

Review

Not peer-reviewed version

Celiac Disease—New Insights in Pathogenesis, Diagnosis and Management

Marek Kowalski, Danuta Domżał-Magrowska, Ewa Izabela Malecka-Wojciesko

Posted Date: 13 November 2024

doi: 10.20944/preprints202411.0943.v1

Keywords: celiac disease; diet-resistant celic disease,; pecific antibodies; HLA DQ2 and DQ8; enteropathy

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Remiern

Celiac Disease—New Insights in Pathogenesis, Diagnosis and Management

Marek K Kowalski, Danuta Domżał-Magrowska and Ewa Małecka-Wojciesko *

Department of Digestive Tract Diseases, Norbert Barlicki University Hospital, Lodz, Poland.

* Correspondence: ewa.malecka-panas@umed.lodz.pl

Abstract: Celiac disease is defined as a systemic immunological disorder caused by gluten in genetically predisposed individuals, who have a variety of gluten-dependent symptoms, specific antibodies, HLA DQ2 and DQ8 histocompatibility antigen presence and enteropathy. Celiac disease is considered one of the most common autoimmune diseases. Its prevalence, depending on the studied population and methodology, is estimated at 0.75-1.6% of the general population. Celiac disease is an autoimmune disease that develops as a result of the interaction of genetic, immunological, and environmental factors. During the complex immune reaction, most of the cells involved in inflammatory processes are activated, which leads to the gradual atrophy of intestinal villi and the proliferation of enterocytes within the intestinal crypts. The pathogenesis of celiac disease is extremely complicated and is still being studied. According to the current guidelines, in order to correctly diagnose celiac disease, the following criteria should be taken into account: clinical symptoms (intestinal and extraintestinal), presence of antibodies against tissue transglutaminase in the IgA class, taking into account the level of total IgA and presence of typical histological changes in a duodenal bioptates. The important clinical challenge is the diet-resistant celiac disease, causing the severe complications, Currently, the basic method of treating celiac disease is an elimination diet (i.e. exclusion of products that may contain gluten from the diet), however, new therapeutic strategies are still being sought, mainly based on supplementation of exogenous endopeptidases, modification of the immune response, the use of zonulin inhibitors and transglutaminase 2 inhibitors. Clinical trials of new drugs are ongoing. The gradually expanding knowledge of the pathogenesis of celiac disease may allow the development of new therapeutic strategies both for patients with a mild course of the disease as well as those diet-resistant.

Keywords: celiac disease; diet-resistant celic disease,; pecific antibodies; HLA DQ2 and DQ8; enteropathy

Introduction

Celiac disease (CD) is defined as a systemic autoimmune disorder induced by gluten and prolamin derivatives in genetically predisposed individuals who experience a variety of gluten-dependent symptoms, specific antibodies, HLA-DQ2 and DQ8 histocompatibility antigens presence and enteropathy [1,2]. Characteristic intestinal symptoms of celiac disease include: diarrhea (13-96%), abdominal pain (8-90%), vomiting (26-33%), flatulence (5-10%) and fatty stools [3–6]. There are also extraintestinal symptoms that are related to gastrointestinal dysfunction, mainly in the course of malabsorption, ultimately leading to numerous disorders affecting most body systems. The most frequent are weight loss (44-60%), failure to thrive in children (19-31%), anemia (3-30%), iron deficiency anemia (40%), folic acid deficiency (20%) and vitamin B12 deficiency (17%). Among celiac patients deficiencies of fat-soluble vitamins A, D, K and E and elevated levels of aminotransferases are observed more frequently than in the general population [7]. Osteopenia (54%) and osteoporosis (12%), mainly due to the vitamin D deficiency (34%), and hypocalcemia leading to tetany are among most common complications of celiac disease and are sometimes its first symptoms [8–11].

Celiac disease, untreated for years, can also lead to the development of malignant tumors, such as esophageal and small intestine cancer, lymphoma, especially T-cell lymphoma, which occurs

mainly in the small intestine. These cancers are rare, but they occur significantly more often in patients with celiac disease than in the general population [12].

Patients with celiac disease also suffer from other comorbidities – the most prevalent are autoimmune diseases: type 1 diabetes (7%), Duhring's disease (3%) and thyroid diseases (5-21%) [13,14] but also neuropsychiatric disorders [15].

Epidemiology

Celiac disease is considered one of the most common autoimmune diseases. Its prevalence, depending on the investigated population and methodology, is estimated at 0.75–1.6% of all screened people [16–19]. A detailed analysis conducted among the inhabitants of the United States of America showed that celiac disease occurs significantly more frequently in Caucasians (1.01%) than in African Americans (0.2%) or Latinos (0.3%) [20].

Celiac disease develops in genetically predisposed subjects. It has been shown to occur more frequently in relatives of celiac patients than in the general population. The risk of developing celiac disease was 4.5-7.5% among first-degree relatives and 2.3-2.6% among second-degree relatives. It was diagnosed more often in women than in men who were first-degree relatives of celiac patients (8.4% vs. 5.2%) [21,22].

Studies conducted around the world observed considerable geographic variation in the prevalence of celiac disease. It occurs mainly in Europe (2% in Finland, 1.2% in Italy, 0.9% in Northern Ireland and 0.3% in Germany), North Africa (5.6%), the Middle East, North America (1-1.4%) and India. It is much less frequent in South America (0.4-0.5%) and Australia (0.3%). It is equally rare in Asia, excluding India, as well as in Central and South Africa (0.4-0.6%) [23,24].

Etiopathogenesis

Celiac disease develops due to an abnormal immune response to ingested gluten and prolamin derivatives (contained in cereals such as rye, wheat, barley and oats which are respectively gliadin, secalin, hordein or avenin) in genetically predisposed individuals with specific histocompatibility antigens (HLA-DQ2 or HLA-DQ8) [25]. After ingesting gluten-rich cereals, gluten is partially broken down in the stomach by pepsin. The long-chain protein fragments obtained this way, after contact with G.I. mucosa, show significant immunogenicity, causing an increase in the plasma level of numerous inflammatory interleukins [26].

Prolamin degradation products are further digested in the duodenum and small intestine with prolyl oligopeptidase [27]. Gluten treated by endopeptidases is broken down into short glutamine and proline-rich peptide chains. Gluten proteins are a heterogeneous group consisting of high molecular weight (HMW), low molecular weight (LMW) subunits and gliadins (α -, β -, γ -, and ω). The level of degradation resulting from the digestive process depends on the type of the contained protein. Protein digestion results in the formation of oligopeptides which are then deamidated by tissue transglutaminase and stimulate the activity of T lymphocytes [28–30].

The intestinal microbiota plays an active role in the process of gluten protein digestion. In celiac patients, especially those not observing the gluten-free diet, the presence of a greater number of fermenting bacteria in the gut was demonstrated, which may explain accompanying flatulence [31]. It should also be noted that the introduction of a gluten-free diet leads to an increase in the number of *Enterobacteriaceae* and *Escherichia coli* with simultaneous reduction in the number of *Bifidobacter sp*, both in celiac patients and in healthy individuals [32–35]. Both oral and intestinal bacteria produce their own endopeptidases and hydrolases that contribute to the digestion of protein chains resulting from the degradation of gliadin [36–41]. Fragments of undigested proline-rich proteins in contact with the intestinal mucosa increase in IL-15, which in turn stimulates activated T and NK cells to produce chemokines and proinflammatory cytokines [42–44]. Moreover, IL-15 promotes NK cell apoptosis [45,46]. This process is additionally intensified by a direct contact reaction between gliadin fraction (p31-43) and intestinal mucosa, leading to the enterocyte cytoskeleton reconstruction and, subsequently, to apoptosis [47–49]. Furthermore, fragments of partially digested gliadin were

shown to bind to CD95/FAS receptors belonging to the group of TNF-alpha (Tumor Necrosis Factor alpha) family receptors leading to apoptosis by activating caspase 8 and 10 [50].

Moreover, increased intestinal mucosal permeability is caused by loosening of tight junctions between enterocytes [51]. The pathomechanism of this phenomenon was described by Fasano et al. They showed that gliadin fragments (111–130 and 151–170) in the small intestine bind to the CXCR3 receptor [52]. This leads to the release of zonulin (a protein similar to the toxin produced by cholera bacillus) from enterocytes of the small intestinal mucosa [53–55]. This protein binds to the protease activating receptor (PAR2). As a result, tight junctions between enterocytes are disrupted and transepithelial electrical resistance is reduced, leading to increased intestinal wall permeability [56–59]. Both described processes are responsible for the increased penetration of undigested short-chain proline-rich proteins into the submucosa. At this stage, the intestinal bacterial flora may also play an important role. In non-diet celiac patients *B. lactis* and *L. fermentum* were shown to increase intestinal mucosal permeability by reducing transepithelial resistance and increasing zonulin expression [60].

