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* Correspondence: carter@bond.edu.au

Abstract: Understanding human emotions through multimodal signals has become a pivotal task in
affective computing and human-computer interaction. Among the multiple modalities, text and audio
jointly deliver rich and complementary emotional cues. However, a key challenge lies in the temporal
misalignment between these modalities, making it difficult to fuse them into a coherent emotional
representation. In this work, we propose a novel framework named DIFERNet (Dynamic Interaction-
Focused Emotion Representation Network), which directly learns robust and discriminative fused
features from unaligned text and audio sequences. Unlike prior works that often rely on strict alignment
or shallow fusion techniques, our method dynamically adapts to the unique characteristics of each
modality while emphasizing their interdependencies. The architecture of DIFERNet comprises three
main components: (1) a crossmodal dimensional alignment module that ensures feature compatibility
between heterogeneous inputs; (2) an interaction-guided attention mechanism that facilitates deep
crossmodal synergy for initializing the fused embeddings; and (3) a dynamic fusion adaptation
transformer, which refines the fused representation in a modality-preserving manner. This final module
serves as a correction mechanism to retain crucial unimodal semantics while enhancing contextual
understanding across modalities. We conduct extensive evaluations on two widely-used sentiment
benchmarks, CMU-MOSI and CMU-MOSEI, to validate the proposed approach. Experimental results
indicate that DIFERNet consistently outperforms existing baselines, showing marked improvements
across all key metrics. Furthermore, qualitative analysis demonstrates its capacity to appropriately
regulate sentiment predictions by leveraging nuanced acoustic features. These findings highlight the
potential of DIFERNet for multimodal sentiment analysis in real-world, asynchronous environments.

Keywords: multimodal emotion analysis; symbolic fusion; cross-modal interaction; hierarchical
integration; textual dominance; multimodal representation learning

1. Introduction
Human beings naturally express emotions through diverse behavioral signals, including linguistic

expressions and vocal characteristics [1,17]. Text, as one of the most prominent modalities, plays a vital
role in encoding affective content via lexical choice, syntactic structure, and semantic nuance [12]. Yet,
the written or transcribed textual content often lacks the expressive prosody and nuanced delivery
found in spoken language, which limits its capacity to fully convey emotional intent in isolation. As
such, leveraging additional modalities like audio becomes essential.

Audio contributes a unique set of paralinguistic features that reflect speaker emotions through
variations in pitch, loudness, speaking rate, and energy dynamics [5,18]. These features offer essential
cues that help disambiguate emotionally ambiguous utterances. For instance, the phrase “Are you
sure?” can carry drastically different sentiments—ranging from sarcasm to excitement—depending
on the speaker’s tone and delivery. Audio thus provides the necessary disambiguation when textual
information is inconclusive.

The synergistic fusion of text and audio has long been a goal of multimodal sentiment analysis.
However, most existing fusion techniques are hindered by their reliance on temporally aligned
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multimodal inputs [24]. In practice, spoken words and their corresponding audio signals often do
not align perfectly at the word or frame level. This temporal misalignment disrupts crossmodal
correspondence, thereby weakening the overall fusion process. Previous methods such as tensor-
based fusion [19] and low-rank multimodal decomposition [7] have attempted to address multimodal
integration, but they assume rigid synchrony and may overlook the distinct nature of each modality.

Further advances such as multistage fusion architectures [6] have made strides by decomposing
the interaction process into sequential stages. However, these methods still depend on pre-aligned
sequences and tend to obscure unimodal identity during fusion. As a result, they may inadvertently
suppress meaningful signals from individual modalities, especially when one modality is more
expressive than the other in certain contexts.

To overcome these limitations, we introduce DIFERNet, a dynamic and interaction-focused
representation network tailored for asynchronous text-audio fusion. DIFERNet is designed with
the objective of (1) maximizing the exploitation of intermodal interactions while (2) preserving the
integrity of unimodal streams. This dual objective ensures that the fused representation is not only
informative but also resilient to misalignment artifacts. Our method diverges from rigid fusion schemes
by incorporating a self-adjusting transformer module that iteratively refines fusion embeddings using
unimodal guidance.

Our pipeline begins with projecting modality-specific features into a common latent space using
a crossmodal alignment transformation. This step ensures dimensional homogeneity and semantic
compatibility. Subsequently, we introduce an interaction-guided attention mechanism that enables
mutual conditioning between text and audio. This attention computes interdependency matrices that
weight the importance of tokens or acoustic segments relative to their crossmodal counterparts.

