

1 *Review*

2 **Moderate the *MAOA-L* Allele Expression with 3 CRISPR/Cas9 System**

4 Martin L. Nelwan

5 Department of Animal Science – Other

6 Nelwan Institution for Human Resource Development

7 Jl. A. Yani No. 24

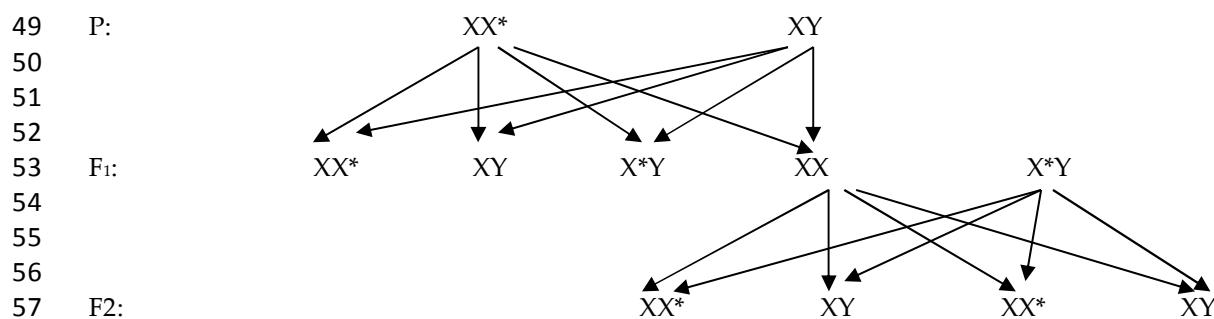
8 Palu, Sulawesi Tengah, Indonesia

9 Email: mlnelwan2@gmail.com

10 **Abstract:** Antisocial behavior is a behavior disorder inherited according to the inheritance of X-linked
11 chromosome. This disorder derives from mutations in the *MAOA* gene. One of the mutations is the
12 *MAOA-L* allele and result in *MAOA-L* activity. The *MAOA-L* allele activity can cause antisocial behavior
13 in both healthy and unhealthy people. Antisocial behavior from healthy males can originate from
14 maltreatment during childhood. Currently, *MAOA* inhibitor can reverse antisocial behavior to normal
15 behavior in animal models. However, this disorder cannot be treated permanently; to treat it
16 permanently in the future, technologies such as CRISPR/Cas9, iPSCs and ssODN are required. These
17 technologies have succeeded to correct erroneous segments in the *F8* gene and *F9* gene. Both genes
18 occupy the X chromosome. The *MAOA* gene also occupies the X chromosome. It is reasonable to state
19 that CRISPR/Cas9 and iPSCs technique for instance can be beneficial tools to edit the *MAOA* gene to treat
20 antisocial behavior. CRISPR/Cas9 can be used in combination with iPSCs or ssODN for instance. This
21 combination can greatly help the permanent healing of antisocial behavioral disorders.

22 **Keywords:** advanced therapy; aggressive; antisocial; behavior; *MAOA*.

23



24 **1. Introduction**

25 Antisocial behavior is a hereditary disorder inherited through an X-linked recessive inheritance
26 pattern. The *MAOA* gene has correlation with this antisocial behavior [1, 2]. Mutations in this gene result
27 in low *MAOA* (*MAOA-L*) expression [3]. These mutations can create the *MAOA-L* allele. The *MAOA-L*
28 expression affects males nearly entirely and can result in behavior problems such as aggressive and
29 violent eruptions [2, 3]. Antisocial behavior can exist in each family. When parents are carrier female and
30 normal male, $\frac{1}{2}$ female children are carriers and $\frac{1}{2}$ normal female. Male children are $\frac{1}{2}$ normal and $\frac{1}{2}$
31 antisocial behaviors. When parents are normal female and antisocial behavior male, all female children
32 are carrying and all male children are antisocial behaviors (Figure 1). The *MAOA-L* allele is outstandingly
33 general and happens in about 40% [4] or 41% of the Caucasian people [5]. These people have peaceable
34 behavior and have never committed a crime. A study has detected that at least males with this variant
35 had neurobiological framework factors. These factors incline them to violent behavior [3] or antisocial
36 behavior. Maltreatment in children with *MAOA-L* allele can cause antisocial behavior.

