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Abstract 

The  advancement  of  precision  livestock  farming  hinges  not  only  on  breakthroughs  in  artificial 

intelligence (AI), but also on overcoming practical challenges in deploying these technologies within 

real‐world farm environments. To bridge this gap, we present Dairy DigiD, an integrated edge‐cloud 

AI framework designed for real‐time cattle biometric identification and physiological classification. 

Central  to  the system  is  the  lightweight YOLOv11 model, optimized  for deployment on NVIDIA 

Jetson devices through INT8 quantization and TensorRT acceleration, achieving 94.2% classification 

accuracy and 24 FPS  in  resource‐constrained  settings. Complementing  this, a DenseNet121‐based 

classifier enables accurate categorization of physiological states under varying  farm conditions. A 

key  innovation  of Dairy DigiD  lies  in  its  active  learning pipeline, powered by Roboflow, which 

enhances model adaptability by prioritizing low‐confidence cases for annotation—reducing labeling 

overhead while maintaining model accuracy. The system also features a Gradio‐based user interface 

that  reduces  technician onboarding  time by 84%,  improving accessibility  for non‐technical users. 

Validated  across  ten  commercial  dairy  farms  in Atlantic Canada,  the  framework  addresses  key 

barriers to AI adoption in agriculture—including hardware limitations, connectivity variability, and 

user  training—while supporting energy‐efficient, continuous monitoring. Rather  than  introducing 

new algorithms, Dairy DigiD demonstrates a replicable, systems‐level integration of existing AI tools, 

offering a practical pathway for scalable, welfare‐oriented livestock monitoring in commercial dairy 

operations.   

Keywords:  precision  livestock  farming;  AI  framework;  YOLOv11;  edge  computing;  cattle 

identification;  deep  learning;  computer  vision;  model  optimization;  human‐AI  interaction; 

sustainable agriculture 

 

1. Introduction 

The  agricultural  sector  stands  at  an  unprecedented  technological  inflection  point,  where  the 

convergence  of  artificial  intelligence  (AI),  computer  vision,  and  edge  computing  is  fundamentally 

transforming  traditional  farming  paradigms. As  global  food  security  challenges  intensify  alongside 

increasing demands for sustainable production practices, precision aka digital livestock farming (PLF / 

DLF) has emerged as a critical domain where innovative AI solutions can deliver substantial operational 

and welfare improvements [1,2]. The transition from conventional livestock management to intelligent, 

data‐driven systems represents not merely technological advancement but a paradigmatic shift toward 

more humane, efficient, and environmentally sustainable agricultural practices [3–5]. 

Contemporary livestock identification and monitoring systems face substantial limitations that 

impede  optimal  farm management.  Traditional methods  such  as  radio‐frequency  identification 

(RFID) tags, ear markings, and manual observation are inherently labor‐intensive, error‐prone, and 
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often  invasive,  potentially  causing  animal  stress  and  affecting  natural  behaviors  [6,7].  These 

conventional  approaches  fail  to  provide  the  real‐time,  granular  insights  necessary  for  modern 

precision  agriculture,  creating  significant  gaps  in  health  monitoring,  behavioral  analysis,  and 

individual  animal  welfare  assessment.  The  inability  to  continuously  and  non‐invasively  track 

individual animals limits farmersʹ capacity to implement targeted interventions, optimize resource 

allocation, and ensure comprehensive animal welfare standards [8,9]. 

Recent advances in deep learning architectures, particularly the YOLO (You Only Look Once) 

family of object detection models, have demonstrated exceptional performance in real‐time computer 

vision  applications.  YOLOv11,  representing  the  latest  evolution  in  this  lineage,  incorporates 

sophisticated  architectural  innovations  including  anchor‐free  detection  mechanisms,  enhanced 

feature pyramid networks, and transformer‐based attention modules that significantly improve both 

accuracy and computational efficiency [10,11]. These technological improvements have opened new 

possibilities  for  deploying  state‐of‐the‐art  AI  models  in  resource‐constrained  agricultural 

environments, where edge computing capabilities enable real‐time processing without dependence 

on cloud connectivity [12,13]. 

The  emergence  of  edge  AI  as  a  viable  deployment  strategy  for  agricultural  applications 

represents a fundamental breakthrough in addressing the connectivity and latency challenges that 

have historically  limited AI adoption in rural environments. Edge computing architectures enable 

sophisticated  AI  processing  at  the  data  source,  reducing  bandwidth  requirements, minimizing 

latency, and ensuring system functionality even in areas with limited network connectivity [14]. This 

technological paradigm shift is particularly crucial for livestock farming operations, where real‐time 

decision‐making  capabilities  can  significantly  impact  animal welfare,  operational  efficiency,  and 

economic outcomes. 

Parallel  developments  in  human‐computer  interaction  design  have  highlighted  the  critical 

importance of user‐centered interfaces in technology adoption, particularly in agricultural settings 

where operators may have varying levels of technical expertise. The integration of intuitive interface 

frameworks  such  as  Gradio  represents  a  significant  advancement  in  democratizing  access  to 

sophisticated AI tools [15]. Gradioʹs capability to transform complex machine learning models into 

accessible web  interfaces addresses a  fundamental barrier  to AI adoption  in  agriculture:  the gap 

between advanced algorithmic capabilities and practical usability for farm personnel [16,17]. 

Mooanalytica research group’s   pioneering research in animal welfare technology has established 

foundational frameworks for understanding and measuring emotional states in livestock through AI‐

driven approaches. Their seminal work on the WUR Wolf platform demonstrated the feasibility of real‐

time facial expression recognition in farm animals, achieving 85% accuracy in detecting 13 facial actions 

and  nine  emotional  states  including  aggression,  calmness,  and  stress  indicators  [9].  This  novel  in 

deployment  research,  utilizing YOLOv3  and  ensemble Convolutional Neural Networks,  provided 

crucial  evidence  that  farm  animal  facial  expressions  serve  as  reliable  indicators  of  emotional  and 

physiological states, opening new avenues for non‐invasive welfare monitoring. 

