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Article 

Percolation Analysis of the Cosmic Microwave 

Background 

Arturo Tozzi 

Center for Nonlinear Science, Department of Physics, University of North Texas, Denton, 1155 Union Circle, 

#311427 Denton, TX 76203‐5017 USA; tozziarturo@libero.it 

Abstract: We investigated the application of percolation theory to the Planck’s Cosmic Microwave 

Background (CMB) to analyze the connectivity and statistical properties of temperature anisotropies. 

Percolation, which describes the emergence of large‐scale connectivity, provides a unique framework 

for  interpreting CMB as a statistical realization of cosmic primordial fluctuations. High‐resolution 

data from the Planck satellite were used  to segment  the CMB temperature map  into hot and cold 

regions  based  on  deviations  from  the  mean  temperature.  Preprocessing  involved  grayscale 

normalization, Otsu’s thresholding for segmentation and connected‐component labeling using an 8‐

neighbor rule to identify clusters. Results revealed a dominant hot cluster spanning over 1.37 million 

pixels, connecting opposite boundaries of the observable sky and demonstrating both vertical and 

horizontal percolation. Cold clusters, in contrast, remained fragmented, with the largest cold cluster 

covering  just 11,000 pixels. Cluster size distributions showed a steep decline with  increasing size, 

dominated by the largest hot cluster. Fractal analysis indicated a fractal dimension of 1.85 for the hot 

cluster, consistent with Gaussian random field predictions, while cold clusters exhibited fragmented 

structures with dimensions of 1.5 to 1.7. A critical threshold at a normalized intensity of 0.68 marked 

the merging of smaller clusters into the dominant structure. This study confirms the Gaussian nature 

of CMB anisotropies and the scale‐invariant predictions of inflationary theory, while the occurrence 

of a spanning hot cluster underscores the coherence of quantum perturbations during inflation. By 

complementing traditional power spectrum analyses, percolation theory offers new insights into the 

topology and connectivity of the universe’s large‐scale structure. 

Keywords: Gaussian  fields;  cosmic  topology;  cluster  connectivity;  inflationary  theory;  statistical 

physics 

 

Introduction 

Percolation theory, a mathematical framework used to study the behavior of connected clusters 

in  systems  governed  by  random  processes,  has  found  profound  applications  in  understanding 

physical phenomena across diverse scientific disciplines (Timonin, 2018; Brunk and Twarock, 2021; 

Bianconi  and Dorogovtsev,  2024). At  its  core,  percolation  concerns  the  emergence  of  large‐scale 

connectivity in a system as a critical threshold is surpassed (Galam and Mauger, 1996). Percolation 

theory provides a valuable  framework for understanding the  large‐scale structure of the universe 

and has been widely applied to analyze various cosmic phenomena. Research includes the study of 

galaxy clustering (Bhavsar and Barrow, 1984), the comparison of mock galaxy catalogs with Sloan 

Digital Sky Survey Data Release  12  (Zhang  et  al.,  2018)  and  the  treatment of  the  reionization of 

intergalactic hydrogen as a percolation process and phase transition (Furlanetto and Peng Oh, 2016). 

In this context, discrete ionized regions near the transition point exhibit a near‐power‐law volume 

distribution, reflecting long‐range correlations in the density field (Furlanetto and Peng Oh, 2016). 

Void regions defined as single‐stream areas were found to percolate, as were multi‐stream particles, 

highlighting  the  connectivity of  these  structures  (Falck  and Neyrinck,  2015). Einasto  et al.  (2018) 

extended percolation methods  to compare  the geometrical properties of  the observed cosmic web 
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with simulated dark matter webs. Regős et al. (2024) analyzed continuum percolation statistics for 

high‐resolution dark matter distributions. 

Percolation studies have also been applied to the Cosmic Microwave Background (CMB), which 

provides a snapshot of the universe approximately 380,000 years after the Big Bang. Naselsky and 

Novikov  (1995)  introduced a method based on cluster analysis and percolation  for ΔT/T  in CMB 

maps,  demonstrating  its  utility  in  understanding  the  ionization  history  of  the  universe  and 

investigating the Gaussian nature of CMB fluctuations. Galaxy clusters have been identified in CMB 

maps using the Sunyaev‐Zel’dovich effect (Novaes and Wuensche, 2012). Zuo et al. (2019) employed 

clustering  algorithms  to  analyze  the  statistical distribution of hotspots  in  the CMB. Notably,  the 

Planck  2018  results,  despite  offering  detailed  analyses  of  the  CMB  power  spectra,  likelihoods, 

isotropy  and  statistical properties, do not  explicitly  incorporate percolation  analysis  (Planck, VII 

2020). While percolation theory has been utilized  in CMB research,  its application to Planck maps 

remains limited, presenting a promising opportunity to probe the physics of the early universe. 

