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Abstract: In response to the increasing demand for reliable and robust artificial intelligence (AI) 

applications in petrochemical and process industries, this study proposes an intelligent prediction 

framework for estimating Research Octane Number (RON) loss during gasoline refining. The 

approach integrates a Sparse Autoencoder (SAE) for feature extraction and a Stacking Ensemble 

Learning (StackingEL) model for predictive regression, thereby enhancing performance in high-

dimensional and noisy industrial datasets. Real-world process data obtained from a petrochemical 

enterprise were utilized for model training and evaluation. After comprehensive data preprocessing, 

the SAE effectively captured latent representations of complex process variables, which were then 

used to train twelve regression models including Lasso and advanced ensemble techniques. 

Experimental results indicate that the proposed SAE+StackingEL framework outperforms 

conventional methods in prediction accuracy, robustness, and generalization ability. This AI-assisted 

process modeling strategy contributes to optimizing gasoline production, reducing environmental 

emissions, and supporting cleaner and more sustainable industrial practices. The proposed method 

demonstrates significant potential for integration into Industry 4.0 systems and petrochemical 

process improvement. 

Keywords: gasoline refining; octane number prediction; sparse autoencoder; stacking ensemble 

learning; sustainable petrochemical processes 

 

1. Introduction  

In the context of increasing global attention to sustainability and environmental responsibility, 

the rapid rise in gasoline consumption and automobile usage has heightened the urgency of reducing 

pollutant emissions from the petrochemical industry [1]. Gasoline desulfurization—commonly 

referred to as gasoline cleaning—is an essential technological process aimed at lowering sulfur and 

olefin content while preserving the Research Octane Number (RON), which is critical to fuel 

performance [2]. However, during catalytic refining processes, particularly in units such as S-Zorb, 

RON loss is often an inevitable consequence, potentially leading to significant economic losses and 

reduced combustion efficiency [3]. 

For every unit of RON loss, refineries may suffer financial penalties of up to 150 CNY per ton, 

along with the associated increase in greenhouse gas emissions [4]. Therefore, accurately predicting 

octane number loss is not only vital for optimizing refinery operations and enhancing economic 

returns, but also for promoting cleaner production technologies, improving process sustainability, 

and aligning with global carbon neutrality goals. The S-Zorb process has been widely adopted across 
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Chinese refineries due to its effectiveness in producing low-sulfur gasoline with relatively minimal 

RON loss [5–8]. However, this process is highly sensitive to a variety of operational and catalytic 

factors. The high dimensionality, non-linearity, and strong coupling among these parameters present 

challenges to real-time process control and predictive modeling [9–12]. In this regard, the integration 

of artificial intelligence (AI), especially in the form of trustworthy and robust learning frameworks, 

presents new opportunities for intelligent process monitoring, optimization, and decision-making in 

Industry 4.0 environments. 

To address these challenges, this study proposes a hybrid AI-based prediction framework 

combining Sparse Autoencoder (SAE) for high-level feature extraction with Stacking Ensemble 

Learning (StackingEL) for robust regression modeling. The approach is applied to real operational 

data from a petrochemical refinery to accurately predict RON loss under varying production 

conditions. By capturing latent representations of complex influencing factors and fusing predictions 

from multiple base learners, the proposed method improves prediction accuracy, generalization, and 

robustness—enabling better process control, reducing unnecessary octane degradation, and 

supporting eco-friendly fuel production. 

This paper is structured as follows: Section 1 outlines the research motivation and background; 

Section 2 provides a review of related works on data-driven modeling and AI in petrochemical 

process optimization; Section 3 details the theoretical basis of SAE and StackingEL; Section 4 

introduces the proposed methodology and experimental design; Section 5 discusses the evaluation 

results; and Section 6 concludes with key findings and future directions. 

2. Related Work 

In recent years, researchers have explored a wide range of methods for predicting the Research 

Octane Number (RON) in gasoline, aiming to improve efficiency, reduce experimental overhead, and 

support process optimization in industrial settings. Traditional laboratory-based approaches 

typically rely on standardized octane testing engines that adhere to AMA or national regulatory 

protocols [13]. While these methods offer high accuracy, they are also associated with significant 

drawbacks, including high operational costs, time consumption, and the need for extensive manual 

testing. These limitations make them impractical for real-time monitoring or large-scale applications 

in modern refinery systems. In response, some studies have turned to analytical chemistry-based 

methods, which use gasoline composition and physical properties to predict RON. However, these 

techniques depend heavily on costly instrumentation and intricate experimental procedures, thus 

limiting their accessibility and scalability [14]. 

