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Abstract: We investigate how collisional interactions between the condensate and the thermal
cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative
regime and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions
at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical
inclusion of collisional processes facilitating the exchange of particles between the condensate and
the thermal cloud impacts both the condensate and the thermal currents, demonstrating that their
relative importance depends on the system’s dynamical regime. Our study is performed within the full
context of the Zaremba-Nikuni-Griffin (ZNG) formalism, which couples a dissipative Gross-Pitaevskii
equation for the condensate dynamics to a quantum Boltzmann equation with collisional terms for the
thermal cloud. In the Josephson plasma oscillation and vortex-induced dissipative regimes, collisions
markedly alter dynamics at intermediate-to-high temperatures, amplifying damping in the condensate
imbalance mode and inducing measurable frequency shifts. In the self-trapping regime, collisions
destabilize the system even at low temperatures, prompting a transition to Josephson-like dynamics
on a temperature-dependent timescale. Our results show the interplay between coherence, dissipation,
and thermal effects in a Bose-Einstein condensate at finite temperature, providing a framework for
tailoring Josephson junction dynamics in experimentally accessible regimes.

Keywords: Bose-Einstein condensates; finite temperature; Josephson effect; vortices; collisions; self-
trapping

1. Introduction

A Josephson junction consists of a thin barrier or insulator separating two weakly-coupled
superfluids [1-18] or superconductors [19-21]. Firstly studied with superconductors [19-21], it
has been shown that a current flows across the junction due to tunneling of Cooper pairs from
one side to the other of the junction. This current could be direct or alternating in the absence or
presence of applied external potential, respectively. Josephson effects have been studied extensively,
both theoretically and experimentally, with superfluid helium (e.g. [1-4]), trapped ultracold atomic
gases [5-18,22-45] (see also [46-53]), and exciton-polariton condensates [54,55]. In particular, one way
to induce the Josephson dynamics is by imposing an initial population imbalance between the two
superfluids, which induces an initial acceleration of the superfluid across the junction. Previous studies
at T =0 (e.g. [7,15,23,25,37,40]) have revealed the existence of different main dynamical regimes in an
atomic Josephson junction: the Josephson plasma, the dissipative and the self-trapping regime. While
individual works had studied transitions between two of those regimes, the 3 dynamical regimes were
first clearly unified into a single Josephson phase diagram in our previous work [38]. The first and the
latter regime are characterized by coherent dynamics while in the second one, phase slips, well-known
from condensed matter systems (see, e.g. [1,56]), lead to the generation of topological defects (the
nature of which is set by the underlying system geometry [36-38,57]) and sound waves, with the net
effect of inducing dissipation of the Josephson oscillations.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The aim of the present work is to investigate the critical effect that collisions have on these 3
dynamical regimes when a condensate is coupled to a dynamical thermal cloud. Our study focuses on
an elongated three-dimensional geometry, inspired by the experiment of [14,15], where the phase-slip
was induced by the generation of vortex rings. In the present work we will refer to such dissipative
regime as the vortex-induced dissipative regime, in order to distinguish such behaviour from the
dissipation of the otherwise coherent dynamics arising purely from thermal effects.

To address this, we will use a fully self-consistent model, known as the Zaremba-Nikuni-Griffin,
or ‘ZNG’, model [58-60]: this describes the atomic dynamics in terms of a dissipative Gross-Pitaevskii
equation for the condensate, self-consistently coupled to a quantum Boltzmann equation governing
the dynamics of the thermal cloud. Such description includes the full dynamical coupling between
the condensate and thermal cloud, e.g. due to their coupled motion, but additionally includes the
important effect of collisions which can either perturb the distribution of particles within the thermal
cloud, or also transfer particles between the condensate and the thermal cloud. Beyond demonstrating
the relevance of our studies [37] to experiments, and identifying the full Josephson junction dynamical
regime phase diagram at T = 0 [38], our previous work [39] has carefully characterised the effect of
the thermal cloud dynamics on the damping and frequency shift of the main oscillation frequencies
of the condensate, thermal and total population imbalance within the Josephson plasma and vortex-
induced dissipation regimes: such prior study has been conducted within a simplified form of the
ZNG model, in which only the self-consistent dynamical coupling of the condensate and thermal cloud
was included, but all perturbing collisional effects were ignored: in other words, this corresponded to a
Gross-Pitaevskii equation coupled to a collisionless Boltzmann equation. While this should in principle
be a good approximation at very low temperatures, and for relatively short times, collisions are known
to affect the overall system dynamics, with their effect increasing with increasing temperature [61,62].

