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Abstract: Given the increasing energy demand and the environmental consequences of fossil fuel
consumption, the shift toward sustainable energy sources has become a global priority. Renewable
Energy Communities (RECs) - comprising citizens, businesses, and legal entities - are emerging
to democratise access to renewable energy. These communities allow members to produce their
own energy, sharing or selling any surplus, thus promoting sustainability and generating economic
value. However, scaling RECs while ensuring profitability is challenging due to renewable energy
intermittency, price volatility, and heterogeneous consumption patterns. To address these issues, this
paper presents a Machine Learning as a Service (MLaaS) framework, where each REC microgrid
has a customised Reinforcement Learning (RL) agent and electricity price forecasts are included to
support decision-making. All the conducted experiments, using the open-source simulator Pymgrid,
demonstrate that the proposed agents reduced operational costs by up to 96.41% compared to a
robust baseline heuristic. Moreover, this study also introduces two cost-saving features: Peer-to-Peer
(P2P) energy trading between communities and internal energy pools, allowing microgrids to draw
local energy before using the main grid. Combined with the best-performing agents, these features
achieved trading cost reductions of up to 45.58%. Finally, in terms of deployment, the system relies on a
MLOps-compliant infrastructure that enables parallel training pipelines and an autoscalable inference
service. Overall, this work provides significant contributions to energy management, fostering the
development of more sustainable, efficient, and cost-effective solutions.

Keywords: renewable energy communities; energy trading; energy management; machine learning as
a service; reinforcement learning; MLOps

1. Introduction

In response to climate change, numerous governments and organisations around the world
are promoting the shift to renewable energy sources [1], including solar, wind, and hydroelectric
power. These sources are naturally replenished on a human timescale and do not exhaust the planet’s
finite resources. In this context, communities composed of citizens, businesses, and local authorities -
referred to as Renewable Energy Communitys (RECs) - are emerging throughout Europe [2] to make
clean energy more accessible and participatory. These communities are designed to promote both
self-consumption and collaboration. Members generate their own renewable energy to meet personal
demand, and any surplus can be shared locally or sold back to the main grid. These initiatives are
not only environmentally sustainable, aligning with the United Nations Sustainable Development
Goals [3], but also financially beneficial, as they can significantly reduce electricity costs for participants.

Nonetheless, as these communities expand, managing energy flows and maximising financial
returns become increasingly complex tasks. Manual coordination is impractical due to the diverse
and evolving energy consumption patterns across households and organisations. Machine Learning
(ML) can help streamline these decisions, for instance, by shifting consumption from peak to off-peak
hours. However, the unpredictable nature of renewable generation [4], fluctuating energy prices,
and changing consumption habits remain challenging, despite the current applicability of static ML
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models [5]. These are typically trained offline and then used for inference without further tuning,
making it difficult to respond effectively to new data distributions. As a result, such methods often
yield suboptimal outcomes.

This context demands a new paradigm that enables real-time decision-making, while preserving
participant privacy, as energy data can reveal sensitive personal behaviours. In this paper, we present a
fully deployed solution based on a multi-tenant Reinforcement Learning (RL) architecture, where each
agent independently manages a REC microgrid and aims to minimise operational costs. Recognising
that these algorithms cannot be separated from the market environment in which they operate,
we enhance the decision-making process through multi-step electricity price forecasting and the
introduction of cooperative energy markets. Between communities, we implement a multi-round
Peer-to-Peer (P2P) energy trading mechanism, enabling buy and sell bids from RECs to be matched.
Within each community, microgrids trade energy via a shared energy pool, either importing from
or exporting to the main grid. For both inter- and intra-REC markets, the objective is to maximise
the use of available renewable energy and minimise reliance on the Nominated Electricity Market
Operator (NEMO)-the authority responsible for market operations in each European Union member
state. Finally, as deployment is a core concern of the platform, we integrate key principles from
the Machine Learning Operations (MLOps) discipline, including reproducibility, automation, and
continuous training and monitoring.

The following sections provide a detailed overview of the solution. In section 2, we first review
the state-of-the-art methods applied in the context of RECs, identifying the main opportunities and
challenges in the field. Then, section 3 focus on the proposed Machine Learning as a Service (MLaaS)
system, not only describing the architecture, but also the application context in which the solution
is meant to operate. This section is followed by section 4, where we detail the technical components
of the system, from the logic and infrastructure levels. In section 5, we present the experimental
setup and the benchmarking results, which testify to the economical viability of our proposal. The
source code for both development and evaluation can be found in the following GitHub repository:
https:/ /github.com /RafaelGoncalvesUA /rec-simulator. At last, section 6 summarises the main
contributions of this work and points out aspects to be improved in further research.

2. Background

In this section, a literature review is conducted to gather the state-of-the-art methods applied in
the context of RECs, either based on Artificial Intelligence (AI) / ML techniques or complementary to
them. The idea is to identify the main challenges and opportunities in the field, as well as gaps in the
existing literature. Additionally, we include a performance comparison of predictive models applied
in REC contexts, incorporating several studies that, while not part of the formal literature review, are
still relevant to the domain of energy forecasting-a critical component in REC decision-making.

2.1. Existing REC Solutions

In [6], the authors present an intelligent framework to manage energy demand and Photovoltaic
(PV) generation, aiming to maximise REC profitability. Their hybrid method combines a Time Delay
Neural Network (TDNN) with a stochastic Model Predictive Control (MPC) approach. The TDNN
forecasts several steps ahead using time delays and a sliding input window, capturing long-term
dependencies more effectively than standard neural networks and training faster than methods like
Long Short-Term Memory (LSTM). The MPC then uses these predictions to optimise costs by solving a
profit-maximising problem at each step while respecting operational constraints. The Battery Energy
Storage System (BESS) plays a key role in handling forecasting errors by reserving capacity to balance
surpluses and shortages, improving both economic and grid performance. However, the method
hasn’t been validated across multiple RECs. Future work may include weather data integration into
the TDNN. Regression techniques are also used to monitor electrical transformers, helping RECs
manage congestion in low-voltage grids. In [7], Mai et al. train models using voltage magnitude data
from a small number of smart meters (SMs) at the point of connection (POC), preserving user privacy
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while still reflecting grid status. However, the study doesn’t account for changes in grid structure or
new PV additions. Regular model updates are recommended for deployment.

To address both user privacy and system scalability, Federated Learning (FL) is being employed
in energy management contexts [8], where agents such as Virtual Power Plants (VPPs) or central
community operators are involved. Using a Consensus + Innovations’ approach, agents forecast
net demand and agree on a common strategy (Consensus), while still optimising local resources
independently (Innovations). Although the system manages the limitations caused by decentralised
optimisation, the challenges related to non-stationary data distributions remain unaddressed.

Accurate energy forecasting is essential for REC efficiency. In [9], a decision-making algorithm is
proposed to guide trading actions - buying, selling, or storing energy - using XGBoost combined with
forecasting modules for PV output, battery SoC, and market prices. These forecasts inform battery
operation to reduce energy costs. The paper notes XGBoost’s parallelisation advantages, but would
benefit from deeper hyperparameter tuning.

One potential issue in this context is the lack of high-resolution energy data. In [10], this is
addressed using a non-intrusive method that reconstructs load profiles from monthly billing data with
a combination of unsupervised and supervised learning. Users are first clustered by behaviour (e.g.,
via K-means), then typical patterns are assigned with a classifier. These profiles are normalised and
scaled using monthly consumption. Despite the realistic profiles that the method yields, this study
does not address the correlation between the reconstruction error and relevant REC features, such as
the number and type (residential, commercial, etc.) of habitants.

Another study in the field [11] focuses on battery scheduling for both short-term operations
and long-term planning, introducing a bi-level Reinforcement Learning framework. The short-term
model reduces peaks and boosts profits, while the long-term model handles investment and lifecycle
strategies. It considers dynamic factors like battery prices and electricity rates. Although no retraining
is included, we highlight that the model adjusts to gradual data changes over time, especially price
fluctuations.