In vitro studies demonstrated that gliadin fragments (mainly p62-75, p57-68) undergo tissue transglutaminase - mediated deamidation. The deamination process has been shown to be necessary to trigger further immune response [61–63]. In the next step, deamidated gliadin peptides bind with DQ2 or DQ8 receptors expressed on antigen presenting cells (APC)[64–66]. Two heterodimers, DQ2 (DQ2.2 and DQ 2.5) and DQ8, participate in the antigen presentation process [67–70]. As a result of the reaction, HLA-DQ2 and DQ8 are complexed with deamidated α -gliadin fragments [71]. The protein fragments are then presented to B lymphocytes by APCs, initiating further humoral response.

The existence of molecular mimicry resulting from similar 3-dimensional appearance of proteins, mainly tissue transglutaminase and specific gliadin fragments, has been proven [72]. As a result, B cells produce antibodies against both tissue transglutaminase and gliadin and deamidated gliadin peptides [73–76]. It should be noted that under the influence of a number of inflammatory cytokines produced by monocytes and T cells, such as INF α , IL-15, IL-18 and IL-21, the inflammatory response in the course of celiac disease is directed towards the Th1-dependent inflammatory pathway [77–81]. At the same time, INF γ and TGF α stimulate monocytes and myofibroblasts damaging the enterocyte stroma by producing matrix metalloproteinases (MMP-1, MMP-3, MMP-12). This leads directly to the intensification of the apoptosis process and to increased mucosal permeability [82–84].

The above-mentioned CXCR3 receptor present on enterocytes also interacts with fragments of gliadin (p261–277 and p270-286), leading to an increase in the concentration of inflammatory interleukins, especially IL-8, a neutrophil chemokine. This reaction was observed only in celiac patients and persisted despite a gluten-free diet [85].

On the other hand, contact of gliadin fragments with enterocytes leads to increased production of EGF (epidermal growth factor), which stimulates the crypt enterocyte proliferation leading to their hyperplasia [86,87].

As it results from the above description, during a complex immune reaction, most cells involved in inflammatory processes are activated, both in terms of cellular and humoral responses. Gliadin peptides in a complex mechanism lead to direct apoptosis of enterocytes which leads to the gradual villous atrophy. On the other hand, gliadin induces increased production of EGF, which leads to the cell hyperproliferation within the intestinal crypts. The pathogenesis of celiac disease is extremely complex and still not fully elucidated yet.

Celiac Disease Diagnosis

Pathomorphological Changes in the Duodenum

Chronic inflammation leads to gradual changes in the duodenal mucosa. The histopathological picture of the small intestinal mucosa was described and systematized initially by Marsh et al. and then modified by Oberhuber et al. According to current classification, the histopathological changes of the small intestinal mucosa are divided into five types. In type 0 (preinfiltrative) the mucosal picture is normal and the ratio of intraepithelial lymphocytes (IEL) to enterocytes is less than 30. In type 1 (infiltrative stage), an increase in the number of intraepithelial lymphocytes (IEL) above 30 per

100 enterocytes is observed, without other changes. In type 2 (infiltrative-hyperplastic), in addition to the increased number of IELs, intestinal crypt hyperplasia and elevated mitotic index are observed, with normal villi structure. Within type 3 (flat destructive), three subtypes are distinguished. In subtype 3a (progressive villous atrophy), in addition to the changes characteristic of type 2, there comes to mild villous atrophy. In subtype 3b (almost complete shortening of the villi), villous atrophy is clearly marked, with crypt hyperplasia and the number of IEL>30/100 enterocytes, and in 3c (complete villous atrophy) - the villi are flat, with crypt hyperplasia and the number of IEL>30/100 enterocytes. Type 4, hypoplastic-atrophic, involves complete villous atrophy with normal crypt structure and normal number of IELs [88–92].

Criteria for the Diagnosis of Celiac Disease

Knowledge on the pathogenesis of celiac disease has deepened over the last decades. As a result, the criteria for diagnosing celiac disease have changed. According to the 2012 ESPGHAN (European Society for Pediatric Gastroenterology, Hepatology and Nutrition) criteria, the diagnosis was based on the clinical picture (both typical and atypical symptoms) and intestinal villus atrophy type 2 or 3 according to the Marsh scale. Biopsy is recommended at upper G.I. endoscopy according to the following scheme - 2 samples from the duodenal bulb and 4 from the descending duodenum. In addition, detection of characteristic anti-endomysial antibodies, anti-tissue transglutaminase 2 (antitTG) or anti-deamidated gliadin peptides (anti-DGP) at a concentration exceeding the norm at least three times and the presence of specific histocompatibility antigens HLA-DQ2 or DQ8. However, the 2020 modification of the above guidelines places the main emphasis on the determination of IgA anti-tTG antibodies and on the determination of total IgA level. The determination of total IgA is necessary due to its frequent deficiency in CD patients. As a result, low levels of IgA anti-tTG antibodies may result from total IgA deficiency and produce a false-negative result. In the case of children and adolescents, simultaneous finding of a ten times increase in the upper limit of IgA antitTG antibodies with a normal level of total IgA and a typical clinical picture, allows for the diagnosis of celiac disease without the need for duodenal histology. In adults, the presence of typical histological changes is necessary for the CD diagnosis. The genetic tests assessing the presence of HLA-DQ2 and DQ8 antigens are used to exclude celiac disease in subjects observing the gluten-free diet. Neverheless, HLA-DQ2/DQ8 has a limited role in the diagnosis of CD. It's role is based on the negative predictive value in order to rule out CD in patients who are seronegative with typical histologic changes, in patients seronegative at the time of diagnosis, and in those patients with previously diagnosed CD before the introduction of celiac-specific serology.

This diagnostic criteria are also recommended by the American College of Gastroenterology [1,2].

New Diagnostic Techniques for Celiac Disease

New diagnostic techniques are still being sought to enable the diagnosis with greater precision. Recent studies indicate a higher reliability of the determination of antibodies against neo-epitope tTG complexed to gliadin (98–100% sensitivity and 93–96% specificity) in comparison with the assessment of anti-tissue transglutaminase antibodies (sensitivity: 74–100%, specificity: 78–100%) [93–97].

An additional test confirming celiac disease in the future may be the determination of the presence of T cells response to HLA-DQ2- α -gliadin complexes. The positive correlation was demonstrated between the number of gluten-reactive T cells in duodenal biopsy and the histological damage in the course of celiac disease as well as the concentration of anti-tissue transglutaminase antibodies [98]. It has been shown that three days of ingestion of gluten-containing food renders the memory T lymphocytes to be reactive against gliadin from gut-associated lymphoid tissue (GALT) and be detected in the peripheral blood of CD patients. Those antigen-specific T-cells can be detected with the enzyme-linked immunospot (ELISPOT) assays or by flow cytometry tetramer technology. Moreover, studies were conducted in T cells collected from the peripheral blood of patients for presence of the histocompatibility antigen HLA-DQ2 [99–101]. In the future, this test may become not only a new diagnostic method for celiac disease detection, but also a test to confirm the diagnosis of

celiac disease in patients already observing a gluten-free diet, without exposing them to a long-term gluten challenge. The recent popularity of gluten-free diet self-administered without the clear indication represents the frequent challenge for clinicians, when comes to the CD confirmation or exclusion. Analysis of the presence of gluten-reactive T cells in peripheral blood can also be used to assess the adherence to the gluten-free diet [99–102]. Such a test could be helpful in diagnosing celiac disease, especially since current studies in healthy individuals with HLA-DQ 2.5+ did not show any reactivity of memory T cells specific for immunodominant gluten epitopes [103]. Although Özgenel et al., and Cecilio et al., showed an increased frequency of HLA-DQ2/DQ8 in first-degree relatives of celiac patients [104,105], their use in the primary diagnosis of celiac disease is not confirmed [106].

New genetic determinants of celiac disease are still being sought due to the significant genotypic-phenotypic divergence among individuals with HLA DQ2/DQ8 antigens. A GWAS (genome-wide association study) study conducted in 336 celiac patients from Poland demonstrated a significant association between the development of celiac disease and the presence of the MSH5 gene [107]. In the study evaluating single nucleotide polymorphisms (SNPs), 57 non-HLA variants predisposing to the development of CD were identified. In turn, within HLA, a significant predictive value was demonstrated for the presence of HLA-DQ 2.5 rs2187668, HLA-DQ7 rs4639334, DQ8 rs7454108 [108–110]. So far, few studies have been published examining the association of non-HLA genes with the risk of developing and the severity of CD.