In the context of the CMB, a percolation approach involves the study of connected regions of 

temperature anisotropies—hot and  cold  spots—and  their behavior as a  function of  the  threshold 

value  defining  these  regions.  These  connected  regions may  reflect  the  topology  and  statistical 

properties  of  the  primordial  fluctuations,  which,  under  the  standard model  of  cosmology,  are 

believed  to have originated  from quantum perturbations amplified during  the  inflationary epoch 

(Planck Collaboration, I, 2020). A key feature of inflation is its prediction of scale‐invariant, Gaussian 

random fluctuations, and the study of percolation in the CMB may provide an additional statistical 

tool to assess this fundamental assumption (Novaes et al., 2014). The largest connected regions, or 

clusters, in the CMB temperature map, particularly those that span the observable sky, may serve as 

indicators of percolation phenomena and carry rich information about the universe’s topology and 

its behavior. 

In this study, we evaluated percolation phenomena in the CMB temperature map derived from 

observational data provided by the Planck satellite and discussed the implications of our findings. 

Materials and Methods 

The  analysis  was  conducted  on  a  high‐resolution  Cosmic  Microwave  Background  (CMB) 

temperature  map  derived  from  observational  data  provided  by  the  Planck  satellite 

(https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB retrieved 12 January, 2025). The 

specific map used  corresponds  to  the  full‐sky  temperature  anisotropies, presented  in Mollweide 

projection  and  smoothed  to  highlight  the  large‐scale  features  of  the  CMB.  The  temperature 

fluctuations are expressed as deviations  (ΔT)  from  the mean CMB  temperature of approximately 

2.725 K. These fluctuations are encoded in color gradients, with red and blue regions representing 

hot  (positive ΔT) and cold  (negative ΔT) deviations,  respectively. The  image  resolution and data 

fidelity align with  the specifications of  the Planck mission, ensuring sufficient granularity  for  the 

analysis  of  percolation  properties.  To  prepare  the  image  for  cluster  analysis,  the  following 

preprocessing steps were applied. The original color  image was digitized  into a grayscale format, 

where  pixel  intensity  values  correspond  to  relative  temperature  deviations.  This  step  reduced 

computational  complexity while  retaining  the  necessary  information  for  cluster  extraction.  Pixel 

intensity values were normalized to a range of 0 to 1, where 0 represents the coldest regions (deepest 

blue) and 1 corresponds  to  the hottest regions  (brightest red). A global  thresholding method was 

applied to segment the image into regions of interest. Specifically, the Otsu thresholding technique 

was employed to identify an optimal cutoff that maximized the inter‐class variance between hot and 

cold regions (Otsu 1979). 

To identify clusters of hot and cold regions, a connected‐component labeling algorithm from the 

skimage.measure.label function  in the scikit‐image library was applied to the thresholded image 

(van der Walt et al., 2014). Two binary masks were created: one for hot regions (ΔT > threshold) and 

another for cold regions (ΔT < threshold). In the binary images, a pixel value of 1 indicated that the 

pixel belonged  to a hot or cold region, while 0  indicated the background. The binary masks were 
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passed through a labeling function, which assigned a unique integer label to each connected cluster 

of pixels. Connectivity was defined using an 8‐neighbor rule, where a pixel is considered connected 

to its neighbors if they share an edge or corner (Haralick and Shapiro, 1992). The algorithm traversed 

the  binary  image  and  grouped  contiguous  pixels  into  clusters,  assigning  each  cluster  a  unique 

identifier. The size of each cluster was computed as the number of pixels in the cluster. Clusters were 

sorted by size to identify the largest connected structures within the hot and cold regions. 

Quantitative metrics were  used  to  characterize  the  clusters.  The  sizes  of  all  clusters were 

analyzed to understand the distribution of connected regions. This involved calculating the mean, 

median and maximum  cluster  sizes, as well as plotting histograms of  the  size distributions. The 

largest  clusters  for  both  hot  and  cold  regions were  examined  in  detail.  Their  shapes,  boundary 

coverage and spatial extent were visualized to confirm their connectivity. The fractal dimension of 

the  largest  clusters was  estimated  to  assess  their  scaling  behavior  and  self‐similarity.  This was 

achieved by applying a box‐counting algorithm to the binary masks of the clusters. 

