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Abstract: Remote sensing image change detection is a key application technology in remote sensing. 

In recent years, the development of deep learning has brought new opportunities for remote sensing 

image change detection. However, to achieve high change detection accuracy, large-scale, good-

quality labeled data is required to train the model, which is often difficult to obtain and costly. This 

paper proposes a semi-supervised remote sensing image change detection network based on 

consistent regularization for multi-scale feature fusion and reuse (SCMFM-CDNet), which can 

enhance change detection performance with limited labeled data. Specifically, the SCMFM-CDNet 

consists of two parts, the supervised stage multi-scale feature fusion and reuse network (MFM-

CDNet) and the consistency regularization method of semi-supervised learning. The MFM-CDNet 

network uses channel attention mechanism and spatial attention mechanism to enhance the 

expression ability of features, and gradually completes the extraction and detection of change 

features through multi-scale feature fusion and reuse strategy. The consistency regularization 

method of semi-supervised learning adopts the teacher model and student model for alternate 

training, updating model parameters by minimizing the differences in their predictions, thus 

achieving semi-supervised learning. This paper conducted extensive experiments on three public 

datasets, LEVIR-CD, WHU-CD, and GoogleGZ-CD. Under the three labeling data ratios of 5%, 10%, 

and 20%, the F1 scores of the SCMFM-CDNet network on the LEVIR-CD dataset were 88.62, 90.78, 

and 90.63, respectively. On the WHU-CD dataset, the F1 scores were 88.40, 90.17, and 90.83, 

respectively. On the GoogleGZ-CD dataset, the F1 scores were 81.44, 82.36, and 85.40, respectively. 

The results indicate that the proposed network outperforms existing semi-supervised change 

detection methods in terms of comprehensive performance. In addition, this paper also conducted 

ablation experiments to evaluate the contribution of the global context module (GCM) and feature 

fusion reuse module (FFM) in the MFM-CDNet network. The experimental results show that these 

two modules are crucial for improving network performance. 

Keywords: remote sensing; change detection; semi-supervised learning; multi-scale feature fusion 

and multiplexing; consistent regularization 

 

1. Introduction 

Remote sensing image change detection is a key application of remote sensing technology, which 

identifies changes in the surface or landscape by analyzing remote sensing images of the same 
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geographical area acquired at different time points. This technology can provide up-to-date 

geographic information and is widely used in various fields such as urban planning [1,2], 

environmental monitoring [3], agricultural monitoring [4,5], and natural disaster management [6,7]. 

In recent years, deep learning has been widely applied in various fields of remote sensing, such as 

image fusion [8], semantic segmentation [9], and change detection. 

Remote sensing image change detection methods are mainly divided into three categories: 

supervised, unsupervised, and semi-supervised. Supervised methods rely on a large amount of 

labeled data for training and can perform well when there is sufficient labeled data, accurately 

identifying the areas of change in the images. However, the acquisition of labeled data is costly, 

especially in high-resolution remote sensing images, where manual annotation is complex and time-

consuming. Unsupervised methods do not require labeled data and rely on differences in image 

features to detect changes. Although they reduce the dependence on labeled data, due to the lack of 

supervisory signals, the models struggle to capture complex change patterns and are prone to noise 

interference, leading to lower detection accuracy, which is not sufficient to meet the needs of high-

precision applications. Semi-supervised methods combine the advantages of both, enhancing the 

model’s detection capability by utilizing the potential information of unlabeled data when labeled 

data is insufficient. It not only reduces the cost of labeling but also effectively addresses the issues of 

unclear change edge detection and the omission of extremely small targets through strategies such 

as regularization and multi-task learning. Especially in dealing with complex change detection tasks 

in high-resolution remote sensing images, semi-supervised methods can improve the model’s 

generalization ability, reduce the risk of overfitting, and significantly enhance detection accuracy. 

Therefore, in order to fully exploit the limited labeled data and a large amount of unlabeled data, 

to improve detection performance with minimal model runtime and inference time, and to further 

address the issues of unclear detection of change edges and the omission of extremely small targets, 

this paper proposes a Semi-supervised Remote Sensing Image Change Detection Network Based on 

Consistent Regularization for Multi-scale feature Fusion and Multiplexing (SCMFM-CDNet). The 

network mainly consists of two parts: the supervised stage change detection network (MFM-CDNet) 

and the consistency regularization method used to achieve semi-supervised learning. The main 

contributions of this paper are: 

(1) This paper proposes a semi-supervised remote sensing image change detection network 

SCMFM-CDNet, which includes the supervised MFM-CDNet and the semi-supervised consistency 

regularization method. The supervised part enhances the recognition ability of the change areas 

through the effective fusion and reuse of multi-scale features, especially in the detection of small 

targets and edge details. At the same time, the semi-supervised part uses consistency regularization 

to strengthen the feature learning of unlabeled data, improving the model’s detection performance 

under limited labeled data and enhancing the model’s generalization ability. 

