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Abstract: We demonstrate that multiple well-known metrics, such as the Schwarzschild metric and the extremal

solution of the Reissner-Nordström metric, can be expressed in what we will call thermodynamic form. These

formulations appear to be valid for all Rs = ct growing black holes and, therefore, also within the framework of

Rh = ct growing black hole cosmology. However, the metrics can also be applied to non-black hole gravitational

objects as long as one calculates the CMB and Hawking temperature of the hypothetical black hole from the

gravitational mass.
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1. Background on the Hawking Temperature and the New CMB Temperature Formula

In 1974, Hawking [1,2] introduced what is now known as the Hawking temperature of a black
hole:

THw =
h̄c3

kb8πGM
. (1)

Where kb is the Boltzmann constant, and h̄ is the reduced Planck constant, also known as the Dirac
constant (h̄ = h

2π ). The Hawking temperature formula plays a central role in many papers analyzing
black holes. Additionally, Tatum et. al [3] introduced a similar formula for the CMB temperature
heuristically in 2015:

Tcmb =
h̄c3

kb8πG
√

Mmp
=

h̄c
kb4π

√
Rh2lp

= 2.7276+0.0723
−0.0743K (2)

where mp is the Planck mass and lp is the Planck length, M is the black hole mass (critical Friedmann
mass), and Rh = c

H0
is the Hubble radius. The CMB temperature value given is calculated based on

using the Sneppen et al. [4], which reports H0 = 67 ± 3.6, km/s/Mpc. Additionally, we have included
the NIST CODATA (2018) uncertainty in the Planck length. The other constants are exact according to
the NIST CODATA (2018) standard.

This formula, in more general terms for a black hole, is given by:

Tcmb =
h̄c3

kb8πG
√

MBHmp
=

h̄c
kb4π

√
Rs2lp

(3)

where MBH is the mass of a Schwarzschild black hole, MBH = c2Rs
2G where Rs is the Schwarzschild

radius Rs =
2GMBH

c2 . Recently, Haug and Wojnow have demonstrated that the formula can be derived
from the Stefan-Boltzmann law [5,6]. Haug and Tatum [7] have also demonstrated that the formula
can be derived as a geometric mean temperature of the maximum and minimum temperatures related
to a black hole. CMB, or cosmic microwave background, temperature is a bit of a misnomer, as it is
only for a Hubble sphere-sized black hole that the geometric mean internal temperature in the black
hole correspond to microwave wavelength, for smaller black holes this temperature increase and the
corresponding wavelength is shortened. A perhaps better word for this temperature would simply be
the geometric mean internal black hole temperature.
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To measure the CMB temperature (black hole geometric mean internal temperature) one would
need to be inside a black hole. According to black hole cosmology we are inside a black hole. This idea
that the Hubble sphere could be a black hole was likely first suggested by Pathria [8] in 1972 and the
idea that the universe we live in could be a black hole is actively discussed to this day, see for example
[9–17].

Haug [5] has also demonstrated that we must have:

T2
cmb

T2
Hw

=
lp

λ̄
(4)

Furthermore, Haug [5,18] has demonstrated that Einstein’s [19] field equation can be rewritten as:

Rµν −
1
2

Rgµν =
8πG

c4 Tµν

Rµν −
1
2

Rgµν =
8πl2

p

ch̄
Tµν (5)

where lp is the Planck length [20,21]: lp =
√

Gh̄
c3 . That is, we have simply solved the Planck length

formula for G, which gives G =
l2
pc3

h̄ and replaced G in Einstein’s field equation with this. Solving the
Planck units for G was suggested at least as early as 1984 by Cahill [22,23]. However, Cohen [24] in
1987 correctly pointed out that this leads to a circular problem, as no one had found a way to determine
the Planck length independent of first knowing G. This view has been reiterated at least up to 2016;
see, for example, [25]. However, in 2017, Haug [26] was able to demonstrate that one could find the
Planck length independently of knowing G, and further, without knowledge of G and h̄; see [27,28].
Recently, it has also been demonstrated how one can find the Planck length from the Hubble constant
and the observed cosmological redshift by the formula:

lp =
H0

T2
cmb

h̄2c
kb32π2 (6)

Haug [29] has recently demonstrated how one can also extract the Planck length from the observed
redshift of 580 supernovas in the Union2 database. Additionally, it is important to note that any
kilogram mass can be expressed by simply solving the Compton [30] wavelength formula: λ̄ = h

mc .
With respect to M, this gives:

M =
h
λ

1
c
=

h̄
λ

1
c

(7)

where λ̄ is the reduced Compton wavelength. Some may claim that such a formula can only be used
for electrons; however, this is not correct. The formula can be applied to any kilogram mass, and
the reduced Compton wavelength can be determined for any mass. What is true is that likely only
elementary particles have a physical Compton wavelength. The Compton wavelength of composite
masses, however, can be seen as an aggregate of the Compton wavelengths of all the elementary
particles making up the composite mass, as discussed, for example, in [31], see also [32,33].

