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Abstract:. Manufacturers are increasingly adopting mixed-flow manufacturing models to meet
the diverse product requirements, enable small-batch production, and ensure swift delivery,
all in pursuit of sustainable production. In such an environment, material distribution
scheduling optimization is vital for smooth operations and is integral to production
management. However, manufacturers frequently encounter problems like irrational material
distribution task allocation and path planning, resulting in disordered deliveries, resulting in
high operational costs, which constrain manufacturers’ sustainability. Traditional scheduling
methods suffer from problems like inadequate transparency, delayed decision directives, and
suboptimal results, negatively affecting scheduling performance. To this end, this study
proposes a dynamic material distribution scheduling optimization model and strategy based
on digital twin (DT) to achieve cost-effective and sustainable material distribution. Firstly, we
introduce workstation satisfaction and establish a material distribution path optimization
model minimizing total distribution cost while maximizing workstation satisfaction.
Subsequently, we present a cloud-edge computing-based decision framework and explain
the DT-based material distribution system’s components and operation. Furthermore, a
dynamic material distribution scheduling optimization mechanism based on DT is designed. By
incorporating a savings method and incentive, penalty strategies, improvements are made to the
path node selection probabilities and the information pheromone update rules of the traditional
ant colony optimization algorithm. Finally, a numerical case study, using real data from
collaborating enterprises, validates the proposed algorithm and strategy. This research
offers valuable insights into sustainable logistics management and algorithm design for smart
workshops.

Keywords: material distribution; digital twin; scheduling model; scheduling mechanism; improved
ACO

1. Introduction

As global manufacturing continues to evolve, customer demands are becoming increasingly
diverse, personalized, and dynamic. This trend presents manufacturers with significant challenges,
demanding increased flexibility and sustainability in their production and logistics processes to
establish a sustainable manufacturing system [1]. Today, sustainability has become the focal point of
the global manufacturing industry. Manufacturers must continuously optimize their production and
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logistics operations to achieve economic, environmental, and social sustainability goals [2]. Material
distribution scheduling plays a pivotal role in achieving a sustainable manufacturing system, directly
impacting production efficiency and sustainability. The integration of sustainability principles into
material distribution systems has garnered significant attention from both academia and the industry
[3]. Sustainable material distribution systems emphasize the use of intelligent logistics scheduling
systems developed through digital technologies. Manufacturers can efficiently meet customer
demands while simultaneously enhancing production efficiency, optimizing resource utilization,
reducing energy consumption, and minimizing waste generation. This not only helps manufacturers
maintain their core competitiveness but also contributes to the achievement of sustainability
objectives, thus propelling the manufacturing industry forward.

In response to the ever-increasing demand for personalization, diversity, and dynamism, a
growing number of manufacturers are embracing a new generation of industrial internet
technologies such as the Internet of Things (IoT) [4], digital twin (DT) [5], and big data (BD) [6]. These
technologies are deeply integrated with the manufacturing sector, fundamentally altering the
production organization of manufacturers [6]. Manufacturers are actively adopting flexible and
dynamic mixed-model assembly production modes to reevaluate their current production
scheduling and control strategies, aiming to maintain their core competitive advantage. However, in
this production mode, traditional material distribution scheduling faces a series of problems
primarily stemming from the lack of appropriate information technology and control strategies. This
results in inadequate manufacturing information, imprecise decision directives, and subsequently,
material distribution problems such as disorderliness, vehicle waiting times, and workstation
hunger/overload, thereby prolonging the overall logistics distribution timeline. Furthermore,
uncertainties during execution (e.g., new demands, and equipment failures) inevitably disrupt the
distribution system, further deteriorating the performance of the logistics system. Therefore,
achieving comprehensive real-time state information awareness, real-time dynamic decision-making,
and control over the material distribution system is of paramount importance.

One of the most pressing challenges faced by traditional material distribution scheduling and
control strategies is the difficulty in collecting and sharing real-time operational data of the logistics
system [Error! Reference source not found.]. The IoT technology has transformed traditional
manufacturing resources, granting them the capabilities of identification, perception, and
communication, thus rendering real-time information visibility achievable. Recent efforts have seen
the development of an information-sharing model based on DT to facilitate real-time information
exchange between production and logistics processes [7].

While real-time information visibility technologies are lauded for enhancing the transparency of
manufacturing systems, they alone cannot achieve dynamic material distribution scheduling and
control. Therefore, innovative methods are required to incorporate real-time information visibility
into dynamic decision-making for dynamic material distribution to take place. Pioneering research
has begun to explore DT-driven real-time information-driven dynamic distribution scheduling
optimization and recognized the potential advantages of DT-driven dynamic decision-making [7,17],
yet there has been limited exploration of its theoretical foundation. Therefore, the following problems
need further investigation to better achieve dynamic material distribution scheduling optimization:

First, previous material distribution scheduling optimization models considered fixed departure
costs and variable travel costs for material distribution scheduling, while overlooking workstation
satisfaction as a core factor. Hence, a more comprehensive consideration of workstation satisfaction
and the construction of a more reasonable material distribution scheduling optimization model
require further research.

Second, the real-time and comprehensive collection of heterogeneous data related to the material
distribution system and the establishment of multiscale twin models supporting distribution
scheduling decisions are of utmost importance. Without real-time data and twin model support,
precise dynamic decisions cannot be made.

Third, the speed, quality, and stability of intelligent algorithms in traditional material
distribution scheduling systems still require improvement. Therefore, the improvement of existing
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intelligent optimization algorithms to enhance the quality, speed, and stability of problem solving is
essential.

The above problems have motivated this study, where we propose a material distribution
scheduling optimization method based on DT to address these challenges. This dynamic material
distribution scheduling optimization is achieved through emerging Industry 4.0 technologies and
innovative management concepts. Firstly, we consider workstation satisfaction in the material
distribution scheduling optimization model. The model accurately reflects the degree of workstation
satisfaction. Secondly, based on the DT standard architecture, we further design a DT-based material
distribution scheduling optimization decision framework and dynamic scheduling optimization
strategy, achieving intelligent and adaptive scheduling in complex and dynamic environments.
Additionally, the proposed ant colony algorithm is an improved version. Compared to the existing
traditional ant colony optimization (ACO), improvements have been made in the algorithm,
specifically in the path node selection probabilities and information pheromone update rules,
enhancing the quality and speed of optimal solution finding. The effectiveness of the proposed model
and strategy is validated using real data from collaborating assembly manufacturers.

