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Abstract 

Six aromatic plants (Lavandula pedunculata subsp. sampaioana, Lavandula stoechas subsp. luisieri, Mentha 

× piperita, Origanum vulgare subsp. virens, Thymus mastichina, and Thymus zygis subsp. sylvestris) were 

analysed to evaluate their essential oil yield, chemical composition, antioxidant activity and 

antifungal capacity against two mold species, green mold (Penicillium digitatum (Pers.) Sacc.) and blue 

mold (Penicillium italicum Wehmer). The antioxidant activity was found to be at its lowest in Lavandula 

pedunculata subsp. sampaioana (3.84 ± 0.26) and at its highest in Thymus zygis subsp. sylvestris (161.70 

± 0.15). Similarly, the in vitro antifungal capacity assay produced different results depending on the 

essential oil used: the lowest value was produced by Thymus mastichina essential oil, and the highest 

by Thymus zygis subsp. sylvestris. All the data collected reveal a positive correlation between 

antioxidant activity, as measured by DPPH and ABTS assays, and the inhibition halo created by the 

essential oils used in this study. 

Keywords: antifungal activity; antioxidant; essential oil; Lavandula; Mentha; Origanum; Penicillium; 

Thymus 

 

1. Introduction 

Fruit and vegetables postharvest diseases caused by fungal infections (Aspergillus, Penicillium, 

Fusarium, Alternaria, …) due to wounds or insect bites produce elevated loss of food during storage, 

distribution and sale [1–7]. Citrus major sources of postharvest diseases are green mold (Penicillium 

digitatum (Pers.) Sacc.) and blue mold (Penicillium italicum Wehmer), which cause economic losses of 

15–30% and affect 50–90% of production, particularly in developing countries [8–13]. Traditionally, 

several methods based on synthetic chemical fungicides have been developed to reduce post-harvest 

losses; however, intensive use of these methods generates resistance, reducing their effectiveness 

[9,14,15]. Moreover, consumer trends demand products that are free of chemical residues and more 

environmentally friendly. Together with legislative restrictions on the use of phytosanitary products, 

this creates the need for new, more effective and environmentally friendly postharvest management. 

These alternatives include biocontrol strategies involving the use of antagonist yeast or bacteria, 

immersion in aqueous extracts of medicinal plants or citrus fruits, vaporization of essential oils from 

medicinal plants, wax coatings containing essential oils or plant extracts, new biopolymers and heat 

treatments, among others [6,11,16–21]. 

Studies of the antifungal capacity of medicinal plants extracts or essential oils have reported the 

ability of fight various fungal infections caused by Aspergillus spp., Candida spp., Cryptococcus spp., 

Epidermophyton spp., Fusarium spp., Microsporum spp. Penicillium spp., and Trichophyton spp. [22–27]. 
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Several studies have shown that essential oils from species such thyme, oregano, clove, cinnamon or 

citrus have a high inhibitory capacity against the in vitro growth of fungal colonies from Penicillium 

species such as P. digitatum and P. italicum) [28–36]. The antifungal properties of these essential oils 

have contributed to the development of new research aimed at preventing post-harvest infections 

caused by P. digitatum and P. italicum [37–45]. 

The use of essential oils from medicinal plants whose chemical composition includes antifungal 

compounds (e.g., thymol, carvacrol, terpinen-4-ol, etc. [46]) makes it possible to search for local 

medicinal species commonly used in traditional medicine that are rich in these kinds of compounds, 

creating a new local employment opportunity that are more environmentally friendly. For that 

purpose, the main objective of this research is to evaluate the inhibitory and antioxidant activities of 

different aromatic plants, native to the SW from the Iberian Peninsula, against two mold species (P. 

digitatum and P. italicum), which cause postharvest disease in citrus fruits (e.g., oranges). 

2. Materials and Methods 

2.1. Plant Material, Essential Oil Extraction, and Chemical Characterization of Essential Oils 

Aerial parts of six aromatic plants (L. pedunculata subsp. sampaioana, L. stoechas subsp. luisieri, 

Mentha × piperita, O. vulgare subsp. virens., Th. mastichina, and Th. zygis subsp. sylvestris) were collected 

from the experimental crops at Institute of Agrarian Research “La Orden-Valdesequera” (CICYTEX) 

(near of Guadajira, Spain). Representative samples were collected during the flowering stage, which 

took place between May and June 2024. 

