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Abstract: With a software-defined network (SDN), the control plane is separated from the data plane,
allowing the control of network flows to be easy and dynamic at the same time. While the controller,
which is equipped with various control applications, is capable of analyzing a large amount of
data, it may become overburdened when it is faced with a large volume of traffic. The intrusion
detection system (IDS) is an example of control applications that can be used to detect intrusions. It is
recommended to deploy instances of the IDS across the data plane. This will improve the processing
power and detection rate and as a result reduce the load on the controller at the same time. While
there is no doubt that an IDS would be beneficial for improving detection rates, installing one at each
switch in the data plane would be costly. To address this issue, this paper proposes the deployment
of IDS chains across the data plane. The controller directs incoming traffic via alternative paths,
including the IDS chain, which increases the detection rate while avoiding overloading. In order
to improve transmission efficiency, our study proposes a method of balancing the distribution of
flows and assigning them to specific IDS chains. This approach minimizes the cost of flow grouping
through the use of a new incoming traffic grouping technique. Our method is tested and evaluated
through the use of a test bed and trace-based simulation, and has been proven to effectively reduce
delays and hop counts across various traffic scenarios.

Keywords: attack; forwarding traffic; intrusion detection; load balancing; SDN; matching problem

1. Introduction

Software-defined networking (SDN) allows a computer network to be intelligently and centrally
controlled through software applications. There is a separation between the control plane (SDN
controllers and network applications) and the data plane (switches and their connections) of the
network [1]. The network can be programmed and managed more effectively by using a controller.
In the SDN application layer, the typical network applications, such as intrusion detection systems
(IDS), load balancing, and firewalls, are present [2]. Based on reports received from applications
installed, the controller analyzes traffic for forwarding, anomaly detection, and other purposes. There
is a possibility of overhead for the controller since there is a large volume of traffic and multiple
applications that it must handle [3]. IDS is one of the network applications in SDN. Using IDS, the
controller can detect anomalous traffic flows and then install rules in the switch’s flow tables in order to
block or reroute abnormal traffic. Although the IDS application improves the controller’s performance,
there are some challenges to implementing intrusion detection. SDN applications for security services
result in significant overhead for the controller. It is possible to reduce the controller’s overhead by
incorporating security applications, such as IDS and firewalls, into the data plane. The assignment of
IDS to all switches can improve detection rates. However, employing IDS on switches is expensive and
not feasible within a limited budget. In addition to being costly, IDS requires a considerable amount of
time and causes delays in the transmission process. Thus, it would not be helpful to process traffic on
all switches along the path from source to destination.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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It would be beneficial if we could provide some chains of IDS across the data plane. The result
would be a higher attack detection rate and a lower controller overhead. Figure 1 illustrates the
application layer, control plane, and data plane in an SDN. The blue dashed lines from the switches
to the controller show the control network lines, and the solid black lines between the switches are
the data network lines. Originally, there is not any IDSs across the data plane. Here, several IDSs are
deployed on the switches in the data plane. In the data plane, four switches are equipped with IDS
components. This network has some flows such as f1, f», and f3;. The dashed lines in different colors
present the routing path of these three traffic flows: f1 : s; — dy, fo : sp — dp, and f3 : s3 — d3. The
controller redirects each of these flows through an alternative path instead of the shortest one, including
an IDS chain, to perform intrusion detection. Each IDS chain consists of some IDS components, and
there is at least one IDS in every IDS chain. It is reasonable to assume that the lengths of the IDS
chains are the same. A measure of the effectiveness of an IDS is its detection rate. The detection rate of
blocked malicious packets can be determined by dividing the number of blocked malicious packets by
the total number of malicious packets received. The controller is responsible for installing flow rules.
Rather than sending traffic to the shortest path, these rules redirect traffic to alternative paths. Intruder
detection systems are placed along these alternative paths. It is difficult to determine the best path and
to select an IDS chain for each flow. In general, IDS applications can’t achieve an acceptable detection
rate due to their limitations. It may be possible to resolve this problem by deploying a chain of IDSs.
It is not possible to install IDS on all switches due to the installation costs and limitations associated
with the flow tables. Therefore, it is necessary to limit the number of IDSs. As incoming traffic is
grouped, there is no need for many IDSs. Performance measurements can be affected significantly
by the grouping and assignment of flows, particularly when high loads are present and transmission
delays are caused by non-shortest path routing.
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Figure 1. Forwarding traffic flows through IDSs in an SDN.

