

Article

Not peer-reviewed version

Antioxidant and Antifungal Effects of Six Plant Essential Oils Against *Penicillium digitatum* and *Penicillium italicum*

[María del Carmen García-Custodio](#) , [Francisco Márquez-García](#) * , David García-Alonso ,
Cristian David Brieva-Trejo , [Francisco María Vázquez Pardo](#)

Posted Date: 30 July 2025

doi: 10.20944/preprints202507.2495.v1

Keywords: antifungal activity; antioxidant; essential oil; *Lavandula*; *Mentha*; *Origanum*; *Penicillium*; *Thymus*

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Antioxidant and Antifungal Effects of Six Plant Essential Oils Against *Penicillium digitatum* and *Penicillium italicum*

María del Carmen García-Custodio, Francisco Márquez-García ^{*}, David García-Alonso, Cristian David Brieva-Trejo and Francisco María Vázquez Pardo

Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto de Investigaciones Agrarias Finca La Orden -Valdesequera, Área de Biodiversidad Vegetal Agraria, Autovía A-5 Km 372, 06187 Guadajira, Badajoz, España

* Correspondence: francisco.marquezga@juntaex.es

Abstract

Six aromatic plants (*Lavandula pedunculata* subsp. *sampaioana*, *Lavandula stoechas* subsp. *luisieri*, *Mentha × piperita*, *Origanum vulgare* subsp. *virens*, *Thymus mastichina*, and *Thymus zygis* subsp. *sylvestris*) were analysed to evaluate their essential oil yield, chemical composition, antioxidant activity and antifungal capacity against two mold species, green mold (*Penicillium digitatum* (Pers.) Sacc.) and blue mold (*Penicillium italicum* Wehmer). The antioxidant activity was found to be at its lowest in *Lavandula pedunculata* subsp. *sampaioana* (3.84 ± 0.26) and at its highest in *Thymus zygis* subsp. *sylvestris* (161.70 ± 0.15). Similarly, the in vitro antifungal capacity assay produced different results depending on the essential oil used: the lowest value was produced by *Thymus mastichina* essential oil, and the highest by *Thymus zygis* subsp. *sylvestris*. All the data collected reveal a positive correlation between antioxidant activity, as measured by DPPH and ABTS assays, and the inhibition halo created by the essential oils used in this study.

Keywords: antifungal activity; antioxidant; essential oil; *Lavandula*; *Mentha*; *Origanum*; *Penicillium*; *Thymus*

1. Introduction

Fruit and vegetables postharvest diseases caused by fungal infections (*Aspergillus*, *Penicillium*, *Fusarium*, *Alternaria*, ...) due to wounds or insect bites produce elevated loss of food during storage, distribution and sale [1–7]. Citrus major sources of postharvest diseases are green mold (*Penicillium digitatum* (Pers.) Sacc.) and blue mold (*Penicillium italicum* Wehmer), which cause economic losses of 15–30% and affect 50–90% of production, particularly in developing countries [8–13]. Traditionally, several methods based on synthetic chemical fungicides have been developed to reduce post-harvest losses; however, intensive use of these methods generates resistance, reducing their effectiveness [9,14,15]. Moreover, consumer trends demand products that are free of chemical residues and more environmentally friendly. Together with legislative restrictions on the use of phytosanitary products, this creates the need for new, more effective and environmentally friendly postharvest management. These alternatives include biocontrol strategies involving the use of antagonist yeast or bacteria, immersion in aqueous extracts of medicinal plants or citrus fruits, vaporization of essential oils from medicinal plants, wax coatings containing essential oils or plant extracts, new biopolymers and heat treatments, among others [6,11,16–21].

Studies of the antifungal capacity of medicinal plants extracts or essential oils have reported the ability of fight various fungal infections caused by *Aspergillus* spp., *Candida* spp., *Cryptococcus* spp., *Epidermophyton* spp., *Fusarium* spp., *Microsporum* spp., *Penicillium* spp., and *Trichophyton* spp. [22–27].

Several studies have shown that essential oils from species such thyme, oregano, clove, cinnamon or citrus have a high inhibitory capacity against the in vitro growth of fungal colonies from *Penicillium* species such as *P. digitatum* and *P. italicum* [28–36]. The antifungal properties of these essential oils have contributed to the development of new research aimed at preventing post-harvest infections caused by *P. digitatum* and *P. italicum* [37–45].

The use of essential oils from medicinal plants whose chemical composition includes antifungal compounds (e.g., thymol, carvacrol, terpinen-4-ol, etc. [46]) makes it possible to search for local medicinal species commonly used in traditional medicine that are rich in these kinds of compounds, creating a new local employment opportunity that are more environmentally friendly. For that purpose, the main objective of this research is to evaluate the inhibitory and antioxidant activities of different aromatic plants, native to the SW from the Iberian Peninsula, against two mold species (*P. digitatum* and *P. italicum*), which cause postharvest disease in citrus fruits (e.g., oranges).

2. Materials and Methods

2.1. Plant Material, Essential Oil Extraction, and Chemical Characterization of Essential Oils

Aerial parts of six aromatic plants (*L. pedunculata* subsp. *sampaioana*, *L. stoechas* subsp. *luisieri*, *Mentha × piperita*, *O. vulgare* subsp. *virens*., *Th. mastichina*, and *Th. zygis* subsp. *sylvestris*) were collected from the experimental crops at Institute of Agrarian Research “La Orden-Valdesequera” (CICYTEX) (near of Guadajira, Spain). Representative samples were collected during the flowering stage, which took place between May and June 2024.

Fresh stems, leaves, and flowers from each specie were cut in small pieces and submitted to hydro-distillation in Clevenger-type apparatus for 2 h. The essential oils (EOs) were stored in amber vial at 4°C.

The chemical analysis of the essential oils was carried out using a combination of two gas chromatography techniques (GC-FID + GC-MS), chemical compounds were identified by CG-MS and quantified by CG-FID. The analysis was performed on Agilent 8890 GC paired with the 5977B MSD (Mass Selective Detector). Polar column DB-WAX UI (60 m long, 0.25 mm diameter and 0.5 µm film thicknesses) was employed using Helium carrier gas at constant flow of 2 mL/min. Apolar column HP-5MS UI (60 m long, 0.25 mm diameter and 0.25 µm film thicknesses) was employed using Helium carrier gas at constant flow of 1 mL/min. The column temperature stared at 50°C and increased to 240°C (polar column) and 285°C (apolar column).

2.2. Antioxidant Activity

The antioxidant activity of each essential oil samples was determined by ABTS and DPPH assay method. The absorbance was measured using a spectrophotometer (Beckman Coulter DU® 730).

The standard line from each assay was designed using Trolox (6-hidroxy-2,5,7,8-tetramethylchroman-carboxylic acid) (Sigma-Aldrich 238813) between 1mM and 2mM concentration and measured the absorbance at 734nm (ABTS) and 517nm (DPPH).

All the essential oil samples were analysed in triplicate. The sample volume used was 3 milliliters (2,95 ml from DPPH/ABTS + 50 µl from essential oil sample). The results, from both analyses (ABTS and DPPH) were presented as millimoles (mM) of Trolox equivalents and grams of Trolox equivalents per gram of essential oil, with the main objective of developing a data matrix comparable between each other.

2.2.1. ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] Assay

ABTS assay is based on the ability of molecules to scavenge the free radical of ABTS in comparison with Trolox [47]. Absolute ethanol was used to prepare the working solution of ABTS (Sigma-Aldrich A1888) at a concentration of 7 mM, which was then adjusted to obtain a final absorbance of 0.7 ± 0.02 (at 734 nm). To determine antioxidant activity, the essential oil samples

remained in the dark at ambient temperature for 30 minutes and, thereafter, the absorbance was measured at 734nm.