Building upon this foundational work, mooanalytica group’s continued research into biometric 

facial recognition for dairy cows represents a natural evolution toward practical deployment of AI 

technologies in commercial farming operations [7]. This comprehensive approach to affective state 

recognition  in  livestock has demonstrated  that AI systems can effectively bridge  the gap between 

animal  emotional  expression  and human understanding,  enabling more  responsive  and welfare‐

oriented  farm  management  practices  [18].  The  development  of  sensor‐based  approaches  for 

measuring farm animal emotions has established critical methodological frameworks that inform the 

design of comprehensive monitoring systems [19]. 

The  integration  of  active  learning methodologies  in  agricultural  computer vision  represents 

another critical advancement that addresses the persistent challenge of data annotation and model 

adaptation  in dynamic  farming  environments. Active  learning  approaches  enable AI  systems  to 

continuously  improve  through  selective  sampling  and  human‐in‐the‐loop  validation  processes, 

reducing  annotation  costs  while  maintaining  high  model  performance  [20].  This  capability  is 
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particularly valuable in livestock monitoring applications, where environmental conditions, animal 

populations,  and  operational  requirements  continuously  evolve.  Recent  research  in  edge  AI 

deployment  for  agricultural  applications  has  demonstrated  the  viability  of  implementing 

sophisticated computer vision systems on resource‐constrained hardware platforms. Studies have 

shown  that  modern  edge  devices  can  achieve  real‐time  performance  for  object  detection  and 

classification tasks while maintaining energy efficiency suitable for extended field deployment [21]. 

These  developments  have  particular  relevance  for  livestock  monitoring  systems,  where  24/7 

operation and environmental resilience are essential requirements. 

The  emergence  of  comprehensive  AI  frameworks  that  integrate  multiple  technological 

components—object detection, classification, user  interfaces, and data management—represents a 

maturation  of  agricultural  AI  from  isolated  proof‐of‐concept  demonstrations  to  holistic  system 

solutions.  This  systems‐level  approach  addresses  the  practical  deployment  challenges  that  have 

historically limited the translation of research advances into operational farm tools [12]. 

Contemporary  livestock  farming  faces  mounting  pressure  to  simultaneously  increase 

productivity,  ensure  animal  welfare,  and  minimize  environmental  impact.  These  competing 

demands  require  innovative  technological  solutions  that  can provide  comprehensive monitoring 

capabilities  while  remaining  economically  viable  for  farm  operations  of  varying  scales.  The 

development  of  AI‐powered  livestock  identification  systems  represents  a  critical  component  in 

addressing these multifaceted challenges through enhanced data collection, automated analysis, and 

intelligent decision support [22]. 

Against  this  technological and operational backdrop,  this  research presents  the development 

and  comprehensive  evaluation  of  an  integrated  AI  framework  that  combines  YOLOv11  object 

detection, DenseNet121 classification, Roboflow data management, and Gradio interface deployment 

to create a deployable system for precision livestock farming. The primary objectives of this study 

focus on developing a robust pipeline architecture that demonstrates the practical integration of state‐

of‐the‐art AI  technologies  in  agricultural  applications,  evaluating  the  real‐world  performance  of 

YOLOv11  in  livestock detection and classification  tasks under varying environmental  conditions, 

implementing an  intuitive human‐AI  interaction paradigm  through Gradio  interface deployment 

that  enables  non‐technical  farm  personnel  to  effectively  utilize  sophisticated  AI  tools,  and 

establishing a scalable data management workflow using Roboflowʹs active learning capabilities to 

ensure continuous system improvement and adaptation to evolving operational requirements. 

This research contributes to the growing body of literature on agricultural AI deployment by 

providing a comprehensive technical framework that addresses both algorithmic performance and 

practical usability concerns. Through systematic evaluation of edge deployment capabilities, human‐

computer interaction design, and continuous learning methodologies, this work aims to bridge the 

persistent  gap  between AI  research  advances  and  their  practical  implementation  in  commercial 

livestock  farming  operations, ultimately  contributing  to more  sustainable,  efficient,  and welfare‐

oriented agricultural practices. 

Despite  recent advances,  significant gaps  remain  in  translating  sophisticated AI models  into 

reliable, real‐world livestock monitoring systems. This research aims to address these critical gaps by 

evaluating the practical performance of an integrated AI framework (Dairy DigiD) under commercial 

farm conditions. Specifically, our objectives are to: 

1) Develop  a  robust,  hybrid  edge‐cloud AI  system  combining  YOLOv11  object  detection  and 

DenseNet121  classification,  optimized  for  real‐time  cattle  biometric  identification  and 

physiological monitoring. 

2) Assess the performance and reliability of the AI system in detecting and classifying various cattle 

physiological  states  (Young,  Dry,  Mature  Milking,  Pregnant)  across  diverse  operational 

environments. 

3) Evaluate  the  effectiveness  and  usability  of  a Gradio‐based  interactive  interface  in  reducing 

technical barriers, enhancing user adoption, and enabling  intuitive human‐AI interactions for 

farm personnel. 
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4) Demonstrate  the  value  and  sustainability  of  an  active  learning  pipeline  using Roboflow  to 

continually  adapt  the  AI  models  to  changing  farm  conditions,  herd  demographics,  and 

operational requirements. 

By systematically evaluating these components, we hypothesize that this integrated approach 

will  significantly  narrow  the  current  gap  between  experimental  AI  research  and  practical 

deployment,  ultimately  improving  animal  welfare,  operational  efficiency,  and  environmental 

sustainability in precision livestock farming.” 

2. Materials and Methods 

2.1. System Architecture Overview 

The Dairy DigiD  system  represents  a  comprehensive multimodal AI  framework  specifically 

designed  to  bridge  the  critical  gap  between  laboratory‐proven  AI  capabilities  and  practical 

deployment in complex commercial dairy farming environments. This integrated platform combines 

state‐of‐the‐art  computer  vision models with  user‐centered  deployment  strategies,  orchestrating 

YOLOv11 for real‐time object detection, DenseNet121 for physiological classification, and Gradio for 

intuitive human‐AI interaction through a hybrid edge‐cloud architecture optimized for agricultural 

environments  (Figure 1). The  framework addresses  fundamental challenges  in precision  livestock 

farming  through  a  modular  architecture  that  accommodates  the  inherent  complexities  and 

heterogeneity  of  commercial  dairy  operations.  This  design  philosophy  ensures  component‐wise 

upgrades while maintaining flexibility and scalability as deployment demands evolve. The systemʹs 

four major functional modules work synergistically to provide comprehensive livestock monitoring 

capabilities:  edge‐based  real‐time  detection,  cloud‐based  physiological  classification,  data 

management with active learning pipelines, and an interactive human‐AI interface. 