Fresh stems, leaves, and flowers from each specie were cut in small pieces and submitted to 

hydro-distillation in Clevenger-type apparatus for 2 h. The essential oils (EOs) were stored in amber 

vial at 4ºC. 

The chemical analysis of the essential oils was carried out using a combination of two gas 

chromatography techniques (GC-FID + GC-MS), chemical compounds were identified by CG-MS and 

quantified by CG-FID. The analysis was performed on Agilent 8890 GC paired with the 5977B MSD 

(Mass Selective Detector). Polar column DB-WAX UI (60 m long, 0.25 mm diameter and 0.5 µm film 

thicknesses) was employed using Helium carrier gas at constant flow of 2 mL/min. Apolar column 

HP-5MS UI (60 m long, 0.25 mm diameter and 0.25 µm film thicknesses) was employed using Helium 

carrier gas at constant flow of 1 mL/min. The column temperature stared at 50ºC and increased to 

240ºC (polar column) and 285ºC (apolar column). 

2.2. Antioxidant Activity 

The antioxidant activity of each essential oil samples was determined by ABTS and DPPH assay 

method. The absorbance was measured using a spectrophotometer (Beckman Coulter DU®  730). 

The standard line from each assay was designed using Trolox (6-hidroxy-2,5,7,8-

tetramethylchroman-carboxylic acid) (Sigma-Aldrich 238813) between 1mM and 2mM concentration 

and measured the absorbance at 734nm (ABTS) and 517nm (DPPH). 

All the essential oil samples were analysed in triplicate. The sample volume used was 3 

milliliters (2,95 ml from DPPH/ABTS + 50 μl from essential oil sample). The results, from both 

analyses (ABTS and DPPH) were presented as millimoles (mM) of Trolox equivalents and grams of 

Trolox equivalents per gram of essential oil, with the main objective of developing a data matrix 

comparable between each other. 

2.2.1. ABTS [2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] Assay 

ABTS assay is based on the ability of molecules to scavenge the free radical of ABTS in 

comparison with Trolox [47]. Absolute ethanol was used to prepare the working solution of ABTS 

(Sigma-Aldrich A1888) at a concentration of 7 mM, which was then adjusted to obtain a final 

absorbance of 0.7 ± 0.02 (at 734 nm). To determine antioxidant activity, the essential oil samples 
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remained in the dark at ambient temperature for 30 minutes and, thereafter, the absorbance was 

measured at 734nm. 

2.2.2. DPPH (2,2-diphenyl-1-picrylhydrazyl) Assay 

The DPPH protocol to measure antioxidant activity was based on the description in reference 

[48]. Methanol (100%) was used as the solvent to prepare a working solution 75 µmol/L of DPPH 

(Sigma-Aldrich D9132), which was then adjusted to a final absorbance of 0.7 ± 0.02 (at 517 nm). For 

antioxidant activity determination, the samples remained in the dark at ambient temperature for 120 

minutes, after which the absorbance was measured at 517 nm. 

2.3. In Vitro Antifungal Activity Assay 

2.3.1. Fungal Isolation 

The fungal species used are P. digitatum and P. italicum, obtained from infected Citrus aurantium 

L. fruit. The isolation was realized in Petri dishes containing Sabouraud Dextrose agar (6%) and 

incubated for 7 days at 27ºC ± 1ºC, in complete darkness. The differential isolations were transferred 

to new Petri dishes containing Sabouraud Dextrose agar and re-sown each week until a pure fungal 

culture of each species was obtained. Finally, the standardization of the fungal colonies was achieve 

using a 0.85% saline solution suspension to obtain the 0.5 McFarland standard (1,5 · 108 CFU/ml) [49]. 

Morphological characterization (macro and microscopic) was performed using dichotomous keys as 

a reference [50–52]. 