(2) In the supervised part of SCMFM-CDNet, the GCM module and the FFM module have been 

added. The GCM module enhances the detection capability for extremely small targets by integrating 

features from different levels. The FFM module improves the localization accuracy of edge change 

areas and reduces the problem of unclear detection of change edges by fusing, refining, and reusing 

features from different levels. 

(3) Conducted extensive experiments on the LEVIR-CD, WHU-CD, and GoogleGZ-CD datasets, 

including three label ratios of 5%, 10%, and 20%, the proposed SCMFM-CDNet network has 

demonstrated significant performance in both training and inference, proving the effectiveness and 

advantages of the proposed method. 

The structure of the rest of this paper is as follows. In Section 2, a review of the related literature 

on existing change detection methods is presented. The proposed method is introduced in Section 3. 

The experimental results and analysis are provided in Section 4. Finally, the conclusions are 

summarized in Section 5. 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 October 2024 doi:10.20944/preprints202410.1886.v1

https://doi.org/10.20944/preprints202410.1886.v1


 3 

 

2. Related Work 

2.1. Supervised Change Detection Methods 

Supervised change detection methods rely on annotated training data, among which the 

application of convolutional neural networks (CNN) and U-Net and other architectures has achieved 

significant results. For example, the VGG network [10] proposed by Simonyan and Zisserman and 

the ResNet [11] proposed by He et al. have performed well in image classification and have become 

fundamental models in change detection. 

The FCN model [12] proposed by Long et al. successfully achieved pixel-level semantic 

segmentation by replacing fully connected layers with convolutional layers, providing strong 

support for change detection. The U-Net structure, with its symmetric encoder-decoder design, can 

effectively capture detailed information in images, making it widely popular in medical image 

segmentation and remote sensing change detection [13]. 

The dynamic Siamese network [14] proposed by Guo et al. provides a new perspective for visual 

object tracking and can be extended to change detection tasks. This method processes two images by 

sharing weights, using similar feature extraction and similarity measurement to generate change 

maps, significantly improving the accuracy of change detection. 

In addition, the combination of feature selection and deep learning has also promoted the 

progress of change detection. By introducing a multi-scale fusion mechanism into the Siamese 

network, the multi-scale fusion Siamese network (MSF-Siamese) proposed by Li et al. effectively uses 

the different scale features of images to enhance change detection performance [15]. On this basis, the 

AMFNet proposed by Zhan et al. uses the attention mechanism to guide multi-scale feature fusion, 

further improving the accuracy of change detection in remote sensing images [16]. 

To overcome the problem of data imbalance, improved loss functions are often used in 

supervised methods, such as weighted cross-entropy loss and focal loss [17]. These methods adjust 

the weights of different categories during the training process to improve the detection capability of 

change areas. In addition, for the sparsely populated change areas of pixels, the multi-scale method 

using spectral and texture features by Fonseca et al. has also become an effective solution, promoting 

the accuracy and stability of change detection [18]. 

2.2. Unsupervised Change Detection Methods 

Unsupervised change detection methods do not rely on annotated data. Autoencoders [19] and 

Generative Adversarial Networks (GANs) [20,21] are among the most promising techniques 

currently used in unsupervised change detection. Autoencoders perform change detection by 

learning the latent features of images, while GANs, through the adversarial training of generators 

and discriminators, can better capture the change information in images. 

The application of autoencoders in unsupervised learning allows models to obtain deep feature 

representations by learning to reconstruct the input images. The SNUNet-CD proposed by Fang et 

al., which uses a densely connected Siamese network structure, can achieve change detection of high-

resolution remote sensing images in an unsupervised setting and has shown good performance [22]. 

In addition, the fully convolutional Siamese network proposed by Daudet et al. is also suitable for 

change detection tasks and has demonstrated its potential in remote sensing image analysis [23]. 

The advantage of unsupervised change detection is its low dependence on annotated data, 

which enables effective change detection even in the absence of annotations. The downside is that 

the detection accuracy is relatively low. Researchers are actively exploring the potential of 

unsupervised learning, especially in the analysis of high-resolution remote sensing images. 

