
Article Not peer-reviewed version

Optimization Model and Strategy for

Dynamic Material Distribution

Scheduling Based on Digital Twin

Zhongfei Zhang , Ting Qu * , Kuo Zhao , Kai Zhang , Yongheng Zhang , Lei Liu , Jun Wang , George Q. Huang

Posted Date: 2 November 2023

doi: 10.20944/preprints202311.0071.v1

Keywords: material distribution; digital twin; scheduling model; scheduling mechanism; improved ACO

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3217814
https://sciprofiles.com/profile/831003
https://sciprofiles.com/profile/3545655
https://sciprofiles.com/profile/1666883
https://sciprofiles.com/profile/3020264


Article

Not peer-reviewed version

Optimization Model and Strategy

for Dynamic Material Distribution

Scheduling Based on Digital Twin

Zhongfei Zhang , Ting Qu 

*

 , Kuo Zhao , Kai Zhang , Yongheng Zhang , Lei Liu , Jun Wang , George Q. Huang

Posted Date: 2 November 2023

doi: 10.20944/preprints202311.0071.v1

Keywords: Material distribution; digital twin; scheduling model; scheduling mechanism; improved ACO

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2023                   doi:10.20944/preprints202311.0071.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://sciprofiles.com/profile/3217814
https://sciprofiles.com/profile/831003
https://sciprofiles.com/profile/1666883
https://sciprofiles.com/profile/3020264
https://doi.org/10.20944/preprints202311.0071.v1
http://creativecommons.org/licenses/by/4.0/


Article 

Optimization Model and Strategy for Dynamic 
Material Distribution Scheduling Based on  
Digital Twin 

Zhongfei Zhang 1,2,3, Ting Qu 2,3,4,*, Kuo Zhao 2,3,4, Kai Zhang 2,3,5, Yongheng Zhang 1,2,3, Lei Liu 
1, Jun Wang 6 and George Q. Huang 2,3,7 

1 School of Management, Jinan University, Guangzhou, P.R. China 
2 Guangdong International Cooperation Base of Science and Technology for GBA Smart Logistics, Jinan 

University, Zhuhai, P.R. China 
3  Institute of Physical Internet, Jinan University, Zhuhai, P.R. China 
4 School of Intelligent Systems Science and Engineering, Jinan University, Zhuhai, P.R. China; 

zhangzhongfei55@stu2019.jnu.edu.cn
5 The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P.R. China 
6 Guangdong Sanpu Garage Shares Co., Ltd., Zhaoqing, 526238, China
7  Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, 

P.R. China 
* Correspondence: quting@jnu.edu.cn

Abstract:. Manufacturers are increasingly adopting mixed-flow manufacturing models to meet 

the diverse product requirements, enable small-batch production, and ensure swift delivery, 

all in pursuit of sustainable production. In such an environment, material distribution 

scheduling optimization is vital for smooth operations and is integral to production 

management. However, manufacturers frequently encounter problems like irrational material 

distribution task allocation and path planning, resulting in disordered deliveries, resulting in 

high operational costs, which constrain manufacturers’ sustainability. Traditional scheduling 

methods suffer from problems like inadequate transparency, delayed decision directives, and 

suboptimal results, negatively affecting scheduling performance. To this end, this study 

proposes a dynamic material distribution scheduling optimization model and strategy based 

on digital twin (DT) to achieve cost-effective and sustainable material distribution. Firstly, we 

introduce workstation satisfaction and establish a material distribution path optimization 

model minimizing total distribution cost while maximizing workstation satisfaction. 

Subsequently, we present a cloud-edge computing-based decision framework and explain 

the DT-based material distribution system’s components and operation. Furthermore, a 

dynamic material distribution scheduling optimization mechanism based on DT is designed. By 

incorporating a savings method and incentive, penalty strategies, improvements are made to the 

path node selection probabilities and the information pheromone update rules of the traditional 

ant colony optimization algorithm. Finally, a numerical case study, using real data from 

collaborating enterprises, validates the proposed algorithm and strategy. This research 

offers valuable insights into sustainable logistics management and algorithm design for smart 

workshops. 

Keywords: material distribution; digital twin; scheduling model; scheduling mechanism; improved 

ACO 

1. Introduction

As global manufacturing continues to evolve, customer demands are becoming increasingly 

diverse, personalized, and dynamic. This trend presents manufacturers with significant challenges, 

demanding increased flexibility and sustainability in their production and logistics processes to 

establish a sustainable manufacturing system [1]. Today, sustainability has become the focal point of 

the global manufacturing industry. Manufacturers must continuously optimize their production and 
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logistics operations to achieve economic, environmental, and social sustainability goals [2]. Material 

distribution scheduling plays a pivotal role in achieving a sustainable manufacturing system, directly 

impacting production efficiency and sustainability. The integration of sustainability principles into 

material distribution systems has garnered significant attention from both academia and the industry 

[3]. Sustainable material distribution systems emphasize the use of intelligent logistics scheduling 

systems developed through digital technologies. Manufacturers can efficiently meet customer 

demands while simultaneously enhancing production efficiency, optimizing resource utilization, 

reducing energy consumption, and minimizing waste generation. This not only helps manufacturers 

maintain their core competitiveness but also contributes to the achievement of sustainability 

objectives, thus propelling the manufacturing industry forward. 

In response to the ever-increasing demand for personalization, diversity, and dynamism, a 

growing number of manufacturers are embracing a new generation of industrial internet 

technologies such as the Internet of Things (IoT) [4], digital twin (DT) [5], and big data (BD) [6]. These 

technologies are deeply integrated with the manufacturing sector, fundamentally altering the 

production organization of manufacturers [6]. Manufacturers are actively adopting flexible and 

dynamic mixed-model assembly production modes to reevaluate their current production 

scheduling and control strategies, aiming to maintain their core competitive advantage. However, in 

this production mode, traditional material distribution scheduling faces a series of problems 

primarily stemming from the lack of appropriate information technology and control strategies. This 

results in inadequate manufacturing information, imprecise decision directives, and subsequently, 

material distribution problems such as disorderliness, vehicle waiting times, and workstation 

hunger/overload, thereby prolonging the overall logistics distribution timeline. Furthermore, 

uncertainties during execution (e.g., new demands, and equipment failures) inevitably disrupt the 

distribution system, further deteriorating the performance of the logistics system. Therefore, 

achieving comprehensive real-time state information awareness, real-time dynamic decision-making, 

and control over the material distribution system is of paramount importance. 

One of the most pressing challenges faced by traditional material distribution scheduling and 

control strategies is the difficulty in collecting and sharing real-time operational data of the logistics 

system [Error! Reference source not found.]. The IoT technology has transformed traditional 

manufacturing resources, granting them the capabilities of identification, perception, and 

communication, thus rendering real-time information visibility achievable. Recent efforts have seen 

the development of an information-sharing model based on DT to facilitate real-time information 

exchange between production and logistics processes [7]. 

While real-time information visibility technologies are lauded for enhancing the transparency of 

manufacturing systems, they alone cannot achieve dynamic material distribution scheduling and 

control. Therefore, innovative methods are required to incorporate real-time information visibility 

into dynamic decision-making for dynamic material distribution to take place. Pioneering research 

has begun to explore DT-driven real-time information-driven dynamic distribution scheduling 

optimization and recognized the potential advantages of DT-driven dynamic decision-making [7,17], 

yet there has been limited exploration of its theoretical foundation. Therefore, the following problems 

need further investigation to better achieve dynamic material distribution scheduling optimization: 

First, previous material distribution scheduling optimization models considered fixed departure 

costs and variable travel costs for material distribution scheduling, while overlooking workstation 

satisfaction as a core factor. Hence, a more comprehensive consideration of workstation satisfaction 

and the construction of a more reasonable material distribution scheduling optimization model 

require further research. 

