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Abstract

Six aromatic plants (Lavandula pedunculata subsp. sampaioana, Lavandula stoechas subsp. luisieri, Mentha
x piperita, Origanum vulgare subsp. virens, Thymus mastichina, and Thymus zygis subsp. sylvestris) were
analysed to evaluate their essential oil yield, chemical composition, antioxidant activity and
antifungal capacity against two mold species, green mold (Penicillium digitatum (Pers.) Sacc.) and blue
mold (Penicillium italicum Wehmer). The antioxidant activity was found to be at its lowest in Lavandula
pedunculata subsp. sampaioana (3.84 + 0.26) and at its highest in Thymus zygis subsp. sylvestris (161.70
+ 0.15). Similarly, the in vitro antifungal capacity assay produced different results depending on the
essential oil used: the lowest value was produced by Thymus mastichina essential oil, and the highest
by Thymus zygis subsp. sylvestris. All the data collected reveal a positive correlation between
antioxidant activity, as measured by DPPH and ABTS assays, and the inhibition halo created by the
essential oils used in this study.

Keywords: antifungal activity; antioxidant; essential oil; Lavandula; Mentha, Origanum; Penicillium;
Thymus

1. Introduction

Fruit and vegetables postharvest diseases caused by fungal infections (Aspergillus, Penicillium,
Fusarium, Alternaria, ...) due to wounds or insect bites produce elevated loss of food during storage,
distribution and sale [1-7]. Citrus major sources of postharvest diseases are green mold (Penicillium
digitatum (Pers.) Sacc.) and blue mold (Penicillium italicurn Wehmer), which cause economic losses of
15-30% and affect 50-90% of production, particularly in developing countries [8-13]. Traditionally,
several methods based on synthetic chemical fungicides have been developed to reduce post-harvest
losses; however, intensive use of these methods generates resistance, reducing their effectiveness
[9,14,15]. Moreover, consumer trends demand products that are free of chemical residues and more
environmentally friendly. Together with legislative restrictions on the use of phytosanitary products,
this creates the need for new, more effective and environmentally friendly postharvest management.
These alternatives include biocontrol strategies involving the use of antagonist yeast or bacteria,
immersion in aqueous extracts of medicinal plants or citrus fruits, vaporization of essential oils from
medicinal plants, wax coatings containing essential oils or plant extracts, new biopolymers and heat
treatments, among others [6,11,16-21].

Studies of the antifungal capacity of medicinal plants extracts or essential oils have reported the
ability of fight various fungal infections caused by Aspergillus spp., Candida spp., Cryptococcus spp.,
Epidermophyton spp., Fusarium spp., Microsporum spp. Penicillium spp., and Trichophyton spp. [22-27].
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Several studies have shown that essential oils from species such thyme, oregano, clove, cinnamon or
citrus have a high inhibitory capacity against the in vitro growth of fungal colonies from Penicillium
species such as P. digitatum and P. italicum) [28-36]. The antifungal properties of these essential oils
have contributed to the development of new research aimed at preventing post-harvest infections
caused by P. digitatum and P. italicum [37-45].

The use of essential oils from medicinal plants whose chemical composition includes antifungal
compounds (e.g., thymol, carvacrol, terpinen-4-ol, etc. [46]) makes it possible to search for local
medicinal species commonly used in traditional medicine that are rich in these kinds of compounds,
creating a new local employment opportunity that are more environmentally friendly. For that
purpose, the main objective of this research is to evaluate the inhibitory and antioxidant activities of
different aromatic plants, native to the SW from the Iberian Peninsula, against two mold species (P.
digitatum and P. italicum), which cause postharvest disease in citrus fruits (e.g., oranges).

2. Materials and Methods

2.1. Plant Material, Essential Oil Extraction, and Chemical Characterization of Essential Oils

Aerial parts of six aromatic plants (L. pedunculata subsp. sampaioana, L. stoechas subsp. luisieri,
Mentha x piperita, O. vulgare subsp. virens., Th. mastichina, and Th. zygis subsp. sylvestris) were collected
from the experimental crops at Institute of Agrarian Research “La Orden-Valdesequera” (CICYTEX)
(near of Guadajira, Spain). Representative samples were collected during the flowering stage, which
took place between May and June 2024.