The rest of this paper is organized as follows: Section 2 introduces the related work on enabling
technologies for production logistics management and material distribution scheduling models and
algorithms. Section 3 describes the problem under consideration and the corresponding material
distribution scheduling models. Section 4 presents the proposed solutions, including a DT-based
material distribution scheduling optimization decision framework, the composition and operation
mechanism of the DT-based material distribution system, a DT-based dynamic material distribution
scheduling optimization strategy, and an improved intelligent scheduling optimization algorithm.
Section 5 provides a numerical case study to validate the proposed methods. Finally, Section 6 offers
the main conclusions and limitations of this research.

2. Literature Review

This section provides a review of the relevant work, primarily encompassing enabling
technologies in production logistics management, material distribution scheduling optimization
problems, and related algorithms.

With the advancement of industrial internet technologies, the role of the IoT and DT in
intelligent production logistics management continues to grow [5]. By connecting various IoT devices
to physical resources, and creating smart objects with sensing, positioning, and communication
capabilities, inter-object communication and data exchange have become possible, offering new
opportunities for production logistics management [10]. For example, Li et al. [11] proposed an
intelligent logistics management system based on IoT technology, offering significant advantages in
addressing the complexity, inefficiency, and chaotic vehicle management that plague logistics
enterprises. Lei et al. [12] introduced an IoT-based intelligent distribution model, tackling the issue
of logistics decision-making time and speed within a large-scale information interaction
environment. Qing et al. [13] developed an IoT-based emergency logistics vehicle scheduling model,
addressing vehicle scheduling problems in post-disaster emergency logistics. Ren and associates [14]
established an IoT-based recycling logistics information management system, resolving integrated
management and operational control problems in recycling logistics.

Concurrently, Digital Twins, as an effective control method, are utilized to address planning and
scheduling optimization problems in manufacturing enterprises under dynamic disturbances. Wang
et al. [15] have developed a material distribution system based on digital twin technology to optimize
in-factory material distribution decisions. Fang et al. [16] introduced an innovative job shop
scheduling method based on digital twins to reduce scheduling deviations. Zhang et al. [17]
introduced an optimal control approach based on DT to tackle real-time objective formulation and
optimal execution control in a collaborative production operation system.

Material distribution scheduling optimization is a significant concern in production logistics
management, as it directly impacts the operational costs and service levels of the production logistics
system [18]22. Typically, this problem involves finding the optimal vehicle routing plan that satisfies
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customer demands and optimizes the objective function under given material distribution network
and constraints [20]. Depending on complexity and practical characteristics, this problem can be
categorized into different types, such as the vehicle routing problem (VRP), the VRP with time
windows, and the pickup and delivery VRP with Time Windows [Error! Reference source not
found.]. For instance, Klenk et al. [21] addressed real-time material distribution needs for multiple
assembly workstations, introducing a multi-frequency, small-batch milk-run material transport
scheduling model to cope with optimization problems under dynamic disturbances. Further
onwards, Klenk et al. [22] designed three decision strategies to determine real-time, optimal milk-run
material distribution cycles based on fluctuations in order quantities. To solve these optimization
problems, various intelligent algorithms have emerged, such as particle swarm optimization,
simulated annealing, and ant colony algorithms, each with their advantages in different application
scenarios. Tao et al. [23] improved the particle swarm optimization algorithm for solving AGV path
planning problems on the shop floor production line. Wang et al. [24] introduced a self-adaptive non-
dominated sorting genetic algorithm II (SNSGA-II) to address path optimization problems with
combined pickup and delivery. Chen et al. [25] proposed an enhanced ant colony hybrid algorithm,
improving path search accuracy and reducing the frequency of path selection decisions.

In summary, the literature review reveals several key problems. Firstly, material distribution
models often overlook workstation satisfaction. Secondly, most material distribution problems focus
on static distribution planning within workshops, with relatively limited research on dynamic
material distribution scheduling optimization based on DT. This includes a lack of a unified DT-based
scheduling decision framework incorporating various scheduling rules and its operational
mechanism, as well as room for improvement in the quality and speed of material distribution
scheduling solutions produced by traditional ant colony algorithms. Therefore, this study introduces
a dynamic material distribution scheduling optimization model, strategy, and related algorithms
based on DT.

3. Problem Analysis and Description
3.1. Material Distribution Operational Process and Operational Problems

3.1.1. Material distribution operational process

This work was motivated by collaboration with a well-known home appliance company. The
company manufactures hundreds of different products, each with varying order quantities. Different
product categories may have distinct production processes. To meet the demand for high product
variety and small batch production, they have implemented a mixed-model production approach in
the air conditioning final assembly workshop. Currently, the company’s workshop is gradually
transitioning to smart manufacturing and has deployed automated guided vehicles (AGVs) in the
assembly workshop to handle material transport and distribution tasks within the assembly line
workstations. These AGVs are coordinated by an automatic guidance system for the material
distribution across the assembly lines.

The study focuses on the dynamic material distribution scheduling optimization within the
mixed-model assembly workshop. Asillustrated in Figure 1, the principle of material demand-driven
distribution involves workstations continuously consuming materials from their workstation buffer
areas. When the inventory level drops below a trigger reorder threshold, material replenishment
orders are generated and sent to the material distribution system. Within each specific production
cycle, the material distribution system aggregates material demands from each workstation buffer
area, creating a material distribution task list. These tasks are then grouped into a material
distribution batch order and sent to the material supply center to arrange available logistics resources
for the required distribution tasks. Consequently, the material distribution process can be divided
into two main phases:

Planning Phase. The production planning department generates daily production distribution
schedules and daily material demand order lists based on customer orders and scheduling rules.
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These schedules and order lists are transmitted to the material distribution management department
through the material distribution system. The material distribution management department, based
on this timetable and material demand order list, allocates distribution demand orders among
available logistics resources (e.g., AGVs) to formulate the daily material distribution plan to ensure
the timely distribution of required materials.

Execution Phase. On the day of execution, the material distribution management department
assigns AGVs to carry out pre-allocated tasks and routes according to the established material
distribution plan. AGVs travel to the warehouse of the material supply center to retrieve various
required materials and deliver them to the workstation buffer areas. After completing the designated
distribution orders, AGVs return to the warehouse of the material supply center.

The Materials and Methods should be described with sufficient details to allow others to
replicate and build on the published results. Please note that the publication of your manuscript
implicates that you must make all materials, data, computer code, and protocols associated with the
publication available to readers. Please disclose at the submission stage any restrictions on the
availability of materials or information. New methods and protocols should be described in detail
while well-established methods can be briefly described and appropriately cited.
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Figure 1. Material distribution operation process.