Second, the real-time and comprehensive collection of heterogeneous data related to the material 

distribution system and the establishment of multiscale twin models supporting distribution 

scheduling decisions are of utmost importance. Without real-time data and twin model support, 

precise dynamic decisions cannot be made. 

Third, the speed, quality, and stability of intelligent algorithms in traditional material 

distribution scheduling systems still require improvement. Therefore, the improvement of existing 
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intelligent optimization algorithms to enhance the quality, speed, and stability of problem solving is 

essential. 

The above problems have motivated this study, where we propose a material distribution 

scheduling optimization method based on DT to address these challenges. This dynamic material 

distribution scheduling optimization is achieved through emerging Industry 4.0 technologies and 

innovative management concepts. Firstly, we consider workstation satisfaction in the material 

distribution scheduling optimization model. The model accurately reflects the degree of workstation 

satisfaction. Secondly, based on the DT standard architecture, we further design a DT-based material 

distribution scheduling optimization decision framework and dynamic scheduling optimization 

strategy, achieving intelligent and adaptive scheduling in complex and dynamic environments. 

Additionally, the proposed ant colony algorithm is an improved version. Compared to the existing 

traditional ant colony optimization (ACO), improvements have been made in the algorithm, 

specifically in the path node selection probabilities and information pheromone update rules, 

enhancing the quality and speed of optimal solution finding. The effectiveness of the proposed model 

and strategy is validated using real data from collaborating assembly manufacturers. 

The rest of this paper is organized as follows: Section 2 introduces the related work on enabling 

technologies for production logistics management and material distribution scheduling models and 

algorithms. Section 3 describes the problem under consideration and the corresponding material 

distribution scheduling models. Section 4 presents the proposed solutions, including a DT-based 

material distribution scheduling optimization decision framework, the composition and operation 

mechanism of the DT-based material distribution system, a DT-based dynamic material distribution 

scheduling optimization strategy, and an improved intelligent scheduling optimization algorithm. 

Section 5 provides a numerical case study to validate the proposed methods. Finally, Section 6 offers 

the main conclusions and limitations of this research. 

2. Literature Review 

This section provides a review of the relevant work, primarily encompassing enabling 

technologies in production logistics management, material distribution scheduling optimization 

problems, and related algorithms. 

With the advancement of industrial internet technologies, the role of the IoT and DT in 

intelligent production logistics management continues to grow [5]. By connecting various IoT devices 

to physical resources, and creating smart objects with sensing, positioning, and communication 

capabilities, inter-object communication and data exchange have become possible, offering new 

opportunities for production logistics management [10]. For example, Li et al. [11] proposed an 

intelligent logistics management system based on IoT technology, offering significant advantages in 

addressing the complexity, inefficiency, and chaotic vehicle management that plague logistics 

enterprises. Lei et al. [12] introduced an IoT-based intelligent distribution model, tackling the issue 

of logistics decision-making time and speed within a large-scale information interaction 

environment. Qing et al. [13] developed an IoT-based emergency logistics vehicle scheduling model, 

addressing vehicle scheduling problems in post-disaster emergency logistics. Ren and associates [14] 

established an IoT-based recycling logistics information management system, resolving integrated 

management and operational control problems in recycling logistics. 

Concurrently, Digital Twins, as an effective control method, are utilized to address planning and 

scheduling optimization problems in manufacturing enterprises under dynamic disturbances. Wang 

et al. [15] have developed a material distribution system based on digital twin technology to optimize 

in-factory material distribution decisions. Fang et al. [16] introduced an innovative job shop 

scheduling method based on digital twins to reduce scheduling deviations. Zhang et al. [17] 

introduced an optimal control approach based on DT to tackle real-time objective formulation and 

optimal execution control in a collaborative production operation system. 

Material distribution scheduling optimization is a significant concern in production logistics 

management, as it directly impacts the operational costs and service levels of the production logistics 

system [18]22. Typically, this problem involves finding the optimal vehicle routing plan that satisfies 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2023                   doi:10.20944/preprints202311.0071.v1Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2023                   doi:10.20944/preprints202311.0071.v1

https://doi.org/10.20944/preprints202311.0071.v1
https://doi.org/10.20944/preprints202311.0071.v1


 4 

 

customer demands and optimizes the objective function under given material distribution network 

and constraints [20]. Depending on complexity and practical characteristics, this problem can be 

categorized into different types, such as the vehicle routing problem (VRP), the VRP with time 

windows, and the pickup and delivery VRP with Time Windows [Error! Reference source not 

found.]. For instance, Klenk et al. [21] addressed real-time material distribution needs for multiple 

assembly workstations, introducing a multi-frequency, small-batch milk-run material transport 

scheduling model to cope with optimization problems under dynamic disturbances. Further 

onwards, Klenk et al. [22] designed three decision strategies to determine real-time, optimal milk-run 

material distribution cycles based on fluctuations in order quantities. To solve these optimization 

problems, various intelligent algorithms have emerged, such as particle swarm optimization, 

simulated annealing, and ant colony algorithms, each with their advantages in different application 

scenarios. Tao et al. [23] improved the particle swarm optimization algorithm for solving AGV path 

planning problems on the shop floor production line. Wang et al. [24] introduced a self-adaptive non-

dominated sorting genetic algorithm II (SNSGA-II) to address path optimization problems with 

combined pickup and delivery. Chen et al. [25] proposed an enhanced ant colony hybrid algorithm, 

improving path search accuracy and reducing the frequency of path selection decisions.  

In summary, the literature review reveals several key problems. Firstly, material distribution 

models often overlook workstation satisfaction. Secondly, most material distribution problems focus 

on static distribution planning within workshops, with relatively limited research on dynamic 

material distribution scheduling optimization based on DT. This includes a lack of a unified DT-based 

scheduling decision framework incorporating various scheduling rules and its operational 

mechanism, as well as room for improvement in the quality and speed of material distribution 

scheduling solutions produced by traditional ant colony algorithms. Therefore, this study introduces 

a dynamic material distribution scheduling optimization model, strategy, and related algorithms 

based on DT. 

3. Problem Analysis and Description 

3.1. Material Distribution Operational Process and Operational Problems 

3.1.1. Material distribution operational process 

This work was motivated by collaboration with a well-known home appliance company. The 

company manufactures hundreds of different products, each with varying order quantities. Different 

product categories may have distinct production processes. To meet the demand for high product 

variety and small batch production, they have implemented a mixed-model production approach in 

the air conditioning final assembly workshop. Currently, the company’s workshop is gradually 

transitioning to smart manufacturing and has deployed automated guided vehicles (AGVs) in the 

assembly workshop to handle material transport and distribution tasks within the assembly line 

workstations. These AGVs are coordinated by an automatic guidance system for the material 

distribution across the assembly lines. 

The study focuses on the dynamic material distribution scheduling optimization within the 

mixed-model assembly workshop. As illustrated in Figure 1, the principle of material demand-driven 

distribution involves workstations continuously consuming materials from their workstation buffer 

areas. When the inventory level drops below a trigger reorder threshold, material replenishment 

orders are generated and sent to the material distribution system. Within each specific production 

cycle, the material distribution system aggregates material demands from each workstation buffer 

area, creating a material distribution task list. These tasks are then grouped into a material 

distribution batch order and sent to the material supply center to arrange available logistics resources 

for the required distribution tasks. Consequently, the material distribution process can be divided 

into two main phases: 

Planning Phase. The production planning department generates daily production distribution 

schedules and daily material demand order lists based on customer orders and scheduling rules. 
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These schedules and order lists are transmitted to the material distribution management department 

through the material distribution system. The material distribution management department, based 

on this timetable and material demand order list, allocates distribution demand orders among 

available logistics resources (e.g., AGVs) to formulate the daily material distribution plan to ensure 

the timely distribution of required materials. 