The heart of DIFERNet lies in the dynamic fusion adjustment transformer. This module treats each
unimodal representation as a corrective signal, rebalancing the initial fusion to emphasize contextually
dominant cues. Such a mechanism ensures that text and audio can independently reinforce or modulate
the joint representation, leading to a more expressive embedding. As a theoretical foundation, we
define the correction process via a weighted update.

We validate our model on the CMU-MOSI [22] and CMU-MOSEI [23] datasets, which are widely
recognized benchmarks for multimodal sentiment analysis. DIFERNet demonstrates consistent su-
periority over competitive baselines, with gains ranging from 2.3% to 9.1% across evaluation metrics
such as accuracy, F1-score, and mean absolute error. Additionally, error analysis reveals that DIFER-
Net excels in correctly classifying emotionally subtle or ambiguous samples by leveraging the rich
interaction between modalities.

In summary, our contributions are threefold:

− We propose DIFERNet, a novel framework capable of learning robust fusion representations
from unaligned text and audio inputs by emphasizing dynamic intermodal interaction.

− A new transformer-based correction mechanism is introduced to adaptively refine fusion features
while preserving essential unimodal semantics.

− We conduct extensive evaluations on benchmark datasets, where DIFERNet achieves state-of-the-
art performance and demonstrates superior capability in handling asynchronous multimodal
data.

2. Related Work
2.1. Advancements in Multimodal Sentiment Analysis

Multimodal sentiment analysis (MSA) is a rapidly evolving subfield in artificial intelligence
that endeavors to decode emotional signals by integrating information from various modalities such
as text, audio, and video [16]. The rationale behind multimodal fusion lies in the hypothesis that
each modality carries complementary aspects of sentiment—text delivers explicit semantic content,
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audio reflects prosodic and paralinguistic cues, while video provides facial expressions and gestures.
Harnessing the synergy among these modalities has the potential to provide machines with a more
holistic emotional understanding. Given the increasing importance of empathetic AI systems, MSA
has attracted considerable research interest.

Early approaches to MSA emphasized simple concatenation of modality-specific features. For
example, Williams et al. [15] adopted an early fusion strategy, combining feature vectors extracted
from multiple modalities before feeding them into downstream models. This method yielded sub-
stantial performance gains over unimodal baselines, highlighting the benefits of multimodal learning.
Nevertheless, early fusion often suffers from the heterogeneity of feature distributions and fails to
exploit deeper intermodal dependencies.

To address this, more sophisticated frameworks have emerged. Zadeh et al. [21] proposed a
hybrid architecture that utilizes a multi-attention block along with long-short term memory units
to discover latent interactions between modalities. Similarly, Pham et al. [8] drew inspiration from
machine translation and introduced the Multimodal Cyclic Translation Network (MCTN), which
learns shared semantic representations by cyclically translating between modalities. This architecture
not only improves generalization but also allows for robust unimodal testing using only text inputs,
achieving state-of-the-art results at the time.

In parallel, researchers have aimed to model the temporal and contextual dynamics of emotional
cues. Wang et al. [14] presented RAVEN, a Recurrent Attended Variation Embedding Network, which
dynamically adjusts word embeddings based on nonverbal features like pitch and facial expression
intensity. This innovation captures the nuanced interplay between speech and prosody, enabling the
network to better interpret subtle emotional shifts. However, a shared limitation of these methods is
their dependency on strict temporal alignment at the word level, which can be impractical in real-world
applications due to noise and asynchronous sampling rates across modalities.

With the growing popularity of attention mechanisms, attention-based fusion models have come
to dominate the MSA landscape. These approaches are capable of identifying the most relevant
segments across modalities, regardless of their relative alignment. For example, Zadeh et al. [20]
developed a delta-memory attention network that captures both crossmodal and temporal relationships
through a dynamic memory system embedded in a System of LSTMs. Likewise, Ghosal et al. [3]
proposed a Multi-modal Multi-utterance Bi-modal Attention (MMMU-BA) model, which applies
modality-specific attention weights to extract high-impact features across utterances.