2.3.2. Antifungal Activity 

The disk diffusion method was used to evaluate the antifungal activity of each of the essential 

oils [53,54]. The fungal suspension was sown in Petri dishes (87,8 mm diameter) containing 25 ml of 

Sabouraud Dextrose Agar. A sterile swab was used to spread the mold suspension evenly across the 

surface of the dish to ensure a homogeneous development of the mold. Essential oils were inoculate 

using a 10 mm diameter filter disk soaked with 25μl of each essential oil sample and placed in the 

center of the Petri dish. 

The study included a control group and a study group with 3 repetitions of each for each species 

of essential oil. Thus, 12 Petri dishes were used for each essential oil species (3 control dishes + 3 study 

dishes for each one of the analysed molds, P. digitatum and P. italicum). The Petri dishes were 

incubated for 5 days (96 hours) in an incubator chamber at 27ºC ± 1ºC in complete darkness and in 

the normal position (not inverted) to avoid affecting the mold growth. Finally, the Petri dishes were 

checked, photographed and measured every 24 hours. Measurements were taken by evaluating the 

inhibitory halo of growth around the filter disk using a caliper. 

2.4. Statistical Analysis 

Descriptive and inferential statistical analysis were performed using R v 4.3.3 software) [55] to 

determine the relationship between the inhibitory halo of growth results and the antioxidant activity 

obtained from the samples. The 48-hour data from inhibitory halo of growth were used to developed 

the statistical analysis (to ensure a correct understanding of the data and avoid mixing up inhibition 

and natural absence of growth). 

3. Results 

3.1. Essential Oil Composition 

Table 1 shows the essential oils yield obtained for each of the aromatic plant, expressed in grams 

of essential oil per kilogram of fresh plant and as a percentage (w/w). The highest yields were 

obtained in Thymus mastichina (L.) L., Lavandula pedunculata subsp. sampaioana (Rozeira) Franco, and 
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Thymus zygis subsp. sylvestris (Hoffmanns. & Link) Cout. with values of 2.43%, 1.28%, and 0.88% 

respectively. The species with the lowest yields were Mentha × piperita L., Lavandula stoechas subsp. 

luisieri (Rozeira) Rozeira, and Origanum vulgare subsp. virens (Hoffmans. & Link) Bonnier & Layens 

(0.62%, 0.42% and 0.41%, respectively). 

Table 1. Yield of the essential oil extraction by hydrodistillation. 

Specie Code Yield (w/w) % (w/w) 

Origanum vulgare subsp. virens OVV 4.09 0.41 

Lavandula pedunculata subsp. sampaioana LPS 12.80 1.28 

Lavandula stoechas subsp. luisieri  LSL 4.22 0.42 

Thymus zygis subsp. sylvestris TZS 8.78 0.88 

Thymus mastichina TM 24.29 2.43 

Mentha × piperita MP 6.17 0.62 

The essential oils have a rich monoterpene-based chemical composition (Table 2). The majority 

of the detected compounds are: thymol (68.83% in Th. zygis subsp. sylvestris and 36.72% in O. vulgare 

subsp. virens), 1.8-cineole (66.06% and 17.71% in Th. mastichina and L. stoechas subsp. luisieri 

respectively), camphor and fenchone (35.51% and 34.20% respectively in L. pedunculata subsp. 

sampaioana), gamma-terpinene (30.69% in O. vulgare subsp. virens), menthone and L-menthol (29.12 

and 27.56% respectively in M × piperita), and trans-alpha-necrodyl acetate (20.46% in L. stoechas subsp. 

luisieri). 

3.2. Antioxidant Activity 

Obtained results (Table 3) show that the essential oils of the L. stoechas subsp. luisieri, O. vulgare 

subsp. virens and Th. zygis subsp. sylvestris species have higher antioxidant activity. These species 

have in common a high percentage of the chemical’s thymol, gamma-terpinene and trans-alpha-

necrodyl acetate in their essential oils. 

Table 2. Composition of the essential oils. 