Execution Phase. On the day of execution, the material distribution management department 

assigns AGVs to carry out pre-allocated tasks and routes according to the established material 

distribution plan. AGVs travel to the warehouse of the material supply center to retrieve various 

required materials and deliver them to the workstation buffer areas. After completing the designated 

distribution orders, AGVs return to the warehouse of the material supply center. 

The Materials and Methods should be described with sufficient details to allow others to 

replicate and build on the published results. Please note that the publication of your manuscript 

implicates that you must make all materials, data, computer code, and protocols associated with the 

publication available to readers. Please disclose at the submission stage any restrictions on the 

availability of materials or information. New methods and protocols should be described in detail 

while well-established methods can be briefly described and appropriately cited. 

 

Figure 1. Material distribution operation process. 

3.1.2. Analysis of material distribution operation problems 

Through the analysis of the operational processes described above, we can draw the following 

conclusions: in the mixed-model manufacturing mode, due to the diversity and complexity of 

materials, efficient, accurate, and timely material distribution is required in the workshop. However, 

the material distribution process is often influenced by dynamic factors such as demand, resources, 

and processes, which can lead to inadequate coordination between material distribution and 

assembly production. Through the investigation of mixed flow assembly shop (MFAS), we have 

identified the following research questions: 

• Optimizing workstation material distribution presents certain difficulties. Handling various 

types and quantities of materials with limited logistics resources, without adequately 

considering the impact of production speed on material distribution, results in inefficient 

material distribution and increased costs. Additionally, with limited buffer capacity, there is a 

need for frequent, appropriately sized material replenishments. However, traditional material 

distribution strategies rely on manual experience, lacking scientific planning, often leading to 

early deliveries causing material accumulation, or late deliveries causing assembly line 

downtime, thereby reducing workstation satisfaction; 

• Manufacturing companies face the challenge of comprehensive information acquisition. Due to 

the variety of products, material distribution becomes complex. Achieving precise and efficient 

material distribution requires advanced information technology support. However, the current 

level of enterprise informatization is relatively low, capable of collecting only certain key 

performance indicators of the material distribution system, but unable to acquire real-time 
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comprehensive operational status information required for the material distribution system. 

Lack of transparency in production logistics information within the workshop and inefficient 

information transmission pose challenges to material distribution scheduling optimization; 

• Designing effective dynamic distribution scheduling optimization strategies presents a 

challenge. Traditional material distribution schedules are typically based on static planning, 

without considering disruptive factors during the execution of production logistics. However, 

unexpected dynamic changes often occur during execution. The absence of real-time 

information-driven material distribution scheduling optimization strategies to effectively 

address these disruptions results in significant deviations between on-site execution and 

planned expectations, presenting a significant challenge to management. 

3.2. Material Distribution Scheduling Optimization Problem Description 

The scenario consists of a logistics transportation system comprising K AGVs, each capable of 

material distribution for N workstations on multiple assembly lines. The maximum carrying capacity 

of each AGV is denoted as Q, covering a range of materials, including evaporators, controllers, sheet 

metal parts, and both in-house and outsourced components. Since each workstation has specific time 

window requirements for materials, the material distribution scheduling optimization problem can 

be categorized as the vehicle routing problem with time windows (VRPTW). In this problem, the 

concept of soft time windows is introduced, incurring a penalty cost if the soft time window is 

exceeded. 

Specifically, the problem can be summarized as follows: AGVs depart from the distribution 

center, deliver loaded materials to the workstation buffer areas on the assembly lines, and return to 

the distribution center. The material load of each AGV must not exceed its maximum carrying 

capacity while adhering to other constraints. The objective is to deliver materials to the workstations 

within soft time windows while ensuring delivery completion within hard time windows. The 

ultimate goal of the entire process is to minimize the number of AGVs and path lengths required for 

material distribution while reducing workstation dissatisfaction, thus minimizing the total material 

distribution cost, with the constraint of finite AGV resources. Initially, all AGVs are available for use. 

However, during the execution of distribution, dynamic disruptions such as rush orders and vehicle 

breakdowns are encountered, necessitating adjustments to the distribution plan based on the actual 

circumstances to achieve optimal material distribution performance. Furthermore, DT-based material 

distribution scheduling must meet the following requirements: 

• Each workstation buffer area can only be serviced by a single AGV; 

• Each AGV can serve multiple workstation buffer areas; 

• All AGVs have the same priority and cannot be interrupted once they start serving a workstation 

buffer area unless there is a vehicle breakdown; 

• The distribution capacity on each distribution path does not exceed the AGV’s maximum 

payload; 

• Both the starting and ending points of AGVs are at the distribution center (material storage area), 

and AGVs travel along the planned path at a fixed speed. 

Research manuscripts reporting large datasets that are deposited in a publicly available database 

should specify where the data have been deposited and provide the relevant accession numbers. If 

the accession numbers have not yet been obtained at the time of submission, please state that they 

will be provided during review. They must be provided prior to publication. 

3.3. Formulation of Material Distribution Scheduling Optimization Problem 

According to the description provided above, the relevant symbol definitions for the problem 

model under consideration are presented in Table 1. 
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Table 1. Symbols used in the proposed model. 

Symbol Description 𝐼 The set of points representing workstation buffer areas, including N workstations and a 

material distribution center (0), I =  ሼ0, 1, 2, ⋯ , 𝑛ሽ 𝐾 The number of distribution AGVs, 𝐾 =  ሼ1, 2, ⋯ , 𝑚, . . . 𝐾ሽ 

Q Maximum load capacity of each AGV 

F A very large positive number 𝐷௜௝ Distance from station 𝑖 to station 𝑗 𝑞௜ Quantity of materials required at workstation 𝑖, with max 𝑞௜ ≤ 𝑄 𝑎௜ The earliest time materials are required at workstation 𝑖 𝑏௜ The latest time materials are required at workstation 𝑖 𝐶௜ Penalty cost per unit time for early arrival of materials at workstation 𝑖 𝐶ௗ Transport cost per unit distance for distribution AGVs 𝐶௢ Fixed start-up cost for each distribution AGV 𝛿 Penalty cost per unit of time for material delivered earlier than the time window 𝛽 Penalty cost per unit of time for material delivered later than the time window 𝑡௜௝ Travel time for a distribution AGV to move from workstation 𝑖 to 𝑗 𝑡௜,௞ Unloading time of the kth distribution AGV at workstation 𝑖 𝑡௜௞ Moment of the arrival of the kth distribution AGV at workstation i 𝑦௜௞ ∈ ሼ0,1ሽ Workstation i is serviced by the kth AGV is 1, otherwise 0 𝑥௜௝௞ ∈ ሼ0,1ሽ The kth distribution AGV traveling from workstation 𝑖 to workstation 𝑗 is 1, otherwise 0 