 

Figure 1. Dairy DigiD hybrid edge–cloud AI framework illustrating the real‐time workflow, confidence‐based 

edge/cloud decision logic, and active‐learning feedback loop. 
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2.2. Edge Detection and Initial Classification Layer 

The  cornerstone  of Dairy DigiDʹs  edge  processing  capability  leverages  the YOLOv11  object 

detection model,  specifically  optimized  through  INT8  quantization  for  performance  on NVIDIA 

Jetson  Xavier NX  devices.  YOLOv11ʹs  advanced  architecture  incorporates  anchor‐free  detection 

mechanisms, enhanced  feature pyramid networks, and  transformer‐based attention modules  that 

significantly  improve  both  accuracy  and  computational  efficiency  in  visually  challenging  barn 

environments.  The  architectural  innovations  in  YOLOv11  include  three  main  components:  an 

improved backbone utilizing EfficientNet‐lite variants with CSPNet  to minimize  information  loss 

during downsampling, a sophisticated neck employing feature pyramid structures similar to PANet 

with BiFPN (Bidirectional Feature Pyramid Network) for dynamic feature weighting, and an anchor‐

free  detection  head  that  makes  direct  keypoint  coordinate  predictions,  improving  localization 

efficiency in dense scenes like crowded barns.   

The  edge  layer  implements  a  sophisticated  confidence‐driven  decision  pipeline  where 

preliminary physiological classifications are assigned based on posture, body mass, and movement 

analysis. When model confidence drops below the predetermined threshold of 85% for any detected 

instance,  frames  are  automatically  offloaded  to  the  cloud  tier  for  secondary  classification.  This 

intelligent  routing  strategy  ensures  high‐certainty  predictions  are  processed  locally, minimizing 

bandwidth  usage while  ambiguous  cases  benefit  from  computationally  intensive  cloud models. 

Performance  optimization  at  the  edge  includes  TensorRT  acceleration,  achieving  sustained 

throughput of 38 FPS while consuming less than 10 watts of power. The quantization process reduces 

model size by 73% (from 128MB to 34MB) without compromising detection accuracy, demonstrating 

the effectiveness of modern edge computing approaches in agricultural applications. The systemʹs 

edge processing capabilities enable continuous 24/7 monitoring essential for comprehensive livestock 

management while maintaining energy efficiency standards critical for sustainable farm operations. 

2.3. Cloud‐Based Physiological Classification Tier 

The decision  to utilize distributed GPU clusters within  the Dairy DigiD cloud  infrastructure 

strategically  addresses  computational  demands  critical  for  sophisticated  livestock  monitoring. 

Compared  to  purely  edge‐based  solutions, distributed GPU  clusters  offer  substantial  scalability, 

enabling  dynamic  resource  allocation  during  intensive  model  training  and  large‐scale  data 

processing. This approach supports advanced AI  techniques such as active  learning, multi‐model 

training, and complex data augmentation, essential for maintaining robust accuracy across diverse 

operational  conditions.  Additionally,  it  facilitates  efficient  model  updates,  centralized  version 

control,  and  comprehensive  performance  tracking,  overcoming  key  hardware  and  scalability 

limitations  inherent  in  edge‐only deployments. Ultimately,  integrating GPU  clusters  in  a  hybrid 

edge‐cloud  architecture  ensures optimal workload distribution, maximizes  cost‐effectiveness  and 

energy efficiency, and enhances the overall reliability, scalability, and future‐proofing capabilities of 

the Dairy DigiD framework. 

The cloud infrastructure serves as the computational backbone for high‐precision physiological 

state classification using distributed GPU clusters for model training and optimization. The cloud tier 

employs extensive data augmentation strategies including random cropping, mosaic blending, and 

color perturbations to ensure model resilience against diverse farm conditions encountered across 

different  seasons,  lighting  conditions,  and  operational  environments.  Model  deployment  and 

updates  are managed  through  a  sophisticated  versioning  system  where  YOLOv11  models  are 

initially trained in the cloud environment, quantized to INT8 precision, and periodically updated to 

edge  devices.  This  ensures  continuous  learning  and  adaptation  to  evolving  herd  dynamics  and 

environmental conditions. Each edge node is equipped with lightweight MQTT clients that transmit 

encrypted  metadata,  cropped  image  payloads,  and  confidence  levels  to  the  cloud  for  further 

processing, with typical return latency ranging from 120‐180 milliseconds depending on connectivity. 

The cloud tierʹs redundancy and reliability design ensures system continuity by enabling local 

inference to continue in parallel, avoiding interruptions during cloud communication. This hybrid 
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approach maximizes the benefits of both edge and cloud computing while mitigating their respective 

limitations. The cloud infrastructure supports real‐time model updates, ensuring that edge devices 

receive the latest algorithmic improvements and adaptations based on collective farm data patterns.     

2.4. Roboflow Annotation and Active Learning Pipeline 

The  data  management  ecosystem  leverages  Roboflowʹs  robust  API‐driven  interface  for 

annotation and version control, selected for its seamless integration capabilities and real‐time dataset 

update functionality. The platform supports project‐level configurations for class specification and 

object  targeting, with manual  annotation  processes  designed  to  eliminate  labeling  bias  through 

disabled auto‐suggest tools and mandatory human verification. The annotation workflow employs 

rectangular bounding boxes  for  cattle  identification based on physiological  states  including Dry, 

Mature  Milking,  Pregnant,  and  Young  classifications.  Figure  2  illustrates  the  comprehensive 

annotation process, demonstrating  the systematic approach  to bounding box placement and class 

labeling for different physiological states of cattle. This visual representation showcases the precision 

required in manual annotation to ensure high‐quality training data for the YOLOv11 model. 