In some patients with celiac disease, despite the gluten-free diet adherence, the intestinal villi do not recover and chronic symptoms do not subside. In order to monitor and detect a group of patients who may require more careful surveillance and introduction of additional management, it may be useful to detect patients' whole blood IL-2 release [111,112]. This relationship was confirmed by Tye-Din et al., in the study of 295 patients on a gluten-free diet who were challenged with gluten [113]. Gliadin-specific T cells found both in the G.I. tract [114–116] and selected from peripheral blood [117,118] can also be used to assess unconscious exposure to ingested gluten. Zühlke et al., demonstrated an increased expression of CD38 on gluten-specific CD4+ T cells in patients after gliadin exposure [119].

Types of Celiac Disease

According to current criteria, depending on the clinical picture and additional tests, several forms of celiac disease have been identified: classic, atypical, silent, latent (hidden), potential and refractory. Overt (classic) celiac disease is diagnosed based on the intestinal symptoms (such as chronic diarrhea, abdominal pain, vomiting, flatulence, steatorrhea), Marsh 3 villus atrophy, the presence of characteristic antibodies, and the presence of HLA-DQ 2 or DQ8. Atypical celiac disease differs from overt celiac disease by the presence of extraintestinal symptoms and the absence of classical symptoms. Silent celiac disease is asymptomatic, with the presence of anti-tTG, -EMA and -DPG antibodies and villous atrophy detected at endoscopy for other indications. Latent celiac disease is characterized by the presence of characteristic HLA, elevated levels of characteristic antibodies but without enteropathy, in individuals who had symptoms of gluten-sensitive enteropathy in the past. It should be noted that patients with latent celiac disease are at risk for villus atrophy. Potential CD affects asymptomatic subjects, without villous atrophy with high concentration of characteristic antibodies and in the presence of tissue antigens [2,120]. Refractory celiac disease (RCD) occurs when a patient, despite adherence to strict gluten-free diet for 12 months does not achieve villous regeneration [121-123]. Two forms of RCD are distinguished: type I in which in the histopathological examination activated T cells constitute up to 20% of all those visible in the preparation, and type II, when their presence is higher [124-126]. RCD accounts for 0.04-1.5% of all celiac disease cases and is mainly observed in patients diagnosed over the age of 50 [127,128]. In spite of research progress, RCD represents the important clinical challenge and it's management is difficult.

Once a correct diagnosis has been made, in accordance with the guidelines for patients with celiac disease, serologic surveillance is recommended every 3-6 months for the first year after diagnosis and then every 1-2 years. It has been considered that the lack of normalization of antibody

levels within a period of 12 months indicates gluten contamination of consumed food or RCD.[2,123,129–135].

Celiac Disease Treatment

According to the current guidelines, the basic method of treating celiac disease is an elimination diet (i.e. excluding products that may contain gluten) [1,2], i.e. foods produced using substrates derived from wheat, rye and barley [130]. Although oats contain prolamins that are toxic to some patients, pure oats are not contraindicated in patients with celiac disease. However, its use is associated with more careful patient monitoring [136-138]. Current studies indicate that the consumption of 10 mg of gluten daily in patients with celiac disease should not cause an exacerbation of the disease, although in some cases the daily dose may be several times higher [139-142]. The applicable certification standards allow for a gluten content of 20 ppm (20 mg per kilogram of product) in gluten-free products and 100 ppm in low-gluten products [143]. In the European Union, gluten-free products are marked with the crossed-out ear of wheat symbol and in accordance with "Commission Regulation (EU) 41/2009 on the composition and labelling of foodstuffs suitable for people intolerant to gluten". The gluten content in food products marked with this logo may not exceed 20 mg per kilogram of product. Similar legal regulation was also introduced in the United States [144]. It should be noted that even trace amounts of gluten can lead to chronic inflammation in the intestinal mucosa [145,146]. However, in most cases constant adherence to gluten-free diet, especially among young patients, leads to complete recovery of the villi and resolution of the inflammatory infiltrate, despite the presence of trace amounts of gluten contamination in food [147]. In adults, especially over the age of 60, histological changes may not undergo complete remission despite strict adherence to gluten-free diet [148,149].

New Treatment Strategies

The Use of Bacteria in the Treatment of Celiac Disease

The use of endopeptidases naturally produced by bacterial strains and fungi is one of the suggested treatment methods. *Flavobacterium meningosepticum* were the first strains in which the presence of endopeptidases capable of digesting prolamine-rich protein fragments was detected. As the result of gliadin degradation with endopeptidases, fragments are formed that are non-immunogenic for celiac patients [35]. Further studies showed the presence of similar endopeptidases also in other bacteria and fungi [33,34]. Proteases were also purified from probiotic bacteria of *Lactococcus* and *Lactobacillus* [150–152]. Alpha-gliadins were reduced by more than 50% by peptidases produced by *Lactobacillus spp.* [153].

Endopeptidases are also used in the fermentation process of flour, which can be used in further stages for bakery products. Flour processed in this way does not increase the permeability of the intestinal mucosa and thus does not cause it's injury [154–157]. Further studies showed a synergistic effect of simultaneous administration of the above-mentioned probiotics with endoproteases derived from yeasts used in baking on the both gliadin and glutenin hydrolysis [158–161].

Oral Supplementation of Endopeptidases

Clinical trials are currently underway on the oral administration of endopeptidase derived from *Aspergillus Niger* (AN-PEP). Although first reports indicate an effective reduction in the frequency of immune responses, the authors indicate that the dose of enzyme necessary to digest gluten contained in food strictly depends on the type of meal and the method of its preparation and therefore effective supplementation may prove difficult [162,163].

Oral preparations of endopeptidase mixture (ALV003) obtained from *Sphingomonas capsulata* (SC-PEP) and endopeptidase from barley seeds (EP-B2) are also used in clinical trials. Studies conducted so far indicate that subjecting gluten-containing products to enzymatic treatment with ALV003 before consumption significantly reduces the immune response to prolamins contained in the meal [164–166].

After a successful trial using 1.2 g of gluten per day for 6 weeks, which showed a significant decrease in the inflammatory response and reduction of symptoms [167], further clinical trials with Latiglutenase were initiated in a large group of patients. Research has also been initiated on a computer-modified enzyme, Kuma 030 obtained from *Alicyclobacillus sendaiensis*, which is an endopeptidase that effectively degrades the linkage between proline and glutamine (TAK-062) [168], which in preliminary studies shows high efficiency in digesting a significant amount of gluten [169].

Modification of Immune Response

Apart from the application of bacterial and fungal endopeptidases, research is still ongoing on probiotic strains that reduce the inflammatory process. Strains of the genus *Bifidobacterium spp.* are mainly used in the studies. They have been shown to reduce the level of TNF α , the number of IELs and the level of antibodies in patients with celiac disease compared to the group of patients with celiac disease who did not receive probiotics [170–173].

Systemic steroids therapy has been used for years to modify the inflammatory response. Their possible use in celiac disease, especially if resistant to diet, has been considered for many years [174]. Studies using prednisolone at a dose of 1 mg/kg bw did not demonstrate any significant effect on the villous regeneration [175]. However, administration of 9 mg of budesonide in patients with refractory celiac disease for 3 months resulted in improvement and led to the villous regeneration [176]. Numerous studies indicate the effectiveness of budesonide in patients with celiac disease not responding to gluten-free diet (NRCD) as well as refractory celiac disease (RCD) [177–179]. Azathioprine is also used in RCD. Remissions have been demonstrated in small groups of patients with this type of CD [180]. In subsequent studies, the use of azathioprine was found to be effective in type I RCD, but in some cases of type II RCD it's effect seems to be unsatosfactory [181,182].

There are very few case reports of successful use of anti-TNF α antibodies in RCD. However, so far there has been no broader analysis of such treatment. Therefore, such management should be considered non-standard and limited to selected cases [183–185].

The monoclonal anti-IL-15 antibody (AMG 714; currently PRV-015) has been evaluated in CD [186–188]. In one study the authors did not demonstrate any significant difference between the use of the preparation and placebo in terms of pathological changes of intestinal mucosa in patients exposed to gluten challenge but they did demonstrate a significant reduction in symptoms [190]. A phase 2b clinical study (NCT04424927) is currently underway in adult patients with refractory celiac disease.

In vitro studies have shown that tofacitinib, a Janus kinase inhibitor, has the potential to regulate the activity of abnormal IEL cell population. In phase 2 open-label clinical study [(EudraCT): 2018-001678-10] in patients with RCD type 2, 12-week treatment with tofacitinib led to resolution of diarrhea/loose stools, disappearance of abdominal pain and weight gain, however, the primary immunologic end point of absolute decrease in total IELs was not met and mucosal improvement as a secondary end point was observed in four of six patients. In all patients, a rapid recurrence of symptoms, including weight loss, was observed after treatment discontinuation, while the reintroduction of therapy led to a rapid and complete improvement [189].

According to current knowledge, celiac disease is a Th1-mediated autoimmune process. Attempts are being made to modulate this response by redirecting patients' immune response to Th2-mediated pathway. For this purpose, CD patients received hookworm larvae (*Necator americanus*) transcutaneously. In the studies conducted so far, in small groups, patients undergoing the procedure developed gluten tolerance without other clinical implications [191–193]. Moreover, *N. americanus* infection in gluten-challenged patients leads to an increased microbial richness by improving homeostasis, which may normalize inflammatory parameters and increase gluten tolerance [194,195].