The mathematical model for the research problem considered in this paper is represented as 

follows: 𝐹௚௢௔௟ = minሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷሽ (1) 𝑓ଵ = ∑ ∑ 𝑥଴௜௞௄௞ୀଵே௜ୀଵ   (2) 𝑓ଶ = ∑ ∑ ∑ 𝐷௜௝ ∙ 𝑥௜௝௞௄௞ୀଵே௝ୀ଴ே௜ୀ଴   (3) 𝑓ଷ = ∑ ∑ ൛𝑚𝑎𝑥ൣ𝑎௜ − 𝑡௜௞, 0൧ + 𝑚𝑎𝑥ൣ0, 𝑡௜௞ − 𝑏௜൧ൟ௄௞ୀଵே௜ୀ଴   (4) ∑ 𝑞௜𝑦௜௞ ≤ 𝑄ே௜ୀଵ , ∀𝑘 = 𝐾  (5) ∑ 𝑦௜௞ = 1௄௞ୀଵ , ∀𝑖 = ሼ𝐼, 𝑖 ≠ 0ሽ  (6) ∑ 𝑥଴௝௞ே௝ୀଵ = ∑ 𝑥௝଴௞, ே௝ୀଵ ∀𝑘 = 𝐾  (7) 𝑡௜௞ + 𝑡௜,௞ + 𝑡௜௝ − 𝐹൫1 − 𝑥௜௝௞൯ ≤ 𝑡௝௞, ∀𝑖 = 𝐼, ∀𝑗 = 𝐼, ∀𝑘 = 𝐾  (8) 

𝐶௜ = ቐ𝛿ሺ𝑎௜ − 𝑡௜ି௞ሻ, 𝑡௜ି௞ < 𝑎௜ 0,               𝑎௜ ≤ 𝑡௜ି௞ ≤ 𝑏௜𝛽ሺ𝑡௜ି௞ − 𝑏௜ሻ, 𝑡௜ି௞ ≥ 𝑏௜   (9) 

Equation (1) represents the three objective functions of the material distribution scheduling 

optimization problem; Equation (2) minimizes the number of distribution vehicles used; Equation (3) 

minimizes the length of distribution vehicle routes; Equation (4) maximizes workstation satisfaction, 

i.e., minimizes the penalty cost for delayed vehicle arrivals; Equation (5) ensures that each 

distribution vehicle’s load does not exceed its maximum capacity; Equation (6) specifies that each 

workstation can only be serviced by one distribution vehicle; Equation (7) ensures that distribution 

vehicles start from the distribution center, complete their deliveries, and return to the distribution 

center; Equation (8) dictates that distribution vehicle k must arrive at workstation j after time 𝑡௜௞ +𝑡௜,௞ + 𝑡௜௝ ; Equation (9) enforces time window constraints, incurring penalty costs if materials are 

delivered outside the specified time window. 

The mathematical model constructed above is a multi-objective optimization model. 

Considering that the ultimate goal of material distribution scheduling optimization is to reduce 
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distribution costs, the three objective functions are transformed into a single objective function using 

a weighted standardization method. This single objective function minimizes the total operational 

cost, which includes minimizing the fixed costs of distribution vehicles, minimizing the 

transportation costs of distribution vehicles, and minimizing the penalty costs associated with 

workstation time windows. The transformed objective function is represented by Equation (10). 𝐹௚௢௔௟ = ∑ ∑ 𝐶௢ ∙ 𝑥଴௜௞௠௞ୀଵ௡௜ୀ଴ + ∑ ∑ ∑ 𝐷௜௝∙𝐶ௗ∙𝑥௜௝௞ + ∑ ∑ 𝐶௜௠௞ୀଵ௡௜ୀ଴௄௞ୀଵே௝ୀ଴ே௜ୀ଴ ∙ ሼ𝑚𝑎𝑥ሾ𝑎௜ − 𝑡௜௞ , 0ሿ + 𝑚𝑎𝑥ሾ0, 𝑡௜௞ − 𝑏௜ሿሽ  (10) 

4. Proposed Methodology 

4.1. DT-based decision-making architecture for material distribution scheduling optimization 

Figure 2 illustrates the decision architecture for DT-based material distribution scheduling 

optimization, consisting of two hierarchical layers: the physical object layer and the virtual twin layer. 

The physical object layer encompasses the physical resource layer and the smart device layer. 

The physical resource layer covers various tangible resources within the mixed-model assembly 

workshop, such as materials, pallets, AGVs, workstation buffers, workshop environments, and 

operators. The smart device layer collects information related to materials, vehicles, task execution, 

orders, and the environment through active or passive smart sensing devices like handheld PDA 

terminals, wearable devices, a variety of sensors, 1/2D tags, RFID tags, etc. These resource and status 

information are transmitted through heterogeneous networks to the upper layers of the decision 

architecture. The heterogeneous transmission networks include RFID networks, Wi-Fi, 4/5G, 

Bluetooth, ZigBee, LoRa, and other wireless transmission networks. 

The virtual twin layer comprises the DT imaging layer and the DT service layer. The DT imaging 

layer, based on data centers and model centers, integrates real-time data and multiscale static twin 

models to create multi-scale virtual images through digital twin technology. These virtual images 

reflect the physical structure, production processes, and material flow of the actual material 

distribution system. They accurately display key information such as the flow paths of materials, 

workstation layouts, and vehicle statuses. Using DT imaging, the dynamic aspects of material flow, 

such as material accumulation and shortages, can be continuously monitored, providing support for 

decision simulation within the DT service layer. 

The DT service layer includes the material distribution scheduling optimization control system, 

material distribution scheduling optimization mechanisms, and other service modules. This control 

system leverages real-time, comprehensive operational information from the material distribution 

scheduling system. It utilizes DT’s dynamic material distribution scheduling optimization 

mechanisms and intelligent optimization algorithms to make collaborative decisions regarding the 

execution plans of the task allocation subsystem and the vehicle scheduling subsystem. These 

decisions are then transformed into directives for execution control. The system encompasses five 

functional services: data retrieval services, algorithm invocation services, program execution services, 

simulation execution services, and decision output services, promoting system scalability and the 

reuse of functional modules. 

A DT-based material distribution scheduling system requires robust computing capabilities to 

meet real-time requirements. Thus, this system adopts a cloud-edge computing architecture, 

distributing computing demands to cloud servers and edge servers [26], balancing the efficient 

utilization of computing resources with real-time performance. Cloud servers perform extensive data 

analysis and mining based on historical operational data, establish decision models, invoke 

intelligent algorithms, generate decision solutions, and ensure the real-time, accuracy, and reliability 

of the decision results. Edge servers are responsible for initial data collection and processing of 

distribution operation data, real-time monitoring of system execution, device performance diagnosis, 

analysis, and forecasting. Due to their proximity to data sources, edge servers can respond more 

rapidly to dynamic on-site situations, meeting the real-time operational needs of the material 

distribution scheduling system, and ensuring efficient and smooth production in the mixed-model 

assembly workshop. 
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Figure 2. DT-based Optimized decision-making architecture for material distribution scheduling. 

4.2. DT-based Composition and Operation Mechanism for Material Distribution System 

The material distribution system is a crucial component of the mixed-model assembly 

workshop, and the DT-based material distribution system forms the foundation of the overall 

scheduling optimization mechanism, significantly impacting the application of scheduling strategies. 

This section describes the composition and operational mechanism of the DT-based material 

distribution system. According to the DT five-dimensional model proposed by Tao et al. [27], the 

composition of the DT-based material distribution system can be described as: 𝐷𝑇ெ஽ௌ=ሼ𝑃𝑠, 𝑉𝑠, 𝑆𝑠, 𝐷𝑠, 𝐶𝑁ሽ  (11) 
where 𝑃𝑠  represents the physical distribution system, 𝑉𝑠  is the virtual distribution system, 𝑆𝑠 

denotes the distribution service system, 𝐷𝑠 supports the distribution decision-making data system, 

and 𝐶𝑁 signifies their interactive connections. Figure 3 illustrates the relationships between these 

components. 𝑃𝑠  includes AGVs, materials, operators, and smart IoT devices, primarily responsible for 

receiving material distribution tasks dispatched by the production plan and executing material 

transport based on the distribution plan. 𝑉𝑠 is mainly used for simulation, evaluation, prediction, 

and visualization, serving as a digital image of 𝑃𝑠 . It involves multi-dimensional “geometric-

physical-behavior-rules,” multi-domain “mechanical-hydraulic-electrical,” and multi-scale “unit-

subsystem-system” models. 𝑆𝑠 represents a collection of various intelligent service functions that provide management and 

control support for the DT-based material distribution optimization system. 𝐷𝑠 comprises data from 𝑃𝑠, 𝑉𝑠, 𝑆𝑠, along with fused information data (𝐷𝑎𝑡𝑎௙) and knowledge data (𝐷𝑎𝑡𝑎௞). The data system 

also acts as a driving force for 𝑃𝑠, 𝑉𝑠, and 𝑆𝑠. 𝐶𝑁 is a critical link and foundation for establishing 

the DT-based material distribution system, enabling interaction connections among the various 

components. 

