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Abstract 

Direct detection systems are the mainstream choice for short-reach optical interconnects. As the data 
rate moving towards to 400G and beyond, conventional double-sideband intensity modulation and 
direct detection (IM/DD) systems lack inherent resistance to chromatic dispersion. The single 
sideband modulation was proposed to combat chromatic dispersion and extend the transmission 
reach. However, the penalty of single sideband modulation has not been analyzed. In this paper, we 
theoretically derive the SNR difference for both double sideband signal and single sideband signals 
in direct detection systems. 

Keywords: optical communication; direct detection; single sideband modulation 
 

1. Introduction 

Direct detection (DD) is the dominant choice for short-reach optical interconnects due to its low 
cost and colorless operation, compared to the local oscillator laser enabled coherent detection [1]. As 
shown in Figure 1(a), only one photodiode (PD) and analog to digital converter (ADC) is required to 
recover the transmitted signal for direct detection. However, traditional intensity modulation and 
direct detection (IM/DD) systems [2,3] are highly susceptible to the power fading effect caused by 
chromatic dispersion (CD). Single sideband (SSB) modulation can be utilized to break the conjugate 
symmetry between the two sidebands of double-sideband signals [4,5], thereby overcoming the 
power fading effect. However, SSB modulation may underperform its double-sideband (DSB) 
counterpart in signal-to-noise ratio (SNR) performance due to the inherent filtering process involved. 

In this work, we provide a theoretical SNR comparison between the DSB and SSB signals in 
direct detection systems. A 3-dB SNR advantage can be observed using DSB modulation. 

 
Figure 1. The structure of (a) IM/DD systems and (b) coherent detection systems. DSP: digital signal processing. 
DAC: digital to analog converter. PD: photodiode. ADC: analog to digital converter. PBC: polarization beam 
combiner. PBS: polarization beam splitter. LO: local oscillator. 
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2. Double Sideband Signal Reception 

To avoid the CD-induced power fading effect, we assume that the DSB signal can be pre-
compensated with an EO dispersion equalization transfer function 𝐻𝐻𝐶𝐶𝐶𝐶−1(𝑡𝑡) , where 𝐻𝐻𝐶𝐶𝐶𝐶(𝑡𝑡)  is the 
time-domain transfer function of link CD. Then the transmitted optical field can be described as 

𝐶𝐶 + 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝐶𝐶 + [𝑆𝑆𝐿𝐿(𝑡𝑡) + 𝑆𝑆𝑅𝑅(𝑡𝑡)]⨂𝐻𝐻𝐶𝐶𝐶𝐶−1(𝑡𝑡). (1) 
Here 𝐶𝐶 is the optical carrier. 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) is the DSB signal. 𝑆𝑆𝐿𝐿(𝑡𝑡) and 𝑆𝑆𝑅𝑅(𝑡𝑡) is the left and right 

sidebands, respectively. Conjugate symmetry of an IM signal is satisfied as 𝑆𝑆𝐿𝐿(𝑡𝑡) = 𝑆𝑆𝑅𝑅∗(𝑡𝑡). The notion 
⨂ stands for convolution. 

After fiber link, the optical field at the receiver side can be obtained as 
𝐶𝐶 + [𝑆𝑆𝐿𝐿(𝑡𝑡) + 𝑆𝑆𝑅𝑅(𝑡𝑡)]⨂𝐻𝐻𝐶𝐶𝐶𝐶−1(𝑡𝑡)⨂𝐻𝐻𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐶𝐶 + 𝑆𝑆𝐿𝐿(𝑡𝑡) + 𝑆𝑆𝑅𝑅(𝑡𝑡) + 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 . (2) 
Here 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴  is the ASE noise. The optical and electrical spectra of the DSB signal are illustrated 

on the top of Figure 1. 
After square-law detection of the PD, the photocurrent can be described as 
𝐼𝐼1(𝑡𝑡) = |𝐶𝐶 + 𝑆𝑆𝐿𝐿(𝑡𝑡) + 𝑆𝑆𝑅𝑅(𝑡𝑡) + 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴|2 = |𝐶𝐶|2 + 2𝑅𝑅𝑅𝑅{𝐶𝐶∗ ⋅ [𝑆𝑆𝐿𝐿(𝑡𝑡) + 𝑆𝑆𝑅𝑅(𝑡𝑡) + 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴]} + 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼1. (3) 
Here we assume the responsivity of the PD is 1. The first term is the direct current (DC) term, 

and the last term is the signal-signal beating interference (SSBI). If the DC & SSBI terms are neglected, 
the photocurrent is 

𝐼𝐼1(𝑡𝑡) ≈ 𝐶𝐶∗𝑆𝑆𝑅𝑅(𝑡𝑡) + 𝐶𝐶𝑆𝑆𝐿𝐿∗(𝑡𝑡) + 𝐶𝐶∗𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴∗ . (4) 
Based on the conjugate symmetry, we can only consider the positive frequency components only. 