In our proposed DIFERNet framework, we build on this attention-based tradition. A crossmodal
collaboration attention mechanism is integrated into the fusion initialization phase, encouraging rich
contextual alignment between text and audio. Furthermore, we employ a crossmodal adjustment trans-
former module—motivated by the work of Tsai et al. [11]—to adaptively reshape fused representations
using unimodal guidance. This allows our model to maintain the integrity of modality-specific signals
while enhancing joint semantic interpretation, especially under conditions of sequence misalignment
or sparse interaction.

2.2. Transformer Architectures in Multimodal Contexts

The transformer architecture, initially introduced by Vaswani et al. [13], revolutionized natural
language processing by replacing recurrence with multi-head self-attention mechanisms. By facilitating
parallel computation and enhancing long-range dependency modeling, transformers have since
become foundational to a broad spectrum of tasks. The encoder-decoder design introduced in the
original paper laid the groundwork for subsequent advancements in large-scale language modeling
and representation learning.

Building on this foundation, transformer-based models like GPT [9] and BERT [25] further
advanced the field by pretraining on massive text corpora and capturing bidirectional contextual
cues. These models achieved remarkable success across tasks such as question answering, sentence
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classification, and machine translation. However, their applicability remained largely confined to
unimodal textual data, leaving open the question of how to extend their strengths to the multimodal
domain.

Recent efforts have begun bridging this gap. One notable contribution is the Multimodal Trans-
former (MulT) introduced by Tsai et al. [11], which leverages crossmodal attention blocks to directly
attend to low-level representations from different modalities. By forgoing intermediate fusion steps,
MulT enables deeper crossmodal interaction and surpasses previous models in predictive accuracy.
However, despite its success, MulT primarily emphasizes intermodal attention and does not explicitly
address the need to retain unimodal specificity. This often leads to overly homogenized representations
where modality-unique information may be diluted or lost entirely.

Motivated by these insights, our DIFERNet framework adopts a more balanced approach. While
we incorporate transformer-based attention mechanisms to strengthen modality interaction, we also
introduce a novel crossmodal adjustment transformer. This component is specifically designed to
preserve the distinct attributes of each modality while enabling their cooperative integration. Through
recurrent updates and conditional modulation, DIFERNet achieves a dynamic equilibrium between
intermodal fusion and unimodal preservation, which is crucial in cases of asynchronous input or
modality-specific noise.

In conclusion, while the transformer architecture has been successfully adapted to multimodal
learning, our work contributes a more nuanced perspective. By combining crossmodal collaboration
with modality-specific refinement, DIFERNet represents a meaningful step toward emotionally intel-
ligent AI systems that can process unaligned and heterogeneous input streams without sacrificing
robustness or interpretability.

3. Proposed Methodology
This section introduces the architectural components and technical design of our proposed Dy-

namic Interaction-Focused Emotion Representation Network (DIFERNet). As shown in Figure 1,
DIFERNet is designed to effectively fuse heterogeneous modalities, particularly unaligned text and au-
dio streams, by dynamically modeling intermodal dependencies while preserving unimodal specificity.
The entire framework is composed of three primary modules: (1) a crossmodal alignment module
that standardizes the temporal and spatial dimensions of input features; (2) a fusion representation
initialization module, which performs early-stage integration via attention-based interaction; and (3) a
self-adjusting module that adaptively refines fusion representations using residual unimodal guidance.

Figure 1. Overview architecture of the DIFERNet framework.

We begin with a formal problem definition in Section 3.1, followed by detailed explanations of each
module in Sections 3.2–3.4. Each module is rigorously defined with its corresponding computational
principles and equations to ensure reproducibility.
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3.1. Problem Formulation

Let FT ∈ RlT×dT and FA ∈ RlA×dA denote the raw feature representations extracted from the text
and audio modalities, where lT , lA are their respective sequence lengths and dT , dA are the feature
dimensions. Given that FT and FA are inherently unaligned—due to asynchrony in modality sampling
or semantic boundaries—the goal is to obtain rich joint representations that leverage both intra- and
inter-modal dynamics.

To this end, we define a transformation function Φ : (FT , FA) → Y , where Y represents the
sentiment prediction space (e.g., categorical sentiment classes or continuous emotion scores). DIFERNet
aims to learn intermediate aligned representations XT , XA and their attentive counterparts XT′ , XA′

to construct fusion vectors XTA′ and XT′A, which are subsequently adapted via interaction-aware
refinement modules.