3.1.2. Analysis of material distribution operation problems

Through the analysis of the operational processes described above, we can draw the following
conclusions: in the mixed-model manufacturing mode, due to the diversity and complexity of
materials, efficient, accurate, and timely material distribution is required in the workshop. However,
the material distribution process is often influenced by dynamic factors such as demand, resources,
and processes, which can lead to inadequate coordination between material distribution and
assembly production. Through the investigation of mixed flow assembly shop (MFAS), we have
identified the following research questions:

e  Optimizing workstation material distribution presents certain difficulties. Handling various
types and quantities of materials with limited logistics resources, without adequately
considering the impact of production speed on material distribution, results in inefficient
material distribution and increased costs. Additionally, with limited buffer capacity, there is a
need for frequent, appropriately sized material replenishments. However, traditional material
distribution strategies rely on manual experience, lacking scientific planning, often leading to
early deliveries causing material accumulation, or late deliveries causing assembly line
downtime, thereby reducing workstation satisfaction;

¢  Manufacturing companies face the challenge of comprehensive information acquisition. Due to
the variety of products, material distribution becomes complex. Achieving precise and efficient
material distribution requires advanced information technology support. However, the current
level of enterprise informatization is relatively low, capable of collecting only certain key
performance indicators of the material distribution system, but unable to acquire real-time
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comprehensive operational status information required for the material distribution system.
Lack of transparency in production logistics information within the workshop and inefficient
information transmission pose challenges to material distribution scheduling optimization;

e Designing effective dynamic distribution scheduling optimization strategies presents a
challenge. Traditional material distribution schedules are typically based on static planning,
without considering disruptive factors during the execution of production logistics. However,
unexpected dynamic changes often occur during execution. The absence of real-time
information-driven material distribution scheduling optimization strategies to effectively
address these disruptions results in significant deviations between on-site execution and
planned expectations, presenting a significant challenge to management.

3.2. Material Distribution Scheduling Optimization Problem Description

The scenario consists of a logistics transportation system comprising K AGVs, each capable of
material distribution for N workstations on multiple assembly lines. The maximum carrying capacity
of each AGV is denoted as Q, covering a range of materials, including evaporators, controllers, sheet
metal parts, and both in-house and outsourced components. Since each workstation has specific time
window requirements for materials, the material distribution scheduling optimization problem can
be categorized as the vehicle routing problem with time windows (VRPTW). In this problem, the
concept of soft time windows is introduced, incurring a penalty cost if the soft time window is
exceeded.

Specifically, the problem can be summarized as follows: AGVs depart from the distribution
center, deliver loaded materials to the workstation buffer areas on the assembly lines, and return to
the distribution center. The material load of each AGV must not exceed its maximum carrying
capacity while adhering to other constraints. The objective is to deliver materials to the workstations
within soft time windows while ensuring delivery completion within hard time windows. The
ultimate goal of the entire process is to minimize the number of AGVs and path lengths required for
material distribution while reducing workstation dissatisfaction, thus minimizing the total material
distribution cost, with the constraint of finite AGV resources. Initially, all AGVs are available for use.
However, during the execution of distribution, dynamic disruptions such as rush orders and vehicle
breakdowns are encountered, necessitating adjustments to the distribution plan based on the actual
circumstances to achieve optimal material distribution performance. Furthermore, DT-based material
distribution scheduling must meet the following requirements:

e  Each workstation buffer area can only be serviced by a single AGV;

° Each AGV can serve multiple workstation buffer areas;

e Al AGVshave the same priority and cannot be interrupted once they start serving a workstation
buffer area unless there is a vehicle breakdown;

e  The distribution capacity on each distribution path does not exceed the AGV’s maximum
payload;

e  Both the starting and ending points of AGVs are at the distribution center (material storage area),
and AGVs travel along the planned path at a fixed speed.

Research manuscripts reporting large datasets that are deposited in a publicly available database
should specify where the data have been deposited and provide the relevant accession numbers. If
the accession numbers have not yet been obtained at the time of submission, please state that they
will be provided during review. They must be provided prior to publication.

3.3. Formulation of Material Distribution Scheduling Optimization Problem

According to the description provided above, the relevant symbol definitions for the problem
model under consideration are presented in Table 1.
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Table 1. Symbols used in the proposed model.

Symbol Description

I The set of points representing workstation buffer areas, including N workstations and a
material distribution center (0), = {0,1,2,---,n}

K The number of distribution AGVs, K = {1,2,---,m,...K}

Q Maximum load capacity of each AGV

F A very large positive number

Dy Distance from station i to station j
qi Quantity of materials required at workstation i, with max q; < Q
a; The earliest time materials are required at workstation i
b; The latest time materials are required at workstation i
G Penalty cost per unit time for early arrival of materials at workstation i
Ca Transport cost per unit distance for distribution AGVs
Co Fixed start-up cost for each distribution AGV
g Penalty cost per unit of time for material delivered earlier than the time window
B Penalty cost per unit of time for material delivered later than the time window
tij Travel time for a distribution AGV to move from workstation i to j
tik Unloading time of the kth distribution AGV at workstation i
tk Moment of the arrival of the kth distribution AGV at workstation i
vir € {0,1} Workstation i is serviced by the kth AGV is 1, otherwise 0
Xk € {0,1} The kth distribution AGV traveling from workstation i to workstation j is 1, otherwise 0
The mathematical model for the research problem considered in this paper is represented as
follows:
Fgoal =min{fy, f>, 3} (1)
fi = Xil1 Xi=1Xoik (2)
fo = 2o X0 Xi=1 Dij - Xij 3)
f3 = Zio Zik=1{max(a; — tf, 0] + max[0, ¢tf — b;]} 4)
I qyu<Q,Vk=K (5)
YK yu=1,vi={li=+0} (6)
Z?’=1 Xojk = Z?]=1 Xjok, Vk =K (7)
th+ b+t — F(1—x) Stf,Vi=1Vj=1,vk =K (8)

8(a; —tik), tik <@
Ci =10, a; <t < bi (9)
B(ti—k — b)), ti_g = by

Equation (1) represents the three objective functions of the material distribution scheduling
optimization problem; Equation (2) minimizes the number of distribution vehicles used; Equation (3)
minimizes the length of distribution vehicle routes; Equation (4) maximizes workstation satisfaction,
i.e, minimizes the penalty cost for delayed vehicle arrivals; Equation (5) ensures that each
distribution vehicle’s load does not exceed its maximum capacity; Equation (6) specifies that each
workstation can only be serviced by one distribution vehicle; Equation (7) ensures that distribution
vehicles start from the distribution center, complete their deliveries, and return to the distribution
center; Equation (8) dictates that distribution vehicle k must arrive at workstation j after time ¢} +
tix + t;j; Equation (9) enforces time window constraints, incurring penalty costs if materials are
delivered outside the specified time window.