Fresh stems, leaves, and flowers from each specie were cut in small pieces and submitted to
hydro-distillation in Clevenger-type apparatus for 2 h. The essential oils (EOs) were stored in amber
vial at 4°C.

The chemical analysis of the essential oils was carried out using a combination of two gas
chromatography techniques (GC-FID + GC-MS), chemical compounds were identified by CG-MS and
quantified by CG-FID. The analysis was performed on Agilent 8890 GC paired with the 5977B MSD
(Mass Selective Detector). Polar column DB-WAX UI (60 m long, 0.25 mm diameter and 0.5 yum film
thicknesses) was employed using Helium carrier gas at constant flow of 2 mL/min. Apolar column
HP-5MS UI (60 m long, 0.25 mm diameter and 0.25 um film thicknesses) was employed using Helium
carrier gas at constant flow of 1 mL/min. The column temperature stared at 50°C and increased to
240°C (polar column) and 285°C (apolar column).

2.2. Antioxidant Activity

The antioxidant activity of each essential oil samples was determined by ABTS and DPPH assay
method. The absorbance was measured using a spectrophotometer (Beckman Coulter DU® 730).

The standard line from each assay was designed using Trolox (6-hidroxy-2,5,7,8-
tetramethylchroman-carboxylic acid) (Sigma-Aldrich 238813) between 1mM and 2mM concentration
and measured the absorbance at 734nm (ABTS) and 517nm (DPPH).

All the essential oil samples were analysed in triplicate. The sample volume used was 3
milliliters (2,95 ml from DPPH/ABTS + 50 pl from essential oil sample). The results, from both
analyses (ABTS and DPPH) were presented as millimoles (mM) of Trolox equivalents and grams of
Trolox equivalents per gram of essential oil, with the main objective of developing a data matrix
comparable between each other.

2.2.1. ABTS [2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] Assay

ABTS assay is based on the ability of molecules to scavenge the free radical of ABTS in
comparison with Trolox [47]. Absolute ethanol was used to prepare the working solution of ABTS
(Sigma-Aldrich A1888) at a concentration of 7 mM, which was then adjusted to obtain a final
absorbance of 0.7 + 0.02 (at 734 nm). To determine antioxidant activity, the essential oil samples
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remained in the dark at ambient temperature for 30 minutes and, thereafter, the absorbance was
measured at 734nm.

2.2.2. DPPH (2,2-diphenyl-1-picrylhydrazyl) Assay

The DPPH protocol to measure antioxidant activity was based on the description in reference
[48]. Methanol (100%) was used as the solvent to prepare a working solution 75 umol/L of DPPH
(Sigma-Aldrich D9132), which was then adjusted to a final absorbance of 0.7 + 0.02 (at 517 nm). For
antioxidant activity determination, the samples remained in the dark at ambient temperature for 120
minutes, after which the absorbance was measured at 517 nm.

2.3. In Vitro Antifungal Activity Assay

2.3.1. Fungal Isolation

The fungal species used are P. digitatum and P. italicum, obtained from infected Citrus aurantium
L. fruit. The isolation was realized in Petri dishes containing Sabouraud Dextrose agar (6%) and
incubated for 7 days at 27°C + 1°C, in complete darkness. The differential isolations were transferred
to new Petri dishes containing Sabouraud Dextrose agar and re-sown each week until a pure fungal
culture of each species was obtained. Finally, the standardization of the fungal colonies was achieve
using a 0.85% saline solution suspension to obtain the 0.5 McFarland standard (1,5 - 108 CFU/ml) [49].
Morphological characterization (macro and microscopic) was performed using dichotomous keys as
a reference [50-52].

2.3.2. Antifungal Activity

The disk diffusion method was used to evaluate the antifungal activity of each of the essential
oils [53,54]. The fungal suspension was sown in Petri dishes (87,8 mm diameter) containing 25 ml of
Sabouraud Dextrose Agar. A sterile swab was used to spread the mold suspension evenly across the
surface of the dish to ensure a homogeneous development of the mold. Essential oils were inoculate
using a 10 mm diameter filter disk soaked with 25ul of each essential oil sample and placed in the
center of the Petri dish.