 

Figure 2. Roboflow‐based annotation workflow illustrating bounding‐box placement and class labels for dairy 

cattle physiological states—Young, Dry, Mature Milking, and Pregnant cows. 

Comprehensive preprocessing  steps enhance dataset  robustness  through auto‐orientation  for 

consistent  image  alignment,  resizing  to  640x640  pixels  for  YOLOv11  optimization,  brightness 

normalization using histogram  equalization, bounding box normalization  to  relative values,  and 

class  index  mapping  for  YOLO  format  compatibility.  These  preprocessing  operations  ensure 

standardized input formats while preserving essential visual features critical for accurate detection 

and  classification.  Active  learning  implementation  represents  a  core  innovation,  automatically 

identifying low‐confidence predictions and incorrect classifications for human review. This human‐

in‐the‐loop approach reduces annotation costs while maintaining high model performance through 

selective sampling strategies. The pipelineʹs version control system (v1.0 through v1.3) documents 

class distribution, annotator history, and applied augmentations, with version v1.3  incorporating 

weighted augmentation for underrepresented classes, resulting in a 3.2% improvement in average 

mAP on validation sets. 

Dataset  balancing  strategies  address  class  imbalance  through  stratified  sampling  per 

physiological  category,  ensuring  equal  representation  during  dataset  splits.  This  approach 
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particularly benefits minority classes such as Pregnant and Dry cows, which historically show lower 

detection  rates due  to  limited  training  instances. The active  learning  loop continuously  identifies 

challenging samples for human annotation, creating a virtuous cycle of model improvement while 

optimizing annotation resources. 

2.5. Gradio‐Based Interface for Human‐AI Collaboration 

The user interface design addresses a fundamental barrier to agricultural AI adoption through 

Gradioʹs  declarative  Python  API,  enabling  rapid  development  of  fully  integrated  applications 

without extensive front‐end engineering. The selection criteria prioritized usability through intuitive 

Python APIs,  real‐time  inference  capabilities  supporting  asynchronous  video  stream  processing, 

multi‐modal  input handling  for  live video and pre‐recorded  files, and dynamic parameter  tuning 

allowing  real‐time  confidence  threshold  adjustments.  Interface  functionality  encompasses 

comprehensive dashboard  features  including  live  feed options with  real‐time detection overlays, 

color‐coded  bounding  boxes  for  physiological  class  identification,  data  logging with  confidence 

scores,  and  automated  report  generation  in  PDF  and  CSV  formats.  Advanced  performance 

optimization  strategies  include predictive  caching  that preloads model  states based on historical 

time‐of‐day activity patterns and attention‐based pruning  that  temporarily disables non‐essential 

visualization modules during resource constraints. 

The deployment architecture utilizes Hugging Face Spaces for cloud‐based hosting, providing 

CPU and GPU containers optimized  for machine  learning applications. This deployment strategy 

ensures public accessibility,  low‐latency video processing, and scalability  for multiple concurrent 

users, making  the  system  accessible  to diverse  stakeholder groups  including veterinarians,  farm 

owners, and data scientists. Role‐based access controls enable customizable interaction levels, with 

simplified interfaces for farm personnel and advanced analytics dashboards for technical specialists. 

This democratization of AI tools represents a critical advancement in enabling human‐AI symbiosis 

in  everyday  farming  operations,  transforming  complex AI  capabilities  into  accessible,  actionable 

insights for diverse agricultural stakeholders. 

2.6. YOLOv11 Model Architecture and Training Configuration 

Model  architecture  selection  focused  on  YOLOv11‐nano  for  optimal  edge  deployment, 

balancing  detection  accuracy  with  computational  efficiency  requirements.  Figure  3  provides  a 

detailed schematic of the YOLOv11 model architecture utilized in this study, clearly illustrating the 

backbone, neck, and head components responsible for feature extraction, multi‐scale feature fusion, 

and  final  object  detection  layers.  This  architectural  visualization  demonstrates  the  sophisticated 

design  principles  that  enable  efficient  real‐time  processing  while  maintaining  high  detection 

accuracy. The backbone architecture employs an improved EfficientNet‐lite variant integrated with 

CSPNet  (Cross Stage Partial Network)  to minimize  information  loss during downsampling while 

preserving  essential  low‐level  features. The neck  component utilizes a  feature pyramid  structure 

similar  to  PANet,  enhanced with  BiFPN  (Bidirectional  Feature  Pyramid Network)  for  dynamic 

feature weighting, particularly beneficial  for detecting small objects such as calf  facial  features  in 

complex barn environments.   
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Figure 3. YOLOv11  architecture  schematic  showing  the backbone  (C3k2 blocks  for  feature  extraction), neck 

(SPPF and C2PSA modules for multi‐scale feature fusion and spatial attention), and head (anchor‐free detection 

layer) components optimized for real‐time livestock detection. 

Training  configuration  underwent  systematic  hyperparameter  optimization  through  three 

distinct trials varying initial learning rate and momentum parameters. Trial configurations included 

lr0=0.001  with  momentum=0.90  (mAP@50=0.9409),  lr0=0.005  with  momentum=0.937 

(mAP@50=0.9498), and lr0=0.01 with momentum=0.95 (mAP@50=0.9542), with the final configuration 

selected based on optimal precision‐recall balance and highest mean Average Precision achievement. 

Training  methodology  employed  the  Ultralytics  YOLO  framework  with  comprehensive  data 

augmentation including color space adjustments for hue, saturation, and value variations, geometric 

transformations  including  rotation,  translation,  scaling,  and  shear  operations,  and  structural 

augmentations with vertical and horizontal flip probabilities. These techniques simulate real‐world 

variations  in  lighting,  camera  angles,  and  animal  orientations,  enhancing  model  resilience  to 

environmental  inconsistencies  common  in  commercial dairy operations. Hardware  infrastructure 

utilized Google Colab Pro environments with NVIDIA Tesla T4 GPUs (16 GB VRAM), dual vCPUs 

(Intel Xeon @ 2.20GHz), and 25 GB RAM. Training completion required approximately 1 hour and 45 

minutes  for  30  epochs,  incorporating  model  checkpointing,  plot  generation,  and  epoch‐level 

validation using mixed precision (FP16) for enhanced speed and efficiency. 