The mathematical model constructed above is a multi-objective optimization model.
Considering that the ultimate goal of material distribution scheduling optimization is to reduce
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distribution costs, the three objective functions are transformed into a single objective function using
a weighted standardization method. This single objective function minimizes the total operational
cost, which includes minimizing the fixed costs of distribution vehicles, minimizing the
transportation costs of distribution vehicles, and minimizing the penalty costs associated with
workstation time windows. The transformed objective function is represented by Equation (10).

Fyoar = Yo 2ke1 Co * Xoik + S Z?’:o P Dij.Cqxiji + Xizo Li=1 Ci - {max[a; — tF, 0] + max[0, tf — b1} (10)

4. Proposed Methodology

4.1. DT-based decision-making architecture for material distribution scheduling optimization

Figure 2 illustrates the decision architecture for DT-based material distribution scheduling
optimization, consisting of two hierarchical layers: the physical object layer and the virtual twin layer.

The physical object layer encompasses the physical resource layer and the smart device layer.
The physical resource layer covers various tangible resources within the mixed-model assembly
workshop, such as materials, pallets, AGVs, workstation buffers, workshop environments, and
operators. The smart device layer collects information related to materials, vehicles, task execution,
orders, and the environment through active or passive smart sensing devices like handheld PDA
terminals, wearable devices, a variety of sensors, 1/2D tags, RFID tags, etc. These resource and status
information are transmitted through heterogeneous networks to the upper layers of the decision
architecture. The heterogeneous transmission networks include RFID networks, Wi-Fi, 4/5G,
Bluetooth, ZigBee, LoRa, and other wireless transmission networks.

The virtual twin layer comprises the DT imaging layer and the DT service layer. The DT imaging
layer, based on data centers and model centers, integrates real-time data and multiscale static twin
models to create multi-scale virtual images through digital twin technology. These virtual images
reflect the physical structure, production processes, and material flow of the actual material
distribution system. They accurately display key information such as the flow paths of materials,
workstation layouts, and vehicle statuses. Using DT imaging, the dynamic aspects of material flow,
such as material accumulation and shortages, can be continuously monitored, providing support for
decision simulation within the DT service layer.

The DT service layer includes the material distribution scheduling optimization control system,
material distribution scheduling optimization mechanisms, and other service modules. This control
system leverages real-time, comprehensive operational information from the material distribution
scheduling system. It utilizes DT’s dynamic material distribution scheduling optimization
mechanisms and intelligent optimization algorithms to make collaborative decisions regarding the
execution plans of the task allocation subsystem and the vehicle scheduling subsystem. These
decisions are then transformed into directives for execution control. The system encompasses five
functional services: data retrieval services, algorithm invocation services, program execution services,
simulation execution services, and decision output services, promoting system scalability and the
reuse of functional modules.

A DT-based material distribution scheduling system requires robust computing capabilities to
meet real-time requirements. Thus, this system adopts a cloud-edge computing architecture,
distributing computing demands to cloud servers and edge servers [26], balancing the efficient
utilization of computing resources with real-time performance. Cloud servers perform extensive data
analysis and mining based on historical operational data, establish decision models, invoke
intelligent algorithms, generate decision solutions, and ensure the real-time, accuracy, and reliability
of the decision results. Edge servers are responsible for initial data collection and processing of
distribution operation data, real-time monitoring of system execution, device performance diagnosis,
analysis, and forecasting. Due to their proximity to data sources, edge servers can respond more
rapidly to dynamic on-site situations, meeting the real-time operational needs of the material
distribution scheduling system, and ensuring efficient and smooth production in the mixed-model
assembly workshop.
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Figure 2. DT-based Optimized decision-making architecture for material distribution scheduling.

4.2. DT-based Composition and Operation Mechanism for Material Distribution System

The material distribution system is a crucial component of the mixed-model assembly
workshop, and the DT-based material distribution system forms the foundation of the overall
scheduling optimization mechanism, significantly impacting the application of scheduling strategies.

This section describes the composition and operational mechanism of the DT-based material
distribution system. According to the DT five-dimensional model proposed by Tao et al. [27], the
composition of the DT-based material distribution system can be described as:

DTyps={Ps,Vs,Ss,Ds,CN}

(11)
where Ps represents the physical distribution system, Vs is the virtual distribution system, Ss
denotes the distribution service system, Ds supports the distribution decision-making data system,
and CN signifies their interactive connections. Figure 3 illustrates the relationships between these
components.

Ps includes AGVs, materials, operators, and smart IoT devices, primarily responsible for
receiving material distribution tasks dispatched by the production plan and executing material
transport based on the distribution plan. Vs is mainly used for simulation, evaluation, prediction,
and visualization, serving as a digital image of Ps. It involves multi-dimensional “geometric-
physical-behavior-rules,” multi-domain “mechanical-hydraulic-electrical,” and multi-scale “unit-
subsystem-system” models.

Ss represents a collection of various intelligent service functions that provide management and
control support for the DT-based material distribution optimization system. Ds comprises data from
Ps, Vs, Ss, along with fused information data (Datay) and knowledge data (Datay). The data system
also acts as a driving force for Ps, Vs, and Ss. CN is a critical link and foundation for establishing
the DT-based material distribution system, enabling interaction connections among the various
components.

When distribution tasks are executed, the collaborative process among different components
unfolds as follows. Initially, Ss generates an initial plan that satisfies task requirements and
constraints based on the system’s multi-dimensional fused data ( Datas). Subsequently, Vs
simulates, evaluates, and optimizes the initial plan, eliminating potential conflicts, and uploads the
optimized best initial plan to Ss. Ss then sends the validated best initial plan to Ps for logistics
preparation.

Once the distribution begins, the validated best initial plan is transmitted to Vs, which sends
instructions to control the logistics operations of Ps. Ps provides real-time feedback on the status of
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material distribution to Vs. During the distribution process, Vs predicts changesin Ps’ performance
trends and continuously simulates, evaluates, and optimizes logistics based on DT data. Vs
continues to evolve until the tasks are completed.

If discrepancies are found between the execution status of Ps and the initial plan instructions
(referred to as the interference intensity, defined in Section 4.3), an interference response service is
automatically triggered. Ss rapidly identifies the cause of the interference and adjusts it based on
dynamic response strategies to achieve optimal logistics operations.

Furthermore, Ds, as the “core engine” of DT operation, is indispensable for Ps,Vs, and Ss, as
they all rely on Ds for driving the system.
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Figure 3. DT-based material distribution system composition.

4.3. DT-based Dynamic Material Distribution Scheduling Optimization Strategy

With the support of DT-based decision architecture for material distribution scheduling
optimization, this section proposes a DT-based dynamic material distribution scheduling
optimization strategy.