2.2.2. DPPH (2,2-diphenyl-1-picrylhydrazyl) Assay

The DPPH protocol to measure antioxidant activity was based on the description in reference [48]. Methanol (100%) was used as the solvent to prepare a working solution 75 μ mol/L of DPPH (Sigma-Aldrich D9132), which was then adjusted to a final absorbance of 0.7 ± 0.02 (at 517 nm). For antioxidant activity determination, the samples remained in the dark at ambient temperature for 120 minutes, after which the absorbance was measured at 517 nm.

2.3. In Vitro Antifungal Activity Assay

2.3.1. Fungal Isolation

The fungal species used are *P. digitatum* and *P. italicum*, obtained from infected *Citrus aurantium* L. fruit. The isolation was realized in Petri dishes containing Sabouraud Dextrose agar (6%) and incubated for 7 days at $27^\circ\text{C} \pm 1^\circ\text{C}$, in complete darkness. The differential isolations were transferred to new Petri dishes containing Sabouraud Dextrose agar and re-sown each week until a pure fungal culture of each species was obtained. Finally, the standardization of the fungal colonies was achieved using a 0.85% saline solution suspension to obtain the 0.5 McFarland standard ($1.5 \cdot 10^8$ CFU/ml) [49]. Morphological characterization (macro and microscopic) was performed using dichotomous keys as a reference [50–52].

2.3.2. Antifungal Activity

The disk diffusion method was used to evaluate the antifungal activity of each of the essential oils [53,54]. The fungal suspension was sown in Petri dishes (87,8 mm diameter) containing 25 ml of Sabouraud Dextrose Agar. A sterile swab was used to spread the mold suspension evenly across the surface of the dish to ensure a homogeneous development of the mold. Essential oils were inoculated using a 10 mm diameter filter disk soaked with 25 μ l of each essential oil sample and placed in the center of the Petri dish.

The study included a control group and a study group with 3 repetitions of each for each species of essential oil. Thus, 12 Petri dishes were used for each essential oil species (3 control dishes + 3 study dishes for each one of the analysed molds, *P. digitatum* and *P. italicum*). The Petri dishes were incubated for 5 days (96 hours) in an incubator chamber at $27^\circ\text{C} \pm 1^\circ\text{C}$ in complete darkness and in the normal position (not inverted) to avoid affecting the mold growth. Finally, the Petri dishes were checked, photographed and measured every 24 hours. Measurements were taken by evaluating the inhibitory halo of growth around the filter disk using a caliper.

2.4. Statistical Analysis

Descriptive and inferential statistical analysis were performed using R v 4.3.3 software) [55] to determine the relationship between the inhibitory halo of growth results and the antioxidant activity obtained from the samples. The 48-hour data from inhibitory halo of growth were used to develop the statistical analysis (to ensure a correct understanding of the data and avoid mixing up inhibition and natural absence of growth).

3. Results

3.1. Essential Oil Composition

Table 1 shows the essential oils yield obtained for each of the aromatic plant, expressed in grams of essential oil per kilogram of fresh plant and as a percentage (w/w). The highest yields were obtained in *Thymus mastichina* (L.) L., *Lavandula pedunculata* subsp. *sampaioana* (Rozeira) Franco, and

Thymus zygis subsp. *sylvestris* (Hoffmanns. & Link) Cout. with values of 2.43%, 1.28%, and 0.88% respectively. The species with the lowest yields were *Mentha × piperita* L., *Lavandula stoechas* subsp. *luisieri* (Rozeira) Rozeira, and *Origanum vulgare* subsp. *virens* (Hoffmans. & Link) Bonnier & Layens (0.62%, 0.42% and 0.41%, respectively).

Table 1. Yield of the essential oil extraction by hydrodistillation.

Species	Code	Yield (w/w)	% (w/w)
<i>Origanum vulgare</i> subsp. <i>virens</i>	OVV	4.09	0.41
<i>Lavandula pedunculata</i> subsp. <i>sampaioana</i>	LPS	12.80	1.28
<i>Lavandula stoechas</i> subsp. <i>luisieri</i>	LSL	4.22	0.42
<i>Thymus zygis</i> subsp. <i>sylvestris</i>	TZS	8.78	0.88
<i>Thymus mastichina</i>	TM	24.29	2.43
<i>Mentha × piperita</i>	MP	6.17	0.62

The essential oils have a rich monoterpene-based chemical composition (Table 2). The majority of the detected compounds are: thymol (68.83% in *Th. zygis* subsp. *sylvestris* and 36.72% in *O. vulgare* subsp. *virens*), 1.8-cineole (66.06% and 17.71% in *Th. mastichina* and *L. stoechas* subsp. *luisieri* respectively), camphor and fenchone (35.51% and 34.20% respectively in *L. pedunculata* subsp. *sampaioana*), gamma-terpinene (30.69% in *O. vulgare* subsp. *virens*), menthone and L-menthol (29.12 and 27.56% respectively in *M × piperita*), and trans-alpha-necrodyl acetate (20.46% in *L. stoechas* subsp. *luisieri*).

3.2. Antioxidant Activity

Obtained results (Table 3) show that the essential oils of the *L. stoechas* subsp. *luisieri*, *O. vulgare* subsp. *virens* and *Th. zygis* subsp. *sylvestris* species have higher antioxidant activity. These species have in common a high percentage of the chemical's thymol, gamma-terpinene and trans-alpha-necrodyl acetate in their essential oils.

Table 2. Composition of the essential oils.

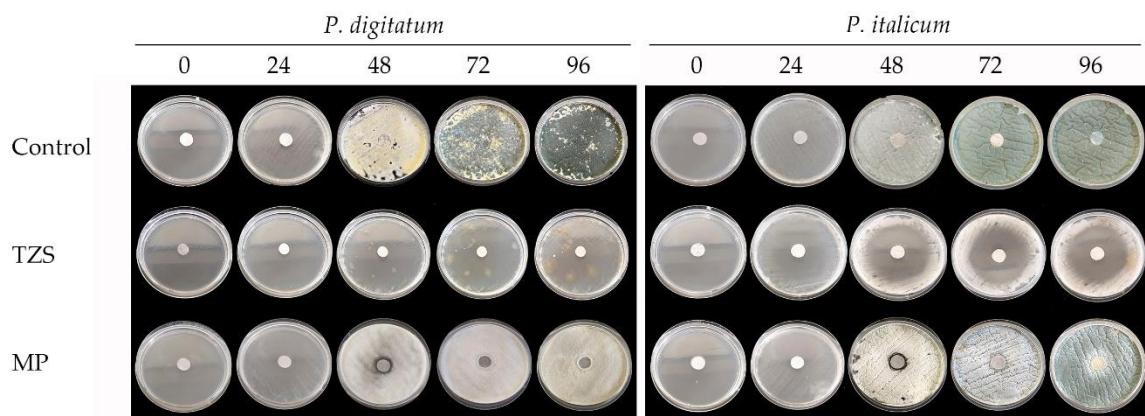
RI-WAX	RI-HP5	Compound	OVV	LPS	LSL	TM	TZS	MP
1025	933	Alpha-Pinene	0.67	6.35	1.83	3.44	0.51	0.74
1029	918	Alpha-Thujene	1.63	0.01		0.21	1.32	0.06
1069	953	Camphene	0.29	2.29	0.10	0.10	0.14	0.02
1114	978	Beta-Pinene	0.18	0.05	0.30	5.11	0.13	1.17
1126	972	Sabinene	0.29	0.03	0.12	3.83	0.07	0.67
1133	940	Cymene Isomer			2.67			
1165	991	Beta-Myrcene	2.28	0.17	0.07	1.87	1.91	0.33
1186	1018	Alpha-Terpinene	3.76	0.03			1.33	0.26
1206	1021	Limonene	0.35	2.03	0.20	1.17	0.32	3.42
1222	1039	1,8-Cineole	0.02	0.93	17.71	66.06		6.72
1238	1035	Cis-Beta-Ocimene	2.15	0.15	0.45	0.02	0.01	0.27
1254	1058	Gamma-Terpinene	30.69	0.05	0.12	1.79	5.72	0.41
1278	1025	Para-Cymene	5.26	0.24	0.14	1.03	9.36	0.08
1418	1090	Fenchone		34.20	0.28			
1465	1074	Trans-Sabinene Hydrate	0.16			0.70	0.68	0.82
1484	1124	Menthone						29.12
1500	1164	Menthofuran						4.94
1510	1166	Isomenthone						4.31
1541	1149	Camphor		36.51	1.00			
1553	1100	Linalool	0.16	2.00	2.29	4.14	0.86	0.26
1574	1294	Methyl Acetate						2.36
1592	1239	Thymol Methyl Ether	1.88					0.01
1595	1119	Fenchol<endo->		0.86				
1599	1288	Bornyl Acetate	0.98	0.06	<0,01			