RI-WAX RI-HP5 Compound OVV LPS LSL TM TZS MP 

1025 933 Alpha-Pinene 0.67 6.35 1.83 3.44 0.51 0.74 

1029 918 Alpha-Thujene 1.63 0.01   0.21 1.32 0.06 

1069 953 Camphene 0.29 2.29 0.10 0.10 0.14 0.02 

1114 978 Beta-Pinene 0.18 0.05 0.30 5.11 0.13 1.17 

1126 972 Sabinene 0.29 0.03 0.12 3.83 0.07 0.67 

1133 940 Cymene Isomer     2.67       

1165 991 Beta-Myrcene 2.28 0.17 0.07 1.87 1.91 0.33 

1186 1018 Alpha-Terpinene 3.76 0.03     1.33 0.26 

1206 1021 Limonene 0.35 2.03 0.20 1.17 0.32 3.42 

1222 1039 1,8-Cineole 0.02 0.93 17.71 66.06   6.72 

1238 1035 Cis-Beta-Ocimene 2.15 0.15 0.45 0.02 0.01 0.27 

1254 1058 Gamma-Terpinene 30.69 0.05 0.12 1.79 5.72 0.41 

1278 1025 Para-Cymene 5.26 0.24 0.14 1.03 9.36 0.08 

1418 1090 Fenchone   34.20 0.28       

1465 1074 Trans-Sabinene Hydrate 0.16     0.70 0.68 0.82 

1484 1124 Menthone           29.12 

1500 1164 Menthofuran           4.94 

1510 1166 Isomenthone           4.31 

1541 1149 Camphor   36.51 1.00       

1553 1100 Linalool 0.16 2.00 2.29 4.14 0.86 0.26 

1574 1294 Menthyl Acetate           2.36 

1592 1239 Thymol Methyl Ether 1.88       0.01   

1595 1119 Fenchol<endo->   0.86         

1599 1288 Bornyl Acetate   0.98 0.06 <0,01     
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1606 1280 Trans-Alpha-Necrodyl Acetate     20.46       

1607 1239 Carvacrol Methyl Ether 2.38       0.05   

1608 1165 Neo-Menthol           4.11 

1617 1450 Trans-Beta Caryophyllene 1.61 0.04 0.22 0.12 1.41 1.18 

1619 1284 Lavandulyl Acetate   0.20 4.01       

1636 1296 Arbozol     2.24       

1653 1169 L-Menthol           27.56 

1662 1170 Delta-Terpineol       1.50   0.22 

1665 1244 Pulegone           3.98 

1668 1187 5-Methylene-2,3,4,4-tetrame-2-Cyclopentenone     2.37       

  1860 Unknown Sesquiterpenol     2.06       

1679 1172 Trans-Alpha-Necrodol     6.56       

1696 1195 Alpha-Terpineol 0.11 0.29 0.29 4.86 0.13 0.44 

1713 1167 Borneol 0.65 0.78   0.12 0.34 0.02 

2168 1293 Thymol 36.72       68.83 0.08 

2192 1316 Carvacrol 0.28     0.17 2.54   

Table 3. Antioxidant Activity results (ABTS and DPPH methods). 

Code 
ABTS DPPH 

mM TROLOX eq. g TROLOX eq. / g EO mM TROLOX eq. g TROLOX eq. / g EO 

OVV 76.45 ± 3.02 433.01 ± 17.10 25.15 ± 1.69 142.45 ± 9.57 

LPS 3.84 ± 0.26 20.79 ± 1.41 2.17 ± 0.16 11.73 ± 0.87 

LSL 24.06 ± 0.64 131.33 ± 3.47 33.91 ± 1.21 184.99 ± 6.58 

TM 9.76 ± 0.41 54.19 ± 2.30 0.96 ± 0.03 5.31 ± 0.16 

TZS 161.70 ± 0.15 864.20 ± 0.81 25.34 ± 1.08 135.42 ± 5.78 

MP 4.83 ± 0.09 26.94 ± 0.51 3.83 ± 0.13 21.34 ± 0.74 

3.3. In Vitro Antifungal Activity Assay 

3.3.1. Fungal Isolation 

The P. italicum species was observed to grow more quickly and be less susceptible to 

contamination in in vitro conditions than P. digitatum (Figure 1). 