In the present work we extend our earlier analysis in two ways: firstly, we revisit the results
of [39], in order to investigate the role of such collisional processes on the system dynamics; secondly,
we extend such analysis to the Macroscopic Quantum Self-Trapping regime (not previously studied
within such formalism) presenting results for both collisionless and collisional implementations of the
model. As such this paper presents a unified view of the role of thermal dissipation across all 3 distinct
Josephson Junction dynamical regimes: Josephson Plasma (JP), Vortex-Induced Dissipative (VID) and
Macroscopic Quantum Self-Trapping (MQST) regimes.

We note that the finite-temperature decay of the self-trapping regime (already experimentally
observed in [11]) has also been previously studied in Ref. [34] in the context of an alternative model,
known as the stochastic projected Gross-Pitaevskii equation [63]. Rather than making a clear distinction
between condensate and thermal cloud as in ZNG, such model treats the low-lying modes of the
system cumulatively as a classical field, while simultaneously ignoring the dynamics of high-lying
modes, which are treated as a reservoir yielding a dissipative term and a stochastic noise source
to the low-lying modes of the system. The relation between such models has been discussed, e.g. ,
in [60,64-66]. Importantly for our present work (and leaving aside the comparison of such models)
we note that in carrying out their analysis, the work of Ref. [34] fixes the total particle number (up to
the imposed energy cutoff) while varying temperature. Given that Josephson junction dynamics (e.g.
frequencies) depend on the condensate number, whereas such approximation changes the condensate
number with temperature, such work cannot allow for a systematic comparison of the frequency shifts
at fixed condensate number.

Our present study focusses on the effects of the collisions on both the condensate and thermal
imbalance dynamics, in all three dynamical regimes and for a temperature range T < 0.67T, which is
sufficiently far from the critical point. The paper is structured as follows. In Sect. 2 we describe the
numerical methods employed for this study: in Sect. 3 we show the role of thermal cloud on different
dynamical regimes, while in Sect. 4 we describe our main conclusions.
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2. Methods

We model the system at finite temperature by numerically solving the full Zaremba-Nikuni-Griffin
(ZNG) formalism [58-60,64], explicitly including self-consistently obtained collisional terms. This
model has been successfully implemented for the study of topological defect dynamics [65,67-70],
the study of first and second sound in highly elongated trap [71], the study of evaporative cooling
[72], collective modes [61,73-75], and mixtures [62]. It consists of separating the system into two
components: the condensate wavefunction ¢ (r, t) and the phase-space distribution function f(r, p,t)
representing the thermal cloud. As a result, two coupled equations are solved self-consistently; the
dissipative Gross-Pitevskii equation (DGPE) and the Quantum Boltzmann equation (QBE) describing
the condensate and thermal cloud dynamics, respectively. The time-dependent DGPE can be written
as

L 0p(x,t)
if o

2
= —;—MVZ + Vext(r) + g(npgc(r, t) + 2ng, (x, t)) — iR(x, t) | (x, £) 1)

where M is the particle mass (here °Li molecule), Vext the external trapping potential, g = 47th%a/ M
the interaction strength with a the s-wave scattering length between molecules, n" the thermal cloud
density and nBEC = |¢|? the condensate density. The rightmost term within the bracket, —iR(r, t),
represents the dissipative or source (or ‘growth’) which facilitates the condensate number to change in
time due to particle exhange with the thermal cloud.

The corresponding equation for the thermal cloud is the Quantum Boltzmann equation for the
Wigner phase-space distribution function f in the form:

% +v-Vif = (VeVal) - (Vpf) = Cualf, ] + Caalf] )
where VI = Veyi 4+ 2¢(nBEC 4 n'h) is the generalized mean-field potential felt by the thermal particles
and n" the thermal cloud density obtained through the phase-space distribution f as n''(r,t) =
1/(27h)® [ dp f(p,1,t)). Here, the first collisional term includes the collisions between the thermal
and condensate particles which cause particle transfer between the two subsystems, while the second
term includes collisions between the thermal particles which re-distribute the thermal atoms between
the single-particle states. In the collisional limit considered here, even though the total number is
numerically well conserved, the condensate number (Npgc(t)) instead changes in time due to the
particle exchange between the condensate and the thermal cloud. This is taken into account in the Cj;
collisional integral in the Quantum Boltzmann equation; the latter is related to the source term —iR in
the dissipative GPE equation via R(r, t) = (1/2nggc) [ dp/(27h)? C12(p, 1, t). As a consequence, the
thermal cloud particle number, N*(t), also changes in time.