Beyond experimental techniques, mathematical modeling has also been employed to estimate 

octane values. Han et al. [15], for example, developed a regression-based model to predict RON using 

statistical principles. Other approaches, such as Partial Least Squares (PLS) regression [16], have 

shown some promise, but are limited in their ability to capture the nonlinear behavior and variable 

coupling that characterize complex refining operations. With the increasing availability of refinery 

process data, particularly through digital platforms such as Laboratory Information Management 

Systems (LIMS), data-driven modeling has become a practical and attractive alternative. Machine 

learning (ML) algorithms, including artificial neural networks (ANN), support vector machines 

(SVM), and random forests, have been applied to various predictive tasks in the petrochemical 

industry [17,18]. For instance, ANN models have been successfully used to correlate near-infrared 

spectral data with octane values, offering improved predictive accuracy and adaptability. Similarly, 

SVM models trained on molecular structure information have demonstrated high robustness and 

generalizability when validated with rigorous techniques such as leave-one-out cross-validation. 

Recent studies further confirm the potential of ML models in gasoline quality prediction. A 

hybrid PCA-RFR model achieved R² = 0.983 with minimal prediction error (RMSE ≈ 3.22 × 10⁻⁴). Wu 

et al. [19] systematically compared SVM, ANN, and random forest models and found that random 

forest performed best in terms of overall predictive accuracy. In another study, Chen et al. [20] 

applied optimization methods that significantly reduced RON loss, with over 86% of cases achieving 
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a 60–80% reduction rate. Despite these encouraging results, several limitations remain. Many single-

model approaches struggle to handle the high dimensionality, complex interactions, and variability 

inherent in refinery operations. Moreover, traditional machine learning models often lack robustness 

and fail to generalize well under fluctuating process conditions. 

To overcome these challenges, this study introduces a novel hybrid framework combining 

sparse autoencoder (SAE) for unsupervised feature extraction and stacking ensemble learning 

(StackingEL) for robust regression. SAE effectively captures latent variable representations and 

reduces dimensional complexity, while StackingEL enhances prediction performance by integrating 

the outputs of diverse base models. This dual approach provides greater adaptability and reliability, 

aligning with the goals of Industry 4.0 and sustainable process engineering by facilitating accurate, 

interpretable, and trustworthy predictions in real industrial environments. 

3. Basic Theory 

3.1. Sparse Autoencoder 

An autoencoder is a type of neural network that employs a backpropagation algorithm to 

achieve output values that are equal to the input values. The network consists of an encoder and a 

decoder, as depicted in Figure 1. The encoder maps the input to a hidden representation, while the 

decoder attempts to reconstruct the original input by mapping this latent representation. The model's 

primary objective is to learn a function, hw,b(x) ≈ x, while obtaining a low-dimensional representation 

of the input data. The ultimate goal is to represent the original data in a smaller dimension with 

minimal loss of information, with the essential feature that the number of nodes in the input layer 

(excluding bias nodes) is equal to the number of nodes in the output layer, while the number of nodes 

in the hidden layer is less than the number of nodes in the input and output layers. 

When the number of nodes in the hidden layer is large, even more than the number of nodes in 

the input layer, the self-coding algorithm can still be utilized, but with the addition of a sparsity 

restriction. This ensures that most of the nodes in the hidden layer are suppressed, and only a small 

portion is activated, thus achieving the same effect. This type of autoencoder is known as a sparse 

self-encoder. The data for the average activation of the sparse auto-coding hidden layer is represented 

as 

𝜌̂𝑗 =
1

𝑚
∑{𝑎𝑗

(2)[𝑥(𝑖)]}

𝑗

𝑖=1

  

In the formula, aj
(2)(x) is the activation degree of the hidden neuron j when the input data is x. 

To make the mean activation near a relatively small value of p, the relative entropy of p and p is 

introduced as the penalty term, and the following loss function is obtained 
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Figure 1. Frame of autoencoder. 

3.2. Stacking Ensemble Learning 

In the field of ensemble learning algorithms, stacking integration is a popular approach that 

utilizes a parallel learning method. It involves an untyped algorithm, known as the "primary learner," 

which is used to obtain the initial prediction values. These values are then optimized by a meta-

learner to yield the final prediction results. In recent studies [21,22], a load prediction method was 

developed using a multimodel fusion stacking ensemble learning approach. This method employs 

long short-term memory (LSTM), gradient decision tree, random forest, and support vector machine 

as primary learners for ensemble learning. The prediction results of these primary learners are further 

refined by a meta-learner, allowing the method to fully utilize the strengths of each model and 

achieve accurate predictions for conventional loads. 