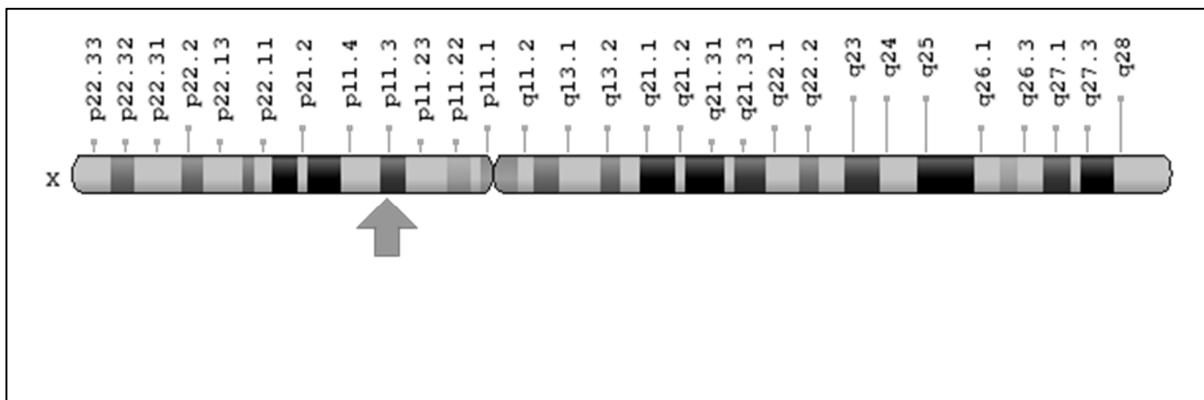
37 In animal models, the *MAOA* inhibitor can reverse the antisocial behavior, suggesting that the
38 *MAOA-L* allele expression can be moderated permanently. To reverse antisocial behavior permanently,
39 gene-editing techniques can be used. One of the gene-editing techniques is clustered regularly
40 interspaced short palindromic repeats (CRISPR/Cas9) system. Others are meganucleases (MNs), zinc
41 finger nucleases (ZFNs) and transcription activator-like effectors nucleases (TALENs) [6]. CRISPR/Cas9

42 system gets the benefit of RNA-guided Cas9 nuclease to produce aimed double-stranded DNA breaks. In
 43 addition, the gene-editing technique in combination with induced pluripotent stem cells (iPSCs) or
 44 single-stranded oligonucleotides (ssODN) is useful to fix erroneous segment in genes such as *MAOA*
 45 gene and *F8* gene [6, 7]. For example the CRISPR/Cas9 system in combination with iPSCs technique has
 46 shown its benefit to slow down hemophilia A. Hemophilia A is inherited according to the X-linked
 47 hereditary. Therefore, it is reasonable to state that the iPSCs in combination with CRISPR/Cas9 system
 48 may be useful to moderate the antisocial behavior in humans, for instance.

59 Figure 1. In F₁, 50% female is carrier and 50% is normal. 50% male is normal and 50% are affected.
 60 In F₂, all female is carrier and all male is normal.

61 In this article, the author describes progress in the study of antisocial behavior. The author
 62 focuses on the biological aspects and gene therapy. The biological aspects include the *MAOA* gene,
 63 mutations in the *MAOA* gene and antisocial behavior and treatment with gene therapy. Gene therapy
 64 includes CRISPR/Cas9 system in combination with iPSCs or HR-based method.

65 2. Genes in Antisocial Behavior


66 Gene is fundamental bodily and functional unit of heredity. Genes consist of DNAs and supply
 67 instructions to build protein molecules. Changes can occur in a gene and can cause protein destruction. A
 68 gene change is a stable mutation in the DNA. A condition derives from changes in at least one gene stated
 69 as a hereditary disease [8]. For example, hereditary diseases can include such as hemophilia A and
 70 antisocial behavior. Antisocial behavior derived from the mutation of the *MAOA* gene into the *MAOA-L*
 71 allele.