In this paper, we discuss how to maintain a balanced flow group and how to match them with IDS
chains. This paper presents a design and implementation of SDN to deploy IDS on selected switches
in the data plane, with the goal of increasing the detection rate and preventing controller overload. We
address the challenge of forwarding flows from a source to a destination when traffic passes through
specific switches [4]. To this end, we propose a method of flow grouping and matching IDSs for a
balance between detection rate and delay. Our approach involves deploying chains of IDSs across
the data plane and redirecting flows through these chains, which can be arranged in either a fixed or
dynamic order. However, as IDSs are only placed on certain switches, this can result in additional
hops and increased latency.

To mitigate this, we also propose a method of grouping incoming traffic to reduce the limitations
of maintaining a large flow table and transmission delay, which leads to fewer rules in flow tables and
all flows in a group following the same path.
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We initially used K-means clustering but found it unsuitable for this problem since each flow has
a source and a destination. Therefore, we proposed using a 1-dimensional space to calculate distances
in G, where the distance between the two points is the Euclidean distance. We also determined that
the number of hops between them should calculate the distance between the source/destination of
flows and centroids. We introduce an adapted form of K-means clustering, featuring a novel distance
metric within a two-dimensional (2-D) space. Our main contribution of this article, which extends the
conference paper [4] are as follows:

* We introduce a novel approach to deploying chains of IDSs in the data plane, enhancing intrusion
detection rates and reducing dropped data packets. This strategic distribution of multiple IDS
chains in the data plane not only avoids controller overload but also contributes to effective
intrusion detection.

* We propose a creative centroid-based modification of the K-means clustering method, which
efficiently groups incoming data flows to reduce data transmission delays.

¢ To address the complex joint optimization problem, we present a two-phase algorithm that
effectively achieves our optimization goals.

® Our paper delves deep into the intricacies of flow grouping and the association of flow groups
with IDS chains under varying scenarios. We introduce two distinct models for this association

process: the minimum cost 2-D matching and the minimum cost 3-D matching.
* We provide a comprehensive evaluation of our approach on a real testbed under various
measurements, demonstrating its practical effectiveness.

The structure of the paper is as follows: In Section 2, the related works on deploying IDS on SDN,
load balancing, and grouping traffic approaches are reviewed. The background and rationale behind
the proposed approach are presented in Section 3. The proposed approach, which is based on grouping
flows and assigning them to IDS chains, is detailed in Section 4. The evaluation and performance of
the scheme are discussed in Section 5. Lastly, we provide a brief conclusion in Section 6.

2. Related Work

During recent years, there has been a considerable amount of researches that integrate IDS into
SDN [5-9]. Latah et al. in [10] propose an efficient multi-level hybrid intrusion detection method for
SDNs. A kNN is used as the first level; an Extreme Learning Machine (ELM) is used as the second level;
and a Hierarchical Extreme Learning Machine (H-ELM) is used as the third level. According to the
experimental study, this system achieves the highest level of accuracy when compared to conventional
supervised machine learning algorithms based on the NSL-KDD benchmark dataset. Overall accuracy
was significantly improved as a result of this approach. Zhao ef al. in [11] present a novel IDS model
for SDN that is designed to collect and analyze traffic at the control plane. The proposed IDS model
addresses the limitation of data processing capacity using a probability-based traffic sampling method,
using a genetic algorithm that estimates the sampling probability for each sampling point by analyzing
the total number of false negatives. Based on the IDS’s limited detection capacity, this technique
determines the best sampling rate for each switch. As a result, they improved the effectiveness of
intrusion detection under medium network loads. Cui ef al. in [12] propose a mechanism for detecting
and defending against DDoS attacks in SDN environments. In order to implement the detection,
an unbalanced distribution of traffic was taken into account. An algorithm such as K-Means can
detect the unbalance in traffic. As an unsupervised machine learning algorithm, K-Means enhanced
the adaptability of the detection method and allowed the detection of attacks of different scales and
types. By using an entropy-based anomaly detection system, Niknami et al. in [13] propose a method
of determining a method to detect abnormal traffic variations, they combine entropy and relative
entropy. Using KL-divergence, entropy, and machine learning methods simultaneously eliminates the
uncertainty associated with the entropy threshold and enhances detection performance.