In opposition to common centralised management systems, Peer-to-peer (P2P) trading allows di-
rect exchanges between community members. In [12], R. Densyiuk et al. propose a market mechanism
that promotes self-consumption before trading, discouraging overproduction and excess demand. The
system uses dynamic pricing, based on game theory, and penalties to guide behaviour and maintain
local energy balance. While conceptually innovative, the paper lacks implementation details.

Despite Al advances, traditional analytical tools remain valuable. Game theory methods - e.g.
the nucleolus, Shapley value, and Shapley-core - help fairly divide costs and benefits in RECs. [13]
demonstrates that no method ensures full fairness and stability simultaneously. Results suggest
Shapley value suits small communities, while nucleolus and Shapley-core perform better in larger
ones, although all have high computational demands. A scalable implementation is not provided, but
RL-based approximations are suggested as a future direction.

Unlike other papers focused on specific techniques, E. Karakolis et al. [14] introduce I-nergy -
a broader initiative for an Al-on-demand platform tailored to energy communities. The proposed
architecture includes layers for data services, pre-trained models, analytics, and links to the AI4EU in-
frastructure. It envisions a suite of Al services, including forecasting, optimisation, and trading. While
pilot cases are listed, the focus remains on conceptual design rather than concrete implementation.

Although all these studies contribute valuable insights, most fall short of meeting key require-
ments for a full MLaa$S solution. Table 1 summarises the main features in existing literature and
contrasts them with what’s needed to answer the proposed research questions. Conceptual works
without technical implementations were excluded as complete solutions.
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Table 1. Related work comparison.

Ref. Energ?r E'ne.rgy‘ Fairness  Privacy . MI: Contim.1a1

Forecasting Optimisation Pipeline Evaluation
[6] v v X X X X
[7] v X X v X X
[8] v v v v X X
[9] v v X X X X
[10] v X X v X X
[11] X v X X X v
[12] X v P2P X X X
[13] X v v X X X

[14] Concept Concept X X Concept Concept

Count 5 6 3 0 1

The analysis reveals that some of the studies focus primarily on developing specific Al models
for tasks such as energy forecasting, user consumption profiling, and battery management. Others
explore technical aspects of ethical concerns, including fairness and data privacy. One paper introduces
the Al on-demand paradigm as a step towards deploying models in a cloud environment; however,
it lacks a comprehensive implementation strategy. With regard to model deployment and lifecycle
management, the reviewed studies generally do not present clear or robust procedures. Furthermore,
inconsistencies in the performance metrics reported across studies hinder meaningful comparisons of
model effectiveness. Although metrics, such as Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE) and Mean Absolute Percentage Error (MAPE) are presented, none of the studies discussed
approaches for tackle model degradation in real-world deployments.

2.2. Predictive Models in REC Settings

Beyond the literature review, it is essential - as in any ML task - to benchmark state-of-the-art
models as performance baselines and to enable informed hyperparameter tuning. To this end, we
compiled top-performing models from various REC studies, focusing on their performance metrics:
MAE, RMSE, MAPE or Relative Mean Absolute Error (rtMAE) - normalised version of MAE. While
some of these papers were excluded during earlier phases of the systematic review, they remain
relevant due to their practical energy forecasting contributions. For this comparison, we restricted our
focus to predictive tasks (e.g., demand, PV output, electricity price), intentionally excluding broader
energy management frameworks that cannot be directly compared to regression models and are
typically assessed using different economic KPIs in REC contexts. Additionally, studies that did not
clearly identify the best model or failed to average results across multiple experimental runs were left
out of the comparison.

Aside from model performance, Table 2 also captures other relevant factors, such as the unit of
the target variable (e.g., kW, kWh), temporal granularity of predictions (e.g., 15-minute, hourly), model
type (univariate or multivariate), and the structure of input/output windows (e.g., past 5 hours to
forecast next 30 minutes), which are all critical to evaluating the suitability of a model for a specific
application.

Table 2 underlines the challenge of comparing different models due to the lack of consistency
in evaluation metrics across the studies. Even when identical metrics are reported, the results often
represent averages over varying numbers of trials, making standard deviation an important factor
in assessing model robustness. Moreover, many studies omit statistical significance testing, which
would help determine whether observed performance differences are meaningful or merely the result
of random variation. Differences in experimental setups - including the number of buildings analysed
and the input/output time window sizes - also introduce variability that complicates direct comparison.
To improve the fairness and utility of future comparisons, studies should apply a broader range of

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0190.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0190.v1

50f27

Table 2. Overview of common prediction tasks in RECs.

Lookback F
Ref. Target TR UM 0(_) bac o.recast Performance
Window  Window

0 7 mpon T U Eh
[7] Congestion 15m M - - RMSE: 0.88
[9] Consumption 30m M 24h 24h RMSE: 4.13
[15] Demand 15m U 2w 48h MAPE: 10.00%
[16] Electricity Price 1h U 7d 24h MAE: 18.86
[17] PV production (kWh) 1h M 10h 1h RMSE: 1.08
[18] Consumption 1M U 5Y 1Y MAPE 2.67%
[19] Electricity Price 1h M 30d 2d rMAE: 8.18%

TR: Time Resolution; U/M: Univariate / Multivariate.

evaluation metrics and attempt to replicate - or closely approximate - the experimental conditions of
prior research.

3. Methodology
3.1. Application Context

For efficient energy management and trading, the MLaaS system should be grounded in the
real-world energy ecosystem it is meant to support: a large network of prosumers, consumers and
batteries, from different households or local organisations. All of them would be connected to a Virtual
Power Plant (VPP) that manages the energy trading between the REC grid and the energy market,
which is Operador do Mercado Ibérico de Energia (OMIE) in our application context, thereby deciding
whether to buy, sell, or resort to the batteries. As illustrated in Figure 1, the VPP is the central entity
that executes the final trading decisions, and its role is to aggregate the energy demand and supply of
the communities, and to communicate with the energy market.

As each REC is composed by multiple microgrids with heterogeneous energy demands and
generation patterns, a multi-tenant cooperative solution is needed to manage the energy flows. For
instance, the energy demand of a small household is not the same as that of a corporate building.
As further discussed in the next section, the habits and preferences of all tenants must be taken into
account, which imply different trading strategies, but only one final decision per community can be
taken by the VPP.
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Figure 1. Application context of the proposed solution.

3.2. Proposed MLaa$S Solution

Framing the application context in line with the MLaa$S paradigm, each microgrid can be referred
to as a tenant. Each tenant is managed by an intelligent agent, and a set of these tenants forms a
REC, which ultimately negotiates collectively with other RECs and the Nominated Electricity Market
Operator (NEMO). The architecture shown in Figure 2 illustrates how the proposed MLaaS setup can
be operationalised, detailing the software stack and the interactions between its core components.

We assume a REC j consisting of N microgrids, each paired with its own agent, but sharing a
unified energy pool. At regular intervals, the simulated microgrids (i.e., tenants) emit observations,
much as real IoT devices would. These observations are then routed to two key modules: a relational
database and an inference service. The database is a TimescaleDB instance that stores these microgrid
readings - denoted obsl, ..., obsX, where X represents the maximum number of observations per micro-
grid, and uses a schema indexed by tenant ID and timestamp. The inference service is implemented
with KServe, which exposes a custom prediction endpoint to handle incoming observations in real
time and output control actions for the microgrid.

Simultaneously, a Python-based data collector polls the database at intervals, gathering recent
data points for specific tenant IDs. This data is buffered, and when certain predefined conditions
are met (such as elapsed time or buffer size), a Kubeflow pipeline is triggered. This pipeline utilises
pre-built Docker containers containing all necessary dependencies, and either trains a new agent or
fine-tunes an existing one. Once training is complete, the updated agent is saved to a MinlO object
storage system and deployed via the inference service, which is alerted of the model update. The
corresponding microgrid records in TimescaleDB are then removed.
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Figure 2. Overview of the implemented system architecture.