A polymer conjugated to a deamidated gliadin peptide (KAN-101) has also been developed, which when administered intravenously, liver-targeted, is expected to induce immune tolerance to gluten [196]. The first-in-human study of KAN-101 demonstrated an acceptable safety profile in patients with celiac disease. Furthermore, KAN-101 showed the potential to induce gluten tolerance

by blunting the inflammatory response of gliadin-specific CD4+ cells and intestinal CD8+ cells after gluten challenge (NCT04248855) [196]. KAN-101 is currently being evaluated in phase Ib/II and phase II studies (NCT05574010, NCT06001177). Another similar strategy is the use of nanoparticles being a copolymer of gluten particles and PLGA (TAK-101). Currently, the second phase of clinical studies has been completed, confirming the safety of the preparation and demonstrating the lack of immune reaction to 14-day gluten challenge - TAK-101 was well tolerated in celiac patients and no evidence of systemic immunosuppression was observed (NCT03486990 and NCT03738475) [197]. A phase II study is currently underway to investigate the efficacy and safety of TAK-101 in preventing gluten-specific T cell activation in celiac patients on a gluten-free diet (NCT04530123).

There has also been an attempt to create a vaccine (Nexvax2) designed to induce gluten tolerance by modifying the T cell response. Clinical trials have been initiated in this aspect. After vaccination, the immune response to gliadin is significantly lower than in unvaccinated patients. Studies have confirmed lower concentrations of IL-2 and INF- γ as well as significantly lower CD4+ T cells proliferation [198–201].

Zonulin Inhibitors

In celiac disease, according to the pathophysiology described above, contact of gluten with intestinal mucosa results in an increase in zonulin release. This leads to enterocyte tight junction dysfunction and increased mucosal permeability [55,202–204]. Knowledge of this pathomechanism was used to develop a protein substance (larazotide acetate) with properties that regulate tight junctions between enterocytes, modulate the intercellular tension (TEER) and inhibit the zonulin effect. This leads to a reduction in the permeability of partially digested gliadin fragments and thus reduction in the immune response. Additionally, larazotide promotes the repair of enterocyte structural defects resulting from direct reaction with gliadin [205–210]. Developed by 9 Meters Biopharma, it was investigated as an adjunctive treatment for celiac disease patients who continued to have symptoms despite adherence to gluten-free diet. The trial was discontinued in 2022 after an interim analysis explaining that additional number of patients needed to determine a significant clinical outcome between placebo and larazotide was too large to support trial continuation [210]. The therapeutic potential of larazotide acetate was assessed to be lower than expected due to the presence of both paracellular and transcellular gliadin transport pathways, whereas larazotide acetate is intended to block only the paracellular pathway.

Tissue Transglutaminase 2 Inhibitors

A number of substances have been developed as tissue transglutaminase 2 (tTG2) inhibitors [211–213]. However, studies in mice have shown that complete congenital deficiency of tissue transglutaminase 2 leads to numerous complications, such as glomerulonephritis, splenomegaly and impaired phagocytosis [214,215]. For this reason, it is impossible to introduce complete transglutaminase 2 inhibition in clinical practice. There are ongoing studies investigating the use of partial tTG2 inhibitors in patients with celiac disease [216,217]. Phase II clinical trial of a selective oral inhibitor of activated tissue transglutaminase 2, ZED 1227, has been completed. In the initial phases of the study, ZED 1227 was shown to be effective in preventing gliadin deamidation. The application of the preparation in a group of CD patients undergoing gluten challenge also brought good results, including a reduction in mucosal damage compared to the group receiving placebo [218,219]. A phase IIb trial is currently ongoing in CD patients experiencing symptoms despite the gluten-free diet (EudraCT 2020-004612-97).

Celiac disease results from a complex immune reaction to gluten. The gradually expanding knowledge about its pathogenesis enables the development of new therapeutic strategies both in patients with a mild course of the disease and in those who do not observe clinical improvement after the gluten-free diet. However, currently the only recognized treatment for celiac disease remains a gluten-free diet. The main clinical challenges are diet-refractory disease and the increased risk of small intestine neoplasia, which is particularly difficult to detect. Early small intestine cancers symptoms are not characteristic and the diagnostic methods, as MR enterography and enteroscopy

not widely available and highly operator-dependent. Although it is possible that in the coming years new diagnostic and treatment methods will also find their application in clinical practice.

Funding: This study was supported by the Scientific grant No. 503/1-002-01/503-11-001 from the Medical University of Lodz, Poland to Ewa Malecka Wojciesko and from the Polish Society For Digestive Tract Neoplasms Prevention.

References

- Rubio-Tapia A, Hill ID, Semrad C, Kelly CP, Greer KB, Limketkai BN, Lebwohl B. American College of Gastroenterology Guidelines Update: Diagnosis and Management of Celiac Disease. Am J Gastroenterol. 2023 Jan 1;118(1):59-76. doi: 10.14309/ajg.0000000000002075. Epub 2022 Sep 21. Erratum in: Am J Gastroenterol. 2024 Jul 1;119(7):1441.
- 2. Husby, S., et al., European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J Pediatr Gastroenterol Nutr, 2020. **70**(1): p. 141-156.
- 3. Garampazzi, A., et al., Clinical pattern of celiac disease is still changing. J Pediatr Gastroenterol Nutr, 2007. 45(5): p. 611-4.
- 4. Dinler, G., E. Atalay, and A.G. Kalayci, Celiac disease in 87 children with typical and atypical symptoms in Black Sea region of Turkey. World J Pediatr, 2009. 5(4): p. 282-6.
- 5. Bottaro, G., et al., Changes in coeliac disease behaviour over the years. Acta Paediatr, 1993. 82(6-7): p. 566-8.
- 6. Faulkner-Hogg, K.B., W.S. Selby, and R.H. Loblay, Dietary analysis in symptomatic patients with coeliac disease on a gluten-free diet: the role of trace amounts of gluten and non-gluten food intolerances. Scand J Gastroenterol, 1999. **34**(8): p. 784-9.
- 7. Montón Rodríguez C, Sánchez Serrano J, Poyatos García P, Abril García C, Gómez Medina C, Capilla-Lozano M, Lluch Garcia P, Pascual Moreno I. Liver disorders and celiac disease. Rev Esp Enferm Dig. 2024 Jan;116(1):41-42.
- 8. Zanchetta, M.B., et al., Impaired Bone Microarchitecture Improves After One Year On Gluten- Free Diet: A Prospective Longitudinal HRpQCT Study in Women with Celiac Disease. J Bone Miner Res, 2016.
- 9. Kalayci, A.G., et al., Bone mineral density and importance of a gluten-free diet in patients with celiac disease in childhood. Pediatrics, 2001. **108**(5): p. E89.
- Santonicola A, Wieser H, Gizzi C, Soldaini C, Ciacci C. Associations between Celiac Disease, Extra-Gastrointestinal Manifestations, and Gluten-Free Diet: A Narrative Overview. Nutrients. 2024 Jun 9;16(12):1814.
- 11. Ciacci, C., et al., Effects of dietary treatment on bone mineral density in adults with celiac disease: factors predicting response. Am J Gastroenterol, 1997. **92**(6): p. 992-6.
- 12. Marek K. Kowalski, A.G., *Czy choroba trzewna predysponuje do rozwoju chorób nowotworowych?* Onkol. Prakt. Klin., 2015. **2**(3): p. 140-148.
- 13. Schosler, L., L.A. Christensen, and C.L. Hvas, *Symptoms and findings in adult-onset celiac disease in a historical Danish patient cohort.* Scand J Gastroenterol, 2016. **51**(3): p. 288-94.
- 14. Zingone F, Bai JC, Cellier C, Ludvigsson JF. Celiac Disease-Related Conditions: Who to Test? Gastroenterology. 2024 Jun;167(1):64-78.
- 15. Hansen S, Osler M, Thysen SM, Rumessen JJ, Linneberg A, Kårhus LL. Celiac disease and risk of neuropsychiatric disorders: A nationwide cohort study. Acta Psychiatr Scand. 2023 Jul;148(1):60-70.
- 16. Bingley, P.J., et al., Undiagnosed coeliac disease at age seven: population based prospective birth cohort study. BMJ, 2004. **328**(7435): p. 322-3.
- 17. Maki, M., et al., *Prevalence of Celiac disease among children in Finland*, in *N Engl J Med*. 2003, 2003 Massachusetts Medical Society: United States. p. 2517-24.
- 18. Laass, M.W., et al., The prevalence of celiac disease in children and adolescents in Germany. Dtsch Arztebl Int, 2015. 112(33-34): p. 553-60.
- 19. Singh, P., et al., Prevalence of Celiac disease in Asia: A systematic review and meta-analysis. J Gastroenterol Hepatol, 2015.
- 20. Choung, R.S., et al., Trends and racial/ethnic disparities in gluten-sensitive problems in the United States: findings from the National Health and Nutrition Examination Surveys from 1988 to 2012. Am J Gastroenterol, 2015. 110(3): p. 455-61.
- 21. Fasano, A., et al., Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study, in Arch Intern Med. 2003: United States. p. 286-92.
- 22. Singh, P., et al., Risk of Celiac Disease in the First- and Second-Degree Relatives of Patients With Celiac Disease: A Systematic Review and Meta-Analysis. Am J Gastroenterol, 2015. **110**(11): p. 1539-48.
- 23. Tamai, T. and K. Ihara, Celiac Disease Genetics, Pathogenesis, and Standard Therapy for Japanese Patients. Int J Mol Sci, 2023. 24(3).

