CsANNs did not contain the type II Ca? binding sites, which was in
accordance with other plant ANNs [9]. In addition, repeat I was absent in CSANN2 and CsANNS,
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and repeat IV was absent in CsANNS (Figure 1B). Furthermore, although four repeats were all
present in the other seven CsANNSs, the type II Ca?* binding sites were less conserved, with two or
three substitutions in repeat IV of CsANNSs. Actually, the type II Ca? binding sites were only highly
conserved in repeat I of CsSANNT1, 5, 7, and 9 (Figure 1B). Those absences of type II Ca?* binding sites
or the entire repeats might result in different protein conformations and largely weaken the ability of
the CsANN proteins to bind to phospholipids of cell membranes in a Ca?-dependent manner, further
influencing their capacities involved in plant growth and development regulation [10,11].

Another motif present in repeat I was the ILAHR sequence (Figure 1B). It was demonstrated that
this sequence, especially the conserved His40 residue, played an essential role in peroxidase activity
[37,38]. For example, Arabidopsis AnnAtl has shown the His-residue-dependent peroxidase activity
in vitro [16]. An AnnBrl-contained complex protein purified from B. rapa floral buds had peroxidase
activity [39]. A maize ANN preparation also demonstrated peroxidase activity that appeared
independent of heme association [37]. It is believed that the peroxidase activity of ANNs could
protect the membrane from peroxidation and then subsequently improve the abiotic tolerance in
plants, such as drought tolerance, etc [40,41]. As plants such as C. saxicola in karst regions experienced
the harsh environmental conditions, the CsANNs (CsANN1, 5, 9), which present the ILAHR
sequences, might contribute calcareous and drought tolerance abilities to C. Saxicola plants partly by
the peroxidase activities.

The IRI sequence in repeat III of ANNs was highly conserved in CsANNT1 and 9, and with one
or two substitutions in other CsANNs except CsSANN2 (Figure 1B). The IRI present in ANNs were
demonstrated to bind filamentous actin (F-actin) but not globular actin in a Ca?-dependent manner,
indicating these ANNs might be involved in exocytosis regulation [42]. Moreover, several ANNs of
maize, cotton, and tomato were proved to hydrolyze ATP and GTP, and the nucleotide hydrolyzation
abilities were attributed to the Walker A motif (GXXXXGKT/S) and the GTP binding domain (GXXG)
which were retained in repeat IV of ANNSs [11]. CsANNI, 5, and 9 contain a modified Walker A motif
with one or two substitutions and the conserved GXXG sequence in the repeat IV, indicating their
potential abilities to bind and hydrolysis GTP/ATP [45]. Interestingly, similar to A. thaliana, cotton,
maize, and poplar, these nucleotide binding domains were partly overlapped with the Ca? binding
site in repeat IV, indicating the two different binding properties were contradictory to each other and
thus controlled the spatiotemporal functions of ANNs [13,18,19,46].

The phylogenetic analysis showed that CsANNs were distributed in three subfamilies, and
clustered with ANNSs from the dicotyledonous plants, especially the ANNSs in the same genus (C.
tomentella and C. yanhusuo) (Figure 2). Similar to other plant ANNS, the closely related CsANNs tend
to exhibit similar structural features [22,39,47,48]. As shown in Figure 3B, motifs 14 are common to
all CsANN members, indicating that it's crucial for CsANNs. Nevertheless, the members of
subfamily II lacked motif 5, and those of subfamily III had significant differences in exon-intron
structure, which may be related to functional differentiation. It is worth noting that CsSANN1 had
more exons and longer introns, implying that the gene plays a more crucial role in function,
expression regulation, and evolution [49-52].