3.2. Crossmodal Alignment Module

The first step in DIFERNet is to harmonize the representational spaces of FT and FA, allowing
effective interaction across modalities with differing feature formats. Following [11], we apply 1D
temporal convolutions with distinct kernel widths and strides to normalize the feature sequence
lengths and dimensions. Formally:

F̃T = Conv1D(FT ; kT , sT),

F̃A = Conv1D(FA; kA, sA),
(1)

where k(·) and s(·) denote kernel sizes and stride parameters, respectively. The output features
are then fed into Bi-directional Gated Recurrent Units (Bi-GRU) to capture contextual dependencies:

XT = BiGRU(F̃T), XA = BiGRU(F̃A). (2)

The resulting XT , XA ∈ Rl×d (with l and d now unified) serve as aligned modality-specific
embeddings for further crossmodal interaction.

3.3. Fusion Representation Initialization Module

To capture semantic correlations and modality interactions, we introduce a crossmodal collabora-
tion attention mechanism. The attention operates bi-directionally, such that each modality queries the
other for relevant features. Let the interaction matrices be:

MTA = XTX⊤
A , MAT = XAX⊤

T . (3)

We normalize these matrices using a soft-tanh combination:

STA = Softmax(tanh(MTA)), SAT = Softmax(tanh(MAT)). (4)

Attention-based projections are then computed:

OTA = STAXA, OAT = SATXT . (5)

By element-wise interaction:

XT′ = OTA ⊙ XT , XA′ = OAT ⊙ XA, (6)

where ⊙ denotes Hadamard product. Fusion representations are constructed as:

XTA′ = wTXT + wA′XA′ + bTA′ ,

XT′A = wT′XT′ + wAXA + bT′A,
(7)
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with w· being learnable weights and b· denoting modality-specific biases.

3.4. Self-Adjusting Fusion Refinement Module

To preserve unimodal identity and adaptively refine fusion representations, we introduce a dual-
path crossmodal adjustment mechanism. This is the core differentiator of DIFERNet, allowing XTA′

and XT′A to be contextually rebalanced using unimodal cues.

3.4.1. Crossmodal Adjustment Transformer

Each adjustment transformer receives the fusion input and one modality-specific guide. Figure 2
shows the architecture. Prior to attention, we augment positional encoding PE as in [13]:

PE(pos,2i) = sin(pos/100002i/d), PE(pos,2i+1) = cos(pos/100002i/d). (8)

The inputs are enhanced as:

EX = LayerNorm(X + PE). (9)

Let ETA′ , ET , and EA′ be the normalized inputs for fusion and unimodal streams. We define N
residual transformer layers where attention is defined as:

Attn(Q, K, V) = Softmax

(
QK⊤
√

d

)
V. (10)

In each block, the fusion is updated with unimodal information:

Q = E(i−1)
TA′ , K = V = ET or EA′ . (11)

Z(i) = LayerNorm(Q + Attn(Q, K, V)), (12)

E(i)
TA′ = LayerNorm(Z(i) + FFN(Z(i))), (13)

where FFN denotes a position-wise feed-forward network. This process is repeated with both ET

and EA′ for bi-guided refinement.

Figure 2. The architecture of the multimodal fusing transformer
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3.4.2. Global Fusion via Self-Attention

After refinement, both XTA′ and XT′A are passed through self-attention transformers to extract
temporal structure:

X∗
TA = SelfAttn(XTA′), X∗

AT = SelfAttn(XT′A). (14)

The final representation is formed by concatenation and classified globally:

Zglobal = Concat(X∗
TA, X∗

AT), ŷglobal = Cg(Zglobal), (15)

where Cg denotes the global classifier.
In parallel, local classifiers Cta and Cat are applied:

ŷta = Cta(XTA′), ŷat = Cat(XT′A). (16)

3.4.3. Unified Loss Function

The complete loss function integrates predictions from global and local paths:

Ltotal = λ1Lta + λ2Lat + λ3Lglobal , (17)

where λi are tunable scalars, and each term is typically cross-entropy loss for classification:

Lglobal = −∑
c

yc log(ŷglobal,c), (18)

with yc being the true label and ŷglobal,c the predicted probability for class c.
This comprehensive architecture ensures that DIFERNet effectively captures both intermodal

synergy and intramodal semantics, leading to enhanced performance in multimodal sentiment under-
standing.