The study included a control group and a study group with 3 repetitions of each for each species
of essential oil. Thus, 12 Petri dishes were used for each essential oil species (3 control dishes + 3 study
dishes for each one of the analysed molds, P. digitatum and P. italicum). The Petri dishes were
incubated for 5 days (96 hours) in an incubator chamber at 27°C + 1°C in complete darkness and in
the normal position (not inverted) to avoid affecting the mold growth. Finally, the Petri dishes were
checked, photographed and measured every 24 hours. Measurements were taken by evaluating the
inhibitory halo of growth around the filter disk using a caliper.

2.4. Statistical Analysis

Descriptive and inferential statistical analysis were performed using R v 4.3.3 software) [55] to
determine the relationship between the inhibitory halo of growth results and the antioxidant activity
obtained from the samples. The 48-hour data from inhibitory halo of growth were used to developed
the statistical analysis (to ensure a correct understanding of the data and avoid mixing up inhibition
and natural absence of growth).

3. Results

3.1. Essential Oil Composition

Table 1 shows the essential oils yield obtained for each of the aromatic plant, expressed in grams
of essential oil per kilogram of fresh plant and as a percentage (w/w). The highest yields were
obtained in Thymus mastichina (L.) L., Lavandula pedunculata subsp. sampaioana (Rozeira) Franco, and
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Thymus zygis subsp. sylvestris (Hoffmanns. & Link) Cout. with values of 2.43%, 1.28%, and 0.88%
respectively. The species with the lowest yields were Mentha x piperita L., Lavandula stoechas subsp.
luisieri (Rozeira) Rozeira, and Origanum vulgare subsp. virens (Hoffmans. & Link) Bonnier & Layens
(0.62%, 0.42% and 0.41%, respectively).

Table 1. Yield of the essential oil extraction by hydrodistillation.

Specie Code Yield (w/w) % (w/w)
Origanum vulgare subsp. virens (O)AY 4.09 0.41
Lavandula pedunculata subsp. sampaioana LPS 12.80 1.28
Lavandula stoechas subsp. luisieri LSL 4.22 0.42
Thymus zygis subsp. sylvestris TZS 8.78 0.88
Thymus mastichina ™ 24.29 2.43
Mentha x piperita MP 6.17 0.62

The essential oils have a rich monoterpene-based chemical composition (Table 2). The majority
of the detected compounds are: thymol (68.83% in Th. zygis subsp. sylvestris and 36.72% in O. vulgare
subsp. virens), 1.8-cineole (66.06% and 17.71% in Th. mastichina and L. stoechas subsp. luisieri
respectively), camphor and fenchone (35.51% and 34.20% respectively in L. pedunculata subsp.
sampaioana), gamma-terpinene (30.69% in O. vulgare subsp. virens), menthone and L-menthol (29.12
and 27.56% respectively in M x piperita), and trans-alpha-necrodyl acetate (20.46% in L. stoechas subsp.
luisieri).

3.2. Antioxidant Activity

Obtained results (Table 3) show that the essential oils of the L. stoechas subsp. luisieri, O. vulgare
subsp. virens and Th. zygis subsp. sylvestris species have higher antioxidant activity. These species
have in common a high percentage of the chemical’s thymol, gamma-terpinene and trans-alpha-
necrodyl acetate in their essential oils.

Table 2. Composition of the essential oils.