Figure 4 illustrates the overall scheduling optimization strategy. Initially, material distribution
task instructions are generated based on the material distribution order demands from the
production plan. This entails generating a set of distribution vehicles for each material batch in S,
along with the collection of routes for each vehicle. Ss defines the eligible vehicles for each type of
material and employs a compression spatiotemporal ratio method [28] to determine the precise
average travel speed of the distribution AGVs. Subsequently, the scheduling optimization model
established in the initial scheduling phase is solved using the embedded improved ACO (IACO).
Next, the solved scheduling plan is imported into Vs for simulation and verification to mitigate
potential risks within the scheduling plan. After iterative optimization, the best initial distribution

plan results are transformed into decision instructions to control and guide the logistics operations
of Ps.
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Figure 4. DT-based dynamic material distribution scheduling optimization strategy.

In the actual production logistics execution process, the comprehensive and robust data
collection capability of the DT-based material distribution system allows for real-time operational
data, including AGVs, materials, logistics operations, personnel, and environmental data, to be
monitored and uploaded to Ds. The collected real-time operational data is compared with the results
simulated in Vs to determine whether disturbances exceed predefined thresholds. If such thresholds
are surpassed, dynamic corrective scheduling is employed to address the disturbances.

During the dynamic corrective scheduling phase, the material distribution system inevitably
encounters various disruptive factors, such as emergency insertions, vehicle breakdowns, material
shortages, etc. This study categorizes these disturbances into three levels based on their impact on
system operations, denoted as R;,R, and Rz, with varying levels of intensity. The definition of
disturbance intensity is as follows:

R = fp(T;,S% (12)

§4 = Fpr(T}) (13)
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Building upon our research group’s prior work [17], different dynamic response strategies are
proposed for various disturbance intensities. When R < Ry, it is categorized as level one dynamic
response, i.e., R;. In this case, although the material distribution plan for the mixed-flow workshop
is affected by disturbances, the impact is not significant enough to disrupt normal execution.
Therefore, deliveries can proceed according to the original plan without the need for adjustment.
When R; < R < R,, itis categorized as level two dynamic response, i.e., R,. At this stage, the material
distribution plan can no longer meet dynamic requirements, but internal corrections can be made to
adjust the material distribution plan by modifying and configuring other available distribution
vehicles to meet the material distribution needs. When R, <R, it is categorized as level three
dynamic response, i.e., Rs. In this stage, the planned corrections are insufficient to meet the high
dynamic requirements of the material distribution plan in the mixed-flow workshop, requiring the
introduction of external logistics resources for resource adjustments. Revised material distribution
planning schemes are then issued as instructions to the execution site to meet the high-dynamic
production logistics requirements.

4.4. Intelligent Optimization Algorithm

In a DT-based material distribution system, the generation of scheduling plans relies on the
support of intelligent optimization algorithms. These algorithms are encapsulated within Ss and
integrated with DT. The scheduling optimization algorithm, as the core technology of the DT-based
material distribution system, has a direct impact on the performance of the logistics system.
Therefore, this section explores an improved intelligent optimization algorithm.

The ant colony optimization (ACO) algorithm, inspired by the foraging behavior of ants in
nature, has demonstrated outstanding performance in finding optimal paths. It is a probabilistic
algorithm with good parallelism, robustness, and positive feedback properties. ACO algorithms have
been widely applied in various fields, including machine learning, graph theory problems, logistics
planning, and production scheduling. However, traditional ACO algorithms often suffer from
problems such as low solution precision, slow convergence speed, and susceptibility to local optima.

In this research, we employ an improved ant colony optimization algorithm (IACO) to address
the material distribution scheduling optimization problem in the DT-based framework. Compared
to the conventional ACO, IACO incorporates improvements in route node transition rules and
pheromone update rules to enhance its performance and efficiency.

4.4.1. Improved route node selection transition rules

The savings technique is introduced, incorporating a quantity p;; to enhance the ant’s transition
probability selection. p;; is introduced into the ant’s path node transition probability formula,
optimizing the selection of path nodes while favoring higher vehicle load rates. The improved node
selection transition probability formula is as follows:

[, O1 151 i ]°

if i € allowed

Pi? ) = ZiEallowed[Tij(t)]a'[’h’j(t)]ﬁ'[#ij]p' (14)
0 , else
ni;(6) = di] (15)
2 2705
dij = {(xi -x)" +i—¥) } (16)
Uij = dip + djo — d;j (17)

where Equation (14) Pf(t) represents the improved path node selection transition probability
formula, indicating the probability of ant k selecting node i to node j at time t. This probability is
influenced by the pheromone concentration [‘L’i ] (t)]a, the heuristic function 7;;(t), the pheromone
increment p;;, and whether node i belongs to the accessible node set allowed. Equation (15)
represents the heuristic function, denoting the visibility between nodes i and j, which is usually the
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reciprocal of the distance between nodes. Equation (16) d;;represents the distance function, denoting
the Euclidean distance between nodes i and j, and Equation (17) is the savings function y;;, which
is the sum of route lengths for separate deliveries to two workstations, minus the route length when
visiting both workstations simultaneously. Here, « is the pheromone factor, f3 is the heuristic function
factor, and p is the pheromone evaporation factor.

4.4.2. Improved pheromone update rules

The core idea behind this rule is that ants update pheromones along their path as they search,
guiding them in choosing paths to find the best solutions according to specific problem constraints
and objectives. The standard pheromone update formula is as follows:

7t +1) = (1 — p)r;; () + Ary;(¢) (18)
ATy (8) = XL, AT () (19)
Atyi(t) = ¥ty AT () (20)
atfi(e) = ¢ (21)

where Equation (18) t;;(t + 1)represents the pheromone concentration function for nodes i and j at
time t+ 1, influenced by the pheromone concentration 7;;(t) at the previous time t and the
pheromone increment At;;(t) (as shown in Equation (20)). Pheromone concentration gradually
evaporates (1 —p) while being influenced by rewards and penalties from ant paths. Az;;(t) is
calculated based on the traveling path length L, of a single ant k and the pheromone constant Q,
representing the increase in pheromone concentration from node i to node j.

In this study, we introduce an improved pheromone update rule that accelerates the algorithm’s
convergence by using a reward and penalty strategy. Specifically, during the process of ants
searching for paths, ants that fail to complete routes correctly are eliminated, and only those ants that
successfully reach the target endpoint with a valid path are retained. For these qualified paths, we
introduce a reward and penalty strategy for pheromone updates. Assuming there are m ants in total,
for the top n ants with the shortest travel path lengths, we increase the pheromone concentration
released by these ants, i.e., rewarding them. For the remaining m-n ants (i.e., those ranked below the
top n ants), we reduce the pheromone concentration on their paths, i.e., penalizing them. The specific
formula for the improved pheromone update rule is shown in (22) and (23), where ly,u,,,

represents the current iteration’s best solution, and [ represents the worst solution of the

NnoWworst
current iteration. To ensure that the pheromone concentration fluctuates within a certain range,
avoiding excessive growth or reduction, as well as preventing the algorithm from getting stuck in
local optima prematurely or stagnating during the search process, we set the pheromone

concentration 7;; as shown in (24).