4. Experiment
In this section, we present a comprehensive evaluation of our proposed model, DIFERNet (Dy-

namic Interaction-Focused Emotion Representation Network), using two widely adopted multimodal
sentiment analysis benchmarks: CMU-MOSI and CMU-MOSEI. The evaluation framework encom-
passes multiple dimensions, including experimental configurations, feature extraction protocols,
comparison with competitive baselines, and both quantitative and qualitative analyses. Our objective
is to rigorously assess DIFERNet’s effectiveness in learning discriminative fusion representations from
unaligned text and audio modalities.

4.1. Datasets and Configuration

We conduct experiments on two large-scale multimodal benchmarks: CMU-MOSI [22] and
CMU-MOSEI [23].

CMU-MOSI contains 2199 opinion-labeled utterances across 93 video segments of online movie
reviews. Each utterance is annotated on a continuous sentiment intensity scale ranging from −3
(strongly negative) to +3 (strongly positive). The audio stream is sampled at 12.5 Hz. The dataset is
split into 52 training videos (1284 utterances), 10 validation videos (229 utterances), and 31 test videos
(686 utterances), with no speaker overlap to avoid identity bias.

CMU-MOSEI comprises 23,454 labeled video clips from over 1000 speakers, providing a rich set
of sentiment and emotion annotations. It is also annotated on a [−3,+3] scale and sampled at 20 Hz
for audio. Following standard practice [11], we adopt the official split and ensure the same evaluation
settings as prior works to ensure comparability.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 April 2025 doi:10.20944/preprints202504.0431.v1

https://doi.org/10.20944/preprints202504.0431.v1


8 of 16

Model Configuration: For DIFERNet, we use 1D temporal convolution layers with 50 output
channels, followed by Bi-GRU layers with 50 hidden units. Fully connected layers have 200 neurons
with a dropout rate of 0.3. We use the Adam optimizer with a learning rate of 0.001 and train using mini-
batches of size 12 for 20 epochs. Loss functions are computed using a combined L1 and cross-entropy
formulation to accommodate both classification and regression subtasks.

4.2. Modality-Specific Feature Engineering

To ensure consistency with previous studies [10,11], we adopt standardized preprocessing tech-
niques for extracting unimodal features.

4.2.1. Textual Embedding

We convert transcriptions into sequences of 300-dimensional vectors using GloVe embeddings
pretrained on the 840B Common Crawl corpus. These embeddings provide rich semantic features and
maintain high performance across a variety of NLP tasks.

4.2.2. Acoustic Features

We extract low-level acoustic descriptors using the COVAREP toolkit [2]. Each utterance is
represented as a 74-dimensional feature vector that includes MFCCs, fundamental frequency measures,
glottal source parameters, peak slope, and maxima dispersion. The features are sampled at 100 Hz to
capture fine-grained prosodic variations.

4.3. Metrics and Evaluation

To evaluate both classification and regression performance, we use five widely accepted metrics:
- Acc7: Accuracy for 7-class sentiment classification. - Acc2: Binary classification accuracy (positive

vs. negative). - F1: F1-score for binary sentiment analysis. - MAE: Mean Absolute Error for sentiment
intensity prediction. - Corr: Pearson correlation between predicted and ground-truth sentiment scores.

Higher scores are preferable for Acc7, Acc2, F1, and Corr, whereas lower is better for MAE. To
ensure statistical stability, we average results over five independent runs using different random seeds.

4.4. Benchmarking Against Strong Baselines

We benchmark DIFERNet against several competitive multimodal models:
EF-LSTM: Early-fusion model concatenating inputs before feeding them into a shared LSTM.
LF-LSTM: Late-fusion model processes each modality independently and merges outputs via

concatenation.
MCTN [8]: Learns joint embeddings via cyclic modality translation.
RAVEN [14]: Dynamically modulates word embeddings using nonverbal cues.
MulT [11]: Transformer-based model with directional crossmodal attention.
DIFERNet: Our proposed model that combines crossmodal collaborative attention with unimodal-

preserving refinement.