2.3. Semi-Supervised Change Detection Methods 

In semi-supervised learning, feature fusion techniques are widely applied, and the combination 

of multi-scale features can extract richer information, thereby enhancing the detection capability of 

change areas in complex scenes. The Siamese network based on multi-scale attention proposed by Li 

et al. demonstrated the potential of using different feature scales for change detection in a semi-
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supervised setting [24]. Wang et al. proposed a change detection method based on existing vector 

polygons and the latest imagery, which introduces an attention mechanism to improve detection 

accuracy [25]. 

Adversarial learning methods have also shown good results in semi-supervised change 

detection. The AdvNet method proposed by Hung et al. utilizes a semi-supervised semantic 

segmentation method based on adversarial networks, where the discriminator enhances the accuracy 

of semantic segmentation by combining adversarial loss and standard cross-entropy loss, and is 

appropriately modified for change detection tasks [26]. This method was first proposed in 2019. The 

SemiCD method proposed by Wele and Patel adopts a generative adversarial network-based 

framework, including a segmentation network and two discriminator networks, for change detection 

in high-resolution remote sensing images [27]. 

Additionally, multi-task learning strategies have shown good results in semi-supervised change 

detection. By training multiple related tasks simultaneously, the model can obtain stronger feature 

representation capabilities. The dual-branch network proposed by Maa et al. effectively detects 

changes in remote sensing images through a dual-branch structure, fully exploring the potential 

information between labeled and unlabeled data [28]. The TCNet method proposed by Shu et al. 

combines convolutional neural networks (CNN) and visual transformers for processing change 

detection in high-resolution remote sensing images [29]. Wang et al. designed a change region-based 

contrast loss function (RCL method) to enhance the model’s feature extraction capability for change 

objects and uses the uncertainty of unlabeled data to select reliable pseudo-labels for model training 

[30]. 

Recently, Yang et al. proposed the UniMatch-DeepLabv3+ method at CVPR 2023, which is a 

deep learning model combining semi-supervised learning and semantic segmentation [31]. The core 

innovation lies in unifying semi-supervised learning methods, significantly improving the 

performance of semantic segmentation by combining labeled and unlabeled data. This method has 

shown good flexibility and accuracy in practical applications, especially in data-scarce situations. 

With in-depth research, semi-supervised methods show a promising application prospect in 

remote sensing change detection. Combined with the latest deep learning technologies, these 

methods can more effectively utilize limited annotated data and improve overall performance when 

dealing with change detection tasks in high-resolution remote sensing images. 

3. Methodology 

The overall architecture of the SCMFM-CDNet model is shown in Figure 1. It mainly consists of 

two parts: the supervised multi-scale feature fusion and reuse network MFM-CDNet, and the semi-

supervised learning consistency regularization method based on the teacher-student model for 

updating parameters. The working principle of semi-supervised consistency regularization is to use 

the teacher model to generate pseudo-labels for unlabeled data, and to add consistency loss and 

regularization terms when training the student model. This ensures that the model’s predictions for 

the data and its perturbed versions remain consistent, thereby forcing the model to learn more 

generalized feature representations and iteratively updating model parameters after performance 

improvement. Initially, MFM-CDNet is used for supervised learning on labeled data to generate 

initial parameters. Then, for unlabeled data, the teacher-student model is used for iterative training 

for semi-supervised learning. The main idea is to use the teacher model to produce pseudo-labels to 

guide the student model to learn the features of unlabeled data, thus achieving the effect of semi-

supervised learning. The quality of pseudo-labels plays a key role in the performance of the final 

model. 
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Figure 1. Overall architecture of the SCMFM-CDNet model. 

3.1. MFM-CDNet Structure 

MFM-CDNet consists of an encoder and a decoder parts. The former uses the VGG-16 network 

as the backbone, employing 5 VGG16_BN blocks, which correspond to the operations of VGG16_BN 

at layers 0-5, 5-12, 12-22, 22-32, and 32-42. Features are extracted at different stages to achieve feature 

fusion from coarse to fine. In the decoder part, the Feature Enhancement Module (FEM), Global 

Context Module (GCM), and Feature Fusion and Reuse Module (FFM) are used in combination. The 

overall structure of the MFM-CDNet model is shown in Figure 2. 

 

Figure 2. Overall architecture of the MFM-CDNet model. 

(1) Feature Enhancement Module (FEM) 
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The FEM primarily guides the attention by sequentially passing the feature maps through a 

channel attention module and a spatial attention module, enabling the model to accurately locate 

important areas in the image and significantly reduce computational complexity. 