By simply replacing G with G =
l2
pc3

h̄ and M with M = h̄
λ̄

1
c the Schwarzschild [34] metric can be

rewritten as:

ds2 = −
(

1 − 2GM
c2r

)
c2dt2 +

(
1 − 2GM

rc2

)−1
dr2 − r2dΩ2

ds2 = −
(

1 −
2lp

r
lp

λ̄M

)
c2dt2 +

(
1 −

2lp

r
lp

λ̄M

)−1

dr2 − r2dΩ2 (8)
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where the term lp
λ̄M

represents the reduced Compton frequency per Planck time. This, in our view, is
the genuine quantization of matter and gravity, a notion supported by recent research indicating that
matter indeed ’ticks’ at the Compton frequency [35,36]. .

Since we have T2
cmb

T2
Hw

=
lp
λ̄

this implies that the Schwarzschild metric can also be expressed as:

ds2 = −
(

1 −
2lp

r
T2

cmb
T2

Hw

)
c2dt2 +

(
1 −

2lp

r
T2

cmb
T2

Hw

)−1

dr2 − r2dΩ2 (9)

This is what we will call the thermodynamical version of the Schwarzschild metric. In the extreme
solution of the Reissner-Nordström [37,38] (RN), as well as in the minimal solution of the Haug-
Spavieri [39] metric, which is mathematically identical to the RN extremal solution, one can rewrite
the metric as:

ds2 = −
(

1 − 2GM
c2r

+
G2M2

c4r2

)
c2dt2 +

(
1 − 2GM

rc2 +
G2M2

c4r2

)−1

dr2 − r2dΩ2

ds2 = −
(

1 −
2lp

r
lp

λ̄M
+

l2
p

r2

l2
p

λ̄2
M

)
c2dt2 +

(
1 −

2lp

r
lp

λ̄M
+

l2
p

r2

l2
p

λ̄2
M

)−1

dr2 − r2dΩ2 (10)

This suggests that the extremal solution of the Reissner-Nordström metric and the minimal
solution of the Haug-Spavieri metric can be expressed in the following thermodynamic form:

ds2 = −
(

1 −
2lp

r
T2

cmb
T2

Hw
+

l2
p

r2
T4

cmb
T4

Hw

)
c2dt2

+

(
1 −

2lp

r
T2

cmb
T2

Hw
+

l2
p

r2
T4

cmb
T4

HW

)−1

dr2 − r2dΩ2 (11)

Table 1 shows predictions derived from the Schwarzschild metric written in their standard
form as well as in their thermodynamical form. The thermodynamical form is valid as long as the
Hawking temperature and CMB temperature are calculated using the hypothetical CMB and Hawking
temperature of the equivalent black hole of the gravitational mass, so in this way it can be used for any
gravitational mass.
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Table 1. The table displays a series of gravity predictions derived from general relativity theory,
presented in both their conventional form and their thermodynamic form. The thermodynamic form is
applicable when the gravitational object is a Schwarzschild black hole.

Prediction Formula:

Gravity acceleration g = GM
R2 =

c2 lp

R2
T2

cmb
T2

Hw

Orbital velocity vo =
√

GM
R = c Tcmb

THw

√
lp
R

Orbital time T = 2πR√
GM

R

= 2πR
Tcmb
THw

c
√

lp
R

Gravitational red shift z =

√
1− 2GM

R1c2√
1− 2GM

R2c2

− 1 =

√
1− 2lp

R1

T2
cmb

T2
Hw√

1− 2lp
R2

T2
cmb

T2
Hw

− 1

Time dilation TR = Tf

√
1 − 2GM

Rc2 = Tf

√
1 − 2lp

R
T2

cmb
T2

Hw

Gravitational deflection θ = 4GM
c2R = 4 lp

R
T2

cmb
T2

Hw

Schwarzschild radius Rs =
2GM

c2 = 2lp
T2

cmb
T2

Hw

Table 2 provides a deeper level of the gravity formulas in their quantized form. Once more, the
term lp

λ̄
represents the reduced Compton frequency per Planck time.

Table 2. The table displays a series of gravity predictions derived from general relativity theory,
presented in their conventional form, as well as in the new quantized formulation of the field equation.
Each formula includes the term lp

λ̄
, which represents the reduced Compton frequency in the mass M

per Planck time.

Prediction Formula:

Gravity acceleration g = GM
R2 =

c2 lp

R2
lp

λ̄M

Orbital velocity vo =
√

GM
R = c

√
lp
R

lp

λ̄M

Orbital time T = 2πR√
GM

R

= 2πR

c
√

lp
R

lp
λ̄M

Gravitational red shift z =

√
1− 2GM

R1c2√
1− 2GM

R2c2

− 1 =

√
1− 2lp

R1

lp
λ̄M√

1− 2lp
R2

lp
λ̄M

− 1

Time dilation TR = Tf

√
1 − 2GM

Rc2 = Tf

√
1 − 2lp

R
lp

λ̄M

Gravitational deflection θ = 4GM
c2R = 4 lp

R
lp

λ̄M

Schwarzschild radius Rs =
2GM

c2 = 2lp
lp

λ̄

2. Conclusion

We have demonstrated that metrics such as the Schwarzschild metric, the extremal solution of the
Reissner-Nordström metric, and the minimal solution of the Haug-Spavieri metric can be expressed

in what we can call thermodynamic forms. The term T2
CMB

T2
Hw

, which represents the ratio of the squared

CMB temperature to the squared Hawking temperature (or the geometric mean internal temperature
of a black hole), gives the reduced Compton frequency per Planck time in the gravitational object. This,
in our view, is a central element for quantization in gravity.
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