3.2. CsANNs were Involved in the Biosynthesis of DHCA

It was interesting that the expression profiles of CSANN1 and CsANN?Y in variable tissues and
Ca?-treated roots of C. saxicola were similar to the accumulation profiles of DHCA in these treated or
untreated organs, the fact of which might be an indicative of the involvement of CsANN1/9 in DHCA
biosynthesis (Figure 7, 8). In fact, transient overexpression of CsANNs in C. saxicola leaves
demonstrated that higher expression of CsANN1 could really result in the higher accumulation of
BIAs, including palmatine, cheilanthifoline, dehydrocheilanthifoline, and cavidine, compared to that
of EV (Figure 9C, D). Especially, compared to EV, the contents of DHCA and cheilanthifoline, a
crucial upstream precursor compound of DHCA, were significantly elevated in CsANNI-
overexpressed C. saxicola leaves, indicating that CSANN1 might positively regulate the expression of
the genes or proteins involved in the biosynthesis pathway of cheilanthifoline and DHCA (Figure
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9D). Further analysis of candidates participated in the biosynthesis pathway of DHCA showed that
the expression level of CsBBEL9 transcripts was significantly upregulated in CsANN1-overexpressed
C. saxicola leaves compared to that of EV (Figure 9B). As a result, we speculated that CSANN1 might
bind directly to the DNA sequence of CsBBEL9 in the nucleus, similar to trans-acting factors, to
regulate the expression of CsBBEL9, and thus induce the accumulation of DHCA and its precursors.
Subcellular localization analyses of CsSANN1 and CsANN9 suggested a more likely presence in the
cytoplasm. However, studies have shown that some ANNs could be introduced into the nucleus
through unknown mechanisms, especially under stress conditions [9,12,47,48]. One possible
assistance might be supported by the conformational changes of ANN proteins induced by N-
terminal tyrosine phosphorylation, allowing the proteins to enter the nucleus [47-52]. However, more
biochemical and structural evidence should be provided to confirm the subcellular localizations of
ANN s, including CsANN s, during physiological processes.

Another factor influencing the accumulation of DHCA by CsANNI1 might occur during the
translational level. A number of cis-acting elements, including MYB binding sites, were identified in
the promoters of CsBBELs, CsCMTs, CsOMTs and CsANNs, and the Y2H assays demonstrated that
CsANNSs could interact with several CsMYBs in Y2HGold yeast cells (data not shown). Therefore,
CsANNSs-CsMYBs modules might play crucial roles in the biosynthesis pathway of DHCA. Further
studies should be conducted to unravel the precise mechanisms of the biosynthesis of DHCA at
transcriptional and translational levels, which could help to elucidate the adaptations of medicinal
plants in karst regions.

3.3. CsANNs Might Play an Important Role in the Adaptability of C. saxicola to Karst Environment

It was reported that the calcium content in karst soil could reach up to 37.68 g/kg at most, and
the average calcium availability of these soils were as high as 50.9% [29,53]. Preventing excessive
absorption of Ca? is crucial for the normal growth of karst plants. For this purpose, variable unique
physiological mechanisms and responsive pathways have been evolved to maintain the balance of
Ca?* within plant cells: (1) fixing excess Ca?* by forming calcium oxalate crystals [54,55]; (2) releasing
excess Ca? through stomata on mature leaves [56,57]; (3) regulating the concentration of Ca?* by
storing it in the intercellular spaces and organelles, such as vacuoles, endoplasmic reticulum,
mitochondpria, and chloroplasts [58,59]. To date, several key factors were demonstrated to be involved
in these processes. For example, the Ca%/cation antiporter superfamily, which are classified into four
families, H*/cation exchangers (CAXs); Na*/Ca?" exchanger-like proteins; cation/Ca?* exchangers; and
Mg?/H* exchangers, is critical in regulating and accumulating calcium [58,60].Physilogical and
genetic evidences have demonstrated that CAXs could mainly remove excess Ca?* from the cytoplasm
into the vacuole to maintain calcium homeostasis and alleviating calcium-induced stresses, thus
granting plants the adaptation to the high-calcium karst environment [59,60]. In addition, Ca?-
ATPase (ACA) could also prompt Ca? efflux from cytosol to endoplasmic reticulum, or facilate Ca?*
uptake from cytosol to vacuole, in an ATP-dependent manner [56]. In our study, compared with those
in CK, the expression levels of several CsCAXs, CsACAs and other Ca?-balancing genes were
significantly upregulated in C. saxicola roots treated with high concentrations of CaClz solution
(Figure S4), indicating the involvement of these factors in the adaptation of C. saxicola in karst
landforms. In addition, the expression levels of some CsCAXs were much higher than those of
CsACAs and other Ca?-balancing genes (Figure 54). This meant that the shaping of the efflux element
of Ca? signatures in C. saxicola was mainly contributed to the expression of CsCAXs other than
CsACAs, which was consistent with the fact that CAXs has lower energy consumption than ACAs
and mainly act on the vacuole membrane and are more conducive to the secretion and long-term
storage of Ca? [56,61]. Interestingly, significant correlations between CsANNs and Ca?-balancing
genes have been identified (Figure S5), indicating the complicated adaptation styles of C. saxicola in
calcium-rich karst ecosystems.