The geometry considered in our study is an anisotropic elongated 3D harmonic trap , with a
double-well potential of the form

1
Vext(X,y,2) = EM(wxzxz + wy2y2 + wzzzz)

+ Voe Y 3)

The trap frequency values are w, = 27t x 15 Hz, wy = 27 X 148 Hz, and w, = 27 x 187.5 Hz
along the x, y and z directions, respectively, chosen to coincide with the experimental values of
Ref. [14,15]. The parameters V) and w are the Gaussian barrier height and 1/¢? width, respectively.
Our numerical studies are conducted in a grid of [—48,48]ly, [—8, 8]y, [—8, 8]l along the x, y and z
directions respectively, where I, = \/li/ Mwy, based on 2048 x 128 x 128 grid points for the thermal
cloud. For the less spatially extended condensate, we use a corresponding half grid of size [—24, 24]1,,
with 1024 grid points along the x axis. We initially find the equilibrium state by adding the tilted linear
potential —ex to the Ve (x,y,2). A typical 2D integrated equilibrium profile is shown in Figure 1(a)
for the condensate (i) and the thermal cloud (ii). As evident in this plot, the presence of the repulsive
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interaction between the condensate and the thermal cloud leads to the thermal particles populating
regions of lower condensate density, i.e. at the edges of the condensate, or also in the barrier region.

BEC /. ,BEC
Ty max

(a)

Figure 1. (a) Equilibrium 2D integrated condensate (i) and thermal (ii) cloud density in the xz-plane. (b) The
condensate (i) and thermal density along the yz-plane (ii) extracted at the position of the vortex ring along the
x-axis at a fixed time during dynamics. In both cases the thermal cloud populates the edges of the condensate,
and (b)(ii) shows that the thermal cloud populates also the vortex core, in addition to the edges of the condensate.
The data are obtained at T = 0.5T, for fixed condensate number Nggc =~ 5.04 x 10* and for barrier height
Vo/w(T =0) ~ 1 (a) and Vy/u(T = 0) >~ 0.6 (b). All densities are scaled to their corresponding maximum values,
as indicated by the color bars.

To initiate the dynamics, we instantaneously set the parameter € to zero, thus creating an initial
population imbalance, z), between the two wells. Our earlier work in the limit of a pure T = 0
condensate revealed that different dynamical regimes emerge depending on the barrier parameters [38]:
for relatively small barrier widths or heights the system transits from Josephson plasma (JP) to
vortex-induced dissipative regime (VID) with increasing zj, as soon as it exceeds a critical value
z°. In the opposite limit of relatively large barrier height or width the system transits from the
Josephson plasma to the macroscopic quantum self-trapping regime (MQST) for zg beyond the self-
trapping critical value z*. For our studies here we fix the Gaussian barrier width at w = 3.8%, where
&=1//2u(T = 0)M = 0.52um denotes the condensate healing length, and change the barrier height.
To probe the effect of collisions on these dynamical regimes in the clearest manner, we consider two
values for the main barrier height: (i) Vo = 104hv, ~ u(T = 0) for the JP-VID transition, and (ii)
Vo = 210hvyx ~ 2u(T = 0) for the JP-MQST transition. For each dynamical regime, when comparing
the results at different temperatures the barrier height value, Vj is kept fixed. In order to avoid the
possibility of a transition to a different dynamical regime while increasing temperature [found to
occur for fixed total number in [39]], all finite temperature studies presented here are conducted at
fixed condensate particle number, NPEC ~ 5 x 10%. This means that at different temperatures, the total
particle number takes different values, increasing with increasing temperature, in order to keep NBFC
fixed.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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We define the condensate zggc (t), the thermal cloud zy, () and the total zot(t) population imbal-
ances respectively as:

NRo(t) — NEgc (8)

ZBEC (t) = Nepec (t) 4)
R _ NL

zm(t) = Nth(s\)]m(g]th ) )
R _ nNL

() = SO ©

where NII;E% and Ntb}me/ L are the number of the condensate and thermal particles on the right/left
sides of the barrier, respectively, while Nggc and Ny, are the total thermal and condensate particle
number. The presence of a nonzero population imbalance both for the condensate and the thermal
particle means that we have a condensate and thermal (or normal) current in the system, with the
current extracted as I = —(Nggc /4, /2) (dzpgc /i, / dt)largeba.