72 2.1. The *MAOA* Gene

73 "Monoamine oxidase A" is the formal name of the *MAOA* gene. *MAOA* is the gene formal
 74 symbol. Other names of these genes include *BRNRS* and *MAO-A* [3]. The *MAOA* gene spans at least 60 kb.
 75 This gene consists of 15 exons. The *MAOA* gene displays the same exon-intron organization. Exon 12
 76 encodes for the covalent FAD-binding site. This exon is the most conserved exon [9-10]. The *MAOA* gene
 77 occupies the p arm of the X chromosome at position 11.3; Xp11.3 [9]; Figure 2. This gene includes base
 78 pairs 43,654,907 to 43,746,824 on the X chromosome [3, 11].

79 The *MAOA* gene is one of two neighboring gene families. The other gene is *MAOB*. The *MAOA*
 80 and *MAOB* derived from duplication of the *MAO* gene [10]. The external mitochondrial membrane
 81 expresses these two genes [9-10]. Chen *et al* stated that these two genes oxidize neurotransmitters and
 82 dietary amines [10]. The regulation of neurotransmitters activity is vital in sustaining standard mental
 83 conditions [3, 10]. Chen *et al* localized the *MAOA* and *MAOB* genes within a region of about 240 kb. The

84 MAOA gene encodes mitochondrial enzymes and catalyzes the oxidative deamination of amines [9-10].
85 These include such as dopamine, norepinephrine, and serotonin as substrates [3, 10-13]. The MAOB gene
86 prefers phenylethylamine as substrates [10, 13].

87
88
89 Figure 2; The MAOA gene; The MAOA gene location on X chromosome at position 11.3 (from reference
90 [3]).

91 The MAOA gene has significant roles in the metabolism of neuroactive and vasoactive amines.
92 This metabolism occurs in the central nervous system and peripheral tissues [3,8]. Ou *et al.*, established
93 that serum hunger-made apoptosis in culture neuronal cell line enhanced demonstration of MAOA. In
94 addition, this serum enhanced demonstration of p38 kinase and caspase-3. This apoptosis diminished bd-
95 2 and R1. MAOA and R1 were upstream of caspase-3. Both of them were downstream of p38 kinase and
96 BCL2 in the apoptotic signaling pathway. Moreover, Ou *et al.*, stated that serum starvation of cortical
97 brain cells from *Maoa*-deficient mice resulted in reduced apoptosis contrasted with wild-type (WT) mice.
98 MAOA and R1 were involved in the MYC-made proliferative signaling pathway in the attendance of
99 serum. Both of them function upstream of cyclin D1 and E2F1 in the cell proliferation pathway. The
100 MAOA inhibitor could avoid apoptosis. [10, 14].

101 2.2. *Mutations in the MAOA Gene for the Antisocial Behavior*

102 Antisocial behavior can happen in healthy people [2, 15]. Antisocial behavior is cross-transmitted
103 with other dyscontrol disorders. This behavior has several well-defined biological correlates. These
104 include injured frontal lobe function, leading to reduced ability to control behavior. It diminishes levels of
105 the serotonin in cerebro-spinal fluid. Furthermore, it exhibits moderate heritability. Aggression is an
106 important manifestation of antisocial behavior. [15]. Caspi *et al* studied male children from birth to
107 adulthood subjected to maltreatment. The authors stated that maltreated children with a genotype
108 conferring the MAOA-H allele expression were less likely to develop antisocial behavior. It shows that
109 children with the MAOA-L allele expression correspond to antisocial behavior [10, 16]. This means that
110 environment has important role developing antisocial behavior in humans.

111 In 1981, Pintar *et al* allocated the MAOA gene on the human X chromosome [5, 10, 17]. Later, the
112 MAOA-L allele activity and antisocial behavior in male mice with an X chromosome deletion were linked.
113 Cases *et al* reported that deletion in the MAOA gene in mice revealed an increase of norepinephrine,
114 serotonin and dopamine. Moreover, this mutation raised aggression in male mice [10, 17, 18]. Reti *et al*
115 introduced that Caucasians with MAOA-L allele had antisocial behavior around 41% [5]. It supports to a
116 link between MAOA-L allele and antisocial behavior.

117 McDermott *et al* conducted a behavioral study in humans to link behavior and environment
118 influence. In this study, the authors paid male subjects to penalize those they considered had stolen
119 money from them. The authors adjusted the amount of money lost from them to their enemies.
120 McDermott *et al* reported that people with *MAOA-L* had violent behavior penalize their enemies. The
121 connection was critical when the quantity of money was higher, suggesting an environmental interaction.
122 It shows that heredity can play a role in the behavior and daily decisions taken [10, 19].