4.4.3. The solving process of improved ant colony algorithm

Figure 5 illustrates the steps in the solving process of the improved ant colony algorithm, which
includes the following stages:

Step 1: Parameter initialization

e  Set the maximum number of iterations, iter,,, control the total number of iterations for the
algorithm;

e Initialize the algorithm’s relevant parameters: pheromone factor a, heuristic function factor 3,
pheromone constant @, and pheromone evaporation factor p;

e Define the number of ants (vehicles) as M, representing the quantity of ants participating in
solving the problem;

e N denotes the number of stations in the material distribution problem;

e Initialize the initial pheromone concentration 7;;(t), where pheromone concentration signifies
the concentration of pheromones on the path, and t represents the current iteration number;
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¢ Initialize the Tabu list, which records nodes that have been visited to prevent repeated visits;
e Initialize all accessible nodes (allowed), representing workstations or service points that have
not been visited yet.

Step 2: Path search

e  Start from the origin point (0) and add it to the Tabu list, indicating the current ant’s starting
position;

e  Calculate path node selection transition probabilities based on Equation (14) and (17). These
transition probabilities determine the likelihood of the ant selecting the next node;

e  Utilize a roulette wheel selection method to choose the next node for path searching and add
that node to the Tabu list for the current iteration to keep track of visited nodes.

Step 3: Task completion check

e  Determine if the current ant has completed the material distribution task, meaning whether all
demand service points have been satisfied;

e  If the ant has completed the task, it returns to the origin point (0) and completes one distribution
task;

e  If the ant has not completed the task, it returns to Step 2 to continue path searching to fulfill the
remaining demands.

Step 4: Next ant selection

e  Check if all ants have completed their path searches;

e If all ants have completed path searching, proceed to the next step;

e  If there are ants that have not completed path searching, continue with Step 4 by selecting the
next ant for path searching.

Step 5: Pheromone update and iteration termination

e Update the pheromones on the paths based on Equation (22), (23), and (24). These updates
depend on the ants’ performance on the paths and problem-specific parameters;

e Check if the current iteration number exceeds the maximum iteration limit;

e If the current iteration number exceeds the maximum limit, terminate the algorithm and output
the current best solution;

. If the current iteration number does not exceed the maximum limit, return to Step 2 to continue
the iterative process of path searching and pheromone updates until the termination condition
is met.
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Figure 5. The flowchart of the IACO algorithm.

5. Case Study

5.1. Case Background and Data Presentation

To validate the excellence and effectiveness of the DT-based material distribution scheduling
strategy, we have implemented a DT-based material distribution system in a collaborative enterprise.
This material distribution system fully utilizes AGVs to execute distribution tasks, with the average
travel time of AGVs determined through DT simulation, an average speed of 1m/s, and a maximum
vehicle load of 180kg. We calculated the fixed costs of AGVs and the distribution costs per unit
transportation distance based on historical operating data within the workshop. The assembly
workshop comprises three mixed-model assembly lines, and we incorporated actual site data,
including the coordinates of material storage areas and various workstations. Table Al provides
relevant data for vehicle distribution costs, while Table A2 displays the coordinates of the
workstations. In this study, we selected the material demand data for different workstations during
one cycle of material distribution in the mixed-model assembly workshop, as shown in Table A3, the
sources of which are shown in Table Al, Table A2, and Table A3 in Appendix A.

5.2. Result Analysis

5.2.1. Verification of algorithm superiority

Traditional material distribution scheduling schemes rely on manual experience and often fall
short of achieving optimal operations, especially in highly dynamic mixed-model production
environments. Hence, this study employs an IACO algorithm to address the material distribution
scheduling optimization problem. Numerical simulation experiments were conducted using Matlab
R2016a on Alibaba cloud servers, with real data sourced from our collaborative enterprise. Both the
traditional ACO and the IACO algorithms were encoded and solved separately to evaluate the
performance of the proposed algorithm. To ensure algorithm stability, each case was run 50 times,
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and the average of the best values obtained from 50 runs was considered as the final result for both
algorithms.

Figure 6(a) presents a comparison of the simulation results for the two algorithms. The
traditional ACO algorithm and the improved ACO algorithm required 51 and 38 iterations,
respectively, to converge to the optimal operational cost, resulting in 133.5 and 117.1, respectively.
They needed 60 and 39 iterations to reach the optimal distribution routes, covering distances of 1062
and 976, respectively. The results indicate that the improved ACO algorithm demonstrates a
significant advantage in terms of solution quality and convergence speed compared to the traditional
ACO algorithm.

5.2.2. Schedule results comparison

To comprehensively evaluate the excellence and effectiveness of the DT-based dynamic
scheduling (DT-DS) strategy proposed in this paper, we introduced a traditional manual scheduling
(TMS) strategy as a comparative benchmark. Under the TMS strategy, material distribution plans are
manually devised by planners based on their expertise. In contrast, the DT-DS strategy proposed in
this paper makes use of an improved ACO algorithm to make decisions within the DT environment.

Figure 6(b) displays a comparison of the two scheduling optimization results. Using the TMS
strategy, six AGVs were required, covering a total distance of 2124 meters, with a material
distribution total cost of 304.4, and an average vehicle load rate of 88.5%. In contrast, using the DT-
DS strategy, the number of AGVs reduced to five, the total travel distance decreased to 1897, the
material distribution total cost was 239.7, and the average vehicle load rate improved to 95.2%.
Compared to the TMS strategy, after implementing the DT-DS strategy, there was a reduction of one
AGYV, a 10.7% reduction in travel distance (227), an approximately 93% increase in workstation
satisfaction (reducing by 26.5), and a roughly 21.3% decrease in material distribution total cost
(reducing by 64.7), with a 7.6% increase in the average vehicle load rate.
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Figure 6. (a) Simulation results of two algorithms; (b) comparison of results under two scheduling
strategies.

5.3. Sensitivity Analysis

To delve into the impact of changes in logistics resources and emerging demand on the
performance of material distribution scheduling systems, this study considers three relevant and
typical scenarios: sensitivity analysis under different vehicle load (type) configurations, various
vehicle quantity configurations, and different dynamic distribution demand volumes. These
sensitivity analyses offer valuable insights for logistics management in mixed-model assembly
workshops of similar enterprises.