  

(a) (b) 

Figure 1. Fungal isolation: (a) P. digitatum; (b) P. italicum. 

3.3.2. Antifungal Activity 

The Petry dishes were photographed every 24 hours, and it could be observed that the filter disk 

infused with the essential oils is able to inhibit the fungal species development (inhibition halo) and 

delay maturation of both species (Figure 2). 
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Figure 2. Photographic progression of P. digitatum and P. italicum (time in hours). 

Table 4 displays statistical parameters obtained from the inhibition halo measurements obtained 

after 48 hours of growing. Measurement results show a higher inhibitory capacity from essential oil 

over P. digitatum specie than P. italicum (inhibition halo mean: 29.69 mm in P. digitatum and 27.81 mm 

in P. italicum). Besides, the observed skew shows a positive trend. On the other hand, the kurtosis of 

the antioxidant activity shows a platykurtic curve, indicating fewer extreme values than a normal 

distribution. However, the inhibition halo differs in the kurtosis depending on the fungal species 

(slightly leptokurtic in P. digitatum and platykurtic in P. italicum). 

Table 4. Statistical parameters from inhibition halo measurement. 

EO x ̅ s Me Max Min SEM g₁ g₂ 

P. digitatum 

OVV 31.33 3.21 30.00 35.00 29.00 1.86 0.34 -2.33 

LPS 20.17 3.25 20.00 23.50 17.00 1.88 0.05 -2.33 

LSL 30.67 1.15 30.00 32.00 30.00 0.67 0.38 -2.33 

TM 16.17 0.29 16.00 16.50 16.00 0.17 0.38 -2.33 

TZS 60.50 5.77 60.00 66.50 55.00 3.33 0.09 -2.33 

MP 19.33 3.21 18.00 23.00 17.00 1.86 0.34 -2.33 

P. italicum 

OVV 27.00 6.38 28.50 32.50 20.00 3.69 -0.22 -2.33 

LPS 14.17 0.76 14.00 15.00 13.50 0.44 0.21 -2.33 

LSL 37.33 2.52 37.00 40.00 35.00 1.45 0.13 -2.33 

TM 13.67 1.26 13.50 15.00 12.50 0.73 0.13 -2.33 

TZS 54.33 2.93 55.50 56.50 51.00 1.69 -0.34 -2.33 

MP 20.33 3.06 21.00 23.00 17.00 1.76 -0.21 -2.33 

Finally, the data distribution in relation to each essential oil species is presented in a boxplot for 

each fungal species (Figure 3). It is possible to observe that the Th. zygis subsp. sylvestris essential oil 

produced the most extensive inhibition halo for both fungal species, with a clear difference compared 

to the rest of the samples. 
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Figure 3. Inhibition halo boxplot produced by the different essential oil samples. 

3.3.3. Statistical Analysis 

The Shapiro-Wilk test applied to the data base obtained in the study indicate the absence of 

normal distribution (Table 5), for that reason the statistical analysis was based on non-parametric 

correlation test (Spearman’s correlation). 

Table 5. Shapiro-Wilk test results. 

variables 
W p-value W p-value 

P. digitatum P. italicum 

inhibition halo (mm) 0.80130 0.00159 0.86399 0.01418 

ABTS (mM) 0.72045 0.00014 0.72045 0.00014 

ABTS (g) 0.72651 0.00017 0.72709 0.00017 

DPPH (mM) 0.79313 0.00122 0.79468 0.00122 

DPPH (g) 0.79468 0.00128 0.79468 0.00128 

The results of the Spearman’s correlation test show a p-value of less than 0.05 (significance level), 

indicating a linear relationship between the pairs of variables studied at the ordinal level and 

showing that this relationship is not due to chance (Table 6.). 

A significant statistical linear correlation was found between the different measurements of 

antioxidant activity (using the ABTS and DPPH methods) and the inhibition halo using the various 

essential oil samples on the two species of mesophilic mold (P. digitatum and P. italicum) (Figure 4). 