In a study by Yazdinejadna et al [14], a novel approach to attack detection within the data plane,
centered on SDN architecture, is presented. Their work introduces a zone-based architecture for KIDS
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(Kangaroo Intrusion Detection System) to enhance scalability and anomaly detection. An innovative
IDS design is employed, which leverages consecutive jumps after attack detection to efficiently notify
the SDN controller and other IDS components. Goo et al [15] introduce a methodology for traffic
categorization rooted in a correlation model. Their approach assesses traffic flow similarity using
Euclidean distance and examines flow connectivity by considering factors such as flow occurrence
time, source and destination IP addresses, port pairs, and the Transport-Layer protocol. To alleviate
the controller’s load and enhance attack detection rates, Niknami et al. propose a distinctive extension
for SDN [4]. They advocate the deployment of IDSs in the data plane, where a chain of IDSs is
interconnected with various switches. This novel approach incorporates a new distance measurement
technique and a modified version of the K-means algorithm to group incoming data flows and steer
flow groups toward the IDS chains.

The present paper serves as an expansion of the work presented in [4]. Results show that
increasing the number of IDSs positively impacts malicious packet detection. Delay times are similar
for multiple IDSs and mixed IDS configurations, with single IDS setups having lower delay times.
Mixed IDS setups yield higher detection rates, nearing those of multiple IDSs. The use of multiple
IDSs, as opposed to a single IDS, increases the probability of detecting anomalous flows. The study
also examines clustering methods’ impact on controller overhead, drop rates, and detection rates,
finding that balancing clusters based on data rates enhances IDS drop rates. The purpose of this paper
is to provide a completely separate K-means clustering and later matching between virtual centers
and IDS. In addition, we conducted totally new evaluations in the experimental part. In our approach,
the location of is any switch in the given network, and it can be the center for multiple clusters. We
run K-mean and adjust location of groups based on closeness for the distance of flow and centroid of
groups. Then by providing balanced groups and assigning flow groups to IDS chains the controller
installed a forwarding rule for each group.

3. Background and Motivation

This paper aims to deploy IDS chains across a data plane to increase the attack detection rate
and decrease overhead on the controller when there is a large amount of traffic in the SDN. An IDS
describes a suspected intrusion and then signals an alarm once it has happened [16]. Regarding
detection techniques, IDS can be divided into three categories: signature-based (knowledge-based),
anomaly-based (behavior-based), and hybrid. Signature-based IDS detects network traffic for signs of
attacks and uses those signatures as a reference to detect future attacks. Anomaly detection IDS detects
traffic anomalies based on tracking them. It is a hybrid IDS that uses both knowledge and anomaly
technologies. By using hybrid detection, it is possible to identify both predefined and undefined
intrusions [17]. Similarly, IDSs can be categorized into three types according to their data collection
techniques: Host-based, Network-based, and Hybrid systems, which combine two approaches [18].
The SDN architecture separates the control plane’s decision-making from the data plane’s traffic
forwarding while logically centralizing decision-making into a controller whose functionality can
be extended via network applications. A centralized control plane provides a global view in SDN,
enabling traffic engineering, security, load balancing, and other network management strategies to be
implemented based on defined network policies. All switches in the network are monitored by the
controller, which sets rules in the flow tables on each switch. Through the use of OpenFlow [19], a
centralized controller communicates with switches and handles the routing and forwarding of the
data plane. The controller monitors all switches in the network and sets rules for each switch’s flow
tables. Switches send packet-in messages to controllers whenever new packets arrive that do not match
entries in the flow table. An SDN-based IDS detects and reports malicious behavior or attacks to the
controller. In SDN, the IDS is currently designed using a machine learning approach [20]. A machine
learning-based IDS can be trained more easily with the centralization of the SDN [21].

Clustering algorithms are designed to partition the set of nodes into distinct clusters, and
the challenge revolves around choosing the cluster head, often referred to as the centroid, and
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effectively managing these clusters. The K-means clustering technique aims to group similar items
into clusters [22]. Each cluster begins with centroids selected at random, and then the positions of
these centroids are optimized iteratively. The centroid of a cluster represents its central point. In the
K-means algorithm, K centroids are determined, and each data point is assigned to the nearest cluster,
with a goal of minimizing the size of these centroids. K is a hyper-parameter to the K-means algorithm.
There is usually a heuristic approach to determining the number of clusters K. Most strategies involve
running K-means with a variety of K values in order to determine which value is the most appropriate.
In order to solve minimum-cost assignment problems [23], the balanced K-means algorithm can be
implemented using the Munkres algorithm [24] or the Hungarian algorithm [25].

Matching problems are generally concerned with finding a set of edges whose vertex belongs to
at least one of these edges. Suppose a network G with |V| nodes and a set of links E between nodes
v € V. In Weighted Matching method, there is weight for edges and the algorithm tries to identify
a set of disjoint edges that have the greatest weight sum. A bipartite graph consists of two vertex
sets of equal size [26], and the Perfect Weighted Matching algorithm is intended to generate an edge
set on this graph. Authors in [27] presented an extension of Weighted Matching called Weighted 3-D
Matching algorithm by utilizing 3-D hyper-graphs. A general weight 3-D matching problem can be
approximated using the Iterative Round Search technique.