5.3.1. Scenario 1—sensitivity analysis of different vehicle model configurations

Based on real distribution vehicles in a specific workshop and baseline distribution demand data
for a given period, three different vehicle model configurations were considered: lightweight (140),
medium-weight (180), and heavyweight (230).

As illustrated in Figure 7 (a), the simulation results analysis for different vehicle model
configurations reveals significant differences in key indicators of the material distribution scheduling
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system, such as average load rates and total distribution costs when other factors remain constant.

The medium-weight vehicles exhibit the highest average load rate (94.22%), followed by lightweight

vehicles (86.53%), and heavyweight vehicles (73.76%). The medium and heavyweight vehicles both

use 5 vehicles each, while lightweight vehicles employ 7 vehicles. In terms of distribution costs,
lightweight vehicles have the highest costs (143.1), and medium-weight vehicles have the lowest costs

(122.6).

The explanation for these results is that the medium-weight vehicles achieve the highest average
load rate, possibly because of their greater maximum payload, allowing them to accommodate more
materials and thus improve the average load rate. Conversely, the higher distribution costs for
lightweight vehicles could be attributed to their lower maximum payload, which requires more
vehicles and trips to deliver the same quantity of materials, resulting in increased costs.

From this sensitivity analysis, valuable management insights can be derived:

e  Managers need to balance distribution costs and efficiency in logistics operations. The size of a
vehicle’s payload impacts the overall material distribution scheduling system’s performance
when the quantity of materials remains constant. Overly large payloads can lead to lower load
rates, reduced vehicle utilization, and increased total costs. Conversely, excessively small
payloads, while improving average load rates, necessitate more vehicles, increasing
maintenance costs. Therefore, selecting vehicles with medium payloads may help enterprises
strike the right balance between cost and efficiency.

¢  Managers should consider the alignment of production modes with vehicle configurations. In
high-volume production modes, where material demand is significant, using vehicles with
larger payloads can better meet the high-volume material distribution requirements and reduce
transportation costs. On the other hand, in multi-variety, low-volume production modes where
materials vary but are relatively small in quantity, selecting vehicles with smaller payloads can
better meet flexibility requirements and improve load rates.

e  Managers need to find a balance between flexibility and efficiency. High-volume production
modes often prioritize efficiency and, therefore, using larger payload vehicles can reduce costs.
However, multi-variety, low-volume production modes prioritize flexibility, and thus smaller
payload vehicles can better accommodate diverse material needs. In practice, managers must
consider production demands, customer requirements, and the availability of logistics resources
in their decision-making.

5.3.2. Scenario 2—sensitivity analysis of different vehicle quantity configurations

An analysis was conducted based on distribution demand data for a specific production batch,
considering different quantities of medium-weight distribution vehicles, ranging from 5 to 11
vehicles.

Figure 7 (b) displays the results of the analysis for different configurations of distribution vehicle
quantities. It is evident that, with other factors held constant, the total distribution costs exhibit a
decreasing-then-increasing trend as the number of vehicles increases. When there are five vehicles,
the total distribution costs are highest (747.6), and when the quantity increases to 8 vehicles, the costs
decrease to a minimum (679.3). However, when the number further increases to 11 vehicles, the total
distribution costs not only do not continue to decrease but increase to 724.5.

The interpretation of these results is that having too few vehicles may lead to high penalty costs,
as each vehicle may need to work at a high load, frequently shuttling between the distribution center
and workstations, leading to faster mechanical wear and battery depletion, requiring more frequent
maintenance and increasing maintenance costs. Moreover, a shortage of vehicles may lead to
distribution wait times or congestion during peak material demand, reducing distribution efficiency.
Additionally, when materials must be delivered on time and an insufficient number of vehicles or
low efficiency leads to untimely deliveries, extra high penalty costs may be incurred, significantly
increasing the total distribution costs. Conversely, having too many vehicles can result in higher costs
due to increased maintenance, fuel, and other fixed and variable costs, along with heightened
management complexity.
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Crucial management insights can be drawn from this sensitivity analysis:

e Managers need to strike a balance between penalty costs and idle costs. The number of
distribution vehicles, under consistent vehicle types, affects the efficiency of the entire material
distribution scheduling system. Having too few vehicles may lead to high penalty costs, while
having too many vehicles can result in excess idle costs. Therefore, a balance needs to be struck
between avoiding penalty costs and maximizing resource utilization. Managers should actively
introduce advanced information technology and scheduling algorithms for real-time monitoring
and intelligent decision-making to ensure that distribution vehicles meet demand without being
underutilized.

e  Managers should dynamically and adaptively allocate logistics resources. When an enterprise
faces consistent production demand, optimizing the number of vehicles can improve economic
efficiency. However, in actual logistics operations, disruptions such as dynamic insertions or
equipment failures may require an open, flexible scheduling system that can dynamically lease
external logistics resources (such as vehicles) based on real-time demand, forming a flexible
logistics resource pool that optimally allocates vehicle resources to adapt to various

uncertainties.
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Figure 7. (a) Performance analysis with different vehicle loads; (b) distribution efficiency analysis
with different number of distribution vehicle configurations.

5.3.3. Scenario 3—sensitivity analysis of different dynamic distribution demand volumes

Different dynamic distribution demand volumes impose varying requirements on logistics
resources and adjustment strategies. If managers choose inappropriate scheduling strategies, it can
lead to varying degrees of increased material distribution costs. A representative dynamic scenario,
the increase in demand, was analyzed in this section. The additional distribution demand begins at
time 60 and gradually increases in increments of 10, reaching light dynamic (LD, 10), moderate
dynamic (MD, 20), and heavy dynamic (HD, 30). The distribution time for all additional demands is
set at 240.

As shown in Figure 8, the sensitivity analysis results for different dynamic distribution demand
volumes reveal that, with other factors held constant, distribution costs, time penalty costs, and total
distribution costs show an increasing-then-decreasing trend as the number of additional demands
increases. Furthermore, irrespective of the amount of dynamic demand, adopting a dynamic
scheduling strategy (i.e., DT-DS) results in lower costs across all three cost metrics compared to a
traditional manual scheduling strategy (TMS).

The explanation for these results is that the costs exhibit an increasing-then-decreasing trend
due to the instability of demand when additional demands are introduced. Traditional planning and
routing strategies may no longer be effective as unstable demand requires additional resources, such
as extra vehicles, inventory, or personnel, to meet these additional demands, leading to additional
cost increases and an upward trend in total costs. However, as businesses enhance their adaptability
to demand volatility, they can take various optimization measures, such as route optimization, order
processing workflow adjustments, and improved vehicle utilization, to reduce these additional costs,
leading to a decline in total costs.