Except for the involvement in the adaptation of high-calcium environment, ANNs could also
response to other stresses to help regulate plants’ growth and development, at least partly attributing
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to the diversity of their cis-acting elements in promoters [9,18,22,25,37,48]. Multiple cis-acting
elements were also identified in the promoters of CsSANN genes (Figure 6), indicating the role of
CsANN:Ss in the adaptation of C. saxicola to the complex ecological environment in karst areas. For
example, the ABRE elements binding sites, which could respond to ABA signals and balance cellular
osmotic pressure, present in the promoters of CsANN]I, 3, 4, and 9 [62,63]. All CSANNs possess the
cis-elements of MYB transcription factors, which indicated their involvements in drought resistance
by regulating ion homeostasis and reducing water loss [64,65]. In addition, ARE elements, which
could activate antioxidant enzymes (such as superoxide dismutase and catalase) by binding to the
nuclear factor-erythroid 2-related factor 2 or basic (region-leucine) zipper transcription factors, and
thus reduce the damage caused by reactive oxygen species produced by adverse environmental
factors to the membrane lipids of plants, existed in all CsANNs except CsANN7 [62,66-68].
Furthermore, the CsANNs’ promoters also contain a variety of hormone-responsive elements, such
as CGTCA-motif (cis-acting regulatory element involved in the MeJA reaction), TGACG-motif
(methyl jasmonate response), P-box (gibberellin response), and TGA-element (auxin response) (Table
52), all of which are conducive to alleviating stresses to the growth, development and differentiation
of plants caused by arid, infertile and heavy metal pollutions [69-72]. Based on these, we speculated
that CsANNSs may alter the concentration of free Ca?* in the cytoplasm by interacting with multiple
signaling pathway genes. As Ca? is a second messenger in plants, the characteristic changes of
[Ca?]et in different environments are recognized and decoded as regulatory responses in DNA,
RNA, protein, or metabolic levels to help C. saxicola adapt in harsh karst environments.

4. Materials and Methods

4.1. Plant Materials and Treatments

C. saxicola seeds were germinated and grown in pots containing a matrix with a 3:1 mixture ratio
of peat soil and vermiculite in the greenhouse (23 °C, 16 h light, a photo flux density of 120 umol m?2
s1). For the exogenous CaClz treatment experiments, the one-month-old C. saxicola plants were
treated with the equal volume of CaClz at 4 mmol/L, 30 mmol/L, 100 mmol/L, 200 mmol/L, 300
mmol/L, and 400 mmol/L, respectively, for 25 d. The same batch of plants treated with the equal
volume of water were set as the control (CK). The organs were then cleaned, physically isolated, and
immediately frozen or dried for further research.

4.2. Genome-Wide Identification of the CSANN Genes

Firstly, the Hidden Markov Model (HMM) with the canonical ANN domain (Pfam00191) was
used to search against the C. saxicola genome dataset (P < 0.001), which was assembled by ourselves,
to identify CsANN genes [73]. Secondly, all eight AtANNs downloaded from The Arabidopsis
Information Resource (TAIR) database were used as queries to retrieve CSANNs by BLAST in TBtools
v2.096 [31]. Lastly, putative CsANNs were further confirmed using the InterPro and SMART
databases [74]. The above non-redundant sequences were considered as CsANN candidates. The
protein physicochemical properties of CsANNs were analyzed using the online website ExPASy [75].
Subcellular localizations of CsANNSs were predicted using the online websites Wolf-psort, Cell-PLoc
2.0, CELLO, PSORT2, and Euk-mPLoc 2.0 [76-78].

4.3. Phylogenetic Relationship, Conserved Motif, and Gene Structure Analysis

The multiply alignment of the CsSANNs was performed by the TBtools v2.096 [31]. The results
were then visualized using the Jalview 9.0.5 [79]. The ANN protein sequences of A. thaliana, B.
oleracea, B. rapa, C. saxicola, C. tomentella, C. yanhusuo, H. vulgare, O. sativa, and P. tremula were aligned
using MEGA 11.0 [18]. The phylogenetic tree of the ANNs was constructed using the neighbor-
joining method, with the bootstrap value of 1000 and other parameters set to default parameters, and
then was visualized by FigTree v1.4.4. Conserved motifs of CsANNSs were identified using the MEME
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Suite 5.5.7 [80]. The intron and exon regions of CsANNs were analyzed using the Visualize Gene
Structure program in TBtools v2.096 [31].

4.4. Chromosomal Location, Collinearity, and Gene Duplication Analysis

The chromosome location information of CsSANN genes was extracted from the C. saxicola plant
genome gff file using the TBtools software, and visualizations were generated [31]. TBtools was
further employed to conduct and visualize the collinearity analysis of the CsANNs. Additionally, the
collinearity analysis of A. thaliana, C. tomentella, H. vulgare, O. sativa, and P. tremula with C. saxicola
was performed using TBtools [31].