The architecture supports dynamic scaling of both the inference services and databases, uses a
single instance for the data collection process, and runs up to N concurrent Kubeflow pipelines, where
N is the number of microgrids being managed. All components are deployed within a lightweight K3s
Kubernetes cluster.

Regarding the software stack, our MLaaS framework integrates several carefully selected tools
and libraries designed to provide a balance between performance, scalability, and edge compati-
bility. At the infrastructure layer, K3s - a lightweight Kubernetes variant - is employed for service
orchestration. Docker is used to containerise ML training environments and frameworks, ensuring
consistency, portability, and ease of deployment within Kubernetes. For serving models, KServe is
used to expose autoscaling REST endpoints, with Knative support enabling scale-to-zero capabilities.
Kubeflow manages the ML pipelines, providing reproducible training workflows with deep Kuber-
netes integration and support for custom pipeline components. Trained agent models are stored using
MinlO, an S3-compatible, Kubernetes-optimised object storage service. Time-series data, generated by
the microgrids, is handled by TimescaleDB, a PostgreSQL-based database that supports complex SQL
queries and scales well with time-dependent data. For simulation, we use Pymgrid, which offers a
flexible and realistic environment for modelling microgrid behaviour and supports integration with
RL frameworks. Lastly, agent training is handled by stable-baselines3, a PyTorch-based library offering
state-of-the-art RL algorithms tailored for control and energy management tasks.

3.3. Trainable Environment

To apply and evaluate RL algorithms, we used and extended the discrete environment provided
by the Pymgrid library, CsDaMicroGridEnv. This environment wraps around a microgrid instance and
is compatible with the OpenAl Gym interface, widely used in RL research. At each simulation step,
the execution flow involves gathering observations from the microgrid, normalising them, converting
the selected discrete action into a prioritised list of continuous control operations (see subsection 3.3),
executing the corresponding action, and computing the resulting reward.
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The environment initially includes an 11-element state vector composed of: energy load, PV
generation, battery state of charge [0.0 - 1.0], battery charging and discharging capacity [0.0 - 1.0],
grid availability, CO, emissions from the grid, import/export energy prices, and the current hour
represented through two cyclical features: hour.,s and hourgj, (as shown in Equation 1). Using cyclical
encoding instead of raw hour values allows the model to learn time-related patterns, such as the
proximity of 23:00 to 00:00.

h
hour_cos = cos <27‘c24)
)

h
0 — sin 27t
hour_sin sm( n24)

The state vector is extended by integrating price forecasts to improve the agent’s decision-
making. Including all forecast steps from a multi-step predictor would excessively inflate the vector
dimensionality, increasing model complexity and training time. To address this, we select three
representative forecast values for a prediction horizon f: the first step, one intermediate step, and the
final step. This method provides a summary of the forecast trend while maintaining a manageable
state size of 14 elements. Further discussion on forecasting methods is presented in subsection 4.1.

Regarding the action space, the environment defines 7 discrete actions, encoded as integers. Each
action corresponds to one or more operational commands, which are executed depending on the
availability of energy resources. Table 3 details the available actions, their respective operations, and
the primary components involved, excluding the renewable sources (PV) and consumption modules.

Table 3. Actions and corresponding operations.

No. Operation(s) Entities Load Surplus
Supply Handling
0  Charge battery Battery X v
1 Discharge battery Battery v X
2 Import from grid Grid v X
3  Export to grid Grid X v
4  Use genset Genset v X
Charge battery (fully) with energy from Batter
5 PV panels and/or the grid, then export y X v
+ Grid
PV surplus
6 Discharge battery, then use genset Battery + Genset v X

Actions 0, 3, and 5 are primarily designed to manage surplus energy through either the battery or
the grid. In contrast, actions 1, 2, and 4 focus on fulfilling current energy demands using the battery,
grid, or genset (if available). These actions act as priority commands, and both energy supply and
surplus handling can occur simultaneously if mapped accordingly.

To guide the agent’s learning, we define the reward function as the negative total operational
cost. At each time step, the total cost includes grid import costs along with potential penalties from
unmet demand, surplus energy, battery usage, and fuel consumption (genset), minus any revenue
from energy exports to the REC’s grid.

For separate training and testing contexts, the simulator allows data splitting by percentage. We
used the default configuration: 67% for training (5870 hourly steps, about 244.58 days) and 33% for
testing (2890 steps, about 120.42 days). Although longer training could enhance learning, a broader
test window helps capture seasonal variation, leading to more robust evaluations. With this setup, all
algorithms were trained over 100,000 steps, roughly equivalent to 17 episodes.
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3.4. Available Energy Profiles

The simulator offers a collection of microgrids featuring realistic and diverse load and PV gener-
ation profiles drawn from various climate zones across the United States. These time series contain
8,760 hourly data points, representing an entire year.

By performing a detailed Exploratory Data Analysis (EDA) on these datasets, key patterns and
trends can be uncovered and utilised by RL algorithms. Specifically, using seasonal decomposition,
the time series can be broken down into trend, seasonal, and residual components. This helps reveal
the long-term behavior of the data, recurring seasonal patterns (such as daily or weekly cycles), and
any anomalies or noise. For instance, selecting a random microgrid, we observe that the average daily
load increases during the first half of the year (see Figure 3), peaking in summer - likely due to air
conditioning use - and then gradually decreases in the latter half. The seasonal component reveals a
consistent weekly cycle, with higher demand on weekdays and lower on weekends. The residuals are
mostly centred around zero, indicating that the decomposition captures most of the data’s variability.
Similarly, the PV generation shows a seasonal trend, peaking during the summer months when solar

radiation is strongest.

Observed
20k

15k
10k

5k
Mar 2024 May 2024 Jul 2024 Sep 2024 Nov 2024

Trend
18k

16k
14k
12k

10k
Mar 2024 May 2024 Jul 2024 Sep 2024 Nov 2024

Seasonal

-5000

Mar 2024 May 2024 Jul 2024 Sep 2024 Nov 2024

Residual

-10k
Mar 2024 May 2024 Jul 2024 Sep 2024 Nov 2024

Figure 3. Seasonal decomposition of the energy load profile of an arbitrary microgrid (no. 3 in Pymgrid25 dataset).

4. Development
4.1. Energy Price Forecasting

To improve the decision-making capabilities of the intelligent agents, we incorporated a forecast-
ing module that predicts future energy prices over time. This component is essential for allowing
agents to make more strategic choices regarding energy usage, such as when to charge or discharge
batteries, when to import or export energy, or when to activate backup generators. By having access
to reliable forecasts of upcoming energy prices, agents can adapt their actions to reduce costs and
increase savings. For this reason, rather than using synthetic energy price data, we opted for real-world
data from OMIE. This allowed us to not only evaluate forecasting accuracy, but also integrate the real
prices directly into the microgrid’s reward calculation. Using the open-source library ‘OMIEData’ !,
we collected hourly historical data for the entire year-from January 1% to December 31%¢, 2024. From

1 https://github.com/acruzgarcia/OMIEData
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this dataset, we extracted Portugal’s marginal energy price, which reflects the cost of producing one
additional Megawatt-hour (MWh) of electricity to satisfy demand.

Before model training, we performed an EDA (exploratory data analysis) of the energy price
series. Our initial step consisted of visualising the distribution (see Figure 4). The results revealed a
maximum price exceeding 190 MWh, along with multiple modes (peaks) suggesting the presence of
different market dynamics, such as peak and off-peak conditions. The highest density occurs in the
lower price range, between 0 and 10 €/kWh, likely driven by times of abundant renewable energy
or low consumption (e.g., nights or weekends). In contrast, the long right tail indicates occasional
price surges, typically caused by spikes in demand or supply disruptions. The intermediate peaks may
correspond to transition periods when the energy mix is shifting.
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Density

0.004
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Figure 4. Electricity marginal price KDE.

In previous research [20], forecasting models like ARIMA (AutoRegressive Integrated Moving
Average) and GRU (Gated Recurrent Unit) delivered strong results and proved effective for localised
home automation applications due to their short training times. However, we also observed that Neu-
ralProphet offers greater usability, adaptability, and interpretability, making it a promising candidate
for larger-scale implementations. It additionally addresses a key limitation of ARIMA: its requirement
for regularly spaced data and manual handling of missing values.