While a single numerical run in the absence of collisions generally accurately models the system
dynamics, for a systematic monitoring of the results in the collisional case we generally need to consider
a number of (typically five) simulations corresponding to the same physical conditions. Although in
the JP and VID regimes the collisional results are found to exhibit negligible variation from run to run,
in the MQST dynamics the self-trapping decay time is much more sensitive; in the latter case we thus
also perform multiple MQST runs even for the collisionless regime (in addition to also doing so for the
collisional regime).

The condensate imbalance data are analyzed by implementing a two-component fit of the form:

E(t) = aj cos(2mvst + ¢y) exp(—jt)

)
+ a; cos(2mvit + ¢;) exp(—it)

with aj,; and vy /; being the amplitude and frequency values of each component respectively, while
77,i are the damping rates, and ¢;; the phases of each component.

3. Results

In this section we will discuss the role of the thermal cloud dynamics and, in particular, the
importance of collisions in each of the 3 dynamical Josephson junction regimes. This is shown
in Figs. 2-4 for 3 different non-zero temperatures, with each figure showing the dynamics of the
condensate (left column) and the thermal cloud (right column) without (red lines) and with (black
lines) collisions, and for each of the 3 different regimes — from top to bottom showing Josephson
Plasma, Vortex Induced Dissipative and Macroscopic Quantum Self-Trapping regimes. For reference,
their corresponding T = 0 dynamics have been previously discussed at length in Ref. [38].

Specifically, at T = 0, the dynamics in the Josephson plasma regime exhibit coherent oscillations
about a zero value with constant amplitude in both the condensate population imbalance (or its time
derivative, which gives the current) and the Josephson phase (i.e. the phase difference between the
two parts of the condensate). Such oscillations persist at relatively low temperatures T < T, (Where T,
is the critical temperature), with only very minor damping and collisions having a negligible effect.
This can be seen for the specific case of T = 0.22T. in Figure 2(a,i).

In the vortex-induced dissipative (VID) regime, when the dynamics following the initial pop-
ulation imbalance exceeds the local speed of sound, the system is known to generate (potentially
successive) vortices, each accompanied by a 27t phase jump in the relative phase and some sound emis-
sion [37]. In the particular geometry, such vortices appear in the form of vortex rings in the transverse
plane: such vortex rings can enter and propagate within the bulk condensate and be subsequently
observed experimentally, as discussed in [37]. An image of such a vortex ring can be seen in Figure 1(b)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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showing both the condensate density containing the vortex ring (i) and the distribution of the thermal
cloud (ii) which is maximised within the low-density region of the vortex ring core, and around the
condensate. This feature, dominating the dynamics already at T = 0 [38], significantly perturbs the
subsequent condensate motion, followed by significantly reduced amplitude sinusoidal oscillations of
the imbalance around a zero mean value. We observe similar behavior at T = 0.22T, of zggc (t) in both
the collisionless and collisional limits [Figure 2(b,i)], with collisions having no significant effect.

0.06 T T

i —) i — Goll
(a) ( ) — ﬁz”coll. 0 02 (”) — NZcoll.
0.03 g :
\EE0.00-—— 4-1- H-1- 4-1- —té
M N
N 0.00
-0.03}

0.06

0.04

0.02
0.00
-0.02

-0.046.

0.01

0.00

0.0} - - -
0.0 0.2 0.4 0.6 : . .

Figure 2. The temporal evolution of the condensate (i) and thermal (ii) population imbalance in the Josephson
‘plasma’ regime (JP) (a), in the vortex-induced dissipative regime (VID) (b) and in the macroscopic quantum
self-trapping (MQST) regime (c) at T = 0.22T, both in the collisionless (red line) and collisional limit (black line).
The data in (a)-(b) are both for barrier height V ~ (T = 0) and initial condensate imbalance zggc (t = 0) < zfp
(a) and z(t = 0)ggc > z§pc (b) where z§ - is the critical imbalance defining the transition from JP to VID regime.
The data in (c) are for Vy = 2u(T = 0) and zg = ZSB]EC where zggc is the initial population imbalance for which the
system transits from JP to MQST regime.