5. Results and Discussion
5.1. Quantitative Analysis

In this section, we present a comprehensive quantitative evaluation of our proposed architecture,
DIFERNet, and benchmark its performance against a series of competitive baselines. The evaluation
covers two datasets—CMU-MOSI and CMU-MOSEI—and includes both classification and regres-
sion metrics. Additionally, we investigate the influence of the number of crossmodal blocks within
DIFERNet to understand how architectural depth affects its discriminative power.
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5.1.1. Performance Comparison with Baseline Models

Table 1 reports the experimental results on the CMU-MOSI dataset. Despite relying solely
on two modalities—text and audio—our model significantly surpasses most existing methods that
incorporate all three modalities (text, audio, and video). This observation highlights the effectiveness
of DIFERNet’s dynamic adjustment mechanisms and its ability to extract rich sentiment information
from asynchronous input streams.

Table 1. Results on the CMU-MOSI dataset. DIFERNet outperforms baselines across all metrics despite using only
two modalities.

Model Modality Acch
7 Acch

2 F1h MAEl Corrh

EF-LSTM T+A+V 31.0 73.6 74.5 1.078 0.542
LF-LSTM T+A+V 33.7 77.6 77.8 0.988 0.624
MCTN [8] T+A+V 32.7 75.9 76.4 0.991 0.613
RAVEN [8] T+A+V 31.7 72.7 73.1 1.076 0.544
MulT [11] T+A+V 39.1 81.1 81.0 0.889 0.686

MulT (T+A only) T+A 34.9 79.2 79.1 0.991 0.667
DIFERNet (Ours) T+A 36.8 82.0 82.1 0.873 0.712

In the binary sentiment classification task, our model achieves an Acch
2 score of 82.0% and an

F1h score of 82.1%, representing an absolute improvement of 3.5%–8.4% over traditional recurrent-
based models such as EF-LSTM and LF-LSTM, and a noticeable margin over advanced architectures
like RAVEN and MCTN. Even compared to the transformer-based MulT model, which uses three
modalities, DIFERNet delivers comparable or superior performance, which is especially remarkable
given its lighter input modality setting.

For sentiment score classification (Acch
7), DIFERNet achieves 36.8%, exceeding the performance

of most baseline systems by a margin of 2.5%–5.8%. While the original MulT using three modalities
reports a slightly higher score (39.1%), a fair comparison must consider the setting where only text
and audio are used. Under this condition, DIFERNet outperforms MulT on all metrics, including an
improvement of 0.7% on Acch

7, 1.9% on binary accuracy (Acch
2), and 2.0% on F1h.

In the regression setting, DIFERNet achieves a Mean Absolute Error (MAEl) of 0.873 and a Pearson
correlation coefficient (Corrh) of 0.712, indicating its capability to capture fine-grained sentiment
intensity. Compared to MulT with text and audio, DIFERNet reduces error by approximately 0.083
and boosts correlation by 0.032. These improvements suggest that the self-adjusting module effectively
retains modality-specific nuances during the fusion process.

Table 2 shows the results on the CMU-MOSEI dataset, further demonstrating the generalizability
of our approach. In binary classification, DIFERNet achieves Acch

2 = 82.3% and F1h = 82.7%,
outperforming most prior methods by 1.5%–5.5% and also improving upon MulT (text+audio only) by
0.6% and 0.7%, respectively. The 7-class accuracy reaches 51.2%, a relative improvement of 1.0% over
MulT and a significant gain over earlier methods like RAVEN and MCTN.

Table 2. Results on the CMU-MOSEI dataset. DIFERNet maintains consistent improvements across classification
and regression tasks.

Model Modality Acch
7 Acch

2 F1h MAEl Corrh

EF-LSTM T+A+V 46.3 76.1 75.9 0.680 0.585
LF-LSTM T+A+V 48.8 77.5 78.2 0.624 0.656
MCTN [8] T+A+V 48.2 79.3 79.7 0.631 0.645
RAVEN [8] T+A+V 45.5 75.4 75.7 0.664 0.599
MulT [11] T+A+V 50.7 81.6 81.6 0.591 0.694

MulT (T+A only) T+A 48.9 80.1 80.5 0.627 0.656
DIFERNet (Ours) T+A 51.2 82.3 82.7 0.573 0.701
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In the regression task, DIFERNet attains a MAEl of 0.573 and a Corrh of 0.701. These results exceed
all comparative baselines, including the full-modality version of MulT. The performance gap between
our model and models using video suggests that effective dynamic modeling between unaligned text
and audio modalities can compensate for the absence of visual features when done correctly.