Percolation refers to the emergence of a connected structure that spans a system (Meng et al., 

2023). In the context of the CMB image, percolation was assessed by analyzing the largest clusters of 

hot and cold regions for connectivity across the image boundaries. A cluster was considered to exhibit 

percolation if it connected opposite boundaries of the image. Vertical percolation was defined as a 

cluster  connecting  the  top  and  bottom  edges, while  horizontal percolation  involved  connections 

between the left and right edges. For each labeled cluster, boundary connectivity was assessed using 

logical operations (Harris et al., 2020). Specifically, the presence of cluster pixels on the top row was 

checked against  the bottom  row. Similarly,  connectivity between  the  left  and  right  columns was 

verified.  If a cluster had pixels on both opposite boundaries,  it was  flagged as percolating  in  the 

corresponding direction. 

Percolation theory predicts that the emergence of spanning clusters occurs at a critical threshold 

(Galam and Mauger, 1996). To verify this, the image was iteratively thresholded at varying intensity 

levels. For each threshold, the connectivity and size of the largest cluster were evaluated. The critical 

threshold was identified as the intensity value at which the first spanning cluster appeared. 

To support the analysis, multiple visualizations were created. Separate maps for hot and cold 

regions were generated, showing the labeled clusters in distinct colors. The boundary connections of 

the largest clusters were highlighted by overlaying them on the original image. Histograms of cluster 

sizes were plotted for both hot and cold regions, with logarithmic scaling applied to visualize the 

broad range of cluster sizes. To ensure the robustness of the results, the analysis was repeated with 

variations in key parameters. Alternative thresholding methods, such as adaptive thresholding and 

manual cutoff values, were tested to confirm the consistency of the cluster extraction process (Li et 

al., 2020). The analysis was repeated using a 4‐neighbor connectivity rule to evaluate its impact on 

cluster identification and percolation results. The image resolution was varied, and synthetic noise 

was added to test the stability of the percolation analysis under different conditions. 

The analysis was  implemented using Python,  leveraging  the  following  libraries: NumPy  for 

numerical  operations  and  array  manipulations,  SciPy  for  connected‐component  labeling  and 

statistical computations, Matplotlib for creating visualizations, and scikit‐image for image processing 

tasks  such  as  thresholding  and  clustering.  The  entire  workflow  was  performed  on  a  high‐

performance computing environment to handle the computational demands of high‐resolution CMB 

data. 

Results 

The analysis of the Cosmic Microwave Background (CMB) temperature map yielded significant 

insights into the connectivity and percolation properties of hot and cold clusters. These findings are 

summarized and illustrated below. 

Clusters. The segmentation of the temperature map into hot and cold regions, based on a global 

thresholding technique, produced two distinct sets of clusters (Figure 1). Hot regions, corresponding 

to positive temperature deviations, exhibited a wide range of cluster sizes, with a single dominant 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 January 2025 doi:10.20944/preprints202501.1702.v1

https://doi.org/10.20944/preprints202501.1702.v1


  4  of  9 

 

cluster spanning the entire  image. Cold regions, representing negative deviations, showed a more 

fragmented  structure, with numerous  smaller clusters and no  single  cluster demonstrating  large‐

scale connectivity. 

 

 

Figure 1. The  largest clusters for both hot and cold regions. The panel above  illustrates  the full extent of  the 

largest hot cluster, highlighting its expansive coverage across the image. This cluster spans a substantial portion 

of the map, connecting opposite boundaries and showcasing a structure indicative of percolation. In contrast, 

the panel below depicts the largest cold cluster, which remains confined to a localized region and does not span 

the map, thereby confirming the absence of percolation in the cold regions. 

Cluster Size Distribution. The  size distribution of clusters was analyzed  to  characterize  the 

connectivity properties of hot and cold regions. For hot clusters,  the distribution revealed a steep 

decline  in  the  frequency  of  clusters  with  increasing  size,  except  for  the  largest  cluster,  which 

dominated the map. This behavior is consistent with percolation theory, where a critical threshold 

marks the emergence of a spanning cluster. The cold clusters exhibited a similar initial decline, but 

without  the  emergence  of  a  dominant  cluster,  indicating  the  absence  of  percolation.  Figure  2 

illustrates the cluster size distributions for hot and cold regions. The largest cluster size for the hot 

regions  exceeded 1.37 million pixels,  spanning across all boundaries of  the map.  In  contrast,  the 

largest cold cluster encompassed only 11,000 pixels and did not touch any boundaries. 
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Figure 2. Cluster size distributions for hot and cold regions displayed on a  logarithmic scale. The largest hot 

cluster significantly exceeds  the  size of all other  clusters, while cold clusters  lack a dominant structure. The 

logarithmic scale highlights the disparity between the largest cluster and the rest of the distribution, particularly 

for the hot regions. 