1606	1280	Trans-Alpha-Necrodyl Acetate		20.46			
1607	1239	Carvacrol Methyl Ether	2.38		0.05		
1608	1165	Neo-Menthol				4.11	
1617	1450	Trans-Beta Caryophyllene	1.61	0.04	0.22	0.12	1.41
1619	1284	Lavandulyl Acetate	0.20	4.01			1.18
1636	1296	Arbozol			2.24		
1653	1169	L-Menthol					27.56
1662	1170	Delta-Terpineol			1.50		0.22
1665	1244	Pulegone					3.98
1668	1187	5-Methylene-2,3,4,4-tetrame-2-Cyclopentenone		2.37			
	1860	Unknown Sesquiterpenol		2.06			
1679	1172	Trans-Alpha-Necrodiol		6.56			
1696	1195	Alpha-Terpineol	0.11	0.29	0.29	4.86	0.13
1713	1167	Borneol	0.65	0.78		0.12	0.34
2168	1293	Thymol	36.72			68.83	0.08
2192	1316	Carvacrol	0.28		0.17	2.54	

Table 3. Antioxidant Activity results (ABTS and DPPH methods).

Code	ABTS		DPPH	
	mM TROLOX eq.	g TROLOX eq. / g EO	mM TROLOX eq.	g TROLOX eq. / g EO
OVV	76.45 ± 3.02	433.01 ± 17.10	25.15 ± 1.69	142.45 ± 9.57
LPS	3.84 ± 0.26	20.79 ± 1.41	2.17 ± 0.16	11.73 ± 0.87
LSL	24.06 ± 0.64	131.33 ± 3.47	33.91 ± 1.21	184.99 ± 6.58
TM	9.76 ± 0.41	54.19 ± 2.30	0.96 ± 0.03	5.31 ± 0.16
TZS	161.70 ± 0.15	864.20 ± 0.81	25.34 ± 1.08	135.42 ± 5.78
MP	4.83 ± 0.09	26.94 ± 0.51	3.83 ± 0.13	21.34 ± 0.74

3.3. In Vitro Antifungal Activity Assay


3.3.1. Fungal Isolation

The *P. italicum* species was observed to grow more quickly and be less susceptible to contamination in in vitro conditions than *P. digitatum* (Figure 1).

Figure 1. Fungal isolation: (a) *P. digitatum*; (b) *P. italicum*.

3.3.2. Antifungal Activity

The Petry dishes were photographed every 24 hours, and it could be observed that the filter disk infused with the essential oils is able to inhibit the fungal species development (inhibition halo) and delay maturation of both species (Figure 2).

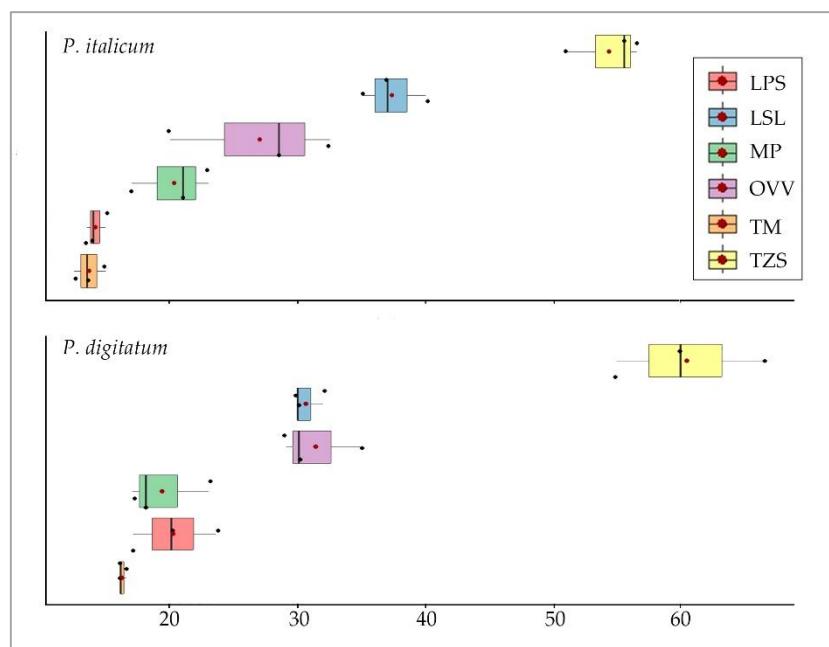

Figure 2. Photographic progression of *P. digitatum* and *P. italicum* (time in hours).

Table 4 displays statistical parameters obtained from the inhibition halo measurements obtained after 48 hours of growing. Measurement results show a higher inhibitory capacity from essential oil over *P. digitatum* specie than *P. italicum* (inhibition halo mean: 29.69 mm in *P. digitatum* and 27.81 mm in *P. italicum*). Besides, the observed skew shows a positive trend. On the other hand, the kurtosis of the antioxidant activity shows a platykurtic curve, indicating fewer extreme values than a normal distribution. However, the inhibition halo differs in the kurtosis depending on the fungal species (slightly leptokurtic in *P. digitatum* and platykurtic in *P. italicum*).

Table 4. Statistical parameters from inhibition halo measurement.

EO	\bar{x}	s	Me	Max	Min	SEM	g_1	g_2
<i>P. digitatum</i>								
OVV	31.33	3.21	30.00	35.00	29.00	1.86	0.34	-2.33
LPS	20.17	3.25	20.00	23.50	17.00	1.88	0.05	-2.33
LSL	30.67	1.15	30.00	32.00	30.00	0.67	0.38	-2.33
TM	16.17	0.29	16.00	16.50	16.00	0.17	0.38	-2.33
TZS	60.50	5.77	60.00	66.50	55.00	3.33	0.09	-2.33
MP	19.33	3.21	18.00	23.00	17.00	1.86	0.34	-2.33
<i>P. italicum</i>								
OVV	27.00	6.38	28.50	32.50	20.00	3.69	-0.22	-2.33
LPS	14.17	0.76	14.00	15.00	13.50	0.44	0.21	-2.33
LSL	37.33	2.52	37.00	40.00	35.00	1.45	0.13	-2.33
TM	13.67	1.26	13.50	15.00	12.50	0.73	0.13	-2.33
TZS	54.33	2.93	55.50	56.50	51.00	1.69	-0.34	-2.33
MP	20.33	3.06	21.00	23.00	17.00	1.76	-0.21	-2.33

Finally, the data distribution in relation to each essential oil species is presented in a boxplot for each fungal species (Figure 3). It is possible to observe that the *Th. zygis* subsp. *sylvestris* essential oil produced the most extensive inhibition halo for both fungal species, with a clear difference compared to the rest of the samples.