4.5. Cis-Acting Elements, and Protein-Protein Interaction Analysis

The 2 kb sequences upstream of the 5" UTR of CsANN genes were extracted using the TBtools
software and then used for the prediction of cis-acting elements based on the PlantCARE database
[32]. Protein-protein interactions were predicted using the STRING database [81]. Cytoscape V3.9
was used for visualization [82].

4.6. Measurement of the BIAs Contents

An Agilent 1260 Infinity II (Agilent Co. Ltd, NY, USA) was employed to determine the relative
content of the BIAs (cavidine, (s)-cheilanthifoline, dehydrocheilanthifoline, DHCA, and palmatine).
Initially, 200.0 mg of dried C. Saxicola samples were dissolved in 10 mL of methanol and then
ultrasonicated for 60 minutes. Next, the samples were centrifuged at 13,000 g for 15 min, and the
supernatant was removed to a new 15-mL tube and dried using a nitrogen pressure reduction method
at room temperature. Thereafter, the sample was dissolved by 1 ml of the mobile phase (acetonitrile:
0.01% K2HPOs4 aqueous solution = 21:79 (v/v)) and filtered through a 0.22-um filter prior to analysis.
The Agilent XDBC 18 chromatographic column (150 mm x 4.6 mm, 5 um) was used to elute the BIAs
in samples under 347 nm of detection wavelength at 30 °C. The volumetric flow rate of the mobile
phase (acetonitrile: 0.01% of K2HPOs = 21:79 (v/v)) is 1.0 mL/min.

4.7. CsANN Cloning

The RNA was extracted from leaves, stems, and roots of C. saxicola before and after various
treatments by FastPure Universal Plant Total RNA Isolation kit (Vazyme, Nanjing, China) based on
the instruction. The first-strand cDNA was synthesized according to the instruction of HiScript III
1st Strand cDNA Synthesis Kit (Vazyme, Nanjing, China) with the extracted total RNA as templates.
To clone the full-length CDSs of CsANNSs, the gene-specific primers (Table S3) were designed and the
PCR reaction procedures were as follows: pre-denaturation at 95 °C for 3 min; followed by 33 cycles
of denaturation at 95 °C for 15 s, annealing at 56 °C (CsANN2, 6) or 54 °C (other CsANN ) for 15 s, and
extension at 72 °C for 50 s; and a final extension at 72 °C for 5 min. Subsequently, PCR products were
ligated into the TA/Blunt-Zero Cloning Kit vector (Vazyme, Nanjing, China) and then transformed
into DH5a competent cells for incubation on LB solid medium plus 100 pg mL-! kanamycin overnight.
Colony PCR with the same procedure above were conducted to verify the putative positive
transformants. The final CDSs of CsANNs were ascertained by Sanger sequencing.

4.8. qRT-PCR Analysis

The qRT-PCR was performed using ChamQ Universal SYBR qPCR Master Mix (Vazyme,
Nanjing, China) with three technical replicates. The relative expression levels of specific genes were
calculated using the 2 delta delta Ct method (2-44Pt method), with glyceraldehyde-3-phosphate
dehydrogenase 8 (CsGAPDHS) used as the internal control [82-85]. The qRT-PCR primers were listed
in Table S3.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1673.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2025 d0i:10.20944/preprints202505.1673.v1

16 of 21

4.9. Yeast Two-Hybrid Assay

The full-length CDS of CsANNSs were amplified and cloned into the destination vectors pPGADT7
(pAD) and pGBKT7 (pBD), respectively. The primers used were listed in Table S3. Transactivation
analysis assays were carried out in the yeast strain Y2HGold using the Yeastmaker Yeast
Transformation System 2 (Clontech, Tokyo, Japan). For Y2H assays, CSANN-pAD and CsANN-pBD
were transformed into Y187 and Y2HGold yeast cells, respectively. Yeast mating was conducted and
the putative cotransformants were screened on SD/-Trp/-Leu (DDO) selective solid medium and then
verified by PCR. SD/-Ade/-Trp/-Leu (TDO)+X+A and SD/-His/-Ade/-Trp/-Leu (QDO)+X+A were
further adopted to verify the protein-protein interactions.