123 Ziemans *et al* stated that a single-nucleotide polymorphism (rs6609257) considerably influenced a
124 brain network activity. This network includes frontal, parietal and occipital areas. The authors indicated
125 that the rs6609257 occupies ~ 6.6 kb downstream of the *MAOA* gene on the human X chromosome.
126 Improved activity in this network had correlation with visuospatial working memory (VSWM) capacity
127 in the order predicted externalizing symptoms. The authors showed that a higher working memory
128 capacity had not associated with fewer externalizing symptoms. However, these externalizing symptoms
129 associated with aggressive/oppositional behavior. In this study, the authors proposed a mediating
130 function or working memory brain activity in connecting the *MAOA* gene to aggressive behavior [20].
131 Furthermore, Marquez *et al* showed that male rats, which surrendered to pressure-induced experiences
132 through peripubertal, show aggressive behavior at maturity. The authors indicated that treatment with
133 an *MAOA* inhibitor reversed the peripuberty pressure-induced antisocial behaviors. Marquez *et al*
134 showed that biological factors, which are activated through maltreatment, are the cause of antisocial
135 behavior [21]. It suggests that education not to do violent behavior is very important. It can help to
136 reduce "antisocial behavior" among people.

137 Maltreatment in childhood (G x E) can result in emotional and antisocial behavioral problems in
138 youth. These people have low variability on the variable number tandem repeats (VNTR) polymorphism
139 of the *MAOA* gene [22-23, 25-26]. The VNTR polymorphism in human consists of 30 base pairs in length.
140 These include 2R, 3R, 3.5R, 4R and 5R copies of the repeat series. The polymorphism demonstrated
141 influence on transcriptional activity of the *MAOA* gene promoter. The 3.5R and 4R repeats are transcribed
142 more effectively than those with 2R and 3R copies [2, 10, 23, 25-26]. Males with a 2R variant have a level
143 of serious criminal behavior and violent behavior. Effects for females are alike, but weaker [10, 25]. The
144 effect 5R is unclear [3]. The 2R promoter displays many inferior levels of promoter activity than the other
145 promoters.

146 Behavior disorder due to abuse has contradictorily established a connection between the *MAOA-L*
147 allele and antisocial behavior. The *MAOA-L* allele activity raises the risk of behavior disorder and
148 antisocial behavior traits. This happens to young people who experience maltreatment during childhood
149 [22, 26-29]. In addition, non-linear interactions between the *MAOA* gene and violence have been found [2,
150 27]. It suggests that people with the *MAOA-L* allele can be hypocrite once a certain violent level are
151 detected.

152 Three mutations occur in the *MAOA-L* allele so far. These include nonsense (Brunner syndrome),
153 missense (autism), and a deletion (Norrie disease). Brunner syndrome and autism correspond to
154 aggressive behavior. Brunner syndrome has antisocial behavior and autism has auto-aggressive behavior,
155 while Norrie disease corresponds to autistic-like behavior. Brunner syndrome, autism and Norrie disease
156 belong to intellectual disability (ID). Brunner syndrome shows stress-induced aggressive and violent
157 behavior in addition to borderline ID [30]. This shows that antisocial behavior can include borderline
158 behavior. Furthermore, antisocial behavior can exist both in healthy [2, 4] and in unhealthy people [30].

159 Transgenic mice for antisocial behavior researches can be obtained. Use of mice will be helpful to
160 conduct research for treating disorders inherited through X-linked recessive configurations. These
161 disorders can include such as hemophilia B and antisocial behavior. For example, to diminish antisocial
162 behavior, advanced therapy such as CRISPR/Cas9 system in combination with iPSCs technology can be
163 used. This combination can be helpful to treat diseases inherited through X-linked pattern [6-7].