Figure 3. Inhibition halo boxplot produced by the different essential oil samples.

3.3.3. Statistical Analysis

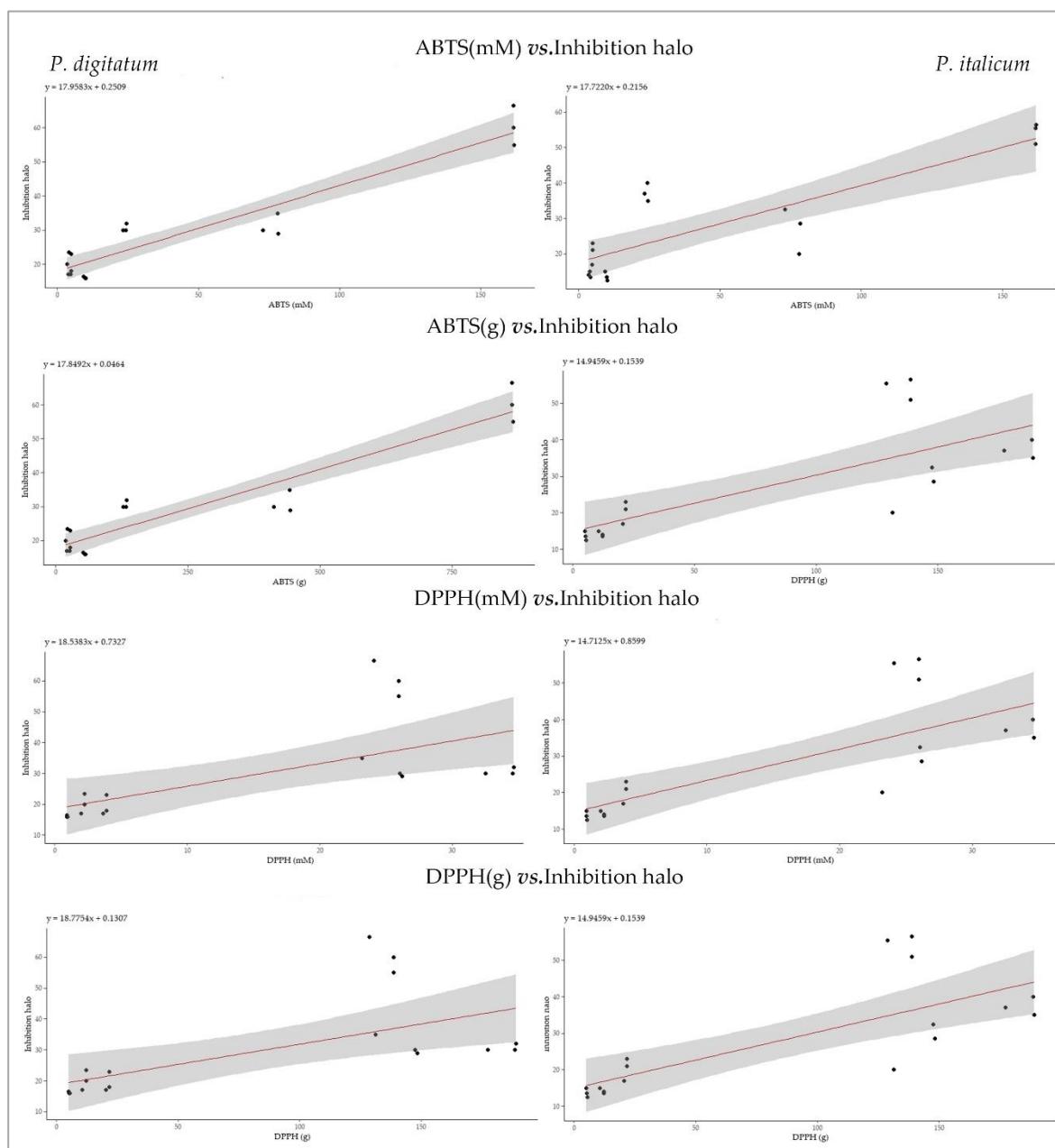
The Shapiro-Wilk test applied to the data base obtained in the study indicate the absence of normal distribution (Table 5), for that reason the statistical analysis was based on non-parametric correlation test (Spearman's correlation).

Table 5. Shapiro-Wilk test results.

variables	W	p-value	W	p-value
	<i>P. digitatum</i>		<i>P. italicum</i>	
inhibition halo (mm)	0.80130	0.00159	0.86399	0.01418
ABTS (mM)	0.72045	0.00014	0.72045	0.00014
ABTS (g)	0.72651	0.00017	0.72709	0.00017
DPPH (mM)	0.79313	0.00122	0.79468	0.00122
DPPH (g)	0.79468	0.00128	0.79468	0.00128

The results of the Spearman's correlation test show a p-value of less than 0.05 (significance level), indicating a linear relationship between the pairs of variables studied at the ordinal level and showing that this relationship is not due to chance (Table 6.).

A significant statistical linear correlation was found between the different measurements of antioxidant activity (using the ABTS and DPPH methods) and the inhibition halo using the various essential oil samples on the two species of mesophilic mold (*P. digitatum* and *P. italicum*) (Figure 4).


Table 6. Spearman's correlation test results obtained in inhibition halo measurements.

variables	S	p-value	q	S	p-value	q
	<i>P. digitatum</i>			<i>P. italicum</i>		
ABTS (mM)	245.38	$3.70 \cdot 10^{-4}$	0.75	247.88	$3.98 \cdot 10^{-4}$	0.74
ABTS (g)	235.35	$2.75 \cdot 10^{-4}$	0.76	247.88	$3.98 \cdot 10^{-4}$	0.74
DPPH (Mm)	232.34	$2.51 \cdot 10^{-4}$	0.76	176.77	$3.42 \cdot 10^{-5}$	0.82
DPPH (g)	238.36	$3.01 \cdot 10^{-4}$	0.75	194.80	$6.98 \cdot 10^{-5}$	0.80

4. Discussion

The obtained data shows the essential oils of *Th. zygis* subsp. *sylvestris*, *O. vulgare* subsp. *virens* and *L. stoechas* subsp. *luisieri* to have high antioxidant activity and elevated antifungal activity for both ABTS and DPPH. Conversely, the essential oils of *Th. masticina*, *M. × piperita* and *L. pedunculata* subsp. *sampaioana* exhibited low antioxidant and anti-fungal activity against the two evaluated fungal species, *P. italicum* and *P. digitatum*.

High antifungal and antioxidant activity from *Th. zygis* has been widely recognized in several studies [56–61]. *Th. zygis* essential oil can have different chemotypes (thymol, carvacrol, carvacrol/thymol, linalool, geranyl acetate/geraniol, ...) [58,60–63]. However, only the carvacrol, thymol and carvacrol/thymol chemotypes, have demonstrated elevated antifungal and antioxidant capacity [47,49–53]. The presence of thymol and carvacrol compounds in essential oil from other species of *Thymus* L. genus is well known [33,64–66]. Furthermore, research into the antifungal activity indicates that they have a higher inhibitory capacity for fungal growth than the pure compounds – thymol or carvacrol [57,64]. Regarding *P. digitatum* and *P. italicum* molds, *Th. zygis* subsp. *sylvestris* essential oil has an elevated inhibitory capacity against “in vitro” growth, as observed in other *Penicillium* species [33,36,56].