In contrast, the macroscopic quantum self-trapping (MQST) regime at T = 0 is characterized by
small-amplitude oscillations around a nonzero mean value and 27t phase jumps in the relative phase,
but without the appearance of propagating vortices and sound waves [38]. In the collisionless limit,
the condensate imbalance continues to oscillate around a nonzero mean value at low temperature, as
shown in Figure 2(c,i) (red line), with only a very gradual increase in its oscillation amplitude with time.
However, when collisions are included, a transition to a different dynamical regime at around ¢ = 0.5s
for our specific parameters (see Figure 2(c,i), black line): such regime sees the imbalance oscillate
around a zero time-average value, resembling the anharmonic oscillations regime characteristic of

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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the transition to self-trapping [25]. Thus, inclusion of collisions in the model are in fact essential for
accurately describing the self-trapping regime even at low temperatures.

The MQST regime is highly unstable in the presence of a thermal cloud, and its decay time can
vary between runs, even in the collisionless limit. Nevertheless, at T = 0.22T,, the imbalance zggc(t) in
all five collisionless runs conducted did not decay within the maximum explored time interval of 0.72
s. In contrast, in the collisional limit, MQST decayed in all runs, even at this low temperature.

Collisions facilitate thermal equilibration between the two wells across all dynamical regimes,
as evidenced in Figure 2(a)-(c)(ii). In both Josephson and dissipative regimes — particularly the
latter — the thermal imbalance oscillates around a non-zero mean value under collisionless conditions.
Collisions suppress this offset, shifting the equilibrium state toward zero thermal imbalance. This
contrasts with previous collisionless studies [39], where low-temperature thermal particles relied
solely on incoherent tunneling through the barrier. Our results demonstrate that collisional processes,
specifically condensate-thermal particle exchange, enhance such equilibration. The MQST regime
presents unique observational challenges due to its minimal initial thermal imbalance (z{" ~ 0.01). This
small signal amplitude creates a high noise-to-signal ratio, rendering thermal imbalance oscillations
nearly indistinguishable despite their physical presence. The suppression of measurable oscillations
persists even when accounting for collisional effects in this regime.

Next we consider an intermediate temperature T = 70nK =~ 0.5T; , selected as the limiting value at
which the barrier height practically becomes equal to the temperature, i.e. Vo = 104 hvy ~ kgT. Figure 3
presents the time evolution of both the condensate imbalance zggc (t) and the thermal imbalance zy, (t)
across all three regimes at this temperature. In the Josephson (Figure 3(a)) and dissipative regimes
(Figure 3(b)), the zggc (t) profiles reveal two key features. First, increasing temperature leads to stronger
damping of the condensate imbalance oscillations, consistent with previous findings [39]. In fact, the
presence of normal current is expected to damp the Josephson oscillations. Second, collisions further
enhance this damping effect, particularly in the dissipative regime, as will be discussed in detail later.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 3. Same as in Figure 2, but now for T = 0.5T; < V/kp, marking the highest temperature for which the
thermal cloud could not overcome the barrier for the barrier height value in (a) and (b). The inset in (b)-(i) shows
a zoomed-in part of the condensate imbalance temporal evolution.

Similarly, collisions significantly reduce the amplitude of zy, (t) oscillations compared to the lower
temperature case of T = 0.22T;, with the thermal imbalance becoming almost completely damped by
t = 0.4 s in the dissipative regime (see Figure 3(b)-(ii)). The inset in Figure 3(b)-(i) shows a zoomed-in
view of the early-time evolution of zgpc(t), where two distinct ‘dips’ or ‘kinks” appear even in the
collisionless limit. These features are signatures of backflow caused by vortex ring generation, as
described in [37]. Notably, collisions have little impact on the timing of these dips, which correspond
to the vortex ring entering the local Thomas-Fermi surface, and they slightly influence the decay time
(i.e. the time when zpgc (t) assumes zero value). At this higher T in the MQST regime, the condensate
imbalance decay time and temporal profile differs from run to run and these differences are even more
pronounced in the collisional limit (as will be shown later). Therefore, the particular results shown in
Figure 3(c) represent just one characteristic example among a range of possible behaviors.