The  optimization  pipeline  includes  TensorRT  acceleration  for  edge  deployment,  achieving 

significant  performance  improvements  through  model  quantization  and  hardware‐specific 

optimizations.  This  approach  enables  real‐time  inference  capabilities  essential  for  practical  farm 

deployment  while  maintaining  detection  accuracy  standards  required  for  reliable  livestock 

monitoring applications.   

3. Results 

The Dairy DigiD  system  demonstrated  exceptional  performance  across multiple  evaluation 

metrics, achieving a mean Average Precision at IoU threshold 0.5 (mAP@50) of 0.947 and an mAP@50‐

95  of  0.784  on  independent  test  datasets.  The  system  successfully  delivered  94.2%  classification 

accuracy while maintaining 24 FPS  inference speed on NVIDIA Jetson NX devices, representing a 

significant  advancement  in  real‐time  livestock  monitoring  capabilities.  Model  optimization 

achievements included a remarkable 73% reduction in model size from 128MB to 34MB through INT8 
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quantization  and  TensorRT  acceleration,  without  compromising  detection  performance.  This 

optimization enables practical deployment on resource‐constrained edge devices while maintaining 

the computational efficiency  required  for continuous  farm operations. The  inference performance 

metrics demonstrate practical viability with approximately 1.9 milliseconds per  image processing 

time  on  NVIDIA  GPU  hardware,  confirming  suitability  for  real‐time  processing  demands  in 

commercial dairy environments. Energy efficiency gains of 18%  through attention‐based  resource 

optimization further enhance the systemʹs sustainability profile for long‐term deployment. 

3.1. Class‐Specific Performance Analysis 

Per‐class  performance  evaluation  revealed  varying  detection  capabilities  across  different 

physiological  states,  reflecting  the  inherent  challenges  of  livestock  classification  in  commercial 

environments. The ̋ Dry Cowʺ and ̋ Mature Milking Cowʺ categories exhibited excellent performance 

with balanced precision and recall metrics, demonstrating the modelʹs effectiveness for these well‐

represented classes. 

Young Cow classification achieved an mAP@50 of 0.942 with precision of 0.935 and recall of 

0.868, indicating reliable but slightly conservative detection characteristics. This performance profile 

suggests  the model prioritizes precision over recall  for  this category, reducing  false positive rates 

while occasionally missing true positive instances. The ʺPregnant Cowʺ category presented the most 

significant challenge, exhibiting lower recall of 0.714 while maintaining a solid mAP@50‐95 of 0.745. 

This performance limitation stems from fewer training instances and high visual similarity to other 

physiological  categories,  representing  a  common  challenge  in  agricultural  computer  vision 

applications where minority classes are underrepresented.   

Table 1. Performance evaluation of YOLOv11 model across different cattle physiological classes with precision, 

recall, mAP@50, and mAP@50‐95 metrics. 

Physiological Class  Precision  Recall  mAP@50  mAP@50‐95 

Young  0.935  0.868  0.942  0.794 

Dry Cow  0.945  0.897  0.965  0.732 

Mature Milking Cow  0.905  0.913  0.962  0.865 

Pregnant Cow  0.937  0.714  0.918  0.745 

Overall System      0.947  0.784 

3.2. Training Convergence and Model Stability 

Training dynamics analysis revealed stable convergence patterns across all 30 training epochs, 

with distinct phases of learning progression. Figure 4 presents the training loss component graph, 

clearly  illustrating the behavior of the three primary  loss functions—Box Loss (localization), Class 

Loss (classification), and DFL Loss  (distribution focal  loss)—throughout the training process. This 

visualization demonstrates the systematic reduction in all loss components, with particularly rapid 

improvement during the initial training phases.   

Initial learning phase (epochs 0‐5) demonstrated rapid loss reduction, particularly in class loss 

components, as  the model  learned general object appearance characteristics. The sharp decline  in 

Class Loss during this phase indicates effective feature learning and class discrimination capability 

development.  The  Box  Loss  and DFL  Loss  also  showed  significant  improvement,  reflecting  the 

modelʹs  increasing  ability  to  accurately  localize  objects  and  optimize  detection  confidence 

distributions. Intermediate refinement phase (epochs 5‐20) showed measured improvement as the 

model refined both classification and  localization predictions. Figure 5  illustrates  the plot of  total 

training versus validation loss, demonstrating that both curves followed a downward trajectory with 

the validation  loss consistently  tracking  the  training  loss. This parallel behavior  indicates healthy 

model generalization without overfitting, confirming the effectiveness of the training configuration 

and data augmentation strategies. 
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Figure  4.  YOLOv11  training  loss  convergence  analysis  across  30  epochs  showing  the  three  primary  loss 

components: Box Loss (bounding box regression loss for spatial localization accuracy), Class Loss (classification 

loss  for object category prediction using cross‐entropy), and DFL Loss  (Distribution Focal Loss  for enhanced 

detection of challenging samples and class imbalance mitigation). 

Performance plateau analysis after epoch 20 showed minimal improvement rates, with class loss 

approaching  optimal  values  while  box  and  DFL  losses  continued  slight  refinements.  This 

convergence pattern indicates the model reached near‐optimal performance for the given dataset and 

training configuration. The stable convergence without divergence or oscillation demonstrates the 

appropriateness of the selected hyperparameters and  training methodology. Figure 6 displays the 

validation metrics graph,  illustrating  stable and consistent  improvement  in Precision, Recall, and 

mAP@50 over  the  training epochs. The progression shows  initial rapid  learning  (epochs 0‐5) with 

erratic  but  substantial  improvement,  followed  by  steady  refinement  (epochs  5‐20),  and  finally 

performance  stabilization  (epochs 20‐30) with metrics hovering around peak values. This pattern 

confirms robust model training and reliable generalization capabilities for unseen data.   