4. IDSMatch: Deploying IDS Chains in SDN

In this paper, we introduce an innovative extension to the data plane within SDNs, with a specific
focus on tackling issues related to anomaly detection and controller overload. Within the network
infrastructure, IDS applications are commonly integrated into the control plane layer. However,
when the network experiences a substantial influx of incoming traffic, its ability to effectively identify
anomalies becomes constrained. Moreover, there exists a limited bandwidth for communication
between the data plane and the control plane. Since SDNs rely exclusively on a centralized controller
to manage network traffic, a high volume of incoming traffic can overwhelm the controller, potentially
leading to network failures. Deploying IDS on specific data plane switches can relieve the SDN
controller’s load, and increasing the number of IDSs enhances attack detection chances in specific
traffic flows. However, deploying IDS on all switches is impractical due to costs and delays. Our
proposal involves strategically placing IDS chains across the data plane and directing flows through
specific paths that include these IDS chains. This routing approach increases transmission delay
compared to the shortest path. To mitigate this delay, we group incoming flows and route all flows
within a group through the same path. A classifier categorizes traffic patterns upon entry into the
network to assign the most suitable IDS chain. Grouping is based on the proximity of source and
destination flows to the group’s centroid. The proposed approach organizes incoming flows by
measuring the distance between their source and destination points relative to a central reference
point. Flows sharing the same cluster ID are regarded as part of a cohesive cluster and are subjected
to identical security protocols. Subsequently, each cluster of flows is allocated a dedicated sequence
of IDSs. To direct packet flow within each group through the designated IDS chain, the controller
establishes rules. The task of assigning each group to an appropriate IDS chain is known to be
NP-hard, and to address this complexity, we propose a modified version of the K-means algorithm as
an approximate solution.

Theorem 1. The complexity of the flow grouping problem being NP-hard implies that the likelihood of
discovering highly efficient algorithms to achieve optimal solutions is quite low.

Proof. The demonstration of this fact has been presented in two notable references, namely, [28], which
utilizes Exact Cover by 3-Sets, and [29], where a reduction from Planar 3-SAT is employed. O

The overall strategy involves clustering flows and defining a set of rules applicable to each cluster.
Flow categorization hinges on the proximity of source and destination hosts to the cluster’s centroid.
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Subsequently, the task is to allocate each cluster to an IDS chain, which can be likened to solving
a matching problem. Following this, the controller configures flow rules that reroute packets from
flows within each cluster through a predetermined sequence of IDSs within the assigned chain. The
conventional K-means algorithm typically relies on assessing the distance between data points and
their respective centroids. Nevertheless, in our specific problem, we encounter a distinct challenge
that necessitates a different similarity metric than the standard K-means approach. We must devise
a unique grouping strategy and similarity measurement. In our context, the data points represent
flows with distinct source (sj) and destination d ;) attributes. To adapt the K-means clustering to our
scenario, we apply it to pairs (s;,d;). The distance measurement employed is dis(s;, 5x) + dis(d}, dy),
where 5 and d; denote the centroids of a cluster with center c. Here, we present formal definitions
for flow grouping, distance measurement, and the process of matching IDS, inspired by the concepts
introduced in [4].

Definition 1 (Grouping strategy and GroupFlow). Grouping strategy A partitions the incoming traffic
flow based on the similarity of specific features such as the same source or same destination. The total number of
groups K is a predefined parameter. F; C F is the j-th group or j-th GroupFlow including multiple flows with
similar features. All flows in F; have been routed through the same path and passed through some specific IDSs.

Definition 2 (Distance). The distance measurement is the summation of the distance of each source s; to
the cluster centroid c's source, and the distance of each destination d; to the cluster centroid c;’s destination.
Distance value dis (s, 5) + dis(d;, dy.) is used to find the nearest cluster centroid for each GroupFlow [4].

Definition 3 (Matching GroupFlow with IDS Chain). For a specific GroupFlow F;, an IDS chain I is
assigned by matching the centroid cy of that GroupFlow with the head of an IDS chain. The assignment is based
on the weight of the link between the source of the cluster and the head or tail of the IDS chain [4].