Figure 2 illustrates the framework of stacking ensemble prediction, which comprises two layers 

of prediction models. The first layer, known as the base learner, uses raw data to generate initial 

prediction results. These results are then fed into the second layer, called the meta-learner, which 

optimizes the initial predictions to obtain the final prediction results. Overall, the stacking ensemble 

prediction method is an effective approach for improving the accuracy of load prediction models. 

The Stacking ensemble prediction method combines the advantages of different learners through the 

integration of multiple primary learners to make the prediction model with strong generalization 

ability; further, the meta-learner is used to optimize the output results of primary learners to improve 

the overall prediction accuracy [23]. 
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Figure 2. The framework for Stacking ensemble learning. 

In the model training process of stacking ensemble prediction, the k-fold cross-validation 

method is usually used for data partitioning and model training to reduce the risk of overfitting [24]. 

k-fold cross-validation process is shown in Figure 3. First, the original data set D is divided equally 

into k mutually exclusive subsets, D1, D2, ..., Dk. Then, the training and testing sets of the primary 

learner are constructed by selecting the concatenated set of k-1 of these subsets as the training set and 

the remaining 1 subset as the testing set, respectively. This way, k sets of training and testing sets can 

be obtained. For each primary learner in stacking ensemble prediction, k sets of training and testing 

sets are used to train and test the learner, and k test results S1, S2, ..., Sk are obtained. The process is 

called "cross-validation". 

 

Figure 3. Schematic diagram of k-fold cross validation. 

Based on the k-fold cross-validation method, the training data of the meta-learner can be further 

constructed. Assuming that there are T primary learners in the Stacking integration prediction, for 

the test set D, then i th fold, in the k-fold cross-validation,Di(i = 1,2, ⋯ , k), there are T corresponding 

test result sets, respectively recorded as 𝑆̂𝑖 = [𝑆𝑖,1, 𝑆𝑖,2, ⋯ , 𝑆𝑖,𝑇]. After completing the house fold cross-

validation, the dataset {(𝐷𝑖 , 𝑆̂𝑖), 𝑖 = 1,2, ⋯ , 𝑘} constitute the new sample set. Furthermore, 𝑆̂𝑖 is used 

as the input of the stacking integration prediction medium meta-learner, and 𝐷𝑖 serves as the output 

of the meta-learner. 

When the k-fold cross-validation is completed, the training dataset of the meta-learner is 

obtained, where the input is recorded as 𝑆 = [𝑆̂1, 𝑆̂2, ⋯ , 𝑆̂𝑇]  and the output is recorded as 𝐷 =

[𝐷1, 𝐷2, ⋯ , 𝐷𝑇]. The above is the training process of the stacking integration prediction model based 

on the k-fold cross-validation method. Note that the effect of the k-fold cross-validation method 

depends largely on the value of k. The common values of k are 5,10,20, etc. 

Although ensemble learning shows better performance than single machine learning methods 

[25]. It shows some problems, such as high computational complexity and low efficiency due to the 

diversity of types and rapid growth of data exhibited, and thus needs to be coupled with effective 

methods for feature extraction. 

3.3. Optimized Selection of the Stacking Ensemble Prediction Learner 

In the stacking ensemble prediction method, the selection of base learners is critical for achieving 

accurate and generalizable predictions. To enhance diversity and avoid redundancy, the selected 

primary learners should be "accurate yet heterogeneous," meaning they must not only exhibit strong 
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predictive capability but also be constructed from fundamentally different learning paradigms. This 

diversity enables the ensemble to learn a richer set of patterns and reduces overfitting risks. 

Accordingly, this study evaluates the predictive performance and variance contribution of several 

representative algorithms and selects the following models as base learners: Lasso Regression, Ridge 

Regression, Support Vector Regression (SVR), Elastic Net Regression (ELA), Naive Bayes (NB), 

Logistic Regression (LR), Random Forest (RF), Gradient Boosting Regression (GBR), Extremely 

Randomized Trees (ERT), and Extreme Gradient Boosting (XGB) [26,27].  