Table 6. Spearman’s correlation test results obtained in inhibition halo measurements. 

variables 
S p-value ρ S p-value ρ 

P. digitatum P. italicum 

ABTS (mM) 245.38 3.70 · 10-4 0.75 247.88 3.98 · 10-4 0.74 

ABTS (g) 235.35 2.75 · 10-4 0.76 247.88 3.98 · 10-4 0.74 

DPPH (Mm) 232.34 2.51 · 10-4 0.76 176.77 3.42 · 10-5 0.82 

DPPH (g) 238.36 3.01 · 10-4 0.75 194.80 6.98 · 10-5 0.80 
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4. Discussion 

The obtained data shows the essential oils of Th. zygis subsp. sylvestris, O. vulgare subsp. virens 

and L. stoechas subsp. luisieri to have high antioxidant activity and elevated antifungal activity for 

both ABTS and DPPH. Conversely, the essential oils of Th. mastichina, M. × piperita and L. pedunculata 

subsp. sampaioana exhibited low antioxidant and anti-fungal activity against the two evaluated fungal 

species, P. italicum and P. digitatum. 

High antifungal and antioxidant activity from Th. zygis has been widely recognized in several 

studies [56–61]. Th. zygis essential oil can have different chemotypes (thymol, carvacrol, 

carvacrol/thymol, linalool, geranyl acetate/geraniol, …) [58,60–63]. However, only the carvacrol, 

thymol and carvacrol/thymol chemotypes, have demonstrated elevated antifungal and antioxidant 

capacity [47,49–53]. The presence of thymol and carvacrol compounds in essential oil from other 

species of Thymus L. genus is well known [33,64–66]. Furthermore, research into the antifungal 

activity indicates that they have a higher inhibitory capacity for fungal growth than the pure 

compounds – thymol or carvacrol [57,64]. Regarding P. digitatum and P. italicum molds, Th. zygis 

subsp. sylvestris essential oil has an elevated inhibitory capacity against “in vitro” growth, as 

observed in other Penicillium species [33,36,56]. 
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Figure 4. Scatter plots. 

On the other hand, the other thyme species included in this study, Th. mastichina, has an essential 

oil rich in 1,8-cineole [59,67–69], with a poor antioxidant and antifungal capacity against the 

Penicillium species studied. However, other studies have shown it to have good antifungal properties 

against other fungal species, such as Sclerotinia spp., Fusarium spp., Alternaria spp. or Candida spp. 

[59,70–72]. This makes it possible to use it to fight fungal infections in crops or on the skin. 

O. vulgare subsp. virens essential oil has a thymol/gamma-terpinene chemotype, which is 

unusual for this species [73,74]. This coincides with what was observed in research involving the 

carvacrol chemotype of O. vulgare, which exhibits high antioxidant and antifungal activity against P. 

digitatum and P. italicum [36,74–78]. 

The two Lavandula L. subspecies studied exhibit different antifungal capacities, with L. stoechas 

subsp. luisieri demonstrating greater activity than L. pedunculata subsp. sampaioana [79], and notably 

the inhibitory effect on P. digitatum growth is higher than on P. italicum. The antioxidant activity of L. 

stoechas subsp. luisieri essential oil is very high, mainly due to the presence of necrodiol derivatives 

[80]. On the other hand, L. pedunculata subsp. sampaioana has an essential oil rich in fenchone, camphor 

and 1,8-cineole, which are compounds with low antioxidant capacity [59,68]. 

M. × piperita essential oil exhibits the lowest of all the essential oils studied in the present 

research. However, other studies indicate good inhibitory capacity against several species of the 

Penicillium genus, including P. digitatum [81–84]. This divergence in results could be due to variation 

in the essential oil’s chemical composition, including different percentages of menthol, menthone, 

limonene, alpha-pinene, and betha-pinene, among others. 

5. Conclusions 

The Th. zygis subsp. sylvestris, O. vulgare subsp. virens and L. stoechas subsp. luisieri essential oils 

have a high antioxidant capacity and can effectively inhibit the “in vitro” growth of the molds that 

mainly cause postharvest damages in Citrus genus fruits. Furthermore, all the essential oils studied 

exhibited a higher inhibition response against green mold (P. digitatum) than blue mold (P. italicum). 
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