Figure 4. Scatter plots.

On the other hand, the other thyme species included in this study, *Th. mastichina*, has an essential oil rich in 1,8-cineole [59,67–69], with a poor antioxidant and antifungal capacity against the *Penicillium* species studied. However, other studies have shown it to have good antifungal properties against other fungal species, such as *Sclerotinia* spp., *Fusarium* spp., *Alternaria* spp. or *Candida* spp. [59,70–72]. This makes it possible to use it to fight fungal infections in crops or on the skin.

O. vulgare subsp. *virens* essential oil has a thymol/gamma-terpinene chemotype, which is unusual for this species [73,74]. This coincides with what was observed in research involving the carvacrol chemotype of *O. vulgare*, which exhibits high antioxidant and antifungal activity against *P. digitatum* and *P. italicum* [36,74–78].

The two *Lavandula* L. subspecies studied exhibit different antifungal capacities, with *L. stoechas* subsp. *luisieri* demonstrating greater activity than *L. pedunculata* subsp. *sampaioana* [79], and notably the inhibitory effect on *P. digitatum* growth is higher than on *P. italicum*. The antioxidant activity of *L. stoechas* subsp. *luisieri* essential oil is very high, mainly due to the presence of necrodiol derivatives [80]. On the other hand, *L. pedunculata* subsp. *sampaioana* has an essential oil rich in fenchone, camphor and 1,8-cineole, which are compounds with low antioxidant capacity [59,68].

M. × piperita essential oil exhibits the lowest of all the essential oils studied in the present research. However, other studies indicate good inhibitory capacity against several species of the *Penicillium* genus, including *P. digitatum* [81–84]. This divergence in results could be due to variation in the essential oil's chemical composition, including different percentages of menthol, menthone, limonene, alpha-pinene, and betha-pinene, among others.

5. Conclusions

The *Th. zygis* subsp. *sylvestris*, *O. vulgare* subsp. *virens* and *L. stoechas* subsp. *luisieri* essential oils have a high antioxidant capacity and can effectively inhibit the “in vitro” growth of the molds that mainly cause postharvest damages in *Citrus* genus fruits. Furthermore, all the essential oils studied exhibited a higher inhibition response against green mold (*P. digitatum*) than blue mold (*P. italicum*).

Author Contributions: Conceptualization, M.C. and F.M.; methodology, M.C. and F.M.; software, M.C. and D.G.; formal analysis, M.C., D.G., and F.M.; investigation, M.C., F.M., C.D., and D.G.; resources, F.V.; writing—original draft preparation, M.C. and F.M.; writing—review and editing, D.G., C.D., and F.V. All authors have read and agreed to the published version of the manuscript.

Funding: This study forms part of the AGROALNEXT programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.II).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.

Acknowledgments: The authors would like to acknowledge Alonso Martín Jabato and Julian Mor-cillo Solis for their help and maintenance of the assay crops used in this research. Additionally, we are grateful for the help of Pedro Del Viejo Esteban and Alicia Gil de los Santos during the development of the laboratory studies.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Hodges, R.J.; Buzby, J.C.; Bennett, B. Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. *J. Agric. Sci.* **2011**, *149*(S1), 37–45. <https://doi.org/10.1017/S0021859610000936>

2. Snyder, A.B.; Worobo, R.W. Fungal Spoilage in Food Processing. *J. Food Prot.* **2018**, *81*(6), 1035–1040. <https://doi.org/10.4315/0362-028X.JFP-18-031>
3. Rizwana, H.; Bokahri, N.A.; Alsahli, S.A.; Al Showiman, A.S.; Alzahrani, R.M.; Aldehaish, H.A. Postharvest disease management of *Alternaria* spots on tomato fruit by *Annona muricata* fruit extracts. *Saudi J. Biol. Sci.* **2021**, *28*(4), 2236–2244. <https://doi.org/10.1016/j.sjbs.2021.01.014>
4. Shakeel, Q.; Shaheen, M.R.; Ali, S.; Ahmad, A.; Raheel, M.; Bajwa, R.T. Chapter 1 - Postharvest management of fruits and vegetables. In *Applications of Biosurfactant in Agriculture*, Inamuddin, C.O.A. Ed., Academic Press, **2022**, pp. 1–16. <https://doi.org/10.1016/B978-0-12-822921-7.00001-5>
5. Zakaria, L. *Fusarium* Species Associated with Diseases of Major Tropical Fruit Crops. *Horticulturae* **2023**, *9*(3), 322. <https://doi.org/10.3390/horticulturae9030322>
6. Pouris, J.; Kolyva, F.; Bratakou, S.; Vogiatzi, C.A.; Chaniotis, D.; Beloukas, A. The Role of Fungi in Food Production and Processing. *Appl. Sci.* **2024**, *14*(12), 5046. <https://doi.org/10.3390/app14125046>
7. Dijksterhuis, J.; Houben, J. Fungal Spoilage of Crops and Food. In *Agricultural and Industrial Applications. The Mycota*, Grützner, S., Kollath-Leiß, K., Kempken, F. Eds., Springer, Cham, **2025**, 16, pp. 31–66. https://doi.org/10.1007/978-3-031-81904-9_3
8. Palou, Ll.; Valencia-Chamorro, S.A.; Pérez-Gago, M.B. Antifungal edible coatings for fresh citrus fruit: A review. *Coatings* **2015**, *5*(4), 962–986. <https://doi.org/10.3390/coatings5040962>
9. Costa, J.H.; Wassano, C.I.; Angolini C.F.F.; Scherlach, K.; Hertweck, C.; Fill, T.P. Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. *Sci. Rep.* **2019**, *9*, 18647. <https://doi.org/10.1038/s41598-019-55204-9>
10. Papoutsis, K.; Mathioudakis, M.M.; Hasperué, J.H.; Ziogas, V. Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by *Penicillium digitatum* (green mold) and *Penicillium italicum* (blue mold). *Trends Food Sci. Technol.* **2019**, *86*, 479–491. <https://doi.org/10.1016/j.tifs.2019.02.053>
11. Cheng, Y.; Lin, Y.; Cao, H.; Li, Z. Citrus Postharvest Green Mold: Recent Advances in Fungal Pathogenicity and Fruit Resistance. *Microorganisms* **2020**, *8*(3), 449. <https://doi.org/10.3390/microorganisms8030449>
12. Hanif, Z.; Ashari, H. Post-harvest losses of citrus fruits and perceptions of farmers in marketing decisions. *E3S Web Conf.* **2021**, *306*, 02059. <https://doi.org/10.1051/e3sconf/202130602059>
13. Kadhim, Z.R.; Ali, S.H.; AL-Rubaye, S.A. The economic impacts of the post-harvest losses of tangerines and Seville oranges crops in Iraq (Baghdad Governorate: As a case study). *Bulg. J. Agric. Sci.* **2025**, *31*(2), 237–244.
14. Hall, D.J. Comparative activity of selected food preservatives as citrus postharvest fungicides. *Proc. Fla. State Hort. Soc.* **1988**, *101*, 184–187.
15. Holmes, G.J.; Eckert, J.W. Sensitivity of *Penicillium digitatum* and *P. italicum* to postharvest citrus fungicides in California. *Phytopathology* **1999**, *89*, 716–721. <https://doi.org/10.1094/phyto.1999.89.9.716>
16. Talibi, I.; Boubaker, H.; Boudyach, E.H.; Ait Ben Aoumar, A. Alternative methods for the control of postharvest citrus diseases. *J Appl Microbiol.* **2014**, *117*(1), 1–17. <https://doi.org/10.1111/jam.12495>
17. Ma, J.; Li, Y.; Chen, H.; Zeng, Z.; Li, Z.-L.; Jiang, H. Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens. *Molecules* **2016**, *21*(2), 254. <https://doi.org/10.3390/molecules21020254>
18. Chen, J.; Shen, Y.; Chen, C.; Wan, C. Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review. *Plants* **2019**, *8*(2), 26. <https://doi.org/10.3390/plants8020026>
19. Kanashiro, A.M.; Akiyama, D.Y.; Kupper, K.C.; Fill, T.P. *Penicillium italicum*: An Underexplored Postharvest Pathogen. *Front. Microbiol.* **2020**, *11*, 606852. <https://doi.org/10.3389/fmicb.2020.606852>
20. Wang, Z.; Sui, Y.; Li, J.; Tian, X.; Wang, Q. Biological control of postharvest fungal decays in citrus: a review. *Crit. Rev. Food Sci. Nutr.* **2020**, *62*(4), 861–870. <https://doi.org/10.1080/10408398.2020.1829542>
21. Strano, M.C.; Altieri, G.; Allegra, M.; Di Renzo, G.C.; Paterna, G.; Matera, A.; Genovese, F. Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage. *Horticulturae* **2022**, *8*, 612. <https://doi.org/10.3390/horticulturae8070612>
22. Tejeswini, M.G.; Sowmya, H.V.; Swarnalatha, S.P.; Negi, P.S. Antifungal activity of essential oils and their combinations in vitro and in vivo conditions. *Arch. Phytopathol. Pflanzenschutz* **2013**, *47*(5), 564–570. <https://doi.org/10.1080/03235408.2013.814235>