From this sensitivity analysis, the following meaningful management insights can be derived:
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e Managers need to enhance control of planning execution and demand forecasting and
management. The increase in demand volume is positively correlated with the distribution total
costs. Therefore, businesses should improve the stability of production plan execution and
accurately predict dynamic demand through advanced logistics operation management
strategies and precise demand forecasting models to mitigate the negative impact of unstable
demand on the system.

e Managers should proactively adopt intelligent scheduling systems based on advanced
technology. When faced with dynamic demand, employing dynamic scheduling strategies
based on real-time information can effectively address various dynamic disruptions and, as a
result, reduce various operational costs. Furthermore, when internal resources are insufficient
to meet dynamic demand, timely introduction of flexible, high-quality, cost-effective external
logistics resources ensures that the system can respond rapidly while reasonably controlling the
usage costs of external resources to support sustainable business development.

Time window penalty cost Distribution cost Total distribution cost

i =

’—/\" —

YT-DSS

Cost(S)
Cost(S)
Cost(S)

The number of new requirements The number of new requirements The number of new requirements

Figure 8. Distribution efficiency analysis under different dynamic new demand quantities.

6. Conclusions

Emerging industrial internet technologies hold the promise of creating real-time visibility and
transparency in modern manufacturing environments, offering new opportunities for dynamic
material distribution scheduling. This paper investigates a DT-based material distribution scheduling
optimization model and strategy. The research encompasses several key aspects: Firstly, this study
establishes a material distribution scheduling optimization model that accounts for workstation
satisfaction, thereby achieving a more precise and comprehensive evaluation of the scheduling
model. It also introduces a DT-based material distribution scheduling optimization decision
framework, providing a detailed description of the composition and operation mechanisms of the
DT-based material distribution system. Secondly, a dynamic material distribution scheduling
optimization strategy based on DT is proposed, accompanied by enhancements to the traditional
ACO algorithm. Finally, to validate the proposed methodology’s effectiveness, a case study was
conducted using real data from a collaborative enterprise. The research results indicate that in
dynamic environments, the DT-DS strategy proposed in this study outperforms traditional TMS
strategies in terms of average load rates, distribution costs, and delay penalties.

This research makes several contributions to existing literature and practical applications:

Firstly, it establishes a material distribution scheduling optimization model that takes into
account workstation satisfaction, allowing for a more accurate and comprehensive evaluation of the
scheduling model.

Secondly, the proposed scheduling strategy incorporates real-time data into the decision
framework, reducing interference from the source and integrating various scheduling types into a
single framework. This significantly improves the DT-based material distribution scheduling
optimization process, offering vital support for the increasingly prevalent field of data-driven
production logistics operations management research.

Thirdly, the introduced IACO algorithm optimizes path node selection probabilities and
pheromone update rules, leading to improved solution speed, quality, and stability.

However, this study also has certain limitations. The scheduling optimization model proposed
in this study does not consider the production process and lacks a detailed description of how to
harness real-time data from various sources. Consequently, future research exploring coordinated
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decision-making in production and logistics based on real-time data and big data analysis presents a
promising avenue for further investigation.

Author Contributions: Conceptualization, Z.Z. and T.Q.; Supervision, T.Q., K.Z. and G.Q.H.; Validation, Z.Z.;
Writing—original draft, Z.Z.; Writing—review & editing, T.Q., KZ, K.Z, Y.Z, L.L., J. W. and Y.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (52375498), National Key
Research and Development Program of China (2021YFB3301701), 2019 Guangdong Special Support Talent
Program-Innovation and Entrepreneurship Leading Team (China) (2019BT025593), 2018 Guangzhou Leading
Innovation Team Program (China) (201909010006), and the Science and Technology Development Fund (Macau
SAR) (0078/2021/A), Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515011712), the
Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of Jinan University (No.
2022CXB030).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The experimental data in this paper were obtained from a well-known air
conditioner manufacturer in China. The actual data were modified to some extent to protect their trade secrets.
Some relevant data used in the case study of this paper are detailed in Appendix A.

Acknowledgments: This work is financially supported by National Natural Science Foundation of China
(52375498), National Key Research and Development Program of China (2021YFB3301701), 2019 Guangdong
Special Support Talent Program-Innovation and Entrepreneurship Leading Team (China) (2019BT025593), 2018
Guangzhou Leading Innovation Team Program (China) (201909010006), and the Science and Technology
Development Fund (Macau SAR) (0078/2021/A), Guangdong Basic and Applied Basic Research Foundation (No.
2023A1515011712), the Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of
Jinan University (No. 2022CXB030). We also appreciate the sponsorships from the industry, including but not
limited to Carpoly Chemical Group Co., Ltd., Guangzhou Ink Stone Technology, Inc., Sendwant Logistic Ltd.,
Zhuhai Top Cloud Tech Co., Ltd. Guangdong International Cooperation Base of Science and Technology for
GBA Smart Logistics by the Department of science and technology of Guangdong Province, thanks to which the
international collaboration has been effectively conducted.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The tables specifically show the relevant data for Section 5.1.

Table A1l. Various vehicle distribution costs.

Fixed costs Distribution cost Early arrival Late arrival
. . per unit distance penalty costs penalty costs
/vehicle/t
($/vehicle/times) ($/m) /s) /s)
5 0.1 0.5 0.5

Table A2. Material distribution center and coordinates of each workstation.

No. X Y No. X Y
0 5 20 17 25 20
1 15 4 18 25 29
2 15 8 19 25 34
3 15 17 20 29 34
4 15 24 21 29 31
5 15 30 22 29 23
6 15 34 23 29 16
7 19 36 24 29 9
8 19 32 25 29 5
9 19 26 26 27 2
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10 19 20 27 35 7
11 19 16 28 35 11
12 19 10 29 35 20
13 18 2 30 35 25
14 25 4 31 35 31
15 25 8 32 35 33
16 25 13

Table A3. The time window for material requirements and their unloading times.

Workstation  Expected earliest =~ Expected latest time Distribution Unloading time
No. time (s) (s) quantity (kg) (s)
1 70 180 25 15
2 250 355 33 20
3 125 225 30 20
4 195 310 25 15
5 200 295 36 15
6 58 170 20 20
7 152 250 18 15
8 90 188 30 20
9 138 250 15 25
10 180 280 35 15
11 108 200 20 15
12 45 160 20 15
13 215 330 25 20
14 145 250 30 25
15 89 200 35 20
16 140 238 30 30
17 95 210 28 25
18 238 360 23 20
19 20 138 19 20
20 178 280 31 15
21 195 298 38 20
22 265 370 28 25
23 144 256 22 15
24 239 350 30 15
25 95 195 18 20
26 102 205 26 20
27 225 330 29 25
28 75 185 19 20
29 100 205 25 15
30 250 350 35 20
31 150 265 32 25
32 130 240 18 20
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