NeuralProphet builds upon Facebook’s Prophet model by incorporating Artificial Neural Net-
works (ANNSs), enabling it to model more complex temporal dependencies while preserving its
explainability. Similar to Prophet, it decomposes time series data into trend, seasonality, and special
events, but allows these components to be customised flexibly. Unlike Prophet, it includes autoregres-
sive terms through a feed-forward neural network to better capture short-term dynamics. Its modular
structure facilitates customization, making it ideal for tasks that need both model interpretability
and expressive power. In terms of preprocessing, it automates tasks like datetime parsing, frequency
detection, handling gaps in timestamps, and normalising features. It models seasonal patterns using
Fourier series with auto-selected terms and supports lagged as well as external regressors, internally
aligned and encoded. Additionally, it automatically identifies and scales trend change points and
performs train-validation splitting based on the forecasting horizon.

Choosing the appropriate lookback and forecast windows is essential in any forecasting setup, as
highlighted in previous work [21]. The lookback window must be long enough to include meaningful
trends, but short enough to avoid unnecessary noise, while the forecast horizon should reflect the
planning requirements of the agents. Increasing the number of forecast outputs raises the state space
dimensionality, which can lead to overfitting and higher computational demands. Therefore, a careful
balance is required to ensure that agents receive sufficient input without overwhelming the model.
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While dimensionality reduction methods can help, as discussed in the previous study, they often come
at the cost of reduced explainability. As an alternative, we chose to retain only a subset of steps from
the forecast horizon.

During training, we configured the model to run for 50 epochs with a batch size of 32. We
experimented with different combinations of lookback and forecast windows as described in section 5,
to determine the most effective setup for our scenario. Due to significant seasonal fluctuations in
energy pricing, we divided the dataset into 10 folds and implemented a time-based cross-validation
approach. This method preserves temporal order, preventing leakage of future data into the training
set. As in standard cross-validation, performance was averaged across folds to determine the final
result. Since there were no signs of overfitting, we did not apply any regularisation techniques.

4.2. Intelligent Agents

The system’s logic is driven by intelligent agents, whose decisions shape not only individual
microgrid behaviour, but also the community’s overall energy trading strategy. Efficient microgrids
reduce reliance on grid imports, while poor internal decisions can lead to increased external energy
dependency. The agents are therefore designed to optimise a reward function defined as the negative
of the energy cost. At every time step, the agent receives an observation vector, selects the next action,
receives a corresponding reward, and updates the neural networks that represent its policy. For this
study, we implemented and evaluated three widely used RL algorithms from the stable-baselines3
library [22]: Deep Q-Learning (DQN), Proximal Policy Optimisation (PPO), and Advanced Actor-Critic
(A2C). Their performance was benchmarked against a fixed-rule baseline agent.

Due to the large number of variables and the diversity of microgrid scenarios, we chose to fine-
tune three key hyperparameters: the activation function, the learning rate, and the number of hidden
units per layer in both the policy and value networks. Existent work [23] indicates that DON and
PPO are less sensitive to changes in learning rate compared to A2C, and it highlights the value of
experimenting with network architecture, underlining the relevance of these parameters. The paper
also stresses that using a high discount factor, -y, helps to prioritise long-term rewards over short-term
gains-an important aspect in energy optimisation tasks.

Alongside automated tuning and cross-scenario testing, we tailored the hyperparameters indi-
vidually for each algorithm. Each subsection outlines the most relevant settings used. Some choices
were influenced by computational limitations-for example, setting the number of PPO epochs to 10
to strike a balance between training efficiency and model performance. Other parameters required
manual tuning within selected test environments-for instance, carefully adjusting DQN'’s exploration
rate to reduce excessive randomness. A complete evaluation, with fixed parameters and variations in
learning rate, network configuration, and test setup, is provided in section 5.

4.2.1. Heuristics-Based Agent (Baseline)

Evaluating an agent solely based on its cumulative cost does not provide a complete picture of
its performance. The agent may be executing a suboptimal policy, or the environment itself might
be incompatible with the chosen strategy. To better assess the effectiveness of the implemented RL
algorithms, we compare them against a heuristics-based agent used as a baseline. This agent follows
a basic rule-based logic designed to imitate the decision-making of a human operator based on the
observation vector. By defining the net load of the microgrid as the difference between the demand and
the energy generated by the PV panels, the agent operates according to the rules outlined in Figure 5.
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load - pv < 0?

soc < 1.0 AND capa_to_charge > 0?) (soc > 0.0 AND capa_to_discharge > O?)

(Charge battery (O)) (Export excess (3)) (Discharge battery (1))

Grid import (2)

Figure 5. Decision tree of the heuristics-based agent.

In essence, the agent first determines whether the PV panels are generating surplus energy. If
excess energy is available, it attempts to charge the battery-provided the battery isn’t already full or
degraded. If the battery cannot be used, the agent exports the surplus to the grid. Conversely, when PV
generation is insufficient to meet the load, the agent tries to discharge the battery unless it is depleted
or degraded. If battery discharge is not an option, the agent imports the shortfall from the grid. In the
case of a zero net load-when production exactly matches consumption-the default action is to import
energy from the grid, though the actual result within the microgrid is effectively idling.

4.2.2. Algorithm 1: Deep Q-Learning (DQN)

Deep Q-Learning (DQN) is a value-based RL approach designed specifically for discrete action
spaces [24]. It extends the classic Q-learning algorithm, which estimates the action-value function,
Q(s, a), for each state-action pair. Both algorithms aim to learn a mapping from (s, a) pairs to their
expected cumulative rewards. The resulting policy is derived by selecting the action that maximises the
predicted Q-value. The key distinction is that DQN leverages a deep neural network to approximate
the Q-function, allowing it to scale to high-dimensional observation spaces. DQN also incorporates
two major improvements over traditional Q-learning: experience replay and a target network.

Experience replay maintains a buffer of past interactions (state, action, reward, next state), from
which it samples mini-batches during training. This process reduces temporal correlations in the data
and lowers update variance, leading to more stable learning dynamics.

The target network is a separate copy of the Q-network used to compute the target Q-values
during training. It is updated less frequently and provides a fixed reference for a number of steps,
improving stability. Updates are based on an approximated Bellman equation (see Equation 2), which
adjusts Q-values towards the sum of the immediate reward and the discounted maximum future
reward. The discount factor 7y controls the trade-off between immediate and future gains. This
approach helps reduce the instability and divergence that may arise from constantly changing targets
in single-network setups.

Q*(s,a) = E|r + ymax Q*(s’,a’)
a/

s, a] @)

Q*(s,a): Optimal action-value function;

r: Immediate reward after taking action a in state s;

7: Discount factor that controls the importance of future rewards;

s’: Next state;

a’: Next action.

The training objective is the mean squared error between the predicted Q-values and the target
values, obtained by evaluating the next state through the target network.

The stable-baselines3 version of DON provides fine control over many hyperparameters. One
crucial aspect is exploration. DQN uses an e-greedy exploration strategy: with probability €, the agent
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chooses a random action; otherwise, it selects the action with the highest predicted Q-value. Over time,
€ is decayed to encourage more exploitation as the agent gains experience. This process is governed by
three hyperparameters: the initial and final € values, and the exploration fraction, which determines
how quickly the decay occurs relative to total training time.

To identify a good setup, we tuned parameters such as the activation function, learning rate,
and number of units per hidden layer in both the primary and target networks. The default feature
extractor was retained. We also evaluated the impact of other DQN-specific hyperparameters, as
detailed in Table 4.

Table 4. DQN defined hyperparameters.