To aggregate the outputs of the base learners, this study adopts the Least Squares Support Vector 

Machine (LSSVM) as the meta-learner. Owing to its robustness in handling large-scale, high-

dimensional, and nonlinear datasets, LSSVM offers notable advantages for optimizing the overall 

prediction performance of the ensemble [28,29]. 

4. Framework 

This paper proposes that the framework of the RON loss prediction method is based on the 

sparse autoencoder and the stacking ensemble learning method, which is shown in Figure 4. 

 

Figure 4. Framework of SAE and StackingEL. 

The main steps are as follows. 

(1) Data collection, obtaining data related to plant operation and gasoline properties through the 

petrochemical enterprise database. 

(2) Data preprocessing, including format unification, missing number processing, outlier 

processing, and data normalization. 

(3) Feature parameter dimensionality reduction, using sparse self-encoder to reduce the 

dimensionality of the feature parameters. 

(4) Model training and prediction, using the reduced-dimensional data set as input, multiple 

initial learners are trained and tested, and the algorithms with better prediction results are ensemble 

into the stacking ensemble learning framework for further training and prediction. 

(5) Result evaluation using Evs, Meanae, Mse, Medianae, and R2 evaluation parameters to 

evaluate the prediction results from different perspectives. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 April 2025 doi:10.20944/preprints202504.2593.v1

https://doi.org/10.20944/preprints202504.2593.v1


 7 of 13 

 

4.1. Data Set  

The original dataset used in this study was sourced from the PHD real-time database and the 

LIMS experimental database of a catalytic cracking gasoline refining and desulfurization unit 

operated by a petrochemical company. Information related to feedstocks, products, and catalysts was 

retrieved from the PHD and LIMS systems at a sampling frequency of twice per week. To ensure 

sufficient data volume and experimental reliability, LIMS data were collected across two time 

periods: from April 2017 to September 2019 and from October 2019 to May 2020, covering a total 

duration of approximately three years. Operational variables were obtained from the PHD system. 

During the first data collection period, sampling occurred every 3 minutes, while in the second 

period, the frequency was every 6 minutes. The raw dataset comprises 7 feedstock property variables, 

2 adsorbent generation property variables, 2 regenerated adsorbent property variables, 2 product 

quality variables, as well as several uncontrollable process variables. In total, 354 operational 

variables were recorded, leading to a dataset containing 367 variables overall. To streamline 

preprocessing and analysis, all data entries were sorted in descending order based on their time 

stamps. 

4.2. Data Preprocessing 

The raw data were preprocessed as below:  

(1) Uniform data format. The second field is timestand type, not float type, so this column is 

deleted directly. 

(2) Missing data filling. Delete the columns with missing data greater than 20%, and for the 

columns with missing data less than 20%, use the average of the data before and after 2h to fill in. 

(3) Outlier processing. The outliers are removed according to the Lajda criterion (3𝜎 criterion). 

3𝜎  criterion: Let the measured variables be measured with equal precision to obtain 

𝑋1, 𝑋2, ⋯ , 𝑋𝑛，and calculate their arithmetic mean 𝑋and residual error 𝑉𝑖 = 𝑋𝑖 − 𝑋 (𝑖 = 1,2, ⋯ , 𝑘), 

and the standard error 𝜎 is calculated according to the Bessel formula. If the residual error 𝑉𝑏 of a 

measurement 𝑋𝑏(1 ≤ 𝑏 ≤ 𝑛), satisfying |𝑉𝑏| = |𝑋𝑏 − 𝑋| > 3𝜎, 𝑖𝑡 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑡ℎ𝑎𝑡 𝑋𝑏 is a bad value 

containing coarse error values and should be rejected. The Bessel formula is shown in equation 5-1-

1. 

𝜎 = [
1

𝑛 − 1
∑ 𝑣𝑖

2

𝑛

i=1

]1/2 = {[∑ 𝑥𝑖
2 − (∑ 𝑥𝑖

𝑛

𝑖=1

)2/𝑛

𝑛

𝑖=1

]/(𝑛 − 1)}1/2 

4.3. Parameters Dimension Reduction 

The feature parameters were dimension-reduced using SAE. SAE sets different numbers of 

neurons in the hidden layer to obtain the dimension of extracted features corresponding to the 

number of neurons in the hidden layer. The feature expression of different dimensions may cause 

significant differences in the effect of anomaly detection. To determine the appropriate feature 

dimension, which can ensure the loss of input information within a controlled range while 

minimizing the number of feature parameters, several experiments were conducted. The feature 

dimension hiddensize was selected in the interval {10-100}, and other parameters, including the 

number of iterations, epochs, learning rate, training data batchsize, etc., were fine-tuned using grid 

search. 