Overall, DIFERNet consistently outperforms baseline systems on both datasets, validating the
efficacy of its architecture. The results clearly demonstrate that (1) deep crossmodal attention enhances
inter-modal synergy, and (2) preserving unimodal pathways during late-stage adjustment mitigates
feature suppression and semantic dilution—a common issue in multimodal fusion.

5.1.2. Influence of Crossmodal Block Depth

To explore the sensitivity of DIFERNet to the number of crossmodal blocks, we conduct an
ablation study on the CMU-MOSI dataset by varying the total number of transformer layers within
the crossmodal adjustment module. As illustrated in Table 2, we experiment with values of n =

2, 4, 6, 8, 10, 12, 14, where each configuration assigns n/2 blocks for text-to-fusion adjustment and n/2
for audio-to-fusion refinement.

The results reveal a clear trend: performance (measured by Acch
2) improves steadily as the number

of blocks increases from 2 to 10. This indicates that a deeper attention structure facilitates more
expressive alignment between the modalities, enabling the network to learn complex temporal and
semantic dependencies. The best performance is achieved when n = 10, suggesting a sweet spot
between representation richness and overfitting risk.

Interestingly, further increasing the number of blocks beyond 10 leads to a marginal drop in
accuracy. This decline is likely due to over-parameterization and gradient instability in deep attention
stacks, especially when training data is relatively limited. These findings suggest that while deeper
attention enables richer fusion, a controlled architecture depth is necessary to maintain generalization.

6. Conclusion
In this study, we introduced a novel architecture named DIFERNet (Dynamic Interaction-Focused

Emotion Representation Network) that targets the challenge of modeling sentiment from unaligned
multimodal sequences, specifically focusing on the interplay between text and audio signals. Unlike
conventional multimodal fusion methods that either rely heavily on modality alignment or inad-
equately preserve modality-specific information, DIFERNet is uniquely designed to dynamically
regulate inter-modal interactions while simultaneously maintaining the distinct expressive characteris-
tics of each modality.

At the heart of our model lies the crossmodal adjustment transformer, which enables DIFERNet
to adaptively refine its fusion representations based on unimodal semantic cues. By integrating both
local modality-aware updates and a global interaction modeling mechanism, DIFERNet ensures that
neither modality is suppressed during fusion and that the joint representations remain expressive,
context-sensitive, and temporally coherent.

Extensive experiments on two benchmark datasets, CMU-MOSI and CMU-MOSEI, confirm the
superior performance of our method across both classification and regression metrics. Even though
DIFERNet utilizes only two modalities (text and audio), it consistently outperforms or matches state-
of-the-art models that rely on all three modalities, including video. This highlights the strength of our
dynamic fusion strategy and its ability to compensate for the lack of visual input by leveraging deeper
semantic alignment and residual unimodal correction. Furthermore, qualitative analysis illustrates
that DIFERNet can make sentiment predictions more aligned with human perception, particularly in
cases where unimodal cues may be ambiguous or contradictory.

In addition to its quantitative advantages, the architecture of DIFERNet offers practical benefits:
it is modular, interpretable, and computationally efficient. Each component—from the attention-based
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initialization to the adaptive refinement module—contributes to a more robust understanding of
sentiment in realistic, noisy, and asynchronous multimodal scenarios.

Looking forward, we recognize that the rapid progress of large-scale pre-trained models offers
new opportunities to enhance multimodal sentiment analysis. As part of our future work, we plan to
investigate how powerful pretrained language models such as BERT, RoBERTa, or GPT can be extended
beyond their unimodal origins to support dynamic crossmodal understanding. One promising direc-
tion involves initializing the textual backbone of DIFERNet with pre-trained language representations
and then coupling it with crossmodal adaptation layers capable of fine-tuning jointly across modalities.

Moreover, another future extension could involve the integration of emotional commonsense
knowledge and affective reasoning into the fusion pipeline. By allowing DIFERNet to reason about
emotional causes and consequences, the model may achieve better generalization on more complex
affective understanding tasks such as sarcasm detection, emotion cause identification, and context-
sensitive sentiment analysis.

In summary, DIFERNet presents a principled and effective approach for modeling sentiment in
the presence of unaligned multimodal input. It opens up promising avenues for future research that
bridges pretraining, dynamic fusion, and symbolic emotion modeling in the realm of human-centric
AI.
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