- 24. Singh, P., et al., *Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis*. Clin Gastroenterol Hepatol, 2018. **16**(6): p. 823-836.e2.
- 25. Aboulaghras S, Piancatelli D, Taghzouti K, Balahbib A, Alshahrani MM, Al Awadh AA, Goh KW, Ming LC, Bouyahya A, Oumhani K. Meta-Analysis and Systematic Review of HLA DQ2/DQ8 in Adults with Celiac Disease. Int J Mol Sci. 2023 Jan 7;24(2):1188.
- 26. Palova-Jelinkova, L., et al., Pepsin digest of wheat gliadin fraction increases production of IL- 1beta via TLR4/MyD88/TRIF/MAPK/NF-kappaB signaling pathway and an NLRP3 inflammasome activation. PLoS One, 2013. 8(4): p. e62426.
- 27. Garcia-Horsman, J.A., et al., Deficient activity of mammalian prolyl oligopeptidase on the immunoactive peptide digestion in coeliac disease. Scand J Gastroenterol, 2007. **42**(5): p. 562-71.
- 28. Matysiak-Budnik, T., et al., Limited efficiency of prolyl-endopeptidase in the detoxification of gliadin peptides in celiac disease, in Gastroenterology. 2005: United States. p. 786-96.
- 29. Wei, G., et al., Gluten Degrading Enzymes for Treatment of Celiac Disease. Nutrients, 2020. 12(7).
- 30. Dunaevsky, Y.E., et al., Effective Degradation of Gluten and Its Fragments by Gluten-Specific Peptidases: A Review on Application for the Treatment of Patients with Gluten Sensitivity. Pharmaceutics, 2021. **13**(10).
- 31. Nistal, E., et al., Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients, in Biochimie. 2012, 2012 Elsevier Masson SAS: France. p. 1724-9.
- 32. Sanz, Y., Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans, in Gut Microbes. 2010: United States. p. 135-7.
- 33. Di Cagno, R., et al., Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Appl Environ Microbiol, 2009. **75**(12): p. 3963-71.
- 34. De Palma, G., et al., Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol, 2010. 10: p. 63.
- 35. Bonder, M.J., et al., The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med, 2016. 8(1): p. 45.
- 36. Caminero, A., et al., Differences in gluten metabolism among healthy volunteers, coeliac disease patients and first-degree relatives. Br J Nutr, 2015. **114**(8): p. 1157-67.
- 37. Zamakhchari, M., et al., Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract. PLoS One, 2011. **6**(9): p. e24455.
- 38. Helmerhorst, E.J., et al., Discovery of a novel and rich source of gluten-degrading microbial enzymes in the oral cavity, in PLoS One. 2010: United States. p. e13264.
- 39. Stepniak, D., et al., Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease, in Am J Physiol Gastrointest Liver Physiol. 2006: United States. p. G621-9.
- 40. Shan, L., et al., Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem J, 2004. **383**(Pt 2): p. 311-8.
- 41. Yoshimoto, T., R. Walter, and D. Tsuru, Proline-specific endopeptidase from Flavobacterium. Purification and properties. J Biol Chem, 1980. **255**(10): p. 4786-92.
- 42. Meresse, B., et al., Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity, 2004. **21**(3): p. 357-66.
- 43. Londei, M., et al., Gliadin as a stimulator of innate responses in celiac disease. Mol Immunol, 2005. **42**(8): p. 913-8.
- 44. Maiuri, L., et al., Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet, 2003. **362**(9377): p. 30-7.
- 45. Andre, P., et al., Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors. Eur J Immunol, 2004. **34**(4): p. 961-71.
- 46. Hue, S., et al., A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity, 2004. **21**(3): p. 367-77.
- 47. Vilasi, S., et al., Interaction of 'toxic' and 'immunogenic' A-gliadin peptides with a membrane- mimetic environment. J Mol Recognit, 2010. **23**(3): p. 322-8.
- 48. Nanayakkara, M., et al., A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43. PLoS One, 2013. **8**(11): p. e79763.
- 49. Barone, M.V., et al., Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease. Gut, 2007. **56**(4): p. 480-8.
- 50. Giovannini, C., et al., Wheat gliadin induces apoptosis of intestinal cells via an autocrine mechanism involving Fas-Fas ligand pathway. FEBS Lett, 2003. **540**(1-3): p. 117-24.
- 51. Menard, S., et al., Paracellular versus transcellular intestinal permeability to gliadin peptides in active celiac disease. Am J Pathol, 2012. **180**(2): p. 608-15.
- 52. Lammers, K.M., et al., Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology, 2008. **135**(1): p. 194-204.e3.
- 53. Clemente, M.G., et al., Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut, 2003. **52**(2): p. 218-23.

- 55. Fasano, A., et al., Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease, in Lancet. 2000: England. p. 1518-9.
- 56. Tripathi, A., et al., Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci U S A, 2009. **106**(39): p. 16799-804.
- 57. Sapone, A., et al., Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes, 2006. **55**(5): p. 1443-9.
- 58. El Asmar, R., et al., Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology, 2002. **123**(5): p. 1607-15.
- 59. Wang, W., et al., Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci, 2000. **113 Pt 24**: p. 4435-40.
- 60. Lindfors, K., et al., Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol, 2008. **152**(3): p. 552-8.
- 61. Arentz-Hansen, H., et al., The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med, 2000. **191**(4): p. 603-12.
- 62. Molberg, O., et al., T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol, 2001. **31**(5): p. 1317-23.
- 63. Quarsten, H., et al., HLA binding and T cell recognition of a tissue transglutaminase-modified gliadin epitope. Eur J Immunol, 1999. **29**(8): p. 2506-14.
- 64. Camarca, A., et al., Intestinal T cell responses to gluten peptides are largely heterogeneous: implications for a peptide-based therapy in celiac disease. J Immunol, 2009. **182**(7): p. 4158-66.
- 65. Anderson, R.P., et al., T cells in peripheral blood after gluten challenge in coeliac disease. Gut, 2005. **54**(9): p. 1217-23.
- 66. van de Wal, Y., et al., Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol, 1998. **161**(4): p. 1585-8.
- 67. Dorum, S., et al., A quantitative analysis of transglutaminase 2-mediated deamidation of gluten peptides: implications for the T-cell response in celiac disease. J Proteome Res, 2009. **8**(4): p. 1748-55.
- 68. Qiao, S.W., et al., Refining the rules of gliadin T cell epitope binding to the disease-associated DQ2 molecule in celiac disease: importance of proline spacing and glutamine deamidation. J Immunol, 2005. **175**(1): p. 254-61
- 69. Tollefsen, S., et al., HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease. J Clin Invest, 2006. **116**(8): p. 2226-36.
- 70. Vader, W., et al., The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci U S A, 2003. **100**(21): p. 12390-5.
- 71. Henderson, K.N., et al., The production and crystallization of the human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 complexed with deamidated gliadin peptides implicated in coeliac disease. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2007. **63**(Pt 12): p. 1021-5.
- 72. Korponay-Szabo, I.R., et al., Deamidated gliadin peptides form epitopes that transglutaminase antibodies recognize. J Pediatr Gastroenterol Nutr, 2008. **46**(3): p. 253-61.
- 73. Vitoria, J.C., et al., Antibodies to gliadin, endomysium, and tissue transglutaminase for the diagnosis of celiac disease. J Pediatr Gastroenterol Nutr, 1999. **29**(5): p. 571-4.
- 74. Aleanzi, M., et al., Celiac disease: antibody recognition against native and selectively deamidated gliadin peptides. Clin Chem, 2001. 47(11): p. 2023-8.
- 75. Agardh, D., et al., Autoantibodies against soluble and immobilized human recombinant tissue transglutaminase in children with celiac disease. J Pediatr Gastroenterol Nutr, 2005. **41**(3): p. 322-7.
- 76. Sulkanen, S., et al., Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology, 1998. 115(6): p. 1322-8.
- 77. Bodd, M., et al., HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol, 2010. **3**(6): p. 594-601.
- 78. Harris, K.M., A. Fasano, and D.L. Mann, Monocytes differentiated with IL-15 support Th17 and Th1 responses to wheat gliadin: implications for celiac disease. Clin Immunol, 2010. **135**(3): p. 430-9.
- 79. Salvati, V.M., et al., Interleukin 18 and associated markers of T helper cell type 1 activity in coeliac disease. Gut, 2002. **50**(2): p. 186-90.
- 80. Fina, D., et al., Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut, 2008. 57(7): p. 887-92.
- 81. Di Sabatino, A., et al., Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease. Gastroenterology, 2007. **133**(4): p. 1175-87.
- 82. Mora, B., et al., Association of the matrix metalloproteinase-3 (MMP-3) promoter polymorphism with celiac disease in male subjects. Hum Immunol, 2005. **66**(6): p. 716-20.