23. Felšöciová, S.; Vukovic, N.; Ježowski, P.; Kačániová, M. Antifungal activity of selected volatile essential oils against *Penicillium* sp. *Open Life Sci.* **2020**, 15(1), 511-521. <https://doi.org/10.1515/biol-2020-0045>

24. Abd Rashed, A.; Rathi, D.-N.G.; Ahmad Nasir, N.A.H.; Abd Rahman, A.Z. Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches. *Molecules* **2021**, 26(4), 1093. <https://doi.org/10.3390/molecules26041093>

25. Ferreira, E.S.; Rosalen, P. L.; Benso, B.; de Cássia Orlandi Sardi, J.; Denny, C.; Alves de Sousa, S.; Queiroga Sarmento Guerra, F.; de Oliveira Lima, E.; Almeida Freires, I.; Dias de Castro, R. The Use of Essential Oils and Their Isolated Compounds for the Treatment of Oral Candidiasis: A Literature Review. *Evid. Based Complement. Alternat. Med.* **2021**, 1059274. <https://doi.org/10.1155/2021/1059274>

26. Hou, T.; Sana, S.S.; Li, H.; Xing, Y.; Nanda, A.; Netala, V.R.; Zhang, Z. Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. *Food Biosci.* **2022**, 47, 101716. <https://doi.org/10.1016/j.fbio.2022.101716>

27. Tran, H.M.; Le, D.H.; Nguyen, V.-A.T.; Vu, T.X.; Thanh, N.T.K.; Giang, D.H.; Dat, N.T.; Pham, H.T.; Muller, M.; Nguyen, H.Q.; Tran, V.-T. *Penicillium digitatum* as a Model Fungus for Detecting Antifungal Activity of Botanicals: An Evaluation on Vietnamese Medicinal Plant Extracts. *J. Fungi* **2022**, 8, 956. <https://doi.org/10.3390/jof8090956>

28. Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on *Penicillium digitatum*. *J Agric Food Chem.* **2000**, 48(6), 2576-2581. <https://doi.org/10.1021/jf990835x>

29. Plaza, P.; Torres, R.; Usall, J.; Lamarca, N.; Vinas, I. Evaluation of the potential of commercial postharvest application of essential oils to control citrus decay. *J. Hortic. Sci. Biotechnol.* **2004**, 79(6), 935-940. <https://doi.org/10.1080/14620316.2004.11511869>

30. Yahyazadeh, M.; Omidbaigi, R.; Zare, R.; Taheri, H. Effect of some essential oils on mycelial growth of *Penicillium digitatum* Sacc. *World J Microbiol Biotechnol.* **2008**, 24, 1445-1450. <https://doi.org/10.1007/s11274-007-9636-8>

31. Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal Activity of Citrus Essential Oils. *J. Agric. Food Chem.* **2014**, 62(14), 3011-3033. <https://doi.org/10.1021/jf5006148>

32. Tao, N.; Jia, L.; Zhou, H. Anti-fungal activity of Citrus reticulata Blanco essential oil against *Penicillium italicum* and *Penicillium digitatum*. *Food Chem.* **2014**, 153, 265-271. <https://doi.org/10.1016/j.foodchem.2013.12.070>

33. Boubaker, H.; Karim, H.; El Hamdaoui, A.; Msanda, F.; Leach, D.; Bombarda, I.; Vanloot, P.; Abbad, A.; Boudyach, E.H.; Ait Ben Aoumar, A. Chemical characterization and antifungal activities of four *Thymus* species essential oils against postharvest fungal pathogens of citrus. *Ind. Crop. Prod.* **2016**, 86, 95-101. <https://doi.org/10.1016/j.indcrop.2016.03.036>

34. Moussa, H.; El Omari, B.; Chefchaou, H.; Tanghort, M.; Mzabi, A.; Chami, N.; Remmal, A. Action of thymol, carvacrol and eugenol on *Penicillium* and *Geotrichum* isolates resistant to commercial fungicides and causing postharvest citrus decay. *Can. J. Plant Pathol.* **2020**, 43(1), 26-34. <https://doi.org/10.1080/07060661.2020.1767692>

35. Et-tazy, L.; Lamiri, A.; Satia, L.; Essahli, M.; Krimi Bencheqroun, S. In Vitro Antioxidant and Antifungal Activities of Four Essential Oils and Their Major Compounds against Post-Harvest Fungi Associated with Chickpea in Storage. *Plants* **2023**, 12, 3587. <https://doi.org/10.3390/plants12203587>

36. Martins, G.A.; Bicas, J. L. Antifungal activity of essential oils of tea tree, oregano, thyme, and cinnamon, and their components. *Braz. J. Food Technol.* **2024**, 27, e2023071. <https://doi.org/10.1590/1981-6723.07123>

37. Arras, G.; Usai, M. Fungitoxic Activity of 12 Essential Oils against Four Postharvest Citrus Pathogens: Chemical Analysis of *Thymus capitatus* Oil and its Effect in Subatmospheric Pressure Conditions. *J. Food Prot.* **2001**, 64(7), 1025-1029. <https://doi.org/10.4315/0362-028X-64.7.1025>

38. Rahman, M.M.; Wills, R.B.H.; Bowyer, M.C.; Golding, J.B.; Kirkman, T.; Pristijono, P. Efficacy of Orange Essential Oil and Citral after Exposure to UV-C Irradiation to Inhibit *Penicillium digitatum* in Navel Oranges. *Horticulturae* **2020**, 6, 102. <https://doi.org/10.3390/horticulturae6040102>

39. Alvarez, M.V.; Palou, L.; Taberner, V.; Fernández-Catalán, A.; Argente-Sanchis, M.; Pitta, E.; Pérez-Gago, M.B. Natural Pectin-Based Edible Composite Coatings with Antifungal Properties to Control Green Mold and Reduce Losses of 'Valencia' Oranges. *Foods* **2022**, *11*, 1083. <https://doi.org/10.3390/foods11081083>