Figure 2 illustrates an example for three clusters and three IDS chains. h represents the head
of IDS chain, while ¢ signifies the tail of this IDS chain. Figure 2a shows the shortest path method,
which calculates the distance between sources and destinations of flows and initial centroids. We have
the distance measurement dis(s;, 5¢) + dis(d;, d) and flows would be divided into three clusters with
centroids {c1, ¢z, c3}. The GroupFlows would be assigned to the IDS chain based on the shortest hop
count. f1(s1,d1), f2(s2,d2), and f5(ss,ds) are assigned to the first IDS chain based on the shortest path.
fa(s3,d3) is assigned to the second IDS chain. f4(ss,ds) and fs(se, dg) are assigned to the third IDS
chain. Figure 2b illustrates the balanced grouping method. After grouping the flows, groups will have
different numbers of members. Balanced clustering aims to achieve an equitable distribution of data
points within each cluster, ensuring an equal workload for each cluster. Our approach is different from
common techniques. Instead of relying on the count of group members to assess balance, we determine
balance by considering the total data rate of the groups. For this example, Figure 2a shows that the first
cluster has three members, the second one has only one member, and the third one has two members.
In order to make a balance for the amount of processing on each IDS chain, we make a balance for the
total amount of traffic in each group. The weight of a group can be defined as W; = }_¢cf, nj.wy. For
this example, we assumed that the data rate of flow is the same, therefore balancing would be based
on the total number of members in each group. Figure 2b shows the balanced groups.
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Figure 2. Different methods of assigning IDS chain to incoming traffic.

Utilizing a perfect matching algorithm, each balanced GroupFlow is assigned to a head and tail
based on the shortest path, which encompasses the sum of hops from the source to the chain’s head,
the hops between the head and tail, and the hops between the tail and the destination. In Figure 2c, you
can observe the allocation of IDS chain heads and tails to the source and destination of the centroids.
Every cluster k has a virtual center, comprising both the source 5; and the destination dj. The matching
process involves connecting s; to h; and associating d with t;, where h; and t; correspond to the head
and tail of two distinct IDS chains. This arrangement results in interconnections between IDS chains.
In the real test bed, we consider network delay, which is based on the number of hops and congestion
on links. Table 1 shows the hop counts and the assigned IDS chain for each method.

Table 1. Fixed IDS chain for each flow

Shortest Path Balanced Matching

Flow || Group | IDS |[[ Group | IDS [[ Group | IDS
A (c1,6) | (h1,t) (c1,6) | (B, 1) (c1,6) | (1, 1)
f2 (c1,6) | (h1,t1) (c2,8) | (h2,ta) (c2,7) | (ho,t3)
f3 (c2,6) (h2, t2) (c2,6) (ha, t2) (c2,5) (h2,t3)
fa (c3,5) | (h3,t3) (c3,6) | (h3,t3) (3,5) | (h3,t2)
f5 (c1,6) | (h,t) (c1,6) | (1, t) (c1,6) | (h1,t)
fe (c3,5) | (h3,t3) (c3,6) | (hst3) (c3,5) | (h3,t2)
Total 34 38 34

We summarize the steps of the proposed approach as follows:

* Perform clustering for the pair (s;, d;) using a distance metric defined as the sum of distances
from s; to the center 5 and from d; to the center dj within a cluster with its central point at cy.
The distance between each host and the cluster center is computed as the cumulative number of
hops.

¢ Find balanced GroupFlows based on the amount of traffic for each group.

e Employ the standard perfect matching technique to establish pairs between cluster centers and
IDS chain configurations. Note that the connections between IDS chain heads and tails are not
fixed and can be reconfigured as needed.

The process of grouping flows is achieved by employing a modified variant of the K-means
clustering technique. In Algorithms 1 and 2, the procedures for grouping incoming traffic into K
clusters, creating balanced groups, and then matching the GroupFlows to the IDS chains are delineated.
The initial step involves the random initialization of K cluster centroids. Subsequently, in the second
step, the distances between each pair (s;,d;) and the centroid c; are computed, and flows are assigned
to their respective clusters based on these distances. Once all the flows have been clustered, the
centroids are updated by identifying new centroids in a way that minimizes the sum of the shortest
path distances from all flows in cluster j to the new centroid. This iterative process continues until it
reaches a stable state.
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Algorithm 1 Balanced-Flow Grouping

Require: Flow set F
1: Initialize the K cluster centroids
2: Shortest Path
3: repeat
4 foreach (s¢,dy) of flow f € F do
5: for each centroid ¢ do
6 5 < source of ¢,
7 dj < destination of c;
8 j « arg min(dis(ss,5¢) + dis(dy, di))
9 F]' — F]' U f
10: until Convergence
11: Balanced Clustering
12: for each cluster F; do
13:  Calculate number of members M; = |Fj|

14: Calculate average number of members M
15: for each cluster F; do

16: Change the membership if M; is not the same as M
17:  Find c as new centroid based7 on new members