Figure 4 instead shows the profiles of zggc (t) and zy, (t) at T = 0.58T¢, for which T > Vj. We have
previously shown [39] that such a condition implies the thermal cloud can now pass over the barrier,
thus able to execute its own independent oscillations. This new motion can in turn significantly affect
the condensate dynamics. In the Josephson plasma regime (Figure 4(a)), collisions cause significantly
increased damping of both (i) the condensate imbalance zggc (t) and (ii) the thermal imbalance zy,(t)
compared to the collisionless case. Interestingly, in the dissipative regime (Figure 4(b)), the condensate

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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imbalance starts oscillating with a single dominant frequency, driven by the oscillating thermal
component. Thus, in the collisionless limit and in the VID regime, the second component disappears
from the condensate imbalance spectrum at temperature T; = Vj/kp. In this regime, collisions have
only a minor effect on zggc (Figure 4(b)-(i)), while they strongly influence the thermal imbalance zy, (t)
(Figure 4(b)-(ii)). The MQST regime is included as an example of possible imbalance profiles, but it is
important to note that these profiles can vary substantially from run to run.

— Coll.

(a) (i) —h

— Nocoll.

0.02f

T 0.00
m
N

Zth(t)

0.00
-0.03

00875 0.2 04 06 0.0
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Zih (t)

Zpgc(t)

0.00
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Zth (t)

0.01 0.000

_00 1 1 1 1 1 1
%.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Figure 4. Same as in Figs. 2-3, but now for T = 0.58T. > V{y/kp, such that the thermal cloud can now overcome
the barrier on its own for parameters in (a)-(b). As such, it suppresses the condensates’ sound excitations, while
also allowing the thermal cloud to drive the condensate.

3.1. Effect of Collisions on the Frequency and Damping of Dominant Modes in the Josephson Plasma and
Vortex-Induced Dissipative Regimes

For each of the Josephson and dissipative regime, we fit the zggc () and ziot (t) at each of the five
runs with two-component frequency fit and take their mean value as best estimate of our results, with
the error bars indicating the maximum deviation.

Consistent with the collisionless results of Ref. [39], the dominant frequencies of both JP and

VID at T < Vo/kp =~ 0.5T. correspond to the Josephson plasma frequency V}SEC and the frequency

U{SEC ~ ZV?EC (attributed to second-order term in the tunneling hamiltonian). While the Josephson
frequency completely dominates the BEC dynamics in the JP regime, the opposite is true in the VID
regime, due to the significant sound energy emitted [38]. At the other extreme, for T ~ 0.58T, > V/kg,

the thermal cloud starts exhibiting its own oscillations over the barrier: such motion emerges in
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a pronounced way in both dynamical regimes, with the sound waves becoming simultaneously
significantly suppressed. In such a limit, we previously found [39] that the system dynamics can once
again be described by two dominant frequencies, only now these are the Josephson frequency and a
frequency associated with the thermal cloud motion, at a frequency approaching the trap frequency.

It is thus natural to ask how this picture is affected by the presence of collisions: The first
observation to make here is that the addition of collisions appears to slightly shift the temperature
at which the transition between the low and high temperature behaviours emerges to slightly lower
values.

The results of the main component frequency value and damping rates as a function of temper-
ature are shown in Figure 5. In particular, Figure 5(a) shows the dominant frequency value (upper
subplots) and damping rates (lower subplots) of the condensate and total imbalance in the Josephson
‘plasma’ regime. In both cases the main frequency has a similar value and close to the expected
Josephson plasma frequency; this is why it is called V?EC and U}Ot. Figure 5(b) instead shows the
corresponding plot for the dissipative regime where now the dominant frequency for 0 < T < 0.58T;
becomes vf’EC for the condensate imbalance and v’{Ot for the total imbalance. In the collisionless limit,
the increased temperature shifts towards lower values both the condensate and total imbalance domi-
nant frequency while enhancing their damping due to repulsive interaction with thermal component
as in Ref. [39].
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Figure 5. The dominant frequency profile as a function of the temperature and the corresponding damping rates
in the Josephson (a) and dissipative regime (b) in both the collisionless and collisional limit. In (a) the mean values
shown in the collisional case are the results from five runs.
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In the presence of collisions, two main effects are noted. Firstly, we observe that the inclusion
of collisions affects differently the dominant frequency in the Josephson and dissipative regime both
for the condensate and total imbalance. In fact, in the former case collisions soften the effect of the
decrease of V?EC and V}Ot with temperature. For T < 0.5T; the damping rate in the collisional limit has
similar value to the collisionless limit but when the thermal cloud starts having more of an effect and
exhibiting its own motion, i.e. for T > 0.5Tc = Vj/kp, the damping rate 'y'fEC and ’y}"t becomes larger
in the collisional limit. In the dissipative regime instead, the collisions makes the U?Ec(i) and V{Ot (ii)
achieving smaller values with respect to the collisionless limit (for the same T /T, ) but with a profile
similar to the collisionless limit. Moreover, the damping rates 7PEC and «!°t are larger in the collisional