40. Wardana, A.A.; Kingwascharapong, P.; Wigati, L.P.; Tanaka, F.; Tanaka, F. The antifungal effect against *Penicillium italicum* and characterization of fruit coating from chitosan/ZnO nanoparticle/Indonesian sandalwood essential oil composites. *Food Packag. Shelf Life* **2022**, *32*, 100849. <https://doi.org/10.1016/j.fpsl.2022.100849>

41. Olmedo, G.M.; Zhang, J.; Zhao, W.; Mattia, M.; Rosskopf, E.N.; Ritenour, M.; Plotto, A.; Bai, J. Application of Thymol Vapors to Control Postharvest Decay Caused by *Penicillium digitatum* and *Lasiodiplodia theobromae* in Grapefruit. *Foods* **2023**, *12*, 3637. <https://doi.org/10.3390/foods12193637>

42. Gharzouli, M.; Aouf, A.; Mahmoud, E.; Ali, H.; Alsulami, T.; Badr, A.N.; Ban, Z.; Farouk, A. Antifungal effect of Algerian essential oil nanoemulsions to control *Penicillium digitatum* and *Penicillium expansum* in Thomson Navel oranges (*Citrus sinensis* L. Osbeck). *Front. Plant Sci.* **2024**, *15*, 1491491. <https://doi.org/10.3389/fpls.2024.1491491>

43. Maunpuii, C.V.L.; Maisnam, R.; Antuhu, Y.L.; Kumari, A.; López-Menchero, J.R.; González-Coloma, A.; Andrés, M.F.; Kaushik, N. Evaluating the efficiency of essential oils as fumigants in controlling *Penicillium digitatum* in citrus fruits. *BIO Web Conf.* **2024**, *110*, 02009. <https://doi.org/10.1051/bioconf/202411002009>

44. Maswanganye, L.T.C.; Pillai, S.K.; Sivakumar, D. Chitosan Coating Loaded with Spearmint Essential Oil Nanoemulsion for Antifungal Protection in Soft Citrus (*Citrus reticulata*) Fruits. *Coatings* **2025**, *15*, 105. <https://doi.org/10.3390/coatings15010105>

45. Sánchez-Torres, P. Emerging alternatives to control fungal contamination. *Curr. Opin. Food Sci.* **2025**, *61*, 101255. <https://doi.org/10.1016/j.cofs.2024.101255>

46. Pérez-Alonso, C.O.; Martínez-Romero, D.; Zapata, P.J.; Serrano, M.; Valero, D.; Castillo, S. The effects of essential oils carvacrol and thymol on growth of *Penicillium digitatum* and *P. italicum* involved in lemon decay. *Int. J. Food Microbiol.* **2012**, *158*(2), 101–106. <https://doi.org/10.1016/j.ijfoodmicro.2012.07.002>

47. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. *Free Radic Biol Med.* **1999**, *26*(9-10), 1231–1237. [https://doi.org/10.1016/s0891-5849\(98\)00315-3](https://doi.org/10.1016/s0891-5849(98)00315-3)

48. Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. *LWT-Food Sci. Technol.* **1995**, *28*(1), 25–30. [https://doi.org/10.1016/S0023-6438\(95\)80008-5](https://doi.org/10.1016/S0023-6438(95)80008-5)

49. Morris, S.C.; Nicholls, P.J. An evaluation of optical density to estimate fungal spore concentrations in water suspensions. *Phytopathology* **1978**, *68*(8), 1240–1242. <https://doi.org/10.1094/phyto-68-1240>

50. Barnett, H.L.; Hunter, B.B. *Illustrated genera of imperfect fungi*, 4th ed. APS Press. **1998**, 218 pp

51. Pitt, J.I. *A Laboratory Guide to Common Penicillium Species*, 2nd ed. CSIRO Division of Food Processing, North Ryde, New South Wales, Australia. **1988**, 187 pp.

52. Romero, C.S. *Hongos Fitopatógenos*. Universidad Autónoma Chapingo. Chapingo, Estado de México, México, **1988**, 347 pp.

53. Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. *Am. J. Clin. Pathol.* **1966**, *45*, 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493

54. Hossain, T.J. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. *Eur J Microbiol Immunol.* **2024**, *14*(2), 97–115. <https://doi.org/10.1556/1886.2024.00035>

55. R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. **2024**.

56. El Hajli, F.; Chakir, S.; Annemer, S.; Assouguem, A.; Elaissaoui, F.; Ullah, R.; Ali, E.A.; Choudhary, R.; Hammani, K.; Lahlali, R.; Echchgadda, G. *Tetraclinis articulata* (Vahl) Mast.; *Mentha pulegium* L.; and *Thymus zygis* L. essential oils: Chemical composition, antioxidant and antifungal properties against postharvest fungal diseases of apple, and in vitro, in vivo, and in silico investigation. *Open Chem.* **2025**, *23*(1), 20250131. <https://doi.org/10.1515/chem-2025-0131>

57. Radi, F.z.; Bouhrim, M.; Mechchate, H.; Al-zahrani, M.; Qurtam, A.A.; Aleissa, A.M.; Drioiche, A.; Handaq, N.; Zair, T. Phytochemical Analysis, Antimicrobial and Antioxidant Properties of *Thymus zygis* L. and *Thymus willdenowii* Boiss. Essential Oils. *Plants* **2022**, *11*, 15. <https://doi.org/10.3390/plants11010015>

58. Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Lopes, M.C.; Salgueiro, L. Chemical, antifungal and cytotoxic evaluation of the essential oil of *Thymus zygis* subsp. *sylvestris*. *Ind. Crops Prod.* **2010**, *32*(1), 70–75. <https://doi.org/10.1016/j.indcrop.2010.03.005>

59. Pina-Vaz, C.; Gonçalves, A.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of *Thymus* oils and their major compounds. *JEADV* **2004**, *18*(1), 73–78. <https://doi.org/10.1111/j.1468-3083.2004.00886.x>

60. Gourich, A.A.; Bencheikh, N.; Bouhrim, M.; Reragui, M.; Rhafouri, R.; Drioiche, A.; Asbabou, A.; Remok, F.; Mouradi, A.; Addi, M.; Hano, C.; Zair, T. Comparative Analysis of the Chemical Composition and Antimicrobial Activity of Four Moroccan North Middle Atlas Medicinal Plants' Essential Oils: *Rosmarinus officinalis* L.; *Mentha pulegium* L.; *Salvia officinalis* L.; and *Thymus zygis* subsp. *gracilis* (Boiss.) R. Morales. *Chemistry* **2022**, *4*, 1775–1788. <https://doi.org/10.3390/chemistry4040115>

61. Sáez, F. Essential oil variability of *Thymus zygis* growing wild in southeastern Spain. *Phytochemistry* **1995**, *40*(3), 819–825. [https://doi.org/10.1016/0031-9422\(95\)00347-A](https://doi.org/10.1016/0031-9422(95)00347-A)

62. Rodrigues, V.; Cabral, C.; Évora, L.; Ferreira, I.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. Chemical composition, anti-inflammatory activity and cytotoxicity of *Thymus zygis* L. subsp. *sylvestris* (Hoffmanns. & Link) Cout. essential oil and its main compounds. *Arab. J. Chem.* **2015**, *12*(8), 3236–3243. <https://doi.org/10.1016/j.arabjc.2015.08.026>

63. Pérez-Sánchez, R.; Ubera, J.L.; Lafont, F.; Gálvez, C. Composition and Variability of the Essential Oil in *Thymus zygis* from Southern Spain. *J. Essent. Oil Res.* **2008**, *20*(3), 192–200. <https://doi.org/10.1080/10412905.2008.9699989>