Figure 5 shows the decoded reconstruction and the information loss on the original data at 

different feature dimensions. It can be observed that when the feature dimension is 31, the 

information loss is only 0.9% at the inflection point of the change curve. Therefore, this number was 

chosen as the feature parameter dimension after dimension reduction. In this paper, the 367 variables 

were finally encoded into 31 deep features. 
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Figure 5. Dimension selection of SAE. 

4.4. Model Training and Prediction 

To demonstrate the rationale behind selecting the stacking ensemble prediction primary learner 

process, this section initially analyzes the prediction performance and variability of various single 

models. Specifically, Lasso regression, Ridge Regression (Ridge), Support Vector Regression (SVR), 

Elastic Net Regression (Ela), Naive Bayes (NB), Logistic Regression (LR), Random Forest (RF), 

Gradient Boosting Regression (GBR), Extremely Randomized Trees (ERT), and Extreme Gradient 

Boosting (XGB) are selected as the candidate options for the primary learner. 

Experiments were designed to compare the prediction results of each primary learner 

individually. The four primary learners with good performance were selected to be ensemble into 

the stacking learning process. The prediction results of these four primary learners are used as inputs 

to be ensemble into the secondary learners, and the final prediction results are then generated. 

4.5. Evaluation 

Scoring measures to assess the effect of the regression model. There are many criteria for the 

applicability of the model. This paper uses Explained variance score (Evs), Mean absolute error 

(Meanae), Mean squared error (Mse) and R2 determination coefficient (R2) between the actual 

calculated value and the model estimated value. 

（1）Explained Variance Score 

 E𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑦, ŷ) = 1 −
𝑉𝑎𝑟 {𝑦−ŷ}

𝑉𝑎𝑟 {𝑦}
 

y: predicted value, y: true value, Var: variance. This indicator is used to measure how well our 

model explains the fluctuations of the data set. If the value is 1, the model is perfect, and the smaller, 

the worse the effect is. 

（2）Mean Absolute Error 

𝑀𝐴𝐸 (𝑦, ŷ) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ |𝑦𝑖 − ŷ𝑖|

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

 

y: predicted value, y: true value. Given the average absolute error of a data point, the smaller 

the value, the better the model fits. 

（3）Mean Squared Error 

𝑀𝑆𝐸 (𝑦, ŷ) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ (𝑦𝑖 − ŷ𝑖)

2

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0
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y: the predicted value, then y: the true value. This is a common method in mathematical 

statistics. 

（4）Median Absolute Error 

y: the predicted value, the y: the true value, and the median absolute error applies to the measure 

of the data containing the outliers. 

𝑀𝑒𝑑𝐴𝐸 (𝑦, ŷ) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦1 − ŷ1|,...,|𝑦𝑛 − ŷ𝑛|) 

（5）R2 Coefficient of Determination 

𝑅2 (𝑦, ŷ) = 1 −
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − ӯ𝑖)2𝑛
𝑖=1

 

The proportion that can be explained by the estimated multiple regression equation measures 

the interpretation of the variation of the dependent variable. The value is between 0 and 1. The closer 

the value is to 1, the higher the interpretation of the variable. The closer the value is to 0, the weaker 

the interpretation is. Generally speaking, by increasing the number of independent variables, the 

regression square sum increases, and the residual square sum will decrease, so R2 increases; 

otherwise, by reducing the number of independent variables, the regression square sum decreases, 

and the residual square sum increases. 

5. Results and Discussion  

5.1. Analysis of the Predictive Results from a Single Model 

The evaluation metrics of each individual prediction model are summarized in Table 1. As 

observed, the Elastic Net Regression (ELA), Random Forest (RF), and Gradient Boosting Regression 

(GBR) models exhibit relatively high prediction accuracy. The Ridge Regression model demonstrates 

similar predictive performance to the Support Vector Regression (SVR) model. However, in 

comparison to SVR, the Ridge model achieves Evaluation Score (Evs) and R² values that are closer to 

1, while its Mean Absolute Error (Meanae), Mean Squared Error (Mse), and Median Absolute Error 

(Medianae) are lower and closer to 0. These results suggest that the Ridge model exhibits greater 

stability and robustness. To sum up, the ELA, RF, GBR, and Ridge models were selected as the base 

learners in the proposed stacking ensemble framework, with the Least Squares Support Vector 

Machine (LSSVM) model serving as the meta-learner. 