Hyperparameter Value
Replay buffer size 50,000
Number of transitions before start learning 1,000
Exploration initial € 1.0
Exploration final € 0.02
Exploration fraction 0.25
Steps between target network updates 10,000
Reward discount factor () 0.99

4.2.3. Algorithm 2: Proximal Policy Optimisation (PPO)

Proximal Policy Optimisation (PPO) is a widely used policy-based RL algorithm, suitable for both
discrete and continuous action spaces [25]. The stable-baselines3 implementation of PPO adopts an
actor-critic architecture: the actor network outputs a probability distribution over actions (i.e., the
policy), while the critic network estimates the state-value function. These networks share a common
feature extractor that processes the observation vector into a latent representation, but diverge into
separate heads for their respective tasks.

Unlike value-based methods, PPO directly optimises the policy function. To guide this optimi-
sation, it estimates the advantage function A(s,a), which quantifies how much better or worse an
action a is compared to the average action from state s: A(s,a) = Q(s,a) — V(s), where Q(s, a) is the
expected return of taking action 4 in state s (action-value function) and V (s) is the expected return of
being in state s (state-value function).

Direct computation of Q(s,a) is impractical because it requires evaluating all possible future
transitions and rewards. An alternative is 1-step bootstrapping, which estimates Q(s, a) using observed
rewards and the value of the next state. While this approach has low variance, it introduces bias. On the
other hand, Monte Carlo estimates use full episodes to compute returns, reducing bias, but increasing
variance and computational cost. PPO overcomes these trade-offs using Generalised Advantage
Estimation (GAE) [26], which blends multiple bootstrapping steps. The advantage function at time
step t is given by:

AtGAE(%)‘) = Z(’Y/\)lfswrl/ where & =1+ YV (s¢41) — V(st) (3)
1=0

v: Discount factor that controls the importance of future rewards.
A: GAE parameter that controls the bias-variance tradeoff.

02 Temporal difference error between expected and actual returns.
re: Reward at time step .

V(s): Estimated value function at state s.
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Alongside the advantage function, PPO computes the policy ratio, which is the ratio of the action
probabilities under the current and previous policies. This helps quantify how much the policy has
changed:

g (at|s
1 (0) = o (at]st)
Thyq (at|st)

The clipped objective function ensures that updates to the policy stay within a trusted region,

preventing excessively large changes that might destabilise learning. The PPO loss is defined as:

ECLIP(G) = E¢[min(r¢(0) Ay, clip(r:(6),1—€,1+€)As)] 4)

r¢(0): Policy ratio at time step ¢.
Ap: Advantage estimate at time step ¢.

e: Clipping parameter that constrains the ratio.

In addition to maximising the clipped policy objective, PPO also updates the critic network by
minimising the mean squared error between predicted values V (s) and empirical returns. The total
PPO loss function is therefore a combination of the policy loss and the value loss:

‘Ctotal — ECLIP Fc- Evalue (5)

Here, c is a weighting coefficient, set to 0.5, and £'2!U is typically the squared error between V (s)
and target returns. (Entropy loss is ignored in this formulation.)

Using the stable-baselines3 PPO implementation, we tuned key hyperparameters such as the
learning rate, activation function, and the number of hidden units per layer. These affect the capacity
of the actor and critic networks to capture complex patterns. Table 5 summarises the fixed hyperpa-
rameters used during training. Note that “number of epochs” refers to how many times PPO iterates
over the collected rollout data before each policy update.

Table 5. PPO fixed hyperparameters.

Hyperparameter Value

Number of epochs per policy update 10
Number of steps until policy update 2048

Mini-batch size 32
Reward discount factor () 0.99
GAE bias-variance parameter (A) 0.95
Clipping parameter (€) 0.2

4.2.4. Algorithm 3: Advantage Actor-Critic (A2C)

Advantage Actor-Critic (A2C), as the name implies, uses an actor-critic network [27] (see sub-
subsection 4.2.3), and is often viewed as a simplified variant of PPO [28]. Similarly to PPO, the actor
network in A2C aims to maximise the expected return, while the critic is trained to minimise the mean
squared error between the estimated and actual value functions. The advantage function serves as
a key component in updating both networks. However, A2C differs primarily in its simplicity. For
example, unlike PPO, A2C does not apply clipping to the policy objective, resulting in potentially
larger and less stable updates. Another notable difference is that PPO iterates over batches for several
epochs, while A2C performs a single update per batch. These traits make A2C more sensitive to
hyperparameter tuning, but also less computationally demanding. For this reason, A2C remains a
viable option-especially in scenarios where it achieves good performance, making the extra complexity
of PPO unnecessary.
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In the stable-baselines3 implementation, one of the key distinctions is that A2C does not rely
on mini-batching. Instead, it uses the full rollout collected over a predefined number of steps to
perform one gradient update. Accordingly, some of the chosen hyperparameters differ from those
used with PPO, as shown in Table 6. Similar to the previous methods, we tuned the activation function,
learning rate, and the number of hidden units in each fully connected layer for both the actor and critic
networks.

Table 6. A2C defined hyperparameters.

Hyperparameter Value
Number of steps until policy update 5
Mini-Batch size 1
Reward discount factor () 0.99
GAE bias-variance parameter (1) 1.0

4.2.5. Algorithm Comparison

Although the underlying algorithms differ, all three implementations are model-free, meaning
they do not rely on a predefined model of the environment’s dynamics. They share a common objective:
learning an optimal policy that maximises the expected return, based on either discrete or continuous
observations from the environment. The distinction between them lies in their learning strategies. PPO
is a policy-based approach that directly adjusts the policy function, whereas DQN takes a value-based
approach by estimating the action-value function. A2C closely resembles PPO in terms of structure,
but employs a simpler design and training mechanism. A summary of the main similarities and
differences is presented in Table 7.

Table 7. Comparison of the three RL algorithms.

Aspect DON PPO A2C
Policy Type Implicit via Q-values  Directly parametrised = Directly parametrised
Action Space Discrete Discrete/Continuous  Discrete/Continuous

Exploration e-greedy Stochastic policy Stochastic policy
Stability Moderate High Low
(replay buffer)
Computational Moderate High Low
Cost (replay buffer) (multiple epochs) (1 update / rollout)

4.3. Inter-REC Energy Trading

To enable true cooperation, RECs should be capable of negotiating among themselves to balance
supply and demand before engaging with the NEMO. When there is a surplus, this energy can be
exported to the grid to assist others in deficit and generate income.

To simulate this scenario with realism, we integrate a P2P trading market using the pymarket
library [29]. All RECs interact with a shared market interface and can submit bids to buy or sell. The
standard bid format, defined by the library, is outlined in Equation 6. Each bid includes the energy
quantity (energy), unit price (price), REC identifier (recId), and bid type (isBuying).

bid = (energy, price, recld, isBuying) (6)

Bids are executed as limit orders. For a buying REC, the price represents the highest price it is
willing to pay for the energy of energy. For a selling REC, the price reflects the lowest price it is willing
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to accept for the energy. Initially, submitted bids are split into buy and sell lists, and all potential
buyer-seller pairs are generated. Then, the market randomly selects pairs, marks them as matched,
and adds them to a pending transaction list. Each agent can participate in only one trade per round.
The market then validates each transaction by checking if the buyer’s maximum price is greater than
or equal to the seller’s minimum price. Valid trades are executed at Tyrices and Tepergy is transferred
from seller to buyer as described in Equation 7. Multiple rounds of negotiation can occur until all bids
are fulfilled or all possible matches checked.

Tyrice = buyerPrice x ¢ + sellerPrice x (1 —c) -
Tenergy = min(buyerEnergy, sellerEnergy)

buyerPrice | sellerPrice: Price of the buyer’s / seller’s bid.
buyerEnergy [ sellerEnergy: Amount of energy in the buyer’s / seller’s bid.

c: A constant that determines the weight of each price in the final transaction price. For mid-price
bidding, which is our case, c is set to 0.5, meaning that the transaction price is the average of the
buyer’s and seller’s prices.