When distribution tasks are executed, the collaborative process among different components 

unfolds as follows. Initially, 𝑆𝑠  generates an initial plan that satisfies task requirements and 

constraints based on the system’s multi-dimensional fused data ( 𝐷𝑎𝑡𝑎௙ ). Subsequently, 𝑉𝑠 

simulates, evaluates, and optimizes the initial plan, eliminating potential conflicts, and uploads the 

optimized best initial plan to 𝑆𝑠. 𝑆𝑠 then sends the validated best initial plan to 𝑃𝑠 for logistics 

preparation.  

Once the distribution begins, the validated best initial plan is transmitted to 𝑉𝑠, which sends 

instructions to control the logistics operations of 𝑃𝑠. 𝑃𝑠 provides real-time feedback on the status of 
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material distribution to 𝑉𝑠. During the distribution process, 𝑉𝑠 predicts changes in 𝑃𝑠’ performance 

trends and continuously simulates, evaluates, and optimizes logistics based on DT data. 𝑉𝑠 

continues to evolve until the tasks are completed. 

If discrepancies are found between the execution status of Ps and the initial plan instructions 

(referred to as the interference intensity, defined in Section 4.3), an interference response service is 

automatically triggered. 𝑆𝑠 rapidly identifies the cause of the interference and adjusts it based on 

dynamic response strategies to achieve optimal logistics operations. 

Furthermore, 𝐷𝑠, as the “core engine” of DT operation, is indispensable for 𝑃𝑠, 𝑉𝑠, and 𝑆𝑠, as 

they all rely on 𝐷𝑠 for driving the system. 

 

Figure 3. DT-based material distribution system composition. 

4.3. DT-based Dynamic Material Distribution Scheduling Optimization Strategy 

With the support of DT-based decision architecture for material distribution scheduling 

optimization, this section proposes a DT-based dynamic material distribution scheduling 

optimization strategy. 

Figure 4 illustrates the overall scheduling optimization strategy. Initially, material distribution 

task instructions are generated based on the material distribution order demands from the 

production plan. This entails generating a set of distribution vehicles for each material batch in 𝑆𝑠, 

along with the collection of routes for each vehicle. 𝑆𝑠 defines the eligible vehicles for each type of 

material and employs a compression spatiotemporal ratio method [28] to determine the precise 

average travel speed of the distribution AGVs. Subsequently, the scheduling optimization model 

established in the initial scheduling phase is solved using the embedded improved ACO (IACO). 

Next, the solved scheduling plan is imported into 𝑉𝑠 for simulation and verification to mitigate 

potential risks within the scheduling plan. After iterative optimization, the best initial distribution 

plan results are transformed into decision instructions to control and guide the logistics operations 

of 𝑃𝑠. 
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Figure 4. DT-based dynamic material distribution scheduling optimization strategy. 

In the actual production logistics execution process, the comprehensive and robust data 

collection capability of the DT-based material distribution system allows for real-time operational 

data, including AGVs, materials, logistics operations, personnel, and environmental data, to be 

monitored and uploaded to 𝐷𝑠. The collected real-time operational data is compared with the results 

simulated in 𝑉𝑠 to determine whether disturbances exceed predefined thresholds. If such thresholds 

are surpassed, dynamic corrective scheduling is employed to address the disturbances. 

During the dynamic corrective scheduling phase, the material distribution system inevitably 

encounters various disruptive factors, such as emergency insertions, vehicle breakdowns, material 

shortages, etc. This study categorizes these disturbances into three levels based on their impact on 

system operations, denoted as 𝑅ଵ, 𝑅ଶ  and 𝑅ଷ , with varying levels of intensity. The definition of 

disturbance intensity is as follows:  𝑅 = 𝑓஽ሺ𝑇௜ , 𝑆௱ሻ  (12) 

𝑆௱ = 𝐹஽்ሺ𝑇௜ሻ  (13) 
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Building upon our research group’s prior work [17], different dynamic response strategies are 

proposed for various disturbance intensities. When 𝑅 < 𝑅ଵ, it is categorized as level one dynamic 

response, i.e., 𝑅ଵ. In this case, although the material distribution plan for the mixed-flow workshop 

is affected by disturbances, the impact is not significant enough to disrupt normal execution. 

Therefore, deliveries can proceed according to the original plan without the need for adjustment. 

When 𝑅ଵ < 𝑅 < 𝑅ଶ, it is categorized as level two dynamic response, i.e., 𝑅ଶ. At this stage, the material 

distribution plan can no longer meet dynamic requirements, but internal corrections can be made to 

adjust the material distribution plan by modifying and configuring other available distribution 

vehicles to meet the material distribution needs. When 𝑅ଶ < 𝑅 , it is categorized as level three 

dynamic response, i.e., 𝑅ଷ. In this stage, the planned corrections are insufficient to meet the high 

dynamic requirements of the material distribution plan in the mixed-flow workshop, requiring the 

introduction of external logistics resources for resource adjustments. Revised material distribution 

planning schemes are then issued as instructions to the execution site to meet the high-dynamic 

production logistics requirements. 

4.4. Intelligent Optimization Algorithm 

In a DT-based material distribution system, the generation of scheduling plans relies on the 

support of intelligent optimization algorithms. These algorithms are encapsulated within 𝑆𝑠 and 

integrated with DT. The scheduling optimization algorithm, as the core technology of the DT-based 

material distribution system, has a direct impact on the performance of the logistics system. 

Therefore, this section explores an improved intelligent optimization algorithm. 

The ant colony optimization (ACO) algorithm, inspired by the foraging behavior of ants in 

nature, has demonstrated outstanding performance in finding optimal paths. It is a probabilistic 

algorithm with good parallelism, robustness, and positive feedback properties. ACO algorithms have 

been widely applied in various fields, including machine learning, graph theory problems, logistics 

planning, and production scheduling. However, traditional ACO algorithms often suffer from 

problems such as low solution precision, slow convergence speed, and susceptibility to local optima. 

In this research, we employ an improved ant colony optimization algorithm (IACO) to address 

the material distribution scheduling optimization problem in the DT-based framework. Compared 

to the conventional ACO, IACO incorporates improvements in route node transition rules and 

pheromone update rules to enhance its performance and efficiency. 