Table 1. Accuracy of single prediction model. 

 Evs Meanae Mse Medianae R2 

Lasso 0.5865  0.1002  0.0365  0.0905  0.5822  

Ridge 0.7073  0.0088  0.0015  0.0090  0.7010  

SVR 0.7056  0.0939  0.0152  0.0741  0.6985  

ElA 0.8815  0.0561  0.0061  0.0420  0.8796  

NB 0.2186  0.1463  0.0402  0.1087  0.2092  

LR 0.2839  0.1402  0.0365  0.1017  0.2826  

RF 0.8787  0.0571  0.0066  0.0379  0.8694  

GBR 0.8556  0.0666  0.0076  0.0523  0.8505  

ERT 0.3213  0.1362  0.0349  0.1017  0.3134  

XGB 0.6039  0.0106  0.0023  0.0004  0.6000  

StackingEL 0.9478  0.0457  0.0031  0.0412  0.9387  

SAE+StackingEL 0.9657  0.0356  0.0021  0.0280  0.9578  

5.2. Analysis of the Predictive Results of the Stacking Ensemble Learning Model 

Using the reduced dataset (processed by SAE) as input, RON loss predictions were conducted 

using the StackingEL model. The predictive performance was then compared with the best-

performing single prediction models, as shown in Table 1. The results demonstrate that both the 

StackingEL and SAE+StackingEL models outperform individual models in terms of predictive 

accuracy. Notably, the SAE+StackingEL model achieved the highest overall performance. It produced 
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an Explained Variance Score (EVS) closest to 1, indicating near-perfect prediction ability; the smallest 

Mean Absolute Error (Meanae), indicating the best fit to the data; and an R² value closest to 1, 

showing the highest degree of explained variability. 

In summary, the SAE+StackingEL model demonstrates superior generalization and robustness, 

delivering more accurate and reliable predictions. As illustrated in Figure 6, all fitted models show 

high accuracy within acceptable error ranges, with the SAE+StackingEL model achieving the best 

performance—particularly in predicting extreme or boundary values. 

  

  

  

Figure 6. The prediction results of the different model. 

In addition, a visual analysis of the R² values is presented below. Combined with the results in 

Table 1 and Figure 6, it is evident that the SAE+StackingEL model achieves the lowest overall error 

metrics among all methods, with a fitting performance that closely approximates the actual values. 

The use of multiple randomized cross-validations during the experiments further contributes to the 

stability and robustness of the model, as it results in minimal variation in octane loss predictions. The 

StackingEL model, while slightly less accurate than SAE+StackingEL, also exhibits error metrics 

within an acceptable range. Its predictions converge toward the optimized regression surface where 

most sample points are concentrated, indicating strong predictive consistency. In conclusion, the 

StackingEL method effectively improves the accuracy of RON loss prediction, and the integration of 

SAE further enhances the model’s fitting performance and generalization ability. 
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Figure 7. Scatter diagram comparison of models. 

6. Conclusion  

This study presents a novel RON loss prediction framework that integrates Sparse Autoencoder 

(SAE) with Stacking Ensemble Learning (StackingEL), aiming to enhance prediction accuracy and 

capture complex variable interactions within petrochemical refining processes. The method 

addresses critical industrial needs by introducing a scalable, robust, and interpretable model 

architecture suited for real-time data-driven applications in refining operations. 

By leveraging the unsupervised learning capabilities of SAE for deep feature extraction and 

dimensionality reduction, followed by ensemble learning with Ridge, Elastic Net, Random Forest, 

and Gradient Boosting as base models, the proposed approach significantly outperforms traditional 

single-machine learning models in both accuracy and robustness. The results demonstrate not only 
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reliable forecasting of RON loss but also improved adaptability to operational fluctuations, aligning 

with Industry 4.0 paradigms. From a technological perspective, this work offers a modified and 

intelligent solution tailored to modern petrochemical processes. The model supports sustainable 

process optimization by minimizing octane loss and enabling cleaner fuel production, thus 

contributing to reduced pollutant emissions. This aligns with circular economy principles and 

environmental compliance goals. 

In summary, the integration of advanced machine learning with industrial process intelligence 

offers a promising path for improving the environmental and operational efficiency of the chemical 

industry. The proposed framework holds broad applicability for sustainable and intelligent 

transformation in other process industries. 
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