164 **3. The Gene-Editing Technique**

165 Currently, four methods for targeted integration of transgenic are available. These include NHEJ,
 166 MMEJ, HR, and HMEJ (Table 1). The NHEJ-based method presented random directions in integration
 167 and various types of indels at the junctions. NHEJ is active in the entire cell cycle [35-36]. The MMEJ-
 168 based method displayed low efficiency in cultured cells. MMEJ is active in the early S/G1 phase [35, 37].
 169 The HR-mediated method allows correct insertion of large fragments. This method is commonly
 170 inefficient in animal embryos and tissues *in vivo*. HR is active during the late S/G2 phase only. Finally, the
 171 HMEJ-based method achieved transgenic integration in mouse and monkey embryos, as well as in
 172 hepatocytes and neurons *in vivo* with high efficiency. HMEJ is active in the early S/G1 phase. All of the
 173 methods can be useful for generating animal models and for targeted gene therapies [35].

Table 1. Methods for targeted integration transgenic

Protocol	Advantage/disadvantage	Cell cycle	References
HR	Inefficiency	S/G2	[35]
MMEJ	High efficiency	Early S/G1	[35]
NEHJ	Random directions	entire phase	[35, 36]
HMEJ	Low efficiency	early S/G1	[35, 37]

174 *3.1. Gene-editing in X-linked Disorders*

175 The gene-editing method uses creator of nucleases to edit incorrect gene. This method also uses
 176 the cellular repair technique to exactly alter incorrect string. For example, to identify the selected genomic
 177 location and its transfected into the cell, an artificial chain-precise is designed. It produces double-strand
 178 breaks (DSBs) at the location [31].' The non-homologous end joining (NHEJ) [31, 32, 33, 34],
 179 microhomology-mediated end joining (MMEJ), homologous recombination (HR) [34] and homology-
 180 mediated end joining (HMEJ) can repair DSBs. Nucleases such as TALENs and CRISPR/Cas9 systems can
 181 induce DSBs in a targeted genomic locus [35].

182 The *F8* gene and *F9* gene are genes that occupy the X chromosome. It is the same as the *MAOA-L*
 183 allele that also occupies the X chromosome in the chromosome map. Currently, with the development of
 184 CRISPR/Cas9 system, mutations in genes *F8* and *F9* can be corrected. For example, the CRISPR/Cas9 in
 185 combination with iPSCs or ssODN can correct erroneous segments in these genes in animal models.
 186 CRISPR/Cas9 in combination with iPSCs is gene-editing technique for hemophilia A. Park *et al* edited
 187 mutations in the *F8* gene with this combination. These authors practically rescued the Factor VIII
 188 deficiency in a hemophilia mouse model [38]. CRISPR/Cas9 in combination with ssODN is gene-editing
 189 technique for hemophilia B. Guan *et al* generate mutated mouse strains for hemophilia B, and then cured
 190 these strains *in vivo* by hydrodynamic tail injection of a plasmid. The plasmid encodes Cas9 and the
 191 sgRNA in combination with ssODN containing the edited string [39]. It seems that these techniques can
 192 be potential tools to treat antisocial behavior.

193 *3.2. Gene-editing for Antisocial Behavior*

194 CRISPR/Cas9 system, iPSCs technique, and MHEJ-based method for instance can be useful tools
 195 to treat antisocial behavior in either healthy or unhealthy people. CRISPR/Cas9 system can correct the
 196 incorrect gene in iPSCs. CRISPR/Cas9 system cleaves the chromosome DNA, and then constructs DSBs.
 197 HMEJ will correct the nick. It will correct segments or remove the 30-bp copy in the string. This gene-

198 corrected is differentiated into suitable somatic cells. Furthermore, patients can obtain the corrected gene
199 by giving it to patients.

200 To alter the *MAOA-L* allele needs gene-editing technique. In animal models, this technique is a
201 useful tool to treat an X-linked recessive disorder such as hemophilia A and hemophilia B. The
202 CRISPR/Cas9 system in combination with such as the iPSCs technique or HMEJ-based method is useful
203 to fight antisocial behavior.