- 83. Ciccocioppo, R., et al., *Matrix metalloproteinase pattern in celiac duodenal mucosa*. Lab Invest, 2005. **85**(3): p. 397-407.
- 84. Bister, V., et al., Metalloelastase (MMP-12) is upregulated in the gut of pediatric patients with potential celiac disease and in type 1 diabetes. Scand J Gastroenterol, 2005. **40**(12): p. 1413- 22.
- 85. Lammers, K.M., et al., Identification of a novel immunomodulatory gliadin peptide that causes interleukin-8 release in a chemokine receptor CXCR3-dependent manner only in patients with coeliac disease. Immunology, 2011. **132**(3): p. 432-40.
- 86. Nanayakkara, M., et al., An undigested gliadin peptide activates innate immunity and proliferative signaling in enterocytes: the role in celiac disease. Am J Clin Nutr, 2013. **98**(4): p. 1123-35.
- 87. Barone, M.V., R. Troncone, and S. Auricchio, Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci, 2014. **15**(11): p. 20518-37.
- 88. Marsh, M.N., Grains of truth: evolutionary changes in small intestinal mucosa in response to environmental antigen challenge. Gut, 1990. **31**(1): p. 111-4.
- 89. Marsh, M.N., Studies of intestinal lymphoid tissue. III. Quantitative analyses of epithelial lymphocytes in the small intestine of human control subjects and of patients with celiac sprue. Gastroenterology, 1980. **79**(3): p. 481-92.
- 90. Oberhuber, G., G. Granditsch, and H. Vogelsang, *The histopathology of coeliac disease: time for a standardized report scheme for pathologists*. Eur J Gastroenterol Hepatol, 1999. **11**(10): p. 1185-94.
- 91. Oberhuber, G., et al., [Study Group of Gastroenterological Pathology of the German Society of Pathology. Recommendations for celiac disease/sprue diagnosis]. Z Gastroenterol, 2001. 39(2): p. 157-66.
- 92. Oberhuber, G., Histopathology of celiac disease. Biomed Pharmacother, 2000. 54(7): p. 368-72.
- 93. Konopka, E., et al., Clinical utility of quantitative multi-antibody Polycheck immunoassays in the diagnosis of coeliac disease. World J Gastrointest Pharmacol Ther, 2016. 7(2): p. 254-60.
- 94. Agardh, D., Antibodies against synthetic deamidated gliadin peptides and tissue transglutaminase for the identification of childhood celiac disease. Clin Gastroenterol Hepatol, 2007. 5(11): p. 1276-81.
- 95. Giersiepen, K., et al., Accuracy of diagnostic antibody tests for coeliac disease in children: summary of an evidence report. J Pediatr Gastroenterol Nutr, 2012. 54(2): p. 229-41.
- 96. Lytton, S.D., et al., Neo-epitope tissue transglutaminase autoantibodies as a biomarker of the gluten sensitive skin disease--dermatitis herpetiformis. Clin Chim Acta, 2013. **415**: p. 346-9.
- 97. Lerner, A., et al., Antibodies against neo-epitope tTg complexed to gliadin are different and more reliable then anti-tTg for the diagnosis of pediatric celiac disease. J Immunol Methods, 2016. **429**: p. 15-20.
- 98. Bodd, M., et al., Direct cloning and tetramer staining to measure the frequency of intestinal gluten-reactive T cells in celiac disease. Eur J Immunol, 2013. **43**(10): p. 2605-12.
- 99. Picascia, S., et al., Gliadin-Specific T-Cells Mobilized in the Peripheral Blood of Coeliac Patients by Short Oral Gluten Challenge: Clinical Applications. Nutrients, 2015. **7**(12): p. 10020-31.
- 100. Raki, M., et al., Tetramer visualization of gut-homing gluten-specific T cells in the peripheral blood of celiac disease patients. Proc Natl Acad Sci U S A, 2007. **104**(8): p. 2831-6.
- 101. Brottveit, M., et al., Assessing possible celiac disease by an HLA-DQ2-gliadin Tetramer Test. Am J Gastroenterol, 2011. **106**(7): p. 1318-24.
- 102. Christophersen, A., et al., Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge. United European Gastroenterol J, 2014. 2(4): p. 268-78.
- 103. Christophersen, A., et al., Healthy HLA-DQ2.5+ Subjects Lack Regulatory and Memory T Cells Specific for Immunodominant Gluten Epitopes of Celiac Disease. J Immunol, 2016. **196**(6): p. 2819-26.
- 104. Özgenel Ş, M., et al., HLA-DQ2/DQ8 frequency in adult patients with celiac disease, their first-degree relatives, and normal population in Turkey. Turk J Gastroenterol, 2019. **30**(4): p. 321-325.
- 105. Cecilio, L.A. and M.W. Bonatto, The prevalence of HLA DQ2 and DQ8 in patients with celiac disease, in family and in general population. Arq Bras Cir Dig, 2015. **28**(3): p. 183-5.
- 106. Mansouri, M., et al., The frequency of HLA-DQ2/DQ8 haplotypes and celiac disease among the first-degree relatives of patients with celiac disease. Gastroenterol Hepatol Bed Bench, 2021. **14**(1): p. 36-43.
- 107. Paziewska, A., et al., Combination Testing Using a Single MSH5 Variant alongside HLA Haplotypes Improves the Sensitivity of Predicting Coeliac Disease Risk in the Polish Population. PLoS One, 2015. **10**(9): p. e0139197.
- 108. Romanos, J., et al., Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut, 2014. **63**(3): p. 415-22.
- 109. Koskinen, L., et al., Cost-effective HLA typing with tagging SNPs predicts celiac disease risk haplotypes in the Finnish, Hungarian, and Italian populations. Immunogenetics, 2009. **61**(4): p. 247-56.
- 110. Monsuur, A.J., et al., Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS One, 2008. **3**(5): p. e2270.
- 111. Anderson, R.P., et al., Whole blood interleukin-2 release test to detect and characterize rare circulating gluten-specific T cell responses in coeliac disease. Clin Exp Immunol, 2021. **204**(3): p. 321-334.