4.4.1. Improved route node selection transition rules 

The savings technique is introduced, incorporating a quantity 𝜇௜௝  to enhance the ant’s transition 

probability selection. 𝜇௜௝  is introduced into the ant’s path node transition probability formula, 

optimizing the selection of path nodes while favoring higher vehicle load rates. The improved node 

selection transition probability formula is as follows: 𝑃௜௝௞ሺ𝑡ሻ = ቐ ൣఛ೔ೕሺ௧ሻ൧ഀ∙ൣఎ೔ೕሺ௧ሻ൧ഁ∙ൣఓ೔ೕ൧ഐ∑ ൣఛ೔ೕሺ௧ሻ൧ഀ∙ൣఎ೔ೕሺ௧ሻ൧ഁ∙ൣఓ೔ೕ൧ഐ೔∈ೌ೗೗೚ೢ೐೏ , 𝑖𝑓 𝑖 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑0                   , 𝑒𝑙𝑠𝑒   (14) 

𝜂௜௝ሺ𝑡ሻ = ଵௗ೔ೕ  (15) 𝑑௜௝ = ቄ൫𝑥௜ − 𝑥௝൯ଶ + ൫𝑦௜ − 𝑦௝൯ଶቅ଴.ହ
  (16) 𝜇௜௝ = 𝑑௜଴ + 𝑑௝଴ − 𝑑௜௝  (17) 

where Equation (14) 𝑃௜௝௞ሺ𝑡ሻ  represents the improved path node selection transition probability 

formula, indicating the probability of ant k selecting node i to node j at time t. This probability is 

influenced by the pheromone concentration ൣ𝜏௜௝ሺ𝑡ሻ൧ఈ
, the heuristic function 𝜂௜௝ሺ𝑡ሻ, the pheromone 

increment 𝜇௜௝ , and whether node i belongs to the accessible node set allowed. Equation (15) 

represents the heuristic function, denoting the visibility between nodes 𝑖 and 𝑗, which is usually the 
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reciprocal of the distance between nodes. Equation (16) 𝑑௜௝represents the distance function, denoting 

the Euclidean distance between nodes 𝑖 and 𝑗, and Equation (17) is the savings function 𝜇௜௝, which 

is the sum of route lengths for separate deliveries to two workstations, minus the route length when 

visiting both workstations simultaneously. Here, α is the pheromone factor, β is the heuristic function 

factor, and ρ is the pheromone evaporation factor. 

4.4.2. Improved pheromone update rules 

The core idea behind this rule is that ants update pheromones along their path as they search, 

guiding them in choosing paths to find the best solutions according to specific problem constraints 

and objectives. The standard pheromone update formula is as follows: 𝜏௜௝ሺ𝑡 + 1ሻ = ሺ1 − 𝜌ሻ𝜏௜௝ሺ𝑡ሻ + ∆𝜏௜௝ሺ𝑡ሻ  (18) ∆𝜏௜௝ሺ𝑡ሻ = ∑ ∆𝜏௜௝௞ ሺ𝑡ሻ௠௞ୀଵ   (19) ∆𝜏௜௝ሺ𝑡ሻ = ∑ ∆𝜏௜௝௞ ሺ𝑡ሻ௠௞ୀଵ   (20) ∆𝜏௜௝௞ ሺ𝑡ሻ = ொ௅ೖ  (21) 

where Equation (18) 𝜏௜௝ሺ𝑡 + 1ሻrepresents the pheromone concentration function for nodes 𝑖 and 𝑗 at 

time 𝑡 + 1 , influenced by the pheromone concentration 𝜏௜௝ሺ𝑡ሻ  at the previous time 𝑡  and the 

pheromone increment ∆𝜏௜௝ሺ𝑡ሻ (as shown in Equation (20)). Pheromone concentration gradually 

evaporates ሺ1 − 𝜌ሻ  while being influenced by rewards and penalties from ant paths. ∆𝜏௜௝ሺ𝑡ሻ  is 

calculated based on the traveling path length 𝐿௞ of a single ant 𝑘 and the pheromone constant 𝑄, 

representing the increase in pheromone concentration from node 𝑖 to node 𝑗. 

In this study, we introduce an improved pheromone update rule that accelerates the algorithm’s 

convergence by using a reward and penalty strategy. Specifically, during the process of ants 

searching for paths, ants that fail to complete routes correctly are eliminated, and only those ants that 

successfully reach the target endpoint with a valid path are retained. For these qualified paths, we 

introduce a reward and penalty strategy for pheromone updates. Assuming there are 𝑚 ants in total, 

for the top 𝑛 ants with the shortest travel path lengths, we increase the pheromone concentration 

released by these ants, i.e., rewarding them. For the remaining m-n ants (i.e., those ranked below the 

top 𝑛 ants), we reduce the pheromone concentration on their paths, i.e., penalizing them. The specific 

formula for the improved pheromone update rule is shown in (22) and (23), where 𝑙௡௢௪್೐ೞ೟ 

represents the current iteration’s best solution, and 𝑙௡௢௪ೢ೚ೝೞ೟  represents the worst solution of the 

current iteration. To ensure that the pheromone concentration fluctuates within a certain range, 

avoiding excessive growth or reduction, as well as preventing the algorithm from getting stuck in 

local optima prematurely or stagnating during the search process, we set the pheromone 

concentration 𝜏௜௝ as shown in (24). 

4.4.3. The solving process of improved ant colony algorithm 

Figure 5 illustrates the steps in the solving process of the improved ant colony algorithm, which 

includes the following stages: 

Step 1: Parameter initialization 

• Set the maximum number of iterations, 𝑖𝑡𝑒𝑟௠௔௫ control the total number of iterations for the 

algorithm; 

• Initialize the algorithm’s relevant parameters: pheromone factor α, heuristic function factor β, 

pheromone constant 𝑄, and pheromone evaporation factor 𝜌; 

• Define the number of ants (vehicles) as M, representing the quantity of ants participating in 

solving the problem; 

• N denotes the number of stations in the material distribution problem; 

• Initialize the initial pheromone concentration 𝜏௜௝ሺ𝑡ሻ, where pheromone concentration signifies 

the concentration of pheromones on the path, and 𝑡 represents the current iteration number; 
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• Initialize the Tabu list, which records nodes that have been visited to prevent repeated visits; 

• Initialize all accessible nodes (allowed), representing workstations or service points that have 

not been visited yet. 

Step 2: Path search 

• Start from the origin point (𝑂) and add it to the Tabu list, indicating the current ant’s starting 

position; 

• Calculate path node selection transition probabilities based on Equation (14) and (17). These 

transition probabilities determine the likelihood of the ant selecting the next node; 

• Utilize a roulette wheel selection method to choose the next node for path searching and add 

that node to the Tabu list for the current iteration to keep track of visited nodes. 

Step 3: Task completion check 

• Determine if the current ant has completed the material distribution task, meaning whether all 

demand service points have been satisfied; 

• If the ant has completed the task, it returns to the origin point (𝑂) and completes one distribution 

task; 

• If the ant has not completed the task, it returns to Step 2 to continue path searching to fulfill the 

remaining demands. 

Step 4: Next ant selection 

• Check if all ants have completed their path searches; 

• If all ants have completed path searching, proceed to the next step; 

• If there are ants that have not completed path searching, continue with Step 4 by selecting the 

next ant for path searching. 

Step 5: Pheromone update and iteration termination 

• Update the pheromones on the paths based on Equation (22), (23), and (24). These updates 

depend on the ants’ performance on the paths and problem-specific parameters; 

• Check if the current iteration number exceeds the maximum iteration limit; 

• If the current iteration number exceeds the maximum limit, terminate the algorithm and output 

the current best solution; 

• If the current iteration number does not exceed the maximum limit, return to Step 2 to continue 

the iterative process of path searching and pheromone updates until the termination condition 

is met. 
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Figure 5. The flowchart of the IACO algorithm. 

5. Case Study 

5.1. Case Background and Data Presentation 

To validate the excellence and effectiveness of the DT-based material distribution scheduling 

strategy, we have implemented a DT-based material distribution system in a collaborative enterprise. 