18: Perfect Mlmrnum Bipartite Matching
19: Call Algorithm 2
20: return List of clusters assigned to IDS chains

Algorithm 2 Perfect Minimum Bipartite Matching

Require: IDS chains I and set of K balanced clusters
1: for each unmatched centroid ¢ do

2: 5 ¢ source of ¢

i* < arg min;{dis(si, h;) + dis(d, t;) }
Assign 5; to hjs
9:  Assign dj to ¢+
10: return List of matched IDS chains and clusters

3:  dj < destination of ¢

4.  foreach IDS chaini € I do
5; h; + head of i

6: t; + tail of i

7

8:

When using any clustering method, it is important to ensure that the algorithm is converging in a
meaningful way. To answer this question, we need to define a related optimization problem and make
the concept of convergence more precise as per the reference [30]. Convergence in this context means
that the algorithm has successfully completed the clustering or grouping of data points into K clusters.
The algorithm will be deemed to have correctly grouped the data points if the difference in the values
of the last two iterations is less than a specified threshold. The classical K-means algorithm is designed
for Euclidean distance, which is known to satisfy the triangle inequality as per reference [31].

In order to avoid redundant distance calculations, it is necessary to use triangle inequality in order
to determine the bounds. Since most distance calculations using standard K-means are redundant, the
optimized algorithm uses a more efficient calculation method. The distance between a point and a
center does not need to be calculated in order to determine that the point should not be assigned to
that center if it is far from the center. It is not necessary to calculate the exact distance to determine
that a point should be assigned to the first center if a point is substantially closer to it than to any
other [32,33].

In order to have balanced GroupFlows, there is some transferring of flows between GroupFlows,
resulting in even number of flows in each group. Eventually, there would be an equal number of
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flows in each GroupFlow. In the experiment section, we consider the number of flows and traffic rate
r¢ for balancing groups. The perfect matching method is done based on the hop count between the
GroupFlows and heads and tails of the IDS chains. There is not any fixed connection between heads
and tails. Perfect matching makes some cross-connection between heads and tails based on finding the
best chain for GroupFlows. This algorithm returns a list of balanced groups and their matched IDS
chain.

This problem is NP-hard. To address it, we take an approach that relies on an approximation
technique involving the reconfiguration of incoming flows using a modified version of the K-means
clustering algorithm. We formulate the problem of grouping incoming traffic as an optimization
problem with the primary aim of reducing overhead or minimizing costs. This issue is divided into
two sub-problems: one involving the grouping of incoming traffic, and the other focused on IDS
assignment. They can be formulated as follows:

Problem 1. The first objective is to group incoming traffic in a balanced manner to reduce transmission delay.
Factors that should be considered when determining the appropriate grouping include the distance of flows to the
cluster’s centroid and the total amount of traffic flows in each cluster.

min ijep Cost(F;)

1
subject to Cost(Fj) = |Fj| 'Zfep ' v
i

Here, Cost(F;) represents the cost of clustering incoming traffic. This cost represents the overhead
of the controller due to additional work required for grouping the incoming traffic. The cost is based
on the total number of traffic flows and total traffic rate ¢ in each cluster F;. For the purpose of
simplification, we can assume that the value of 7 is equal to 1 in our calculations.

Problem 2. The secondary goal is to allocate an IDS chain to each GroupFlow F; in a manner that reduces
the overall count of malicious packets while guaranteeing that all traffic passes through an IDS chain prior to
reaching its final destination. Given that the positions of IDS chains are pre-established, the problem can be
formulated as follows:

min ZieICost(I)
subject to Cost(I) = ZMV _1 Rj*min(dis(F;, I;))
ji=
Rj = ZfeFj f
1 < L.

@)

Here, we evaluate the cost associated with assigning a GroupFlow F; to an IDS chain [;, denoted as
Cost(I). This cost is determined by considering the cumulative traffic rate of each GroupFlow and the
distance between the GroupFlow’s centroid and the IDS chain. The traffic rate of the j-th GroupFlow is
represented as Rj, and the data rate of a flow f is denoted as r Iz The distance between the IDS chain
I 'and the GroupFlow F; is quantified as dis(F;, I;), which signifies the number of hops between the
cluster’s head 5j and h;. The matrix Mj, i is employed to indicate the assignment of each GroupFlow F;
to a specific IDS chain I;.

Theorem 2. The proposed approach is a 3-approximation algorithm [34] for flows with different sources to
different destinations in a network with some IDS chains.