RI-WAX RI-HP5 Compound OVV LIPS LISL TM TZS MP
1025 933 Alpha-Pinene 067 635 1.83 344 051 0.74
1029 918 Alpha-Thujene 1.63 0.01 021 1.32 0.06
1069 953 Camphene 029 229 010 0.10 0.14 0.02
1114 978 Beta-Pinene 0.18 005 030 511 013 1.17
1126 972 Sabinene 029 003 012 383 0.07 0.67
1133 940 Cymene Isomer 2.67
1165 991 Beta-Myrcene 228 017 007 187 191 0.33
1186 1018 Alpha-Terpinene 3.76  0.03 1.33 0.26
1206 1021 Limonene 035 203 020 117 032 342
1222 1039 1,8-Cineole 0.02 093 17.71 66.06 6.72
1238 1035 Cis-Beta-Ocimene 215 0.15 045 0.02 0.01 0.27
1254 1058 Gamma-Terpinene 3069 005 012 179 572 041
1278 1025 Para-Cymene 526 024 014 1.03 9.36 0.08
1418 1090 Fenchone 3420 0.28
1465 1074 Trans-Sabinene Hydrate 0.16 0.70 0.68 0.82
1484 1124 Menthone 29.12
1500 1164 Menthofuran 494
1510 1166 Isomenthone 4.31
1541 1149 Camphor 36.51 1.00
1553 1100 Linalool 0.16 200 229 414 086 0.26
1574 1294 Menthyl Acetate 2.36
1592 1239 Thymol Methyl Ether 1.88 0.01
1595 1119 Fenchol<endo-> 0.86
1599 1288 Bornyl Acetate 0.98 0.06 <0,01
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1606 1280 Trans-Alpha-Necrodyl Acetate 20.46
1607 1239 Carvacrol Methyl Ether 2.38 0.05
1608 1165 Neo-Menthol 4.11
1617 1450 Trans-Beta Caryophyllene 161 004 022 012 141 1.18
1619 1284 Lavandulyl Acetate 020 4.01
1636 1296 Arbozol 2.24
1653 1169 L-Menthol 27.56
1662 1170 Delta-Terpineol 1.50 0.22
1665 1244 Pulegone 3.98
1668 1187 5-Methylene-2,3,4,4-tetrame-2-Cyclopentenone 2.37
1860 Unknown Sesquiterpenol 2.06
1679 1172 Trans-Alpha-Necrodol 6.56
1696 1195 Alpha-Terpineol 011 029 029 486 013 044
1713 1167 Borneol 0.65 0.78 0.12 034 0.02
2168 1293 Thymol 36.72 68.83 0.08
2192 1316 Carvacrol 0.28 0.17 2.54
Table 3. Antioxidant Activity results (ABTS and DPPH methods).
Cod ABTS DPPH
ode mM TROLOX eq. g TROLOX eq./gEO  mM TROLOX eq. g TROLOX eq. /g EO
Oovv 76.45 +3.02 433.01 £17.10 25.15+1.69 142.45 +9.57
LPS 3.84+0.26 20.79£1.41 2.17+0.16 11.73 +0.87
LSL 24.06 £ 0.64 131.33 +3.47 33.91+1.21 184.99 + 6.58
™ 9.76 + 0.41 54.19 £2.30 0.96 +0.03 5.31+0.16
TZS 161.70 £ 0.15 864.20 +0.81 25.34 +1.08 135.42 +5.78
MP 4.83 +0.09 26.94 +0.51 3.83+0.13 21.34+0.74

3.3. In Vitro Antifungal Activity Assay

3.3.1. Fungal Isolation

The P. italicum species was observed to grow more quickly and be less susceptible to
contamination in in vitro conditions than P. digitatum (Figure 1).

(b)

Figure 1. Fungal isolation: (a) P. digitatum; (b) P. italicum.

3.3.2. Antifungal Activity

The Petry dishes were photographed every 24 hours, and it could be observed that the filter disk
infused with the essential oils is able to inhibit the fungal species development (inhibition halo) and
delay maturation of both species (Figure 2).
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P. digitatum P. italicum

Control

TZS

MP

Figure 2. Photographic progression of P. digitatum and P. italicum (time in hours).

Table 4 displays statistical parameters obtained from the inhibition halo measurements obtained
after 48 hours of growing. Measurement results show a higher inhibitory capacity from essential oil
over P. digitatum specie than P. italicum (inhibition halo mean: 29.69 mm in P. digitatum and 27.81 mm
in P. italicum). Besides, the observed skew shows a positive trend. On the other hand, the kurtosis of
the antioxidant activity shows a platykurtic curve, indicating fewer extreme values than a normal
distribution. However, the inhibition halo differs in the kurtosis depending on the fungal species
(slightly leptokurtic in P. digitatum and platykurtic in P. italicum).