The channel attention module can highlight the most important feature channels in the image, 

enabling the model to obtain more refined and distinctive feature representations, and reducing the 

computational load on unimportant features. The channel attention mechanism mainly addresses the 

question of ‘what the network should focus on’ . The spatial attention module allows the network to 

focus on key areas within the image, primarily addressing the question of ‘where the network should 

concentrate’ . 

(2) Global Context Module (GCM) 

The main function of the GCM is to integrate multi-scale contextual information of images to 

enhance the expressive power of features. In this way, the model can not only capture local details 

but also integrate features from different levels, which can improve the detection ability of extremely 

small targets. 

The GCM consists of four parts. The first part is a 2D convolutional unit, while the second to 

fourth parts each contain four 2D convolutional units. Each 2D convolutional unit is composed of a 

convolutional layer and a batch normalization layer, but they have different kernel sizes and dilation 

factors. The outputs of these four units are horizontally concatenated, and then placed together with 

the output of the feature map obtained directly through the 2D convolution operation into the ReLU 

activation function, ultimately resulting in a feature-enhanced map that contains multi-scale 

contextual information. The detailed architecture of the GCM module is shown in Figure 3. 

 

Figure 3. Architecture of the GCM module. 

(3) Feature Fusion and Multiplexing Module (FFM) 

The FFM primarily fuses, refines, and reuses features. Its main function is to integrate and 

optimize feature information from different levels. Through a series of operations, it enhances the 

model’s ability to recognize positive samples, improves the localization accuracy of edge change 

areas, and reduces the occurrence of missed detections. This module mainly correlates the features 

with the attention maps processed by the FFM, which primarily refines the decoding of features from 

three stages to enhance the accuracy of change information. The detailed operation involves bilinear 

upsampling of the input feature X1, multiplying the upsampled feature with another layer of features 

X2, bilinearly upsampling the input feature X2 and multiplying the upsampled feature with another 

layer of features X3, bilinearly upsampling the input feature X1 twice and multiplying the upsampled 

feature with another layer of features X3, horizontally concatenating the results of the three 
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operations, and then passing them through two 3x2D two-dimensional convolutional modules to 

produce the final decoded value of FFM. This results in an aggregated and refined feature map with 

higher spatial resolution and stronger feature expression capabilities. The detailed architecture of the 

FFM is shown in Figure 4. 

 

Figure 4. Architecture of the FFM module. 

3.2. Teacher-Student Module 

In the semi-supervised learning task, for unlabeled data, this paper employs the mean teacher 

method to learn features. The main idea is to switch between the roles of the student model and the 

teacher model. When using the backbone network as the teacher model, it primarily generates 

pseudo-labels for the student model. When using the backbone network as the student model, it 

learns from the pseudo-labels generated by the teacher model. The parameters of the teacher model 

are obtained by taking a weighted average of the parameters from previously iterated training of the 

student model. The target labels for the unlabeled data come from the predictions of the teacher 

model, i.e., the pseudo-labels. Since the pseudo-labels generated by the teacher model can serve as 

prior information in later training, they guide the student model in learning the features of a large 

amount of unlabeled data, thereby achieving the effect of semi-supervised learning. 

The parameters of the teacher model are updated through EMA of the parameters from the 

student model, with the policy as follows. 

𝜃𝑡
′ = 𝛼𝜃𝑡−1

′ + (1 − 𝛼)𝜃𝑠, (1) 

where, 𝜃𝑡
′ represents the parameters of the teacher model at the current step, 𝜃𝑡−1

′  represents the 

parameters of the teacher model at the previous step, 𝜃𝑠 represents the parameters of the student 

model, and 𝛼 is a smoothing factor set to 0.9, which controls the smoothness of the changes in the 

teacher model’s parameters. 

3.3. Loss Function 

Change detection tasks are considered a special type of binary classification problem. In this 

paper, a binary cross-entropy loss function is used in conjunction with the Sigmoid function and 

BCELoss. The supervised loss function is: 

𝐿𝑜𝑠𝑠𝑠𝑢𝑝 = {𝑙1, … , 𝑙𝑛}, (2) 
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𝑙𝑛 = −[𝑦𝑛 ∙ 𝑙𝑜𝑔(𝛼(𝑋𝑛)) + (1 − 𝑦𝑛) ∙ 𝑙𝑜𝑔(1 − 𝛼(𝑋𝑛))], (3) 

𝛼(𝑋) =
1

1 + 𝑒𝑥𝑝(−𝑥)
, (4) 

𝛼(𝑋) is a Sigmoid function that maps x to the interval (0,1). 