4.10. Transient Overexpression of CSANN1I and CsANNY in C. saxicola Leaves

The full-length CDS of CsANN1 and CsANN9 were amplified and cloned into the pPCAMBIA1301
vector, respectively. The primers used were listed in Table S3. The resulting plasmids were
introduced into Agrobacterium tumefaciens GV3101. After propagation, the cells were resuspended in
infiltration buffer (composed of 10 mmol/L MgClz, 10 mmol/L 2-morpholinoethanesulfonic acid, and
150 mmol/L Acetosyringone; pH 5.6) to achieve the ODsw of 0.8. Suspensions containing either the
overexpressing constructs of the target genes CSANN1 and CsANN9 or the empty pCAMBIA1301
plasmid vector (serving as a control) were injected into opposite sides of the same leaf. Two days
later, the injected leaves of C. saxicola were collected for metabolite content and gene expression
analysis using HPLC and qRT-PCR, respectively [86].

5. Conclusions

In this study, we first provided a systematic analysis of the nine CsANN gene families in C.
saxicola. Phylogenetic analysis of ANNs within nine species indicated that all nine CSANNs can be
classified into three different subfamilies, with closely related members having similar structural
characteristics. In addition, gene structures, conserved motifs, chromosomal distributions,
collinearities, protein interactions, and cis-acting elements of CSANN genes or CsSANN proteins were
also analyzed. Expression pattern analysis unraveled two candidates, CsANN1 and CsANND, as the
putative positive regulators involved in the biosynthesis of DHCA in C. saxicola. Further experiments
indicated that transient overexpression of CsSANN1, but not CsANNY, could increase the content of
DHCA in C. saxicola leaves. This study provides a theoretical basis for understanding the biological
functions of the CsANNSs in secondary metabolites and adaptation to adverse stresses of C. saxicola.

Supplementary Materials: The following supporting information can be downloaded at Preprints.org, Figure
S1: The biosynthetic pathway of BIAs. (Each color represents a branch of different secondary metabolites
synthesized by scoulerine, green: the biosynthetic pathway of palmatine synthesized by scoulerine; blue: the
predicted biosynthetic pathway of DHCA synthesized from scoulerine; yellow: the biosynthetic pathway of
sanguinarine synthesized from scoulerine; purple: the biosynthetic pathway of codeine and morphine
synthesized from scoulerine. TYDC: L-tyrosine decarboxylase; TAT: tyrosine aminotransferase; TYR: tyrosine 3-
monooxygenase; HPPDC: 4-hydroxyphenylpyruvate dioxygenase; NCS: norcoclaurine synthase; 60MT:
norcoclaurine 6 O-methyltransferase; CNMT: coclaurine N-methyltransferase; NMCH: N-methylcoclaurine 3’-
hydroxylase; 4 OMT: 3’-hydroxy-N-methylcoclaurine 4’-O-methyltransferase; BBE: berberine bridge enzyme;
90OMT: scoulerine 9-O-methyltransferase; BBEL: berberine bridge enzyme-like; OMT: O-methyltransferase;
CMT: C-methyltransferase; CFS: cheilanthifoline synthase; SPS: stylopine synthase; TNMT:
tetrahydroprotoberberine N-methyltransferase; MSH: N-methylstylopine 14-hydroxylase; P6H: protopine 6-
hydroxylase; DBOX: dihydrobenzophenanthridine oxidase; REPI: reticuline epimerase; SalSyn, salutaridine
synthase); Figure S2: Correlation analysis of CsOMTs, CsCMTs, and CsBBELs with CsANNs; Figure S3: The
transient overexpression and functional analysis of and CsANN9 (Expression profiles of CSANN9 and other
genes in C. saxicola leaves infiltrated with CsANN9-pCAMBIA1301 or EV (A), Changes in BIA contents in C.
saxicola leaves infiltrated with CsANN9-pCAMBIA1301 or EV (B), Statistic analysis of BIA contents in C. saxicola
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leaves infiltrated with CsSANN9-pCAMBIA1301 or EV(C)); Figure S4: Expression of the genes involved in Ca?
sensor and signal-relay pathways in C. saxicola under different concentrations of CaClzsolution (CIPK, CBL-
interacting protein; CAM, calmodulin; CML, calmodulin-like gene; GLR, glutamate-like receptors; CDPK,
calcium-dependent protein kinase; CBL, calcineurin B-like protein; CAX, vacuolar Ca?* exchanger; ACA, Ca?-
ATPase; CNGC, cyclic nucleotide-gated channel); Figure S5: Correlation analysis of the genes involved in Ca?
sensor and signal-relay pathways with CsANNs; Table S1: Identification and physicochemical analysis of
CsANNSs; Table S2: The cis-acting elements identified in CsANN promoters; Table S3: Primers used in this study;
Table S4. The accession numbers of genes involved in the study.
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