204 **4. Conclusions**

205 Antisocial behavior is a violent behavior inherited according to the inheritance of sex-linked
206 recessive allele. A violent behavior derives from mutations in the *MAOA* gene. These mutations can
207 result in, such as autism, Brunner syndrome, and antisocial behavior. The *MAOA-L* allele expression
208 corresponds to antisocial behavior. Environmental factors such as maltreatment can cause antisocial
209 behavior in male children. To treat permanently this behavior, it is impossible at present. In the future, to
210 treat this behavior, a gene-editing tool such as TALENs or CRISPR/Cas9 systems can be used. For
211 example, CRISPR/Cas9 system can correct erroneous segments in the sex-linked disorders. CRISPR/Cas9
212 system can be used in combination with iPSCs technique or HMEJ-based method for instance. For
213 example, CRISPR/Cas9 in combination with iPSCs has corrected erroneous segments in the *F8* gene in the
214 animal models. These findings give hope to treat antisocial behavior with the CRISPR/Cas9 system in
215 combination with iPSCs technique for instance. It can alter the *MAOA-L* allele to normal allele to result in
216 normal behavior. This combination is a promising tool to treat permanently the antisocial behavior in
217 both healthy and unhealthy people.

218 **Acknowledgement:** The author has role in designing of the study and writing of the manuscript.

219 **Author Contributions:** MLN designed the study, performed the literature searches, wrote the first draft
220 of the manuscript and involved in revising the manuscript critically for significant intellectual need. The
221 author read and approved the final manuscript.

222 **Conflict of Interests:** The author declares no conflict of interest.

223 **References**

- 224 1. Xu, M.K.; Gaysina, D.; Tsonaka, R.; Morin, A.J.S.; Croudace, T.J.; Barnett, J.H.; *et al.* Monoamine
225 Oxidase A (*MAOA*) Gene and Personality Traits from Late Adolescence through Early Adulthood: A
226 Latent Variable Investigation. *Front. Psychol.* **2017**; *8*: 1736, doi:10.3389/psyg.2017.01736.
- 227 2. Kolla, N.J.; Meyer, J.; Sanches, M.; Charbonneau, J. Monoamine Oxidase-A Genetic Variants and
228 Childhood Abuse Predict Impulsiveness in Borderline Personality Disorder. *Clinical
229 Psychopharmacology and Neuroscience* **2017**; *15*(4): 343-351, doi:10.9758/cpn.2017.15.4.3433.
- 230 3. Genetics Home Reference (2018): *MAOA*, <https://ghr.nlm.nih.gov/gene/MAOA>.
- 231 4. Hunter, P. The Psycho gene. *EMBO reports* **2010**, *11* 9: 667.
- 232 5. Reti, E.M.; Xu, J.Z.; Yanofski, J.; McKibben, J.; Uhart, M.; Cheng Y-J, *et al.* MAO regulates antisocial
233 personality in Caucasians with no history physical abuse. *Compr. Psychiatry* **2011**; *52*(2): 188-194.
- 234 6. Nelwan, M.L. Hemophilia A and Induced Pluripotent Stem Cells. *Journal of Advances in Biology &
235 Biotechnology* **2017**; *14*(3): 1-11, doi:10.9734/JABB/2017/35111.
- 236 7. Nelwan, M.L. Friedreich Ataxia: Treatment with Genetic Approach. *Journal of Advances in Biology &
237 Biotechnology* **2017**; *14*(4): 1-12, doi:10.9734/JABB/2017/36113.

238 8. Nelwan, M.L. Treat Oculocutaneous Albinism with Gene Therapy. *Journal of Advances in Biology &*
239 *Biotechnology* **2017**; 16(3): 1-12. DOI:10.9734/JABB/2017/38504.

240 9. Grimsby, J.; Chen, K.; Wang, L-J.; Lan, N.C.; Shih, J.C. Human Monoamine Oxidase A and B genes
241 exhibit identical exon-intron organization. *Proc. Nat. Acad. Sci.* **1991**; 88: 3637-3641.

242 10. Online Mendelian Inheritance in Man (2017): Monoamine Oxidase A; MAOA,
243 <http://omim.org/entry/309850>.

244 11. NCBI Gene, <https://www.ncbi.nlm.nih.gov/gene/4128>.

245 12. Chen, K.; Holschneider, D.P.; Wu, W.; Rebrin, I.; Shih, J.C. A spontaneous point mutation produces
246 monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like
247 behavior. *J. Biol. Chem.* **2004**; 279: 39645-39652, doi:10.1074/jbc.M405550200.

248 13. UniProt, <http://www.uniprot.org/uniprot/P21397>.