As some bids may be only partially fulfilled or end unmatched, the environment waits to execute
the next step until all transactions are resolved. At the microgrid level, if an agent’s decision to import
or export cannot be executed due to an incomplete trade, it will be skipped. At the community level, if
a buy bid is not entirely filled, the REC must import the remaining energy from the NEMO at a higher
cost. If a sell order is only partially filled, the surplus remains in the energy pool for internal use, as
detailed in the next subsection.

To better reflect market dynamics, we base our simulation on the collected OMIE [30] dataset,
configuring all sell bids to have a minimum price equal to the market’s marginal price at that moment,
and all buy bids to have a maximum price set at the marginal price plus a 10% margin - the default
setting in our main benchmark.

4.4. Intra-REC Energy Exchange

Rather than depending exclusively on external sources (such as the NEMO or other RECs) to
handle import and export operations, the energy pool can be utilised to foster cooperation at the
microgrid level, making the external market a fallback option. In this framework, tenants should be
able to exchange energy within the same community, extending the cooperative model to the internal
microgrid. The idea is to channel surplus energy from one tenant to meet the needs of another, thus
preventing unnecessary export to and import from the grid or other communities. For this purpose,
each REC is equipped with an energy pool, a virtual entity that aggregates the community’s internal
energy surplus. If the energy pool falls short of meeting all tenant demands, then the REC must import
energy from the main grid. Conversely, the surplus energy should be exported, as discussed before.

Moreover, to enable a fair comparison between market-based and non-market approaches, we
assume the market is always accessible in our experiments and do not simulate energy shortages. The
only fallback mechanism included in the experiments that were carried out is the genset installed in
each microgrid.

Still, the system is already designed to manage fair distribution in shortage scenarios via a
reputation mechanism that reflects each tenant’s past contributions. As shown in Equation 8, a tenant’s
reputation score R; is updated after each intra-REC trade. When a tenant contributes energy to the
pool, it earns a positive score equal to the savings, calculated as the exported energy multiplied by the
current marginal energy price. Conversely, importing from the pool results in a negative score of the
same magnitude.

E; - price

R; =R; + N

(8)

i, j: Tenant indexes;
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N: Number of tenants in the community;
Ey: Amount of energy exported (positive) or imported (negative) by tenant x;

price: Current market’s energy marginal price;

If the pool cannot fully meet the energy demands of all tenants, the available energy is distributed
proportionally to each requester’s reputation score (I;), as defined in Equation 9. Tenants with higher
(positive) reputation receive a greater portion of the shared energy, while those with lower (negative)
scores receive less. As with any import operation, the reputation is subsequently decreased according
to the amount of energy received.

1

= ——— - energyPool )
Zjlil Rj

energyPool: Amount of energy available in the energy pool.

I;

5. Evaluation

This section details the experimental setup used to assess the effectiveness and resilience of
the proposed software framework. We start by evaluating the core components of the system, the
intelligent agents for energy optimisation, and compare the results of different RL algorithms.

Because profitability is a central objective for RECs, our experiments are grounded in two financial
metrics: each tenant’s cumulative operational cost, and the trading balance of the overall community.
Operational costs account for actions like importing, exporting, and battery use (charging /discharging),
while the trading balance reflects the difference between revenue from selling energy and the cost of
buying it, either from other RECs or, when unmatched, from the energy market.

5.1. Experiment Setup

A REC’s behaviour in the energy market is closely tied to its internal activities, especially energy
storage and interactions with the grid. Therefore, to evaluate an energy trading strategy, it’s essential
to simulate these foundational operations first. To this end, we employed the Pymgrid simulator [31],
which allows for the creation and control of electrical microgrids-networks of interconnected resources
that can operate as a unified system. Our experiments modelled communities as collections of mi-
crogrids. Even though, at a small scale, each microgrid might represent a household or a municipal
entity, in Pymgrid’s dataset, each microgrid handles consumption and generation at the MWh scale,
representing aggregated loads of thousands of devices-similar to a neighbourhood-level infrastruc-
ture. Regardless of system size, any effective energy management solution that enhances financial
performance should be adaptable, whether scaling up or down, as long as the environment conditions
remain comparable.

To standardise our evaluation, we used the Pymgrid25 dataset, which includes 25 microgrids with
aggregated consumption and solar generation data derived from public sources. Some of these lack
key elements like a grid connection or backup diesel generator. Therefore, we selected 10 microgrids
that are fully equipped. To simulate a larger community, we generated additional microgrids by
applying random offsets to their energy profiles. A fixed seed ensured result reproducibility.

5.2. Quality of Energy Price Forecasts

Before assessing the performance of the intelligent agents, we first validated the forecasting
module, which plays a crucial role in predicting market energy prices and thereby supports the agents’
decision-making. In our evaluation, the accuracy of the forecasts is quantified using the RMSE and
MAE metrics, defined in Equation 10. Both are widely used in the literature [32] and yield results on
the same scale as the original data, aiding interpretability. However, RMSE penalises larger prediction
errors more heavily than MAE.
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1¢ .
RMSE = ” E (i — 9:)?
=1 (10)

1& .
MAE = — Y i — 9il
=

yi/¥;: actual value / predicted value of the energy price at index i.

n: number of samples in the test / validation set.

The goal of the experiment was to identify the best sizes for the lookback and forecasting windows.
It was already known that larger window sizes would not only increase computational requirements,
but also worsen the cold start issue, as the model would require more initial data to start generating
predictions. Based on this, we chose lookback windows ranging from 12 to 48 hours, and forecasting
windows spanning from 8 to 24 hours. Considering insights from prior EDA, and the high volatility
of energy prices, extending the forecasting horizon beyond 24 hours was considered impractical.
After establishing this parameter space, we applied time-based cross-validation with 10 folds to each
configuration, as described earlier in subsection 4.1. The results, presented in Table 8, include the
average values of both error metrics on the training data and across folds, along with their standard
deviations, indicating performance stability.

Table 8. Performance of the energy price forecasting model.

Lookback Forecasting
Window Window

MAE Val. MAE RMSE Val. RMSE

8 378+016 518+1.00 6.29+038 8.73+2.05
12 12 499023 742+163 797+056 11.75+274
24 723+033 1193+3.02 1074+0.69 17.32+4.14
8 392+030 498+093 645+042 851+217
24 12 511+029 6.81+140 811+057 11.11+286
24 736 +036 11.09+253 1092+0.68 16.29+391
8 391+041 488+093 638+046 826+2.20
48 12 519+032 680+1.08 815+057 11.03+247
24 733+043 11.32+275 10.86+0.73 16.44+4.03

Our findings show that increasing the lookback window does not consistently lower prediction
error, whereas the length of the forecasting window significantly impacts model performance. This
aligns with the expectations that longer prediction horizons naturally introduce greater uncertainty. We
also noticed a substantial gap between training and validation errors, especially for forecasts extending
beyond 12 hours. These results underline the need to carefully balance the prediction horizon with the
model’s capacity to generalise effectively. As a result, we selected a 12-hour forecasting window. Since
the performance difference between 24-hour and 48-hour lookback windows was minimal, we opted
for the shorter one to reduce computational overhead during inference. Regardless of the setup, the
model reliably converged after 10 training epochs.

As noted in subsection 4.1, to keep the observation space compact, we only include three times-
tamps from each forecasting window: the beginning, a midpoint, and the end. For the chosen
configuration, this means keeping predictions for 1 hour, 8 hours, and 12 hours into the future. Figure 6
illustrates how the predicted prices align with the actual market prices over a selected 4-day period
to facilitate visual analysis. As expected, the predictive accuracy decreases with longer horizons.
The 1-hour forecast closely mirrors the actual price pattern, accurately capturing both timing and
magnitude of price peaks and dips. In contrast, the 8-hour forecast shows greater deviations, and the
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12-hour prediction displays the largest lag, particularly during sharp price changes. This illustrates
a clear trade-off between horizon length and forecast precision. While short-term predictions offer
higher reliability, longer-term ones come with increased uncertainty, but can support strategic-level
planning. Nonetheless, all three forecasts generally follow the underlying trend and daily price cycles.