This material distribution system fully utilizes AGVs to execute distribution tasks, with the average 

travel time of AGVs determined through DT simulation, an average speed of 1m/s, and a maximum 

vehicle load of 180kg. We calculated the fixed costs of AGVs and the distribution costs per unit 

transportation distance based on historical operating data within the workshop. The assembly 

workshop comprises three mixed-model assembly lines, and we incorporated actual site data, 

including the coordinates of material storage areas and various workstations. Table A1 provides 

relevant data for vehicle distribution costs, while Table A2 displays the coordinates of the 

workstations. In this study, we selected the material demand data for different workstations during 

one cycle of material distribution in the mixed-model assembly workshop, as shown in Table A3, the 

sources of which are shown in Table A1, Table A2, and Table A3 in Appendix A. 

5.2. Result Analysis 

5.2.1. Verification of algorithm superiority 

Traditional material distribution scheduling schemes rely on manual experience and often fall 

short of achieving optimal operations, especially in highly dynamic mixed-model production 

environments. Hence, this study employs an IACO algorithm to address the material distribution 

scheduling optimization problem. Numerical simulation experiments were conducted using Matlab 

R2016a on Alibaba cloud servers, with real data sourced from our collaborative enterprise. Both the 

traditional ACO and the IACO algorithms were encoded and solved separately to evaluate the 

performance of the proposed algorithm. To ensure algorithm stability, each case was run 50 times, 
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and the average of the best values obtained from 50 runs was considered as the final result for both 

algorithms. 

Figure 6(a) presents a comparison of the simulation results for the two algorithms. The 

traditional ACO algorithm and the improved ACO algorithm required 51 and 38 iterations, 

respectively, to converge to the optimal operational cost, resulting in 133.5 and 117.1, respectively. 

They needed 60 and 39 iterations to reach the optimal distribution routes, covering distances of 1062 

and 976, respectively. The results indicate that the improved ACO algorithm demonstrates a 

significant advantage in terms of solution quality and convergence speed compared to the traditional 

ACO algorithm. 

5.2.2. Schedule results comparison 

To comprehensively evaluate the excellence and effectiveness of the DT-based dynamic 

scheduling (DT-DS) strategy proposed in this paper, we introduced a traditional manual scheduling 

(TMS) strategy as a comparative benchmark. Under the TMS strategy, material distribution plans are 

manually devised by planners based on their expertise. In contrast, the DT-DS strategy proposed in 

this paper makes use of an improved ACO algorithm to make decisions within the DT environment. 

Figure 6(b) displays a comparison of the two scheduling optimization results. Using the TMS 

strategy, six AGVs were required, covering a total distance of 2124 meters, with a material 

distribution total cost of 304.4, and an average vehicle load rate of 88.5%. In contrast, using the DT-

DS strategy, the number of AGVs reduced to five, the total travel distance decreased to 1897, the 

material distribution total cost was 239.7, and the average vehicle load rate improved to 95.2%. 

Compared to the TMS strategy, after implementing the DT-DS strategy, there was a reduction of one 

AGV, a 10.7% reduction in travel distance (227), an approximately 93% increase in workstation 

satisfaction (reducing by 26.5), and a roughly 21.3% decrease in material distribution total cost 

(reducing by 64.7), with a 7.6% increase in the average vehicle load rate. 

 

Figure 6. (a) Simulation results of two algorithms; (b) comparison of results under two scheduling 

strategies. 

5.3. Sensitivity Analysis 

To delve into the impact of changes in logistics resources and emerging demand on the 

performance of material distribution scheduling systems, this study considers three relevant and 

typical scenarios: sensitivity analysis under different vehicle load (type) configurations, various 

vehicle quantity configurations, and different dynamic distribution demand volumes. These 

sensitivity analyses offer valuable insights for logistics management in mixed-model assembly 

workshops of similar enterprises. 

5.3.1. Scenario 1—sensitivity analysis of different vehicle model configurations 

Based on real distribution vehicles in a specific workshop and baseline distribution demand data 

for a given period, three different vehicle model configurations were considered: lightweight (140), 

medium-weight (180), and heavyweight (230). 

As illustrated in Figure 7 (a), the simulation results analysis for different vehicle model 

configurations reveals significant differences in key indicators of the material distribution scheduling 
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system, such as average load rates and total distribution costs when other factors remain constant. 

The medium-weight vehicles exhibit the highest average load rate (94.22%), followed by lightweight 

vehicles (86.53%), and heavyweight vehicles (73.76%). The medium and heavyweight vehicles both 

use 5 vehicles each, while lightweight vehicles employ 7 vehicles. In terms of distribution costs, 

lightweight vehicles have the highest costs (143.1), and medium-weight vehicles have the lowest costs 

(122.6). 

The explanation for these results is that the medium-weight vehicles achieve the highest average 

load rate, possibly because of their greater maximum payload, allowing them to accommodate more 

materials and thus improve the average load rate. Conversely, the higher distribution costs for 

lightweight vehicles could be attributed to their lower maximum payload, which requires more 

vehicles and trips to deliver the same quantity of materials, resulting in increased costs. 

From this sensitivity analysis, valuable management insights can be derived: 

• Managers need to balance distribution costs and efficiency in logistics operations. The size of a 

vehicle’s payload impacts the overall material distribution scheduling system’s performance 

when the quantity of materials remains constant. Overly large payloads can lead to lower load 

rates, reduced vehicle utilization, and increased total costs. Conversely, excessively small 

payloads, while improving average load rates, necessitate more vehicles, increasing 

maintenance costs. Therefore, selecting vehicles with medium payloads may help enterprises 

strike the right balance between cost and efficiency. 

• Managers should consider the alignment of production modes with vehicle configurations. In 

high-volume production modes, where material demand is significant, using vehicles with 

larger payloads can better meet the high-volume material distribution requirements and reduce 

transportation costs. On the other hand, in multi-variety, low-volume production modes where 

materials vary but are relatively small in quantity, selecting vehicles with smaller payloads can 

better meet flexibility requirements and improve load rates. 

• Managers need to find a balance between flexibility and efficiency. High-volume production 

modes often prioritize efficiency and, therefore, using larger payload vehicles can reduce costs. 

However, multi-variety, low-volume production modes prioritize flexibility, and thus smaller 

payload vehicles can better accommodate diverse material needs. In practice, managers must 

consider production demands, customer requirements, and the availability of logistics resources 

in their decision-making. 

5.3.2. Scenario 2—sensitivity analysis of different vehicle quantity configurations 

An analysis was conducted based on distribution demand data for a specific production batch, 

considering different quantities of medium-weight distribution vehicles, ranging from 5 to 11 

vehicles. 

Figure 7 (b) displays the results of the analysis for different configurations of distribution vehicle 

quantities. It is evident that, with other factors held constant, the total distribution costs exhibit a 

decreasing-then-increasing trend as the number of vehicles increases. When there are five vehicles, 

the total distribution costs are highest (747.6), and when the quantity increases to 8 vehicles, the costs 

decrease to a minimum (679.3). However, when the number further increases to 11 vehicles, the total 

distribution costs not only do not continue to decrease but increase to 724.5. 

The interpretation of these results is that having too few vehicles may lead to high penalty costs, 

as each vehicle may need to work at a high load, frequently shuttling between the distribution center 

and workstations, leading to faster mechanical wear and battery depletion, requiring more frequent 

maintenance and increasing maintenance costs. Moreover, a shortage of vehicles may lead to 

distribution wait times or congestion during peak material demand, reducing distribution efficiency. 

Additionally, when materials must be delivered on time and an insufficient number of vehicles or 

low efficiency leads to untimely deliveries, extra high penalty costs may be incurred, significantly 

increasing the total distribution costs. Conversely, having too many vehicles can result in higher costs 

due to increased maintenance, fuel, and other fixed and variable costs, along with heightened 

management complexity. 
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Crucial management insights can be drawn from this sensitivity analysis: 

• Managers need to strike a balance between penalty costs and idle costs. The number of 

distribution vehicles, under consistent vehicle types, affects the efficiency of the entire material 

distribution scheduling system. Having too few vehicles may lead to high penalty costs, while 

having too many vehicles can result in excess idle costs. Therefore, a balance needs to be struck 

between avoiding penalty costs and maximizing resource utilization. Managers should actively 

introduce advanced information technology and scheduling algorithms for real-time monitoring 

and intelligent decision-making to ensure that distribution vehicles meet demand without being 

underutilized. 