Table 4. Statistical parameters from inhibition halo measurement.

EO X s Me Max Min SEM g1 g
P. digitatum
Oovv 31.33 3.21 30.00 35.00 29.00 1.86 0.34 -2.33
LPS 20.17 3.25 20.00 23.50 17.00 1.88 0.05 -2.33
LSL 30.67 1.15 30.00 32.00 30.00 0.67 0.38 -2.33
™ 16.17 0.29 16.00 16.50 16.00 0.17 0.38 -2.33
TZS 60.50 5.77 60.00 66.50 55.00 3.33 0.09 -2.33
MP 19.33 3.21 18.00 23.00 17.00 1.86 0.34 -2.33
P. italicum

Oovv 27.00 6.38 28.50 32.50 20.00 3.69 -0.22 -2.33
LPS 14.17 0.76 14.00 15.00 13.50 0.44 0.21 -2.33
LSL 37.33 2.52 37.00 40.00 35.00 1.45 0.13 -2.33
™ 13.67 1.26 13.50 15.00 12.50 0.73 0.13 -2.33
TZS 54.33 2.93 55.50 56.50 51.00 1.69 -0.34 -2.33
MP 20.33 3.06 21.00 23.00 17.00 1.76 -0.21 -2.33

Finally, the data distribution in relation to each essential oil species is presented in a boxplot for
each fungal species (Figure 3). It is possible to observe that the Th. zygis subsp. sylvestris essential oil
produced the most extensive inhibition halo for both fungal species, with a clear difference compared
to the rest of the samples.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 3. Inhibition halo boxplot produced by the different essential oil samples.

3.3.3. Statistical Analysis

The Shapiro-Wilk test applied to the data base obtained in the study indicate the absence of
normal distribution (Table 5), for that reason the statistical analysis was based on non-parametric
correlation test (Spearman’s correlation).

Table 5. Shapiro-Wilk test results.

) \4 p-value \4 p-value

variables — o

P. digitatum P. italicum

inhibition halo (mm) 0.80130 0.00159 0.86399 0.01418
ABTS (mM) 0.72045 0.00014 0.72045 0.00014
ABTS (g) 0.72651 0.00017 0.72709 0.00017
DPPH (mM) 0.79313 0.00122 0.79468 0.00122
DPPH (g) 0.79468 0.00128 0.79468 0.00128

The results of the Spearman’s correlation test show a p-value of less than 0.05 (significance level),
indicating a linear relationship between the pairs of variables studied at the ordinal level and
showing that this relationship is not due to chance (Table 6.).

A significant statistical linear correlation was found between the different measurements of
antioxidant activity (using the ABTS and DPPH methods) and the inhibition halo using the various
essential oil samples on the two species of mesophilic mold (P. digitatum and P. italicum) (Figure 4).

Table 6. Spearman’s correlation test results obtained in inhibition halo measurements.

variables S B-"ralue o) S P-v?lue o)
P. digitatum P. italicum
ABTS (mM) 245.38 3.70 - 10+ 0.75 247.88 3.98 - 104 0.74
ABTS (g) 235.35 2.75-104 0.76 247.88 3.98 - 10+ 0.74
DPPH (Mm) 232.34 2.51-10+ 0.76 176.77 3.42-10°% 0.82
DPPH (g) 238.36 3.01-10+ 0.75 194.80 6.98 - 105 0.80
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4. Discussion

The obtained data shows the essential oils of Th. zygis subsp. sylvestris, O. vulgare subsp. virens
and L. stoechas subsp. luisieri to have high antioxidant activity and elevated antifungal activity for
both ABTS and DPPH. Conversely, the essential oils of Th. mastichina, M. x piperita and L. pedunculata
subsp. sampaioana exhibited low antioxidant and anti-fungal activity against the two evaluated fungal
species, P. italicum and P. digitatum.