 

Figure 5. Loss curve analysis for YOLOv11 model training over 30 epochs, illustrating the  ideal convergence 

pattern where  both  training  loss  (model  performance  on  training  data)  and  validation  loss  (generalization 

performance)  decrease  in  parallel  trajectories,  indicating  successful  learning without  overfitting—a  critical 

indicator of robust model performance. . 
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Figure 6. Validation performance metrics for YOLOv11 training: progression of Precision, Recall, and mAP@50 

across 30 epochs, illustrating stable and consistent improvement followed by convergence—indicating effective 

learning and robust generalization to unseen data. 

3.3. Active Learning Pipeline Effectiveness 

Dataset  versioning  results  through Roboflowʹs  active  learning  pipeline  showed  progressive 

improvements across versions v1.0 through v1.3. Version v1.3, incorporating weighted augmentation 

for  underrepresented  classes,  achieved  a  3.2%  improvement  in  average mAP  on  validation  sets 

compared to baseline configurations. This enhancement demonstrates the effectiveness of targeted 

augmentation strategies in addressing class imbalance challenges. 

Annotation  efficiency  gains  demonstrated  significant  reductions  in  manual  labeling 

requirements  while  maintaining  model  performance  standards.  The  active  learning  approach 

enabled the system to identify and prioritize the most informative samples for human annotation, 

optimizing  the  balance  between  annotation  costs  and model  accuracy.  This  selective  sampling 

strategy  proved  particularly  valuable  for  identifying  edge  cases  and  challenging  scenarios  that 

traditional random sampling might miss. 

Class  balancing  effectiveness  addressed  the  persistent  challenge  of  minority  class 

representation, particularly for Pregnant and Dry cow categories. Weighted augmentation strategies 

and  stratified  sampling  approaches  successfully  improved  detection  rates  for  these  challenging 

physiological  states. The  systematic approach  to addressing  class  imbalance  through data‐driven 

techniques rather than purely algorithmic solutions demonstrated superior long‐term performance 

stability. The continuous improvement mechanism established through weekly retraining cycles with 

high‐agreement  samples  from  real deployments ensured ongoing adaptation  to  seasonal  lighting 

changes, herd composition variations, and evolving operational conditions. This adaptive capability 

represents a critical advancement  in practical AI system deployment  for agricultural applications, 

enabling  systems  to  maintain  performance  despite  changing  environmental  and  operational 

conditions.   

3.4. User Interface Performance and Adoption Metrics 

Gradio  interface evaluation demonstrated substantial  improvements  in user accessibility and 

system adoption rates. The implementation achieved a reduction in technician training time from 14 

hours  to 2.3 hours, representing an 84% decrease  in onboarding requirements. This  improvement 

directly addresses the critical barrier of technical complexity  in agricultural AI adoption, enabling 

broader implementation across diverse farming operations. 
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User  interaction metrics  revealed  high  satisfaction  scores with  the  intuitive web dashboard 

accessible  across  desktop  and mobile  devices.  Interactive  features  including  real‐time  detection 

overlays,  adjustable  confidence  thresholds,  and  role‐based  access  controls  enhanced  user 

engagement and system utility. The multi‐modal input handling capabilities supported various data 

sources, from live video streams to pre‐recorded files, providing flexibility for different monitoring 

scenarios. 

Deployment accessibility through Hugging Face Spaces provided scalable cloud‐based access 

while maintaining low‐latency performance for real‐time video processing. This deployment strategy 

enabled  broad  accessibility  for  diverse  stakeholder  groups  while  preserving  the  technical 

sophistication  required  for  effective  livestock monitoring. The  cloud‐based  architecture  supports 

multiple  concurrent users,  enabling veterinarians,  farm owners,  and data  scientists  to  access  the 

system simultaneously. 

The  democratization  impact  of  the  Gradio  interface  successfully  bridged  the  gap  between 

advanced AI  capabilities  and  practical  farm‐level  usability,  enabling  non‐technical  personnel  to 

effectively utilize sophisticated computer vision tools. This achievement represents a fundamental 

advancement  in  making  precision  agriculture  technologies  accessible  to  broader  farming 

communities, regardless of technical expertise levels. 

4. Discussion 

4.1. Bridging Experimental AI and Field Deployment 

The Dairy DigiD system represents a paradigmatic shift from laboratory‐based AI research to 

field‐ready agricultural applications, successfully addressing the persistent gap between theoretical 

AI capabilities and practical farm deployment. This achievement is particularly significant given the 

historical  challenges  of  translating  sophisticated  computer  vision  models  into  operational 

agricultural  tools  that  can  function  reliably  in  uncontrolled,  variable  farm  environments.  The 

modular architecture approach proved essential for addressing real‐world deployment complexities, 

with  each  component—YOLOv11 detection, Roboflow data management, and Gradio  interface—

effectively targeting specific operational challenges. This systems‐level integration demonstrates the 

maturation of agricultural AI from isolated proof‐of‐concept demonstrations to holistic, deployable 

solutions capable of continuous operation in commercial settings. 

The validation across 10 commercial dairy  farms dataset  in Atlantic Canada provided robust 

evidence  of  system  effectiveness  across  diverse  operational  conditions,  herd  compositions,  and 

environmental  variables.  This  multi‐farm  validation  approach  ensures  the  frameworkʹs 

generalizability beyond single‐site implementations, addressing a common limitation in agricultural 

AI  research where systems often  fail  to perform consistently across different operational contexts 

[23,24]. Integration of visual documentation through the five comprehensive figures provides critical 

insights into system architecture and performance. Figure 2 demonstrates the systematic annotation 

workflow, while Figure 3  illustrates  the sophisticated YOLOv11 architecture  that enables efficient 

processing. The  training convergence analysis presented  in Figures 4, 5, and 6 provides empirical 

evidence of model stability and optimization effectiveness, supporting the technical claims of system 

reliability and performance. 