Without loss of generality, we can assume 𝐶𝐶 to be real-valued and simplify the photocurrent to 
𝐼𝐼1(𝑡𝑡) ≈ 2𝐶𝐶𝑆𝑆𝑅𝑅(𝑡𝑡) + 𝐶𝐶(𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴∗ ). (5) 
Finally, the electrical SNR is calculated as 

𝑆𝑆𝑆𝑆𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷 ≈
4𝑃𝑃𝑆𝑆𝑅𝑅
2𝑃𝑃𝑁𝑁𝐵𝐵

=
2𝑃𝑃𝑆𝑆𝑅𝑅
𝑃𝑃𝑁𝑁𝐵𝐵

= 2𝑃𝑃𝑆𝑆 ⋅
1
2

1+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑃𝑃𝑁𝑁𝐵𝐵

= 1
1+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

⋅ 𝑃𝑃𝑆𝑆
𝑃𝑃𝑁𝑁𝐵𝐵

. (6) 

Here 𝑃𝑃𝑆𝑆𝑅𝑅 is the power of the right sideband of signal. 𝑃𝑃𝑁𝑁 is the noise power spectral density. 𝑃𝑃𝑆𝑆 
is the power of the signal including carrier, which means 𝑃𝑃𝑆𝑆 = (2𝑃𝑃𝑆𝑆𝑅𝑅 + 𝑃𝑃𝐶𝐶) for DSB signal. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is 
the carrier-to-signal power ratio (CSPR). 

3. Single Sideband Signal Reception 

Without loss of generality, we assume the left sideband of the signal is filtered out while 
retaining the right sideband, yielding a single-sideband signal. It can be described as 

𝐶𝐶 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 𝐶𝐶 + 𝑆𝑆𝑅𝑅(𝑡𝑡). (7) 
The optical field at the receiver side is 
𝐶𝐶 + 𝑆𝑆𝑅𝑅(𝑡𝑡)⨂𝐻𝐻𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐶𝐶 + 𝑆𝑆𝑅𝑅′ (𝑡𝑡) + 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 . (8) 
Here 𝑆𝑆𝑅𝑅′ (𝑡𝑡) = 𝑆𝑆𝑅𝑅(𝑡𝑡)⨂𝐻𝐻𝐶𝐶𝐶𝐶(𝑡𝑡). 
The optical and electrical spectra of the SSB signal are illustrated on the bottom of Figure 1. 
After the square-law detection at PD, the photocurrent can be described as 
𝐼𝐼2(𝑡𝑡) = |𝐶𝐶 + 𝑆𝑆𝑅𝑅′ (𝑡𝑡) + 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴|2 = |𝐶𝐶|2 + 2𝑅𝑅𝑅𝑅{𝐶𝐶∗ ⋅ [𝑆𝑆𝑅𝑅′ (𝑡𝑡) + 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴]} + 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼2. (9) 
Here we assume the responsivity of the PD is 1. The first term is the DC term, and the last term 

is the SSBI. If the DC and SSBI terms are neglected, the photocurrent is 
𝐼𝐼2(𝑡𝑡) ≈ 𝐶𝐶∗𝑆𝑆𝑅𝑅′ (𝑡𝑡) + 𝐶𝐶∗𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴∗  (10) 
Here we only consider the positive frequency component. 
Now we can calculate the electrical SNR of the SSB signal as 

𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ≈
𝑃𝑃𝑆𝑆𝑅𝑅
2𝑃𝑃𝑁𝑁𝐵𝐵

= 𝑃𝑃𝑆𝑆 ⋅
1

1+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
2𝑃𝑃𝑁𝑁𝐵𝐵

= 1
1+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

⋅ 𝑃𝑃𝑆𝑆
2𝑃𝑃𝑁𝑁𝐵𝐵

 (11) 
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Figure 2. The optical and electrical signal spectra illustration of (a) DSB and (b) SSB signals. 

Here 𝑃𝑃𝑆𝑆  is the power of the signal including carrier, which means  𝑃𝑃𝑆𝑆 = (𝑃𝑃𝑆𝑆𝑅𝑅 + 𝑃𝑃𝐶𝐶)  for SSB 
signal. 

4. Conclusion 

According to the calculated electrical SNR [eq. (6) and eq. (11)], we can find that the SNR is 
reduced to a half when SSB modulation is employed compared to DSB signal given the same CSPR. 
In other words, if we use DSB modulation instead of SSB, 3-dB SNR advantages can be achieved. 
Therefore, to meet the current stringent SNR and receiver sensitivity requirement, to compensate the 
dispersion in double sideband systems is more favorable than single side band systems. 
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