High antifungal and antioxidant activity from Th. zygis has been widely recognized in several
studies [56-61]. Th. zygis essential oil can have different chemotypes (thymol, carvacrol,
carvacrol/thymol, linalool, geranyl acetate/geraniol, ...) [58,60-63]. However, only the carvacrol,
thymol and carvacrol/thymol chemotypes, have demonstrated elevated antifungal and antioxidant
capacity [47,49-53]. The presence of thymol and carvacrol compounds in essential oil from other
species of Thymus L. genus is well known [33,64-66]. Furthermore, research into the antifungal
activity indicates that they have a higher inhibitory capacity for fungal growth than the pure
compounds — thymol or carvacrol [57,64]. Regarding P. digitatum and P. italicum molds, Th. zygis
subsp. sylvestris essential oil has an elevated inhibitory capacity against “in vitro” growth, as
observed in other Penicillium species [33,36,56].

ABTS(mM) vs.Inhibition halo

P. digitatum P. italicum

Inhibition halo

Inhibition halo

Inhibition halo

Inhibition halo

y=17.9583x + 02509

y=17.7220x + 0.2156

Inhibition halo
.

¥ = 17.8492x + 0.0464

ABTS (mM)

ABTS (mM)

ABTS(g) vs.Inhibition halo

= 14.9459x + 0.1539

Inhibition halo

y=18.5383x + 07327

.
—
.

ABTS (g)

.
.
.
.
. o«
/
04

DPPH (g)

DPPH(mM) vs.Inhibition halo

¥ = 14.7125x + 0.8599

Inhibition halo
.
.
\
.
. o

y=18.7754x + 0.1307

s &

DPPH (mM)

DPPH(g) vs.Inhibition halo

y=14.9459x + 0.1539

innomon naio

DPPH mM)

DPPH ()

DPPH(g)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2495.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2025 d0i:10.20944/preprints202507.2495.v1

9 of 14

Figure 4. Scatter plots.

On the other hand, the other thyme species included in this study, Th. mastichina, has an essential
oil rich in 1,8-cineole [59,67-69], with a poor antioxidant and antifungal capacity against the
Penicillium species studied. However, other studies have shown it to have good antifungal properties
against other fungal species, such as Sclerotinia spp., Fusarium spp., Alternaria spp. or Candida spp.
[59,70-72]. This makes it possible to use it to fight fungal infections in crops or on the skin.

O. vulgare subsp. virens essential oil has a thymol/gamma-terpinene chemotype, which is
unusual for this species [73,74]. This coincides with what was observed in research involving the
carvacrol chemotype of O. vulgare, which exhibits high antioxidant and antifungal activity against P.
digitatum and P. italicum [36,74-78].

The two Lavandula L. subspecies studied exhibit different antifungal capacities, with L. stoechas
subsp. luisieri demonstrating greater activity than L. pedunculata subsp. sampaioana [79], and notably
the inhibitory effect on P. digitatum growth is higher than on P. italicum. The antioxidant activity of L.
stoechas subsp. luisieri essential oil is very high, mainly due to the presence of necrodiol derivatives
[80]. On the other hand, L. pedunculata subsp. sampaioana has an essential oil rich in fenchone, camphor
and 1,8-cineole, which are compounds with low antioxidant capacity [59,68].

M. x piperita essential oil exhibits the lowest of all the essential oils studied in the present
research. However, other studies indicate good inhibitory capacity against several species of the
Penicillium genus, including P. digitatum [81-84]. This divergence in results could be due to variation
in the essential 0il’s chemical composition, including different percentages of menthol, menthone,
limonene, alpha-pinene, and betha-pinene, among others.

5. Conclusions

The Th. zygis subsp. sylvestris, O. vulgare subsp. virens and L. stoechas subsp. luisieri essential oils
have a high antioxidant capacity and can effectively inhibit the “in vitro” growth of the molds that
mainly cause postharvest damages in Citrus genus fruits. Furthermore, all the essential oils studied
exhibited a higher inhibition response against green mold (P. digitatum) than blue mold (P. italicum).
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