Percolation Properties. The connectivity analysis of the largest clusters confirmed the presence 

of  percolation  in  the  hot  regions.  Logical  boundary  checks  showed  that  the  largest  hot  cluster 

connected the top and bottom edges as well as the left and right edges of the map, thereby exhibiting 

both vertical and horizontal percolation. In contrast, no cold cluster demonstrated connectivity across 

opposite boundaries, confirming the absence of percolation in these regions. 

Fractal Properties. The fractal analysis of the largest clusters revealed their scaling behavior and 

self‐similarity. The hot cluster exhibited a fractal dimension of approximately 1.85, consistent with 

theoretical  predictions  for  percolation  in  two‐dimensional  Gaussian  random  fields.  This  value 

indicates a high degree of complexity and connectivity within the cluster. The cold clusters, while 

smaller and less connected, displayed fractal dimensions  in the range of 1.5 to 1.7, reflecting their 

fragmented nature. 

Threshold Dependence. The emergence of the largest hot cluster was examined as a function of 

the  threshold  intensity. The  critical  threshold, defined  as  the  intensity  level  at which  the  largest 

cluster first spanned the map, was identified at approximately 0.68 on the normalized scale. Below 

this threshold, clusters remained isolated and fragmented. As the threshold approached the critical 

value, smaller clusters merged to form the spanning structure. This critical behavior aligns with the 

universal properties of percolation theory. 

In sum, the results demonstrated the statistical behavior of temperature anisotropies, revealing 

critical thresholds, size distributions and spanning properties. The study confirmed the presence of 

percolation in the hot regions of the Planck CMB temperature map, with a single dominant cluster 

connecting all boundaries. The absence of percolation in the cold regions highlighted the asymmetry 

in the distribution of temperature fluctuations. The analysis also demonstrated that the largest hot 

cluster follows the scaling laws of percolation theory, providing evidence for the Gaussian random 

field  nature  of  the CMB  anisotropies. The  fractal dimensions  and  threshold‐dependent  behavior 

further supported these findings, offering a comprehensive picture of the statistical and topological 
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properties  of  the  CMB  temperature  field.  These  results  provide  a  robust  foundation  for 

understanding the connectivity and critical behavior of the CMB anisotropies. 

Conclusions 

The analysis of percolation within the Planck’s Cosmic Microwave Background (CMB) yields 

profound  insights  into  the  statistical  and  topological  properties  of  the  universe’s  primordial 

fluctuations. The  results of  this  study  confirm  that percolation,  a phenomenon where  large‐scale 

connectivity emerges in a system, is evident in the hot regions of the CMB temperature map. This 

connectivity  aligns  with  theoretical  predictions  for  Gaussian  random  fields  and  provides  new 

perspectives on the interpretation of the CMB as a statistical realization of the early universe’s density 

perturbations. The presence of a spanning hot cluster connecting all boundaries of the observed sky 

demonstrates the universality of percolation phenomena, even within the context of cosmology. This 

observation  reinforces  the  scale‐invariant  nature  of  the  primordial  fluctuations  and  stands  as 

compelling evidence for the robustness of inflationary theory. 

One of the primary advantages of applying percolation theory to the CMB lies in its ability to 

offer an independent and complementary approach to traditional power spectrum analyses. While 

the power spectrum has  long been  the cornerstone of CMB studies,  it primarily captures second‐

order statistics and  is  limited in its ability  to probe higher‐order spatial correlations and  topology 

(Ashtekar  et al., 2020; Regős  et al., 2024). Percolation analysis, by  contrast, directly examines  the 

connectivity and distribution of temperature fluctuations, providing unique insights into the large‐

scale coherence and critical behavior of these anisotropies. 

Percolation analysis allows for the detection of subtle deviations from Gaussianity and isotropy, 

which could signal the presence of new physics or systematic anomalies in the data (Novaes et al., 

2014). At a fundamental level, the emergence of a percolating cluster validates the Gaussian random 

field assumption underpinning the standard cosmological model. Percolation behavior is inherently 

linked  to  the  statistical properties of  these  fields and  its presence  corroborates  the predictions of 

inflationary theory regarding the generation of primordial perturbations. The spanning hot cluster 

observed  in  the CMB  serves  as  a  direct manifestation  of  these  perturbations,  highlighting  their 

coherence across cosmic scales. Additionally, the asymmetry in the percolation properties of hot and 

cold regions suggests a deeper connection to the evolution of the matter distribution. Hot regions 

correspond to over‐densities in the early universe, which later evolved into the large‐scale structure 

observed today. The presence of a percolating hot cluster implies a critical level of connectivity that 

likely influenced the formation of cosmic superclusters and filaments, providing a bridge between 

the early universe and its present‐day architecture. Additionally, the fractal dimensions and scaling 

laws associated with percolating clusters offer a rich framework for understanding the self‐similar 

nature of the underlying perturbations. 