Actual Price Forecasted Price (1h ahead)

Forecasted Price (8h ahead) Forecasted Price (12h ahead)

120

100

80

€/MWh

60

400"

00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00
Jan 2, 2024 Jan 3, 2024 Jan 4, 2024 Jan 5, 2024 Jan 6, 2024

Time

Figure 6. Forecasting performance up to 12 hours ahead.

Before assessing the feasibility of the proposed solution, and using the test set (roughly 120.42
days), we compared the performance of the three RL algorithms (DQN, PPO, A2C) against one
another and a heuristic-based agent, referred to as the baseline. While certain algorithm-specific
hyperparameters were fixed (see subsection 4.2), others such as the activation function, learning rate,
and number of hidden units in the policy (or value, in DQN’s case) network were varied across
ReLU/Tanh, [0.0001, 0.01], and [64, 128], respectively. The outcomes are summarised in Table 9.
Each row represents a microgrid i, detailing the best-performing agent with its configuration and
performance metrics, specifically the percentage improvement relative to the baseline. Although costs
are displayed with two decimal precision for clarity, the calculations used unrounded values. The
findings indicate that incorporating Al into energy management yields notable cost savings, with
some setups reducing cumulative costs by up to 96% when compared to the heuristic. Regardless
of the specific configuration, all RL agents outperform the baseline. DQN, in particular, emerges
as the most frequent top performer, being the best agent in 6 out of 10 microgrids and showing
consistent improvements. This suggests that DQN is especially effective for this domain, likely due to
its strengths in learning complex behaviours through mechanisms like experience replay and target
networks. Nonetheless, optimal agent selection appears to be microgrid-dependent, implying that a
uniform approach may not be ideal. Hence, our proposed strategy, which adaptively chooses the best
agent per microgrid, leads to a more cost-efficient system overall.
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Table 9. Best performing agents for each microgrid.

Activation Network Learning Baseline Cost Diff.

i Agent ) Y%
Function Arch. Rate (M$) M$)  (M$)

0 A2C ReLU [128, 128] 0.001 0.19 0.05 0.14 72.68
1 DON ReLU [64, 64] 0.0001 23.70 3.65 20.00 84.61
2  DON RelLU [64, 64] 0.0001 36.00 1.75 3430 95.14
3 DON Tanh [64, 64] 0.001 35.90 1.58 3440 95.60
4 DQOQN ReLU [64, 64] 0.0001 32.40 438 28.10 86.51
5 PPO Tanh [128, 128] 0.001 114.00 4.07 109.00 96.41
6 PPO Tanh [128, 128] 0.001 46.30 1.76 4450 96.20
7 DON RelLU [64, 64] 0.0001 15.40 1.21 14.20 92.14
8 PPO Tanh [128, 128] 0.001 9.74 3.64 6.09 62.58
9 DON ReLU [64, 64] 0.0001 3.57 1.94 1.63 45.67

We also collected the 10 best average configurations across all microgrids, as shown in Table 10.
The column A% represents the relative improvement of each configuration compared to the one listed
directly below it, except for the final row, where the comparison is made with the worst-performing
configuration - not the baseline.

The table reveals that although using an RL agent yields substantial performance gains, differences
among top configurations are relatively small. In practical deployment, emphasis should therefore
be placed more on implementation rather than fine-tuning hyperparameters. That said, we noticed
DOQN is more sensitive to hyperparameter variations, such as the learning rate, compared to PPO. This
is likely because DON relies on a replay buffer, which can contain outdated transitions and result in
training instability.

Table 10. Top 10 agent configurations, on average, and their relative performances.

Activation Network Learning

Agent ) A%
Function Arch. Rate
PPO Tanh [64, 64] 0.001 < +0.01
PPO Tanh [64, 64] 0.0001 < +0.01
A2C Tanh [64, 64] 0.001 < +0.01
DON Tanh [128, 128] 0.0001 < +0.01
A2C Tanh [128, 128] 0.0001 +0.13
DQN Tanh [64, 64] 0.0005 +0.77
DQOQN ReLU [64, 64] 0.0001 +0.94
DON ReLU [128, 128] 0.0001 +0.40
DON Tanh [64, 64] 0.001 +0.36

DON Tanh [128, 128] 0.001 6.22"

* relative to the worst performing configuration, on average.

Regarding training times for the configurations in Table 9, the average duration was 239.70
seconds with a standard deviation of 53.68 seconds. These experiments were conducted on a system
featuring a NVIDIA GeForce RTX 2080 GPU (Asus, Aveiro, Portugal), 8 CPU cores running at 2.4
GHz, and 64 GB of RAM. During training, we tracked both the policy gradient and value function
losses along with episode rewards. A sharp decline in loss occurred early, followed by consistent
convergence after approximately 6 episodes ( 35,000 steps).

Looking at the agent’s performance on the test set, Figure 8 shows the substantial gap in cu-
mulative operational costs between the best RL agent and the heuristic approach. The blue curve,
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representing the RL agent, grows slowly and steadily, maintaining a low cost trajectory even after
2,500 steps. In contrast, the red line (heuristics) rises rapidly, surpassing $100 million over the same
period, illustrating inefficient decision-making. The persistent difference between the two clearly
demonstrates that the RL agent makes more strategic and cost-effective decisions.

Best agent

Heuristics-based agent

le+8

8e+7

6e+7

4e+7

Operational Costs ($)

2e+7

Oe+0
0 500 1000 1500 2000 2500

Steps

Figure 7. Comparison between the cumulative operational cost of the best performing agent and the heuristics-
based agent.

5.3. Simulation Benchmark

A reliable evaluation should not take place in isolation. Over-simplifying the environment risks
missing key dynamics found in real-world systems. To mitigate this, we evaluated our agents in
a simulated setting that captures real-world complexity, including fluctuating energy prices and
interactions among diverse participants. Table 11 presents a detailed benchmark, comparing the
heuristic agent to the best RL agents per microgrid across multiple setups, varying the number of RECs
and tenants. Reported metrics include trading costs (averaged per REC) under three conditions: no
market (NN), only inter-REC trading (NY), and both inter and intra-REC trading (YY). It’s important
to note that in single-REC cases, exports remain in the local energy pool, since inter-REC trading is not
applicable. Again, although cost values are rounded to two decimals for readability, the savings were
computed using exact figures.
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Table 11. Results of the proposed solution’s complete benchmark.

=~
|

Heuristics-based Agent Best Agent
NN NY YY Sav % NN NY YY Sav %

3 839 8.19" 021 247 737 6.78" 059 8.06
5 17.60 17.00° 054 3.05 1550 14.30" 120 7.74
7 2720 26.30" 098 3.61 23.30 21.30° 1.98 848
10 37.30 36.60° 072 192 32.80 30.90 1.89 5.77
3 835 818 790 045 541 736 722 582 155 20.99
5 1750 16.80 1630 121 695 1560 1500 13.60 1.99 12.80
7 2720 2630 2550 1.69 620 2340 22.60 2050 294 12.54
3730 3650 35.80 1.50 4.02 32.80 32.10 30.30 251 7.65
3 837 820 762 074 888 740 725 493 247 3343
5 1750 1690 15.60 1.88 10.75 1560 15.00 12.70 2.86 18.36
7 2720 2630 2470 253 928 2340 2260 1940 4.09 17.44
10 37.30 36,50 3530 206 553 3280 3210 29.60 329 10.02
3 88 819 739 099 11.76 742 727 404 338 4558
5 1750 16.80 15.10 244 1394 1560 1500 12.00 3.65 23.40
7 2730 2630 2410 321 11.76 2350 22.60 1850 4.97 21.15
7 10 3730 36.60 3480 256 6.87 3290 3220 2890 3.99 12.14

* There are exports, but no actual inter-REC market [only 1 REC]. R: Number of RECs. T: Number of tenants (=microgrids) per
REC. NN: Average cost (M$) without any market. NY: Average cost (M$) with no intra-REC market, only inter-REC market. YY:
Average cost (M$) with both intra-REC and inter-REC markets. Sav.: Absolute savings (M$) from NN to YY approach.