249 14. Ou, X-M.; Chen, K.; Shih. J.C. Monoamine oxidase A and repressor R1 are involved in appropriate
250 signaling pathway. *Proc. Nac. Acad. Sci.* **2006**; 103 (29): 10923-10928, doi:10.1073/pnas.0601515103.

251 15. Sjöberg, R.L.; Ducci, F.; Barr, C.S.; Newman, T.K.; Dell'Osso, L.; Virkkunen M, *et al.* Non-Additive
252 Interaction of a Functional MAO-A VNTR and Testosterone Predicts Antisocial Behavior.
253 *Neuropsychopharmacology* **2008**; 33(2): 425-430, doi:10.1038/sj.npp.1301417.

254 16. Caspi, A.; McClay, J.; Moffitt, T.Y.; Mill, J.; Martin, J.; Craig, I.W.; *et al.* Role of genotype in the cycle of
255 violence in maltreated children. *Science* **2002**; 297: 851-854.

256 17. Pintar, J.E.; Barbosa, J.; Francke, U.; Castiglione, C.M.; Hawkins, M.; Breakefield, X.O. Gene for
257 monoamine oxidase type A assigned to the human X chromosome. *The Journal of Neuroscience* **1981**;
258 1(2): 166-175.

259 18. Cases, O.; Seif, I.; Grimsby, J.; Gaspar, P.; Chen, K.; Pournin, S.; *et al.* Aggressive Behavior and Altered
260 Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA. *Science* **1995**; 268(5218):
261 1763-1766.

262 19. McDermott, R.; Tingley, D.; Cowden, J.; Fazzetto, G.; Johnson, D.D.P. Monoamine oxidase A gene
263 (MAOA) predicts behavioral aggression following provocation. *Proc Nat. Acad. Sci.* **2009**; 106(7): 2118-
264 2123, doi:10.1073/pnas.0808378106.

265 20. Ziermans, T.; Dumontheil, I.; Roggeman, C.; Peyrard-Janvid, M.; Matsson, H.; Kere, J.; *et al.* Working
266 memory brain activity and capacity link MAOA polymorphism to aggressive behavior during
267 development. *Transl. Psychiatry* **2012**; 2 e85.

268 21. Marquez, C.; Poirier, G.L.; Cordero, M.I.; Larsen, M.H.; Groner, A.; Marquis, J.; *et al.* Peripuberty
269 stress leads to abnormal aggression, altered amygdale and orbitofrontal reactivity and increased
270 prefrontal MAOA gene expression. *Transl. Psychiatry* **2013**; e216.

271 22. Hart, H.; Lim, L.; Mehta, M.A.; Chatzieffraimou, A.; Curtis, C.; Xu, X.; *et al.* Reduced functional
272 connectivity of fronto-parietal sustained attention networks in severe childhood abuse. *PloS ONE*
273 **2017**; 12(11): e0188744, 10.1371/journal.pone.0188744.

274 23. Meyer-Lindenberg, A.; Buckholtz, J.W.; Kolachana, B.; Hariri, A.R.; Pezawas, L.; Blasi, G.; *et al.* Neural
275 mechanism of genetics risk for impulsivity and violence in humans. *PNAS* **2006**; 103(16): 6269-6274,
276 doi:10.1073/pnas.0511311103.

277 24. Zhang, Y.; Ming, Q-s.; Yi J-y, Wang, X.; Chai, Q-l.; Yao, S-q. Gene-Gene-Environment Interactions of
278 Serotonin Transporter Monoamine Oxidase and Childhood Maltreatment Predict Aggressive
279 Behavior in Chinese Adolescents. *Front. Behav. Neurosci.* **2017**; 11: 17, doi:10.3389/fnbeh.2017.00017.

280 25. Guo, G.; OU, X-M.; Roettger, M.; Shih, J.C. The VNTR 2 repeat in MAOA and delinquent behavior in
281 adolescence and young adulthood: associations and MAOA promoter activity. *European Journal of*
282 *Human Genetics* **2008**; 16: 626-634, doi:10.1038/sj.ejhg.5201999.

283 26. Young, S.E.; Smolen, A.; Hewitt, J.K.; Haberstick, B.C.; Stallings, M.C.; Corley, R.P.; Crowley, T.J.
284 Interaction Between MAO-A Genotype and Maltreatment in the Risk for conduct Disorder: Failure to
285 Confirm in Adolescent Patients. *Am J Psychiatry* **2006**; 163: 1019-1025.