• Managers should dynamically and adaptively allocate logistics resources. When an enterprise 

faces consistent production demand, optimizing the number of vehicles can improve economic 

efficiency. However, in actual logistics operations, disruptions such as dynamic insertions or 

equipment failures may require an open, flexible scheduling system that can dynamically lease 

external logistics resources (such as vehicles) based on real-time demand, forming a flexible 

logistics resource pool that optimally allocates vehicle resources to adapt to various 

uncertainties. 

 

Figure 7. (a) Performance analysis with different vehicle loads; (b) distribution efficiency analysis 

with different number of distribution vehicle configurations. 

5.3.3. Scenario 3—sensitivity analysis of different dynamic distribution demand volumes 

Different dynamic distribution demand volumes impose varying requirements on logistics 

resources and adjustment strategies. If managers choose inappropriate scheduling strategies, it can 

lead to varying degrees of increased material distribution costs. A representative dynamic scenario, 

the increase in demand, was analyzed in this section. The additional distribution demand begins at 

time 60 and gradually increases in increments of 10, reaching light dynamic (LD, 10), moderate 

dynamic (MD, 20), and heavy dynamic (HD, 30). The distribution time for all additional demands is 

set at 240. 

As shown in Figure 8, the sensitivity analysis results for different dynamic distribution demand 

volumes reveal that, with other factors held constant, distribution costs, time penalty costs, and total 

distribution costs show an increasing-then-decreasing trend as the number of additional demands 

increases. Furthermore, irrespective of the amount of dynamic demand, adopting a dynamic 

scheduling strategy (i.e., DT-DS) results in lower costs across all three cost metrics compared to a 

traditional manual scheduling strategy (TMS). 

The explanation for these results is that the costs exhibit an increasing-then-decreasing trend 

due to the instability of demand when additional demands are introduced. Traditional planning and 

routing strategies may no longer be effective as unstable demand requires additional resources, such 

as extra vehicles, inventory, or personnel, to meet these additional demands, leading to additional 

cost increases and an upward trend in total costs. However, as businesses enhance their adaptability 

to demand volatility, they can take various optimization measures, such as route optimization, order 

processing workflow adjustments, and improved vehicle utilization, to reduce these additional costs, 

leading to a decline in total costs. 

From this sensitivity analysis, the following meaningful management insights can be derived: 
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• Managers need to enhance control of planning execution and demand forecasting and 

management. The increase in demand volume is positively correlated with the distribution total 

costs. Therefore, businesses should improve the stability of production plan execution and 

accurately predict dynamic demand through advanced logistics operation management 

strategies and precise demand forecasting models to mitigate the negative impact of unstable 

demand on the system. 

• Managers should proactively adopt intelligent scheduling systems based on advanced 

technology. When faced with dynamic demand, employing dynamic scheduling strategies 

based on real-time information can effectively address various dynamic disruptions and, as a 

result, reduce various operational costs. Furthermore, when internal resources are insufficient 

to meet dynamic demand, timely introduction of flexible, high-quality, cost-effective external 

logistics resources ensures that the system can respond rapidly while reasonably controlling the 

usage costs of external resources to support sustainable business development. 

 

Figure 8. Distribution efficiency analysis under different dynamic new demand quantities. 

6. Conclusions 

Emerging industrial internet technologies hold the promise of creating real-time visibility and 

transparency in modern manufacturing environments, offering new opportunities for dynamic 

material distribution scheduling. This paper investigates a DT-based material distribution scheduling 

optimization model and strategy. The research encompasses several key aspects: Firstly, this study 

establishes a material distribution scheduling optimization model that accounts for workstation 

satisfaction, thereby achieving a more precise and comprehensive evaluation of the scheduling 

model. It also introduces a DT-based material distribution scheduling optimization decision 

framework, providing a detailed description of the composition and operation mechanisms of the 

DT-based material distribution system. Secondly, a dynamic material distribution scheduling 

optimization strategy based on DT is proposed, accompanied by enhancements to the traditional 

ACO algorithm. Finally, to validate the proposed methodology’s effectiveness, a case study was 

conducted using real data from a collaborative enterprise. The research results indicate that in 

dynamic environments, the DT-DS strategy proposed in this study outperforms traditional TMS 

strategies in terms of average load rates, distribution costs, and delay penalties. 

This research makes several contributions to existing literature and practical applications: 

Firstly, it establishes a material distribution scheduling optimization model that takes into 

account workstation satisfaction, allowing for a more accurate and comprehensive evaluation of the 

scheduling model. 

Secondly, the proposed scheduling strategy incorporates real-time data into the decision 

framework, reducing interference from the source and integrating various scheduling types into a 

single framework. This significantly improves the DT-based material distribution scheduling 

optimization process, offering vital support for the increasingly prevalent field of data-driven 

production logistics operations management research. 

Thirdly, the introduced IACO algorithm optimizes path node selection probabilities and 

pheromone update rules, leading to improved solution speed, quality, and stability. 

However, this study also has certain limitations. The scheduling optimization model proposed 

in this study does not consider the production process and lacks a detailed description of how to 

harness real-time data from various sources. Consequently, future research exploring coordinated 
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decision-making in production and logistics based on real-time data and big data analysis presents a 

promising avenue for further investigation. 
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Appendix A 

The tables specifically show the relevant data for Section 5.1. 

Table A1. Various vehicle distribution costs. 

Fixed costs 

($/vehicle/times) 

Distribution cost 

per unit distance 

($/m) 

Early arrival 

penalty costs 

($/s) 

Late arrival 

penalty costs 

($/s) 

5 0.1 0.5 0.5 

Table A2. Material distribution center and coordinates of each workstation. 

No. X Y No. X Y 

0 5 20 17 25 20 

1 15 4 18 25 29 

2 15 8 19 25 34 

3 15 17 20 29 34 

4 15 24 21 29 31 

5 15 30 22 29 23 

6 15 34 23 29 16 

7 19 36 24 29 9 

8 19 32 25 29 5 

9 19 26 26 27 2 
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10 19 20 27 35 7 

11 19 16 28 35 11 

12 19 10 29 35 20 

13 18 2 30 35 25 

14 25 4 31 35 31 

15 25 8 32 35 33 

16 25 13    

Table A3. The time window for material requirements and their unloading times. 

Workstation 

No. 

Expected earliest 

time (s) 

Expected latest time 

(s) 

Distribution 

quantity (kg) 

Unloading time 

(s) 

1 70 180 25 15 

2 250 355 33 20 

3 125 225 30 20 

4 195 310 25 15 

5 200 295 36 15 

6 58 170 20 20 

7 152 250 18 15 

8 90 188 30 20 

9 138 250 15 25 

10 180 280 35 15 

11 108 200 20 15 

12 45 160 20 15 

13 215 330 25 20 

14 145 250 30 25 

15 89 200 35 20 

16 140 238 30 30 

17 95 210 28 25 

18 238 360 23 20 

19 20 138 19 20 

20 178 280 31 15 

21 195 298 38 20 

22 265 370 28 25 

23 144 256 22 15 

24 239 350 30 15 

25 95 195 18 20 

26 102 205 26 20 

27 225 330 29 25 

28 75 185 19 20 

29 100 205 25 15 

30 250 350 35 20 

31 150 265 32 25 

32 130 240 18 20 
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