Proof. The calculation of the 3-approximation ratio is based on the triangle inequality and the
optimality of each matching stage. For each head node h € V, there is a corresponding tail node
t € V which is assigned in the first round of approach. In addition, the pair (4, t) is matched to a
group of flows F; with source s; and destination d; in the second round of the approach. We assume
that in the optimal solution, the node / should be paired with node t*, and the pair (h,s*) should
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be balanced by the GroupFlow F; whose source and destination are s; and d; respectively. The
relation among these nodes is shown in Figures 3 and 4, which is a geometric graph. The total

distance generated by our algorithm is Y,y (dis(s;, h) + dis(h, t) + dis(t,d;)), and the optimal value
is Y ey (dis(sf, h) +dis(h, t*) + dis(t*,d})). O

(@) First step (b) Second step

Figure 3. Procedures of the matching algorithm.

Figure 4. Relationship between assignment and OPT.

Based on the triangle inequality theorem, it can be deduced that dis(t, t*) < dis(h, t) + dis(h, t*)
and dis(t,d}) < dis(t,t*) + dis(t*,d}) for each h € V. Based on the optimality of the first round of

matching, it can be inferred that } ¢y dis(h, t) < Y ,cy dis(h, t*). Furthermore, the optimality of the
second round of matching ensures that:

Y (dis(si, h) +dis(t,d;)) < Y (dis(s}, h) + dis(t,d}))
heV heVv

Combining these inequity relationships:

Y (dis(si, h) +dis(t,d;)) < Y (dis(s}, h) +dis(t,d}))
hev hev

< Y (dis(sf, h) +dis(t, t*) + dis(t*,dy))
heV

< Y (dis(s, h) +dis(h, t) + dis(h, t*) + dis(t*, d}))
heV

< Y (dis(sj, h) + 2dis(h, t*) + dis(t*,d})).

heVv
Therefore,

Y (dis(s;, h) + dis(h, t) + dis(t,d))

heV

=Y (dis(s;, h) +dis(t,d)) + Y _ dis(h,t)
heV heV

< Y (dis(sj, h) + 2dis(h, t*) + dis(t*,d"))
heV

+ Y dis(h, )
heVv

<3 Y (dis(st, h) +dis(h, ") + dis(t*,d*)) = 30PT.
heVv
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5. Evaluation

In order to validate our proposed method, we conduct real-world experiments on our test bed
network. This network includes gateway nodes, SDN switches, and servers that serve as sources and
destinations. The topology of the network is arranged in a perfect tree with four layers. The network
is equipped with 32 servers, 15 SDN switches, and some regular L2 switches. The servers, except
for the gateway, are equipped with dual-core processors running at 2.4 GHz, 4 GB of RAM, and a
500 GB hard disk drive [35]. The controller used in our experiment is a Dell 3248 PowerEdge server,
running the ONOS software.The structure of the data center is illustrated in Figure 5a. Our set up
includes a control network and a data network. The control network connects all management ports
of the SDN switches (Pica8 p-3922) and the SDN controller through an L2 switch. The SDN switches
are configured as out-of-band controllers, which separates the control and data planes. The topology
is arranged in a three-level complete binary tree. The dotted lines in the star topology in Figure 5a
indicate the control network. There are two types of SDN switches: the root switch and the leaf switch,
for the gateway. There is a connection between the gateway and the root SDN switch, and there is a
connection between the servers and the leaf SDN switch. For simulation purposes, we evaluate the
performance of our approach over 75-node CORONET and 24-node USNET network topologies, as
shown in Figure 5b,c respectively. For the test bed, the performance measurement is network delay;,
based on hops and link congestion. Whereas in the simulation, the performance measurement is hop
counts.

°ea® @
N -

Gateway & Cont

(a) Data center topology. (b) 24-node USNET topology. (c) 75-node CORONET topology.
Figure 5. Topologies.

In our network, IDSs are installed on servers associated with each switch. The controller is aware
of the links, their utilization, and the SDN switches, allowing for a global perspective of the network.
After configuring the network and flow settings, we analyze the results from various perspectives
to provide insight into the performance of the proposed algorithm. To demonstrate its feasibility
and efficiency, we conduct experiments on a real test bed using Snortas the IDS. Legitimate traffic is
generated using the Ostinatotraffic generator in normal and burst modes, while malicious traffic is
generated using Kali Linux. Deploying IDSs into the network leads to an increase in transmission
delay as packets are redirected to the server for detection before being sent back to the network
to continue their path. There is also constant background traffic between all servers, with 64 byte
packets and randomly selected sources and destinations. In the original paper [4], it’s evident that
deploying more IDSs enhances detection rates. Multiple IDSs can introduce slightly higher delays due
to using alternative paths, but this delay is not significant. Higher attack rates boost detection rates
and reduce missed detections, as more samples improve detection probability. Surprisingly, attack
rates have little impact on dropping rates, mainly influenced by switch capacity rather than attack
ratios. Increased attack rates lead to higher delays, as switches need to alert the controller before taking
action. Consequently, with more attack samples, detection rates, missed detection rates, and dropping
rates all rise. In this study, we evaluate our approach using measurements of network delay in the real
test bed and the number of hops in the simulation.