4.2. Real‐Time Performance Optimization and System Flexibility 

The  hybrid  edge‐cloud  architecture  successfully  balanced  computational  efficiency  with 

detection accuracy  through  intelligent workload distribution  [25]. The confidence‐driven decision 

pipeline, triggering cloud processing when edge confidence drops below 85%, exemplifies adaptive 

resource  allocation  that  optimizes  both  performance  and  bandwidth  utilization.  This  dynamic 

approach ensures consistent service quality while managing computational and network resources 

efficiently. Edge  computing  achievements demonstrate  the practical  viability  of  sophisticated AI 

deployment  in  resource‐constrained  agricultural  environments.  The  YOLOv11‐nano  modelʹs 
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sustained  38  FPS  throughput  while  consuming  less  than  10  watts  represents  a  significant 

advancement  in energy‐efficient AI processing  for continuous  farm operations. This performance 

profile enables 24/7 monitoring capabilities essential for comprehensive livestock management. 

The model optimization pipeline incorporating INT8 quantization and TensorRT acceleration 

achieved  the  critical  balance  between  computational  efficiency  and detection  accuracy. The  73% 

model  size  reduction  without  performance  degradation  addresses  fundamental  deployment 

constraints in edge computing environments where storage and memory resources are limited. This 

optimization  strategy provides  a  replicable  framework  for deploying  sophisticated AI models  in 

resource‐constrained agricultural settings. Adaptive inference scheduling and attention‐based model 

pruning  contributed  to  the  18%  energy  efficiency  improvement,  demonstrating  sophisticated 

resource management  capabilities. These optimizations  enable  sustainable  long‐term deployment 

while maintaining consistent performance across varying computational loads and environmental 

conditions.  Energy  efficiency  gains  support  the  economic  viability  of  continuous  AI‐powered 

monitoring systems in commercial farming operations. 

4.3. Active Learning Innovation and Dataset Agility 

The Roboflow‐integrated active  learning pipeline established a new  standard  for continuous 

model improvement in agricultural AI applications [26,27]. This approach addresses the fundamental 

challenge  of  data  annotation  costs  while  ensuring  model  adaptation  to  evolving  operational 

conditions, seasonal variations, and changing herd demographics. The systematic approach to active 

learning  provides  a  sustainable  pathway  for  maintaining  model  performance  over  extended 

deployment periods. Version‐controlled dataset management through systematic progression from 

v1.0 to v1.3 demonstrated measurable improvements in model performance, with the final version 

achieving  a  3.2% mAP  improvement  through weighted  augmentation  strategies. This  structured 

approach to dataset evolution provides a replicable framework for other agricultural AI applications 

requiring continuous adaptation. The documentation of version progression enables  reproducible 

research and systematic improvement tracking. 

The  class  imbalance  mitigation  through  active  learning  proved  particularly  valuable  for 

addressing  the persistent challenge of minority class representation  in  livestock classification. The 

systemʹs ability to automatically identify and prioritize challenging samples for human annotation 

optimizes  the  balance  between  annotation  costs  and model performance  across  all physiological 

categories.  This  approach  demonstrates  the  effectiveness  of  human‐in‐the‐loop  systems  in 

maintaining  high‐quality  training  data  while  minimizing  manual  effort.  Human‐in‐the‐loop 

integration demonstrated  the effectiveness of  combining automated  sample  selection with expert 

validation, reducing annotation costs while maintaining high‐quality labeled datasets. This approach 

establishes a sustainable pathway for long‐term model maintenance and improvement in operational 

agricultural environments. The  integration of human expertise with automated  systems creates a 

robust framework for continuous learning and adaptation. 

4.4. Human‐AI Interface Democratization and Technology Accessibility 

The Gradio‐based interface achievement in reducing technician training time from 14 hours to 

2.3 hours represents a fundamental breakthrough in agricultural AI accessibility. This 84% reduction 

directly addresses the critical barrier of technical complexity that has historically limited AI adoption 

in  farming  communities.  The  dramatic  improvement  in  onboarding  efficiency  enables  broader 

technology  adoption  across  diverse  agricultural  operations.  User‐centered  design  principles 

implemented  through  the Gradio  framework  successfully  translated  complex AI  capabilities  into 

intuitive, actionable interfaces suitable for diverse stakeholder groups. The multi‐device accessibility, 

role‐based  access  controls,  and  real‐time parameter adjustment  capabilities demonstrate  effective 

human‐computer interaction design tailored to agricultural contexts. These features enable different 

user types to interact with the system at appropriate complexity levels. 
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The democratization impact extends beyond individual farm operations to broader agricultural 

technology adoption patterns [28,29]. By making sophisticated AI tools accessible to non‐technical 

farm personnel,  the system contributes  to  reducing  the digital divide  in agriculture and enabling 

smaller  operations  to  benefit  from  advanced  monitoring  technologies.  This  accessibility 

improvement  has  implications  for  agricultural  equity  and  technological  inclusion.  Deployment 

scalability through Hugging Face Spaces provides a sustainable model for widespread AI technology 

distribution  in  agriculture.  This  cloud‐based  deployment  strategy  ensures  accessibility  while 

maintaining the performance standards required for effective livestock monitoring applications. The 

scalable architecture supports multiple concurrent users and enables collaborative monitoring across 

different farm operations. 

4.5. Environmental Impact and Operational Sustainability 

The  energy  optimization  achievements  through  attention‐based  resource management  and 

intelligent inference scheduling contribute to sustainable agricultural technology deployment. The 

18%  energy  efficiency  improvement,  combined  with  low‐power  edge  device  utilization, 

demonstrates environmental consciousness  in AI system design. These optimizations support  the 

long‐term  viability  of  AI‐powered  monitoring  systems  in  commercial  farming  operations. 

Operational efficiency gains  resulting  from automated  livestock monitoring  reduce manual  labor 

requirements while improving monitoring consistency and accuracy. The systemʹs 24/7 operational 

capability provides  continuous  insights  that would be  impossible  to  achieve  through  traditional 

manual observation methods. This continuous monitoring capability enables proactive management 

approaches that can improve animal welfare and operational outcomes. 

The non‐invasive monitoring approach promotes animal welfare by eliminating  the need  for 

physical tags or markers that may cause stress or behavioral changes [30]. This approach aligns with 

evolving  ethical  standards  in  livestock  management  while  providing  more  comprehensive 

behavioral  data  than  traditional  invasive  methods.  The  welfare‐oriented  approach  supports 

sustainable and ethical farming practices. Resource optimization through intelligent processing and 

adaptive  inference  scheduling minimizes  computational waste while maintaining  service quality. 