NN N O O U U W W W W R = e
—_
o

In all the tested scenarios, and particularly as the number of RECs increases, the best-performing
agents consistently surpass the heuristics-based approach in cost savings, reaching up to 45.58%
in relative terms and 4.97 million dollars in absolute terms. These improvements arise from more
efficient coordination within and between RECs, highlighting that learned strategies can significantly
outperform rule-based systems while offering scalability and adaptability. Still, although the heuristics-
based agent delivers less impressive results, it still gains from market participation. This means that
even suboptimal strategies can leverage the collaborative nature of RECs and their tenants to yield
economic benefits.

A regression analysis (see Figure 8) confirms a positive relationship between savings and the
number of RECs, while also showing that smaller RECs with fewer tenants tend to achieve higher
savings rates. For instance, with just 3 tenants, the savings grow rapidly - at a rate of around 6.25
- reaching over 45% when 7 RECs are present. However, with 10 tenants, the slope flattens to 1.07,
indicating diminished returns as more RECs are added. This suggests that with a fixed number of
RECs, an increase in tenants introduces greater demand and competition for shared resources, often
resulting in a need to import energy from the NEMO at marginal prices, ultimately impacting REC
cost efficiency.
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Tenants = 3
45 — y=6.2503 * x + 2.0129
Tenants = 5

40 —— y=2.6271 * x + 5.0653
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35 y=2.1450 * x + 6.3221

Tenants = 10

30 y=1.0729 *x + 4.6036

Savings (%)

Number of RECs

Figure 8. Regression analysis of the savings rate in relation to the number of RECs and tenants.

5.4. Infrastructure Validation

As outlined in section 4, the architecture of our proposed solution is containerised and deployed
in a lightweight K3s cluster. For evaluation, we used a local setup comprising five Ubuntu-based
virtual machines: one server node and four worker nodes. The server, which runs the control plane,
has 8 CPU cores at 2.10 GHz and 12 GB of RAM, while each worker node is configured with the same
CPU specs, but only 8 GB of RAM. The experimental data in this section was gathered using the kubectl
command-line interface and analysed using Python scripts. CPU usage was measured in millicores
(where 1 core = 1000 millicores), and memory in gibibytes (GiB), capturing total consumption across
all five nodes.

The first infrastructure-level test involved deploying the service stack in the K3s cluster and
running a stress test to assess system stability under heavy load. Throughout this process, we tracked
both CPU and memory consumption (see Figure 9).

MinlO / TimescaleDB Data Collector Inference Service Stress Test
1 1 1 1

CPU Usage (m)
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Time (s)

(a) CPU usage over time.
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(b) Memory usage over time.

Figure 9. Resource usage during the deployment of the solution services on a K3s cluster.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0190.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0190.v1

24 of 27

The timeline in the graph includes the initialisation of key services, such as MinlO (object storage),
TimescaleDB (time-series database), the data collector, and the inference service, followed by the stress
test. Initially, the system remains in an idle state with minimal resource usage. When MinlO and
TimescaleDB are launched (around the 50-second mark), CPU usage spikes sharply (reaching 8000
millicores), then stabilises. Deploying the data collector and inference service adds a modest increase
in resource usage-expected due to a single-instance collector and limited inference replicas. During the
stress test phase ( 320 seconds onward), both CPU and memory usage rise substantially, with CPU
peaking at 19,000 millicores (19 vCPUs) and memory at 19.3 GiB. Despite the high load, no service
experienced failures or downtime.

For this test, an additional service using Vegeta -a load testing tool for HTTP - was deployed.
It generated 500 requests per second (with custom payloads) targeting the inference service over a
1-minute period, simulating a high-stress condition. The stress test results demonstrate the robustness
and scalability of the inference APL It successfully handled 30,000 requests in 60 seconds at a sustained
rate of 500 requests per second, achieving 100% success with zero errors. Most requests were processed
efficiently, with a median latency of just 27 ms and minimal queuing. However, some latency values
reached up to 10.6 seconds, indicating that a small subset of requests faced significant delays. These
could be attributed to agent startup times, resource contention, or potential I/O bottlenecks during
model loading. Additionally, 27 pods were dynamically created during the test, validating that the
autoscaling mechanism adapted effectively to the increased demand.

Regarding the training pipeline, our approach is to interleave agent training, while prioritising
resources for inference - even if actions are not yet fully optimised. Training pipelines should be
triggered based on time or specific events. However, understanding the impact of concurrently
running pipelines on resource availability remains important. In another experiment, 20 pipelines
with similar configurations were deployed simultaneously, and their resource usage was tracked. The
results appear in Figure 10.

20 — CPU

8000 Pipelines

7000

6000

4000
5
3000
2000
0
d
100

Time (s)

CPU Usage (m)
Deployed pipelines

)

(a) CPU usage over time.

16k 20 —— RAM

Pipelines
A \F/—F\\_/—\ls

15.8k

15.6k

Memory usage (MiB)
5
Deployed pipelines

15.4k

15.2k

0 100 200 300 400 500 600

Time (s)
(b) Memory usage over time.

Figure 10. Resource usage during the execution of 20 pipelines on a K3s cluster.
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During pipeline gradual deployment, CPU usage rises rapidly with noticeable variability, indi-
cating CPU-intensive workloads and possible preemption or scheduling inefficiencies. In contrast,
memory consumption increases more gradually and remains relatively steady, suggesting consistent
memory demands. Predictably, CPU usage drops briefly during pipeline scheduling and placement,
while memory usage stabilises. This behaviour suggests that tuning Kubeflow’s scheduling mech-
anisms could further improve efficiency. Overall, while the system handles multiple concurrent
pipelines effectively, the results support our proposal of interspersed training.

6. Conclusions

This paper proposes a MLaaS platform that integrates a cooperative energy trading mechanism
to optimise energy management within RECs. Built on a scalable and multi-tenant architecture, the
platform assigns a dedicated RL agent to each REC microgrid, enabling decentralised, autonomous
decision-making while preserving data privacy. The system leverages a modern K3s Kubernetes
infrastructure and the PyMGrid simulator - modified to meet specific research needs - to manage
complex and dynamic energy trading environments. Real-world data from OMIE and NeuralProphet
forecasting enhance the realism and strategic planning capabilities of the agents. Three RL algorithms -
DQN, PPO, and A2C -were validated and shown to outperform a rule-based baseline, achieving up
to 96% cost reductions, though agent effectiveness varied by microgrid. Cooperative trading, both
within and between RECs, further amplified cost savings, with optimal configurations reaching up
to €4.97 million in savings. Despite the valuable contributions of the paper, some aspects can be
further investigated in future work. Concretely, to improve privacy and decentralisation, federated
learning approaches could be implemented, allowing RL agents to learn collaboratively without
sharing raw data between microgrids or RECs. In terms of forecasting, multivariate approaches could
be explored to enhance the prediction accuracy for larger output windows. Moreover, the current
solution could be extended to include more complex energy management strategies, such as predictive
maintenance. Nonetheless, the proposed platform demonstrates a significant step towards enhancing
energy management in RECs, offering a scalable and economical viable solution for future energy
systems.
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The following abbreviations are used in this manuscript:

Al Artificial Intelligence
ML Machine Learning

DL Deep Learning

RL Reinforcement Learning

MLaaS  Machine Learning as a Service

MLOps  Machine Learning Operations
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REC Renewable Energy Community

VPP Virtual Power Plant

NEMO  Nominated Electricity Market Operator
OMIE Operador do Mercado Ibérico de Energia
EMS Energy Management System

PV Photovoltaic

BESS Battery Energy Storage System

p2p Peer-to-Peer

ANN Artificial Neural Network

LSTM Long Short-Term Memory

MAE Mean Absolute Error

RMSE Root Mean Squared Error

MAPE  Mean Absolute Percentage Error

EDA Exploratory Data Analysis

HPA Horizontal Pod Autoscaler

KFP Kubeflow Pipelines

kWh Kilowatt-hour

MWh Megawatt-hour
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