5.1. Network Delay under Different Scale of Incoming Traffic

We consider the scale of traffic as the total number of flows and data rate (weight) for each flow.
In this section, we define three scales for the incoming traffic based on the production of the number
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of flows and weight of flows. We categorize traffic in small, medium, and large traffic. Figures 6-8
illustrate the network delay under different scale of incoming traffic: small, medium, and large traffic,
for topologies with different sparsity. We define different scenarios: 1) One IDS in the chain, 2) Three
fixed IDSs in the chain, and 3) Five IDSs in the chain. Figure 6 shows the network delay for the
topology with sparsity 15%. The result shows that perfect matching decreases network even for a large
scale of traffic. Despite that with a longer IDs chain, there would be higher detection rate, Figure 6¢
shows higher amount of network delay. There are similar results for topology with sparsity 35% in
Figure 7 and for the network with sparsity 55% which is shown in Figure 8. The network delay in
a topology with higher sparsity (55%) is higher than the network delay in a topology with a lower
sparsity (15%).

8
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Figure 8. Detection time for topology 3 (Sparsity=55%).

5.2. Number of Hops under Different Scales of Incoming Traffic

Figure 9 illustrates the number of hops measurement under different scales of incoming traffic.
The result for the topology with sparsity 15% shows that for the perfect matching there is smaller
number of hops in comparison with the balanced group method. Figure 10 and 11 display the result
for the network with sparsity 35% and 55%, respectively. For the sparse network, the number of hops
for the perfect matching method differs from the balanced method greatly.
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5.3. Network Delay under Varying Weights and Varying Number of Flows

Findings as reported in [4] underscore the significance of incoming traffic volume as a pivotal
metric for assessing the effectiveness of IDS deployment within the data plane. Additionally, it's worth
noting that the quantity of IDSs within each chain has a notable impact on all the recorded metrics.
We conducted some experiments to figure out the impact of the weight of flows and number of flows
in incoming traffic on the network delay. Figure 12 shows the delay network when there is a fixed
amount of incoming traffic and a varying weight between 10 and 300. The results for flow number
100, 300, and 500 show that a larger rate of traffic increases the network delay. Figure 13 shows the
delay network when there is a varying amount of incoming traffic from 100 to 500 and a fixed weight
of 100, 200, and 300. The results show that although a larger amount of incoming traffic increases the
network delay, the impact that the weight of flows has on network delay is greater than the impact of
the amount of traffic.
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Figure 12. Network Delay for different flow weights.
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5.4. Unbalancing Factor

After assigning the GroupFlow of the network to the IDS chain, computing the balancing factor
that will indicate whether the data are balanced IDS chains would be helpful for evaluating the
assignment process. The groups are roughly balanced if there is the same amount of traffic for each
IDS chain. Table 2 shows the balancing factor for the shortest path, balancing, and matching methods.
We consider the topology which is shown in Figure 5c for this experiment. The higher number of
unbalancing factors shows the uneven traffic rate for IDS chains.

Table 2. Unbalancing Factor.

Flows Shortest Path  Balancing Matching
IDS Chain 1 13.4 10.5 3.2
IDS Chain 2 9.3 7.03 43
IDS Chain 3 11.1 6.4 4.0

6. Conclusions

It is necessary to have a chain of IDSs on a large and busy network as a single IDS may be
susceptible to packet loss. Further, a centralized controller is responsible for handling all underlying
network packets for security services, which results in significant overhead. As an alternative, security
services can be deployed as network functions on switches within the data plane. By creating an
approximation model, we proposed a novel method of detecting attacks in the data plane. We
developed a novel method for grouping incoming flows intuitively. Each group consists of a number of
flows that are processed into an IDS chain. As a result of assigning flows to IDS chains, grouped flows
are diverted on a longer path and processed by the assigned IDS chain. To evaluate our approach,
we discussed several factors, including detection rate, hop count, and delay time. Under different
scenarios, the proposed approach meets these measurements. Future work will focus on grouping
flows based on the common K links in their path to the destinations. The flows with the same K
sub-path would be assigned to the same group.
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