64. Šegvić, M.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepelnak, S. Antifungal activity of thyme (*Thymus vulgaris* L.) essential oil and thymol against moulds from damp dwellings. *Lett. Appl. Microbiol.* **2007**, *44*(1), 36–42. <https://doi.org/10.1111/j.1472-765X.2006.02032.x>

65. Golparvar, A.R.; Hadipanah, A. A Review of the Chemical Composition of Essential Oils of *Thymus* Species in Iran. *Research on Crop Ecophysiology* **2023**, *18*(1), 25–51. <https://doi.org/10.30486/roce.2023.705509>

66. Etri, K.; Pluhár, Z. Exploring Chemical Variability in the Essential Oils of the *Thymus* Genus. *Plants* **2024**, *13*, 1375. <https://doi.org/10.3390/plants13101375>

67. Delgado, T.; Marinero, P.; Asensio-S.-Manzanera, M.C.; Asensio, C.; Herrero, B.; Pereira, J.A.; Ramalhosa, E. Antioxidant activity of twenty wild Spanish *Thymus mastichina* L. populations and its relation with their chemical composition. *LWT-Food Sci. Technol.* **2014**, *57*(1), 412–418. <https://doi.org/10.1016/j.lwt.2013.12.041>

68. Macedo, S.; Piçarra, A.; Guerreiro, M.; Salvador, C.; Candeias, F.; Caldeira, A.T.; Martins, M.R. Toxicological and pharmacological properties of essential oils of *Calamintha nepeta*, *Origanum virens* and *Thymus mastichina* of Alentejo (Portugal). *Food Chem. Toxicol.* **2019**, *133*, 110747. <https://doi.org/10.1016/j.fct.2019.110747>

69. Mateus, D.; Costa, F.; de Jesus, V.; Malaquias, L. Biocides Based on Essential Oils for Sustainable Conservation and Restoration of Mural Paintings in Built Cultural Heritage. *Sustainability* **2024**, *16*, 11223. <https://doi.org/10.3390/su162411223>

70. Fraternale, D.; Giampieri, L.; Ricci, D. Chemical Composition and Antifungal Activity of Essential Oil Obtained from In Vitro Plants of *Thymus mastichina* L. *J. Essent. Oil Res.* **2003**, *15*(4), 278–281. <https://doi.org/10.1080/10412905.2003.9712142>

71. Rodrigues, M.; Lopes, A.C.; Vaz, F.; Filipe, M.; Alves, G.; Ribeiro, M.P.; Coutinho, P.; Araujo, A.R.T.S. *Thymus mastichina*: Composition and Biological Properties with a Focus on Antimicrobial Activity. *Pharmaceutics* **2020**, *13*, 479. <https://doi.org/10.3390/ph13120479>

72. Diánez, F.; Santos, M.; Parra, C.; Navarro, M.J.; Blanco, R.; Gea, F.J. Screening of antifungal activity of 12 essential oils against eight pathogenic fungi of vegetables and mushroom. *Lett. Appl. Microbiol.* **2018**, *67*, 400–410. <https://doi.org/10.1111/lam.13053>

73. Machado, A.M.; Lopes, V.; Barata, A.M.; Póvoa, O.; Farinha, N.; Figueiredo, A.C. Essential Oils from *Origanum vulgare* subsp. *virens* (Hoffmanns. & Link) Ietsw. Grown in Portugal: Chemical Diversity and Relevance of Chemical Descriptors. *Plants* **2023**, *12*, 621. <https://doi.org/10.3390/plants1203062>

74. Soltani, S.; Shakeri, A.; Iranshahi, M.; Boozari, M. A Review of the Phytochemistry and Antimicrobial Properties of *Origanum vulgare* L. and Subspecies. *Iran. J. Pharm. Res.* **2001**, *20*(2), 268–285. <https://doi.org/10.22037/ijpr.2020.113874.14539>

75. Arras, G.; Usai, M. Fungitoxic Activity of 12 Essential Oils against Four Postharvest Citrus Pathogens: Chemical Analysis of *Thymus capitatus* Oil and its Effect in Subatmospheric Pressure Conditions. *J. Food Prot.* **2001**, *64*(7), 1025–1029. <https://doi.org/10.4315/0362-028x-64.7.1025>

76. Kocić-Tanackov, S.D.; Dimić, G.R.; Tanackov, I.J.; Pejin, D.J.; Mojović, L.V.; Pejin, J.D. Antifungal activity of Oregano (*Origanum vulgare* L.) extract on the growth of *Fusarium* and *Penicillium* species isolated from food. *Hem. Ind.* **2012**, *66*(1), 33–41. <https://doi.org/10.2298/HEMIND110614073K>

77. Zulu, L.; Gao, H.; Zhu, Y.; Wu, H.; Xie, Y.; Liu, X.; Yao, H.; Rao, Q. Antifungal effects of seven plant essential oils against *Penicillium digitatum*. *Chem. Biol. Technol. Agric.* **2023**, *10*, 82. <https://doi.org/10.1186/s40538-023-00434-3>

78. Vitoratos, A.; Bilalis, D.; Karkanis, A.; Efthimiadou, A. Antifungal Activity of Plant Essential Oils Against *Botrytis cinerea*, *Penicillium italicum* and *Penicillium digitatum*. *Not. Bot. Horti. Agrobo.* **2013**, *41*(1), 86–92. <https://doi.org/10.15835/nbha4118931>

79. Domingues, J.; Goulão, M.; Delgado, F.; Gonçalves, J.C.; Gonçalves, J.; Pintado, C.S. Essential Oils of Two Portuguese Endemic Species of Lavandula as a Source of Antifungal and Antibacterial Agents. *Processes* **2023**, *11*, 1165. <https://doi.org/10.3390/pr11041165>

80. Pombal, S.; Rodrigues, C.F.; Araújo, J.P.; Rocha, P.M.; Rodilla, J.M.; Diez, D.; Granja, Á.P.; Gomes, A.C.; Silva, L.A. Antibacterial and antioxidant activity of Portuguese *Lavandula luisieri* (Rozeira) Rivas-Martinez and its relation with their chemical composition. *SpringerPlus.* **2016**, *5*(1), 1711. <https://doi.org/10.1186/s40064-016-3415-7>

81. Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of *Mentha piperita* oil in liquid and vapour phase against food spoiling microorganisms. *Food Control* **2011**, *22*(11), 1707–1714. <https://doi.org/10.1016/j.foodcont.2011.04.002>

82. Reddy, D.N.; Al-Rajab, A.J.; Sharma, M.; Moses, M.M.; Reddy, G.R.; Albratty, M. Chemical constituents, in vitro antibacterial and antifungal activity of *Mentha × Piperita* L. (peppermint) essential oils. *J. King Saud Univ. Sci.* **2019**, *31*(4), 528–533. <https://doi.org/10.1016/j.jksus.2017.07.013>

83. Zamanian, Z.; Bonyadian, M.; Moshtaghi, H.; Ebrahimi, A. Antifungal effects of essential oils of *Zataria multiflora*, *Mentha pulegium*, and *Mentha piperita*. *J. Food Qual. Hazards Control.* **2021**, *8*, 41–44. <https://doi.org/10.18502/jfchc.8.1.5462>

84. Kgang, I.E.; Mathabe, P.M.K.; Klein, A.; Kalombo, L.; Belay, Z.A.; Caleb, O.J. Effects of lemon (*Citrus Limon* L.), lemongrass (*Cymbopogon citratus*) and peppermint (*Mentha piperita* L.) essential oils against of *Botrytis cinerea* and *Penicillium expansum*. *JSFA Reports* **2022**, *2*, 405–414. <https://doi.org/10.1002/jsf2.75>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.