The role of percolation in probing the topology of the universe is another intriguing aspect of 

this study. The connectivity properties of the largest clusters are inherently tied to the geometry and 

topology  of  the  observed  sky.  The  standard  model  assumes  the  universe  is  isotropic  and 

homogeneous on large scales, but anomalies in the percolation patterns could suggest otherwise. Our 

detection  of  a  percolating  cluster  across  all  boundaries  reinforces  the  assumption  of  a  simply 

connected,  flat universe. Conversely,  anomalies  in  the  connectivity patterns,  such  as preferential 

orientations  or missing  connections,  could  hint  at  non‐trivial  topologies,  such  as  a  compact  or 

multiple connected universes. 

The  experimental previsions  arising  from  this  study open  avenues  for  future  investigations. 

High‐resolution CMB maps,  particularly  those  incorporating  polarization  data,  offer  an  exciting 

opportunity to extend percolation analysis to other components of the CMB, such as the E‐mode and 

B‐mode  polarization  patterns  (Hanson  et  al.,  2014).  These  analyses  could  reveal  additional 

connectivity properties and their relation to the underlying physics of reionization and primordial 

gravitational waves. Furthermore, cross‐correlations with large‐scale structure surveys, such as those 

mapping galaxy distributions and cosmic voids, could provide a direct observational link between 
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the percolation properties of the CMB and the present‐day universe. Experimental advancements, 

such as those anticipated from upcoming missions like CMB‐S4 (Sohn and Fergusson, 2019), promise 

to refine the resolution and sensitivity of CMB data, enabling a more precise determination of critical 

thresholds  and  cluster  statistics.  Additionally,  the  extension  of  percolation  studies  to  higher‐

dimensional  datasets,  such  as  tomographic  maps  of  the  large‐scale  structure,  could  offer  new 

perspectives on the evolution of cosmic connectivity over time. 

Theoretical predictions arising from the percolation of the largest hot clusters offer a wealth of 

opportunities for testing and refining cosmological models. One notable prediction is the universality 

of percolation thresholds in Gaussian random fields (Novaes et al., 2014). This universality implies 

that  the critical  threshold  for  the emergence of spanning clusters should remain consistent across 

different realizations of the CMB, provided  the underlying statistical properties are Gaussian and 

isotropic. Deviations from this behavior could signal the presence of non‐Gaussianity, anisotropy or 

exotic physics, such as cosmic strings or domain walls. The fractal dimension of the largest clusters, 

as observed in this study, provides an additional metric for comparison with theoretical expectations. 

Any  significant  departures  from  the  predicted  fractal  dimensions  would  warrant  further 

investigation into the nature of the initial conditions and the physics governing their evolution. 

However,  the  methodology  is  not  without  its  limitations.  The  reliance  on  thresholding 

techniques  introduces  potential  biases,  as  the  choice  of  threshold  can  significantly  influence  the 

identification and connectivity of clusters (Galam and Mauger, 1996; Regős et al., 2024). Although the 

use of global thresholding methods like Otsu’s ensures consistency, localized variations in noise or 

foreground contamination could skew the results. Furthermore, the finite resolution of the CMB map 

imposes constraints on the smallest scales that can be reliably analyzed, potentially masking finer 

details of cluster morphology and connectivity. The study of percolation in the CMB also highlights 

the hiatus between  theoretical predictions and observational  limitations. While  the  results of  this 

analysis are consistent with the standard cosmological model, they underscore the need for continued 

refinement  of  observational  techniques  and  theoretical  frameworks.  The  resolution  and  noise 

limitations of current data, coupled with the complexity of foreground subtraction, present ongoing 

challenges that must be addressed to fully exploit the potential of percolation analysis. 

In  conclusion,  the  application  of  percolation  theory  to  the CMB  represents  a  powerful  and 

complementary approach to understanding the universe’s primordial fluctuations. The emergence of 

a  percolating  hot  cluster  underscores  the  coherence  and  critical  behavior  of  the  temperature 

anisotropies, providing  robust evidence  for  the Gaussian random  field nature of  the CMB. While 

limitations  and uncertainties  remain,  the  insights  gained  from  this  study  open  new  avenues  for 

exploring the early universe and its connection to the large‐scale structure we observe today. 
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