The systemʹs ability to dynamically adjust processing requirements based on actual monitoring needs 

demonstrates  efficient  resource  utilization.  This  optimization  approach  supports  the  economic 

sustainability of AI‐powered monitoring systems in commercial farming operations. 

4.6. Technical Limitations and Future Development Pathways 

Class  imbalance challenges remain a significant  limitation, particularly for the Pregnant Cow 

category with 71.4% recall performance. This  limitation reflects broader challenges  in agricultural 

computer  vision  where  minority  classes  are  systematically  underrepresented  due  to  natural 

frequency distributions and annotation difficulties. The reduced recall (71.4%) observed for pregnant 

cow classification primarily arises from limited training data due to natural class imbalance, visual 

similarities  between  early‐to‐mid  gestation  pregnant  cows  and  mature  milking  cows,  distinct 

behavioral patterns causing reduced visibility and isolation, and environmental challenges such as 

occlusion in dense feeding areas. These interconnected factors highlight the inherent difficulties of 

accurately classifying physiological states with subtle morphological changes and altered behaviors. 

Addressing this  limitation requires  targeted data collection specifically  focused on pregnant cows 

across  different  gestational  stages,  integration  of  additional  sensing modalities  such  as  thermal 

imaging or behavioral sensors, and the implementation of temporal modeling techniques to capture 

progressive  physiological  and  behavioral  changes.  Future  research  should  focus  on  advanced 

synthetic  data  generation  and  few‐shot  learning  approaches  to  address  these  imbalances. 

Environmental dependency limitations include susceptibility to occlusion in dense feeding areas and 

performance variations under extreme  lighting conditions. While  the system demonstrates robust 

performance  across  diverse  conditions,  these  limitations  highlight  areas  for  future  algorithmic 
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improvements and hardware adaptations. Advanced multi‐camera systems and temporal modeling 

approaches could address these limitations. 

Infrastructure requirements for optimal performance, including reliable internet connectivity for 

cloud functionality and specific edge hardware configurations [31], may limit deployment in remote 

or  resource‐constrained  farming  operations.  Future  development  should  focus  on  expanding 

hardware  compatibility  and  reducing  connectivity  dependencies  through  improved  edge‐only 

processing capabilities. The generalization challenges beyond the Atlantic Canada validation dataset 

suggest the need for broader geographic and operational diversity in training data. Expanding the 

systemʹs applicability to different climatic conditions, farming practices, and cattle breeds will require 

systematic  data  collection  and  model  adaptation  strategies.  Collaborative  data  sharing  across 

multiple regions could address these generalization limitations. 

Integration  complexity  with  existing  farm  management  systems  represents  an  ongoing 

challenge requiring standardized APIs and interoperability protocols [32–34]. Future development 

should prioritize seamless integration with established agricultural software ecosystems to enhance 

adoption rates and operational efficiency. The development of  industry‐standard  interfaces could 

facilitate broader technology adoption across diverse farming operations. 

5. Conclusions 

The development of the Dairy DigiD framework marks a significant advancement in agricultural 

AI deployment, systematically bridging the critical gap between laboratory‐proven AI and practical 

farm‐level implementation. By achieving 94.2% classification accuracy at a robust 24 FPS on resource‐

limited  edge  devices,  the  system  demonstrates  the  practical  feasibility  of  continuous,  real‐time 

livestock monitoring in commercial agricultural settings. 

A distinctive strength of this research lies in its  integration of complementary  technologies—

combining  INT8  quantization  (73% model  size  reduction),  user‐friendly  Gradio  interfaces  (84% 

reduction  in  technician  training  time),  and  active  learning pipelines  (3.2% mAP  improvement)—

effectively addressing key deployment barriers such as hardware constraints, user complexity, and 

dataset  adaptability.  This  holistic  approach  provides  a  replicable  blueprint  for  other  precision 

agriculture systems facing similar real‐world challenges. 

Despite  its  significant  achievements,  the  study  identifies  limitations  warranting  further 

attention. Lower  recall performance  (71.4%)  for pregnant  cows highlights  inherent  challenges  in 

visually distinguishing subtle physiological states. Addressing this requires targeted data collection, 

integration of complementary sensing modalities such as thermal imaging, and the use of temporal 

modeling  techniques.  Moreover,  dependency  on  reliable  internet  connectivity  for  cloud‐based 

processes and  specific edge hardware  configurations may  limit broader adoption, particularly  in 

resource‐constrained agricultural contexts. 

While robustly validated across ten commercial dairy farms in Atlantic Canada, the frameworkʹs 

generalizability to broader geographic regions, climatic conditions,  farming practices, and diverse 

cattle breeds remains to be thoroughly evaluated. Expanded validation studies are therefore essential 

before  widespread  deployment  can  be  recommended.  The  frameworkʹs  energy  efficiency 

improvements  (18%  via  attention‐based  resource  optimization)  significantly  enhance  its 

environmental  sustainability,  promoting  long‐term  operational  viability.  Furthermore,  the  non‐

invasive monitoring aligns with evolving ethical standards, improving animal welfare compared to 

traditional invasive techniques. 

Future  research  should  emphasize  integration  capabilities, developing  standardized APIs  to 

enhance compatibility with existing farm management systems, thus transforming Dairy DigiD from 

a  standalone  solution  to  an  integral  component  of  digital  agriculture  ecosystems.  The 

democratization  of  advanced AI  through  intuitive  user  interfaces  underscores  the  potential  for 

broader technological inclusion, benefiting operations of various scales and reducing digital divides 

in agriculture. 
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Ultimately, Dairy DigiD exemplifies comprehensive systems thinking, highlighting the necessity 

of  combining  algorithmic  innovation, hardware  optimization, user‐centric design,  and  adaptable 

data  management.  This  integrated  approach  provides  a  clear  foundation  for  future  precision 

livestock farming technologies, simultaneously delivering sophisticated AI capabilities and practical 

usability for real‐world agricultural environments. 
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