limit almost the entire range of T.

3.2. Role of Collisions on the Macroscopic Quantum Self-Trapping

Next we consider the thermally-induced dissipation of Macroscopic Quantum Self-Trapping. The
presence of the thermal component induces a normal Ohmic current, i.e. a normal conductance [34] in
the system by causing dissipation and decay of the condensate imbalance or current oscillations in the
self-trapping regime. This decay time can vary significantly from run to run, even in the collisionless
limit, as illustrated in Figure 6 for four different temperatures: 28 nK (0.227T,), 62 nK (0.44T;), 70 nK
(0.5T¢), and 88 nK (0.58T;). At the lowest temperature (28 nK), all runs remain in the self-trapping
regime within our probed temporal regime, as shown in Figure 6(a). However, as the temperature
increases, the influence of the thermal cloud becomes more pronounced, leading to a decay of the
self-trapping regime. This behaviour is evident at higher temperatures, where the imbalance begins to
oscillate around zero, indicating a transition to a different dynamical regime.
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Figure 6. The temporal profile of the condensate imbalance in the collisionless limit at four different temperatures
and for five independent numerical runs. The data are for Vjy = 210hwy and Npgc(+ = 0) = 50400.

To quantify this decay process within our simulated results, we extract the decay time from each
run and calculate the mean value and associated error bars for both the collisional and collisionless
limits, with the results presented in Figure 7. In the collisionless regime, we find that for temperatures
below 0.4T¢, the self-trapping state remains stable throughout the observed time interval (0.72 s). As
the temperature increases, the self-trapping regime decays progressively earlier, with the decay time
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decreasing with temperature. In contrast, in the collisional regime, self-trapping is unstable across
the entire temperature range, with a decay time which is shorter than the corresponding time in the
collisionless regime. These findings highlight the significant impact of temperature and interactions
on the stability of the self-trapping regime.
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= \
: +
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Figure 7. The profile of the mean decay time of the condensate imbalance in the collisionless and collisional limit
as a function of the temperature. The data are for Vjy = 210hw, and Npgc(t = 0) = 50400.

4. Conclusions

We investigated the impact of thermal-condensate collisions on the dynamical regimes of a
bosonic Josephson junction by numerically solving the full Zaremba-Nikuni-Griffin (ZNG) model,
which accounts self-consistently for all collisional processes at finite temperatures. We analyzed
how temperature influences the frequency and damping of the dominant oscillation modes of both
the condensate and total current in the Josephson plasma (JP) and vortex-induced dissipative (VID)
regimes, as well as the decay time in the macroscopic quantum self-trapping (MQST) regime. Our
results show that the decay time in the MQST regime is highly sensitive to collisions even at low
temperatures, decreasing as temperature rises. In contrast, collisions in the JP and VID regimes
primarily increase damping of the oscillation frequency. Notably, collisions cause a shift toward higher
values of oscillation frequency in these regimes. Overall, our study demonstrates that collisions start
playing a crucial role in describing the JP and VID regimes at intermediate to high temperatures, while
they are already significant for the MQST regime at low temperatures. It would be interesting to
compare our predictions against well-calibrated experimental data in the future.
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BEC Bose-Einstein condensate

GPE Gross-Pitaevskii equation

ZNG Zaremba-Nikuni-Griffin

JP Josephson Plasma

VID Vortex-Induced Dissipation

MQST Macroscopic Quantum Self-Trapping
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