286 27. Ouellet-Morin, I.; Côté, S.M.; Vitaro, F.; Hébert, M.; Carboneau, R.; Lacourse, E.; *et al.* Effects of the
287 MAOA gene and levels of exposure to violence on antisocial outcomes. *The British Journal of Psychiatry*
288 2016; 208: 42-48, doi:10.1192/bjp.bp.114.162081.

289 28. Godar, S.C.; Fite, P.J.; McFarlin, K.M.; Bortolato, M. The role of monoamine oxidase A in aggression:
290 current translational developments and future challenges. *Prog Neuropsychopharmacol Biol Psychiatry*
291 2016; 69: 90-100. doi:10.1016/j.pnpbp.2016.01.001.

292 29. McSwiggan, S.; Elger, B.; Appelbaum, P.S. The Forensic Use of Behavioral Genetics in Criminal
293 Proceedings: Case of the MAOA-L Genotype. *Int J Law Psychiatry* 2017; 50: 17-23.
294 doi:10.1016/j.ijlp.2016.09.005.

295 30. Piton, A.; Poquet, H.; Redin, C.; Masurel, A.; Laurel, J.; Muller, J.; *et al.* 20 ans après: a second
296 mutation in MAOA identified by targeted high-throughput sequencing in a family with altered
297 behavior and cognition. *European Journal of Human Genetics* 2013; 22: 776-783.
298 doi:10.1038/ejhg.2013.243.

299 31. Ding, Y.; Li, H.; Chen, L-L.; Xie, K. Recent Advances in Genome Editing Using CRISPR/Cas9.
300 *Frontiers in Plant Science* 2016; Volume 7, Article 703, doi:10.3389/fpls.2016.00703.

301 32. Eid, A.; Mahfouz, M.M. Genome editing: the road of CRISPR/Cas9 from bench to clinic. *Experimental
302 and Molecular Medicine* 2016; 46, e265, doi:10.1038/emm.2016.111.

303 33. Chu, V.T.; Weber, T.; Graf, R.; Sommermann, T.; Petsch, K.; Sack, U.; Volchkov, P.; Rajewsky, K.;
304 Kühn, R. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. *BMC
305 Biotechnology* 2016; 16:4, doi:10.1186/s12896-016-0234-4.

306 34. Kawahara, A.; Hisano, Y.; Ota, S.; Taimatsu, K. Site-Specific Integration Exogenous Genes Using
307 Genome Editing Technologies in Zebrafish. *Int. J. Mol. Sci.* 2016; 17: 727. doi:10.3390/ijms17050727.

308 35. Yao, X.; Wang, X.; Hu, X.; Liu, Z.; Liu, J.; Zhou, H.; *et al.* Homology-mediated end joining-based
309 targeted integration using CRISPR/Cas9. *Cell Research* 2017; 27: 801-814, doi:10.1038/cr.2017.76.

310 36. Mao, Z.; Bozzella, M.; Seluanov, A.; Gorbunova, V. DNA repair by nonhomologous end joining and
311 homologous recombination during cell cycle in human cells. *Cell Cycle* 2009; 7(18): 2902-2906.

312 37. Nakade, S.; Tsubota, T.; Sakane, Y.; Kume, S.; Sakamoto, M.; Obara, M. Microhomology-mediated
313 end-joining-dependent integration of donor DNA in cells and animals using TALENs and
314 CRISPR/Cas9. *Nature Communication* 2014; 5: 5560, 10:1038/ncomms6560.

315 38. Park, C.Y.; Kim, D.H.; Son, J.S.; Sung, J.J.; Lee, J.; Bae, S.; *et al.* Functional Correction of Large Factor
316 VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR/Cas9. *Cell
317 Stem Cell* 2015; 17(2): 213-220.

318 39. Guan, Y.; Ma, Y.; Li, Q.; Sun, Z.; Ma, L.; Wu, L.; *et al.* CRISPR/Cas9-mediated somatic correction of a
319 novel coagulation factor IX gene mutation ameliorates hemophilia in mouse. *EMBO Molecular
320 Medicine* 2016; 8: 477-488, doi:10.15252/emmm.201506039.