- 113. Tye-Din, J.A., et al., Patient factors influencing acute gluten reactions and cytokine release in treated coeliac disease. BMC Med, 2020. **18**(1): p. 362.
- 114. Molberg, O., et al., T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol, 2001. 31(5): p. 1317-23.
- 115. Molberg, O., et al., HLA restriction patterns of gliadin- and astrovirus-specific CD4+ T cells isolated in parallel from the small intestine of celiac disease patients. Tissue Antigens, 1998. **52**(5): p. 407-15.
- 116. Anderson, R.P., et al., In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med, 2000. **6**(3): p. 337-42.
- 117. Gjertsen, H.A., et al., T cells from the peripheral blood of coeliac disease patients recognize gluten antigens when presented by HLA-DR, -DQ, or -DP molecules. Scand J Immunol, 1994. **39**(6): p. 567-74.
- 118. Anderson, R.P., et al., T cells in peripheral blood after gluten challenge in coeliac disease. Gut, 2005. **54**(9): p. 1217-23.
- 119. Zühlke, S., et al., CD38 expression on gluten-specific T cells is a robust marker of gluten re-exposure in coeliac disease. United European Gastroenterol J, 2019. 7(10): p. 1337-1344.
- 120. Iwańczak, F. and B. Iwańczak, New guidelines for diagnosis and treatment of coeliac disease in children and adolescents. Gastroenterology Review/Przegląd Gastroenterologiczny, 2012. 7(4): p. 185-191.
- 121. Al-Toma, A., et al., European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterol J, 2019. 7(5): p. 583-613.
- 122. Villanacci, V., et al., Histopathology of Celiac Disease. Position Statements of the Italian Group of Gastrointestinal Pathologists (GIPAD-SIAPEC). Transl Med UniSa, 2020. 23: p. 28-36.
- 123. Green, P.H.R., et al., AGA Clinical Practice Update on Management of Refractory Celiac Disease: Expert Review. Gastroenterology, 2022. **163**(5): p. 1461-1469.
- 124. Ondrejka, S. and D. Jagadeesh, *Enteropathy-Associated T-Cell Lymphoma*. Curr Hematol Malig Rep, 2016. **11**(6): p. 504-513.
- 125. Olaussen, R.W., et al., Effect of elemental diet on mucosal immunopathology and clinical symptoms in type 1 refractory celiac disease. Clin Gastroenterol Hepatol, 2005. **3**(9): p. 875-85.
- 126. Demiroren, K., Possible relationship between refractory celiac disease and malignancies. World J Clin Oncol, 2022. 13(3): p. 200-208.
- 127. Daum, S., C. Cellier, and C.J. Mulder, *Refractory coeliac disease*. Best Pract Res Clin Gastroenterol, 2005. **19**(3): p. 413-24.
- 128. van Wanrooij, R.L., et al., Outcome of Referrals for Non-Responsive Celiac Disease in a Tertiary Center: Low Incidence of Refractory Celiac Disease in the Netherlands. Clin Transl Gastroenterol, 2017. 8(1): p. e218.
- 129. Ludvigsson, J.F., et al., Diagnosis and management of adult coeliac disease: guidelines from the British Society of Gastroenterology. Gut, 2014. **63**(8): p. 1210-28.
- 130. Rubio-Tapia, A., et al., ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol, 2013. **108**(5): p. 656-76; quiz 677.
- 131. Bai, J.C. and C. Ciacci, World Gastroenterology Organisation Global Guidelines: Celiac Disease February 2017. J Clin Gastroenterol, 2017. **51**(9): p. 755-768.
- 132. Parfenov, A.I., et al., [All-Russian Consensus on Diagnosis and Treatment of Celiac Disease in Children and Adults]. Ter Arkh, 2017. **89**(3): p. 94-107.
- 133. Downey, L., et al., Recognition, assessment, and management of coeliac disease: summary of updated NICE guidance. Bmj, 2015. **351**: p. h4513.
- 134. Remes-Troche, J.M., et al., Clinical guidelines on the diagnosis and treatment of celiac disease in Mexico. Rev Gastroenterol Mex (Engl Ed), 2018. 83(4): p. 434-450.
- 135. Raiteri, A., et al., Current guidelines for the management of celiac disease: A systematic review with comparative analysis. World J Gastroenterol, 2022. 28(1): p. 154-175.
- 136. Comino, I., L. Moreno Mde, and C. Sousa, *Role of oats in celiac disease*. World J Gastroenterol, 2015. **21**(41): p. 11825-31.
- 137. Pulido, O.M., et al., Introduction of oats in the diet of individuals with celiac disease: a systematic review. Adv Food Nutr Res, 2009. **57**: p. 235-85.
- 138. La Vieille, S., et al., Celiac Disease and Gluten-Free Oats: A Canadian Position Based on a Literature Review. Can J Gastroenterol Hepatol, 2016. **2016**: p. 1870305.
- 139. Lahdeaho, M.L., et al., Small- bowel mucosal changes and antibody responses after low- and moderate-dose gluten challenge in celiac disease. BMC Gastroenterol, 2011. 11: p. 129.
- 140. Catassi, C., et al., A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am J Clin Nutr, 2007. **85**(1): p. 160-6.
- 141. Bruins, M.J., The clinical response to gluten challenge: a review of the literature. Nutrients, 2013. 5(11): p. 4614-41.

- 142. Akobeng, A.K. and A.G. Thomas, *Systematic review: tolerable amount of gluten for people with coeliac disease.* Aliment Pharmacol Ther, 2008. **27**(11): p. 1044-52.
- 143. Gibert, A., et al., Consumption of gluten-free products: should the threshold value for trace amounts of gluten be at 20, 100 or 200 p.p.m.? Eur J Gastroenterol Hepatol, 2006. **18**(11): p. 1187-95.
- 144. Food labeling: gluten-free labeling of foods. Final rule. Fed Regist, 2013. 78(150): p. 47154-79.
- 145. Tuire, I., et al., Persistent duodenal intraepithelial lymphocytosis despite a long-term strict gluten-free diet in celiac disease. Am J Gastroenterol, 2012. **107**(10): p. 1563-9.
- 146. Hollon, J.R., et al., Trace gluten contamination may play a role in mucosal and clinical recovery in a subgroup of diet-adherent non-responsive celiac disease patients. BMC Gastroenterol, 2013. **13**: p. 40.
- 147. Zanini, B., et al., Persistent Intraepithelial Lymphocytosis in Celiac Patients Adhering to Gluten- Free Diet Is Not Abolished Despite a Gluten Contamination Elimination Diet. Nutrients, 2016. 8(9).
- 148. Lanzini, A., et al., Complete recovery of intestinal mucosa occurs very rarely in adult coeliac patients despite adherence to gluten-free diet. Aliment Pharmacol Ther, 2009. **29**(12): p. 1299- 308.
- 149. Tursi, A., et al., Endoscopic and histological findings in the duodenum of adults with celiac disease before and after changing to a gluten-free diet: a 2-year prospective study. Endoscopy, 2006. **38**(7): p. 702-7.
- 150. Sasaki, M., B.W. Bosman, and P.S. Tan, A new, broad-substrate-specificity aminopeptidase from the dairy organism Lactobacillus helveticus SBT 2171. Microbiology, 1996. **142 (Pt 4)**: p. 799-808.
- 151. Tan, P.S., K.M. Pos, and W.N. Konings, Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl Environ Microbiol, 1991. **57**(12): p. 3593-9.
- 152. Laloi, P., et al., Cell-wall-associated proteinase of Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397: differential extraction, purification and properties of the enzyme. Appl Microbiol Biotechnol, 1991. **36**(2): p. 196-204.
- 153. Di Cagno, R., et al., Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol, 2002. **68**(2): p. 623-33.101
- 154. Di Cagno, R., et al., Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol, 2004. **70**(2): p. 1088-96.
- 155. di Cagno, R., et al., Pasta made from durum wheat semolina fermented with selected lactobacilli as a tool for a potential decrease of the gluten intolerance. J Agric Food Chem, 2005. **53**(11): p. 4393-402.
- 156. Gerez, C.L., G. Font de Valdez, and G.C. Rollan, Functionality of lactic acid bacteria peptidase activities in the hydrolysis of gliadin-like fragments, in Lett Appl Microbiol. 2008: England. p. 427-32.
- 157. Rollan, G., et al., Proteolytic activity and reduction of gliadin-like fractions by sourdough lactobacilli, in J Appl Microbiol. 2005: England. p. 1495-502.
- 158. Thiele, C., S. Grassl, and M. Ganzle, *Gluten hydrolysis and depolymerization during sourdough fermentation*. J Agric Food Chem, 2004. **52**(5): p. 1307-14.
- 159. Thiele, C., M.G. Ganzle, and R.F. Vogel, Fluorescence labeling of wheat proteins for determination of gluten hydrolysis and depolymerization during dough processing and sourdough fermentation. J Agric Food Chem, 2003. **51**(9): p. 2745-52.
- 160. Rizzello, C.G., et al., Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol, 2007. **73**(14): p. 4499-507.
- 161. Greco, L., et al., Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin Gastroenterol Hepatol, 2011. 9(1): p. 24-9.
- 162. Stefanolo JP, Segura V, Grizzuti M, Heredia A, Comino I, Costa AF, Puebla R, Temprano MP, Niveloni SI, de Diego G, Oregui ME, Smecuol EG, de Marzi MC, Verdú EF, Sousa C, Bai JC. Effect of *Aspergillus niger* prolyl endopeptidase in patients with celiac disease on a long-term gluten-free diet. World J Gastroenterol. 2024 Mar 21;30(11):1545-1555.
- 163. Tack, G.J., et al., Consumption of gluten with gluten-degrading enzyme by celiac patients: a pilot-study. World J Gastroenterol, 2013. **19**(35): p. 5837-47.
- 164. Tye-Din, J.A., et al., The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin Immunol, 2010. **134**(3): p. 289-95.
- 165. Siegel, M., et al., Safety, tolerability, and activity of ALV003: results from two phase 1 single, escalating-dose clinical trials. Dig Dis Sci, 2012. 57(2): p. 440-50.
- 166. Lahdeaho, M.L., et al., Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology, 2014. **146**(7): p. 1649-58.
- 167. Murray, J.A., et al., Latiglutenase Protects the Mucosa and Attenuates Symptom Severity in Patients With Celiac Disease Exposed to a Gluten Challenge. Gastroenterology, 2022. **163**(6): p. 1510-1521.e6.
- 168. Wolf, C., et al., Engineering of Kuma030: A Gliadin Peptidase That Rapidly Degrades Immunogenic Gliadin Peptides in Gastric Conditions. J Am Chem Soc, 2015. **137**(40): p. 13106-13.
- 169. Pultz, I.S., et al., Gluten Degradation, Pharmacokinetics, Safety, and Tolerability of TAK-062, an Engineered Enzyme to Treat Celiac Disease. Gastroenterology, 2021. **161**(1): p. 81-93.e3.

- 171. Olivares, M., et al., Influence of Bifidobacterium longum CECT 7347 and gliadin peptides on intestinal epithelial cell proteome, in J Agric Food Chem. 2011: United States. p. 7666-71.
- 172. Olivares, M., et al., Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br J Nutr, 2014. **112**(1): p. 30-40.
- 173. Smecuol, E., et al., Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol, 2013. 47(2): p. 139-47.
- 174. Lloyd-Still, J.D., et al., The use of corticosteroids in celiac crisis. J Pediatr, 1972. 81(6): p. 1074-81.
- 175. Abbas, A., et al., Addition of a Short Course of Prednisolone to a Gluten-Free Diet vs. Gluten-Free Diet Alone in Recovery of Celiac Disease: A Pilot Randomized Controlled Trial. Cureus, 2018. 10(1): p. e2118.
- 176. Ali Ibrahim, A., et al., Budesonide and the Gluten Containing Elimination Diet as Treatments for Non-responsive Celiac Disease in Children. J Pediatr Gastroenterol Nutr, 2022. **75**(5): p. 616-622.
- 177. Rubio-Tapia, A. and J.A. Murray, Classification and management of refractory coeliac disease. Gut, 2010. **59**(4): p. 547-57.
- 178. Mukewar, S.S., et al., *Open-Capsule Budesonide for Refractory Celiac Disease*. Am J Gastroenterol, 2017. **112**(6): p. 959-967.
- 179. Therrien, A., et al., Enteric-Release Budesonide May Be Useful in the Management of Non-Responsive Celiac Disease. Dig Dis Sci, 2021. **66**(6): p. 1989-1997.
- 180. Mauriño, E., et al., Azathioprine in refractory sprue: results from a prospective, open-label study. Am J Gastroenterol, 2002. **97**(10): p. 2595-602.
- 181. Goerres, M.S., et al., Azathioprine and prednisone combination therapy in refractory coeliac disease. Aliment Pharmacol Ther, 2003. **18**(5): p. 487-94.
- 182. Iqbal, U., et al., Refractory Celiac Disease Successfully Treated With Azathioprine. Gastroenterology Res, 2017. **10**(3): p. 199-201.
- 183. Rawal, N., et al., Remission of Refractory Celiac Disease With Infliximab in a Pediatric Patient. ACG Case Rep J, 2015. **2**(2): p. 121-3.
- 184. Valitutti, F., et al., Autoimmune enteropathy in a 13-year-old celiac girl successfully treated with infliximab. J Clin Gastroenterol, 2014. **48**(3): p. 264-6.
- 185. Costantino, G., et al., Treatment of life-threatening type I refractory coeliac disease with long-term infliximab. Dig Liver Dis, 2008. **40**(1): p. 74-7.
- 186. Senolt, L., et al., Prospective new biological therapies for rheumatoid arthritis. Autoimmun Rev, 2009. 9(2): p. 102-7.
- 187. Waldmann, T.A., et al., Phase 1 trial of IL-15 trans presentation blockade using humanized Mikbeta1 mAb in patients with T-cell large granular lymphocytic leukemia. Blood, 2013. **121**(3): p. 476-84.
- 188. Morris, J.C., et al., Preclinical and phase I clinical trial of blockade of IL-15 using Mikbeta1 monoclonal antibody in T cell large granular lymphocyte leukemia. Proc Natl Acad Sci U S A, 2006. **103**(2): p. 401-6.
- 189. Dieckman T et al. Enduring clinical remission in refractory celiac disease type II with tofacitinib: an open-label clinical study. Clin Gastroenterol Hepatol. 2024.
- 190. Lähdeaho, M.L., et al., Safety and efficacy of AMG 714 in adults with coeliac disease exposed to gluten challenge: a phase 2a, randomised, double-blind, placebo-controlled study. Lancet Gastroenterol Hepatol, 2019. 4(12): p. 948-959.
- 191. Croese, J., et al., Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J Allergy Clin Immunol, 2015. **135**(2): p. 508-16.
- 192. McSorley, H.J., et al., Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection. PLoS One, 2011. **6**(9): p. e24092.
- 193. Daveson, A.J., et al., Effect of hookworm infection on wheat challenge in celiac disease--a randomised double-blinded placebo controlled trial. PLoS One, 2011. **6**(3): p. e17366.
- 194. Giacomin, P., et al., Experimental hookworm infection and escalating gluten challenges are associated with increased microbial richness in celiac subjects. Sci Rep, 2015. 5: p. 13797.
- 195. Cantacessi, C., et al., Impact of experimental hookworm infection on the human gut microbiota. J Infect Dis, 2014. **210**(9): p. 1431-4. 102
- 196. Murray, J.A., et al., Safety and tolerability of KAN-101, a liver-targeted immune tolerance therapy, in patients with coeliac disease (ACeD): a phase 1 trial. Lancet Gastroenterol Hepatol, 2023. 8(8): p. 735-747.
- 197. Kelly, C.P., et al., TAK-101 Nanoparticles Induce Gluten-Specific Tolerance in Celiac Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Gastroenterology, 2021. **161**(1): p. 66-80.e8.
- 198. Riedmann, E.M., Human vaccines: news, in Hum Vaccin Immunother. 2012: United States. p. 1550-3.

- 200. Daveson, A.J.M., et al., Epitope-Specific Immunotherapy Targeting CD4-Positive T Cells in Celiac Disease: Safety, Pharmacokinetics, and Effects on Intestinal Histology and Plasma Cytokines with Escalating Dose Regimens of Nexvax2 in a Randomized, Double-Blind, Placebo-Controlled Phase 1 Study. EBioMedicine, 2017. 26: p. 78-90.
- 201. Truitt, K.E., et al., Randomised clinical trial: a placebo-controlled study of subcutaneous or intradermal NEXVAX2, an investigational immunomodulatory peptide therapy for coeliac disease. Aliment Pharmacol Ther, 2019. **50**(5): p. 547-555.
- 202. Fasano, A., Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev, 2011. **91**(1): p. 151-75.
- 203. Fasano, A., Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol, 2012. **10**(10): p. 1096-100.
- 204. Fasano, A., Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci, 2012. **1258**: p. 25-33.
- 205. Leffler, D.A., et al., A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am J Gastroenterol, 2012. **107**(10): p. 1554-62.
- 206. Kelly, C.P., et al., Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther, 2013. 37(2): p. 252-62.
- 207. Leffler, D.A., et al., Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial. Gastroenterology, 2015. **148**(7): p. 1311-9.e6.
- 208. Paterson, B.M., et al., The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther, 2007. **26**(5): p. 757-66.
- 209. Gopalakrishnan, S., et al., Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides, 2012. **35**(1): p. 86-94.
- 210. 9 Meters Biopharma announces interim analysis of Phase 3 study of larazotide for celiac disease does not support trial continuation. (Press release June 21, 2022). Accessed 19 January 2024.
- 211. Pardin, C., et al., Cinnamoyl inhibitors of tissue transglutaminase. J Org Chem, 2008. 73(15): p. 5766-75.
- 212. Klock, C., et al., Acylideneoxoindoles: a new class of reversible inhibitors of human transglutaminase 2. Bioorg Med Chem Lett, 2011. **21**(9): p. 2692-6.
- 213. Hausch, F., et al., Design, synthesis, and evaluation of gluten peptide analogs as selective inhibitors of human tissue transglutaminase. Chem Biol, 2003. **10**(3): p. 225-31.
- 214. Toth, B., et al., Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol, 2009. **182**(4): p. 2084-92.
- 215. Szondy, Z., et al., Transglutaminase 2-/- mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci U S A, 2003. **100**(13): p. 7812-7.
- 216. Rauhavirta, T., et al., Are transglutaminase 2 inhibitors able to reduce gliadin-induced toxicity related to celiac disease? A proof-of-concept study. J Clin Immunol, 2013. 33(1): p. 134-42.
- 217. Sulic, A.M., et al., *Transglutaminase as a therapeutic target for celiac disease*. Expert Opin Ther Targets, 2015. **19**(3): p. 335-48.
- 218. Schuppan, D., et al., A Randomized Trial of a Transglutaminase 2 Inhibitor for Celiac Disease. N Engl J Med, 2021. 385(1): p. 35-45.
- 219. Dotsenko V et al. Transcriptomic analysis of intestine following administration of a transglutaminase 2 inhibitor to prevent gluten-induced intestinal damage in celiac disease. Nat Immunol. 2024;25:1218–1230.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.