In the semi-supervised part, the input is the result of supervised training, and the semi-

supervised loss function is as follows: 

𝐿𝑜𝑠𝑠𝑐𝑜𝑛 = −[𝑦𝑡̂ ∙ 𝑙𝑜𝑔(𝛼(𝑋𝑛)) + (1 − 𝑦𝑡̂) ∙ 𝑙𝑜𝑔(1 − 𝛼(𝑋𝑛))], (5) 

𝑦𝑡̂ =
1

1 + 𝑒𝑥𝑝(−𝑥𝑡̂)
. (6) 

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑠𝑢𝑝 + 𝛽𝐿𝑜𝑠𝑠𝑐𝑜𝑛. (7) 

𝛽 represents the difference in coefficients between the two loss functions, and in this case, 𝛽 is 

used with a value of 0.2, at which point the impact of this coefficient on model accuracy is minimal. 

3.4. Training Process 

The training process of the model is shown in Table 1. 

Table 1. Pseudo Code for Model Training. 

Algorithm SCMFM-CDNet 

Input:  

Labelled image (𝑋𝑙
1, 𝑋𝑙

2), Unlabelled image (𝑋𝑢
1, 𝑋𝑢

2), 

Hyperparameters : lr , B, T, 𝛼 

Initialise:  MFM-CDNet model parameters 𝜃, teacher model parameters 𝜃𝑡 

Output:  

Trained SCMFM-CDNet model with parameters 𝜃 

1: procedure Semi-Supervised Training 𝜃, 𝛼 

2:   for each=1 to 𝑇𝑠𝑢𝑝 do 

3:     Shuffle  (𝑋𝑙
1, 𝑋𝑙

2) 

4:     for batch B in (𝑋𝑙
1, 𝑋𝑙

2) do 

5:       Forward pass: Compute predictions 𝑃𝑙 using (𝑋𝑙
1, 𝑋𝑙

2) and 𝜃 

6:                    Compute 𝐿𝑜𝑠𝑠𝑠𝑢𝑝 by (Eq.(2)-(3)) 

7:       Backward pass:  Update 𝜃 using 𝐿𝑜𝑠𝑠𝑠𝑢𝑝 and lr 

8:     end for 

9:   end for 

10:   for each=𝑇𝑠𝑢𝑝 to  T do 

11:     for batch B in (𝑋𝑢
1, 𝑋𝑢

2) do 

12:       Forward pass: Compute predictions 𝑃𝑢 using (𝑋𝑙
1, 𝑋𝑙

2) and 𝜃 

13:                    Compute 𝐿𝑜𝑠𝑠𝑐𝑜𝑛 using 𝑃𝑢 and 𝜃𝑡 

14:       Backward pass:  Update 𝜃 using 𝐿𝑜𝑠𝑠𝑐𝑜𝑛 and lr 

15:     end for 

16:     Update 𝜃𝑡 by (Eq.(1)) 

17:   end for 

18: end procedure 

19: return 𝜃 
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4. Experiments 

In this section, this paper will validate the effectiveness of the proposed method through 

extensive experiments, which mainly include dataset introduction, experimental setup, comparison 

methods, experimental results and analysis, and ablation experiments. 

4.1. Dataset Introduction 

This experiment utilizes three public datasets, which are LEVIR-CD, WHU-CD, and GoogleGZ-

CD. 

The LEVIR-CD dataset is provided by Beihang University and is a large-scale Very High 

Resolution (VHR) building change detection dataset. It consists of 637 pairs of high-resolution image 

blocks, with a spatial resolution of 0.5 meters and an image size of 1024×1024 pixels. The dataset 

focuses on building-related changes, including various types of structures such as villas, high-rise 

apartments, small garages, and large warehouses. 

The WHU-CD dataset is provided by Wuhan University and is a high-resolution remote sensing 

image dataset for building change detection. The dataset includes a large image pair sized at 

32507×15345 pixels with a spatial resolution of 0.2 meters. It reflects significant reconstruction 

activities in the area following an earthquake, with change information primarily focused on 

buildings. The images are typically cropped into non-overlapping blocks of 256×256 pixels. 

The GoogleGZ-CD dataset is provided by Wuhan University and is a large-scale high-resolution 

multispectral satellite image dataset specifically for change detection tasks. The dataset contains 20 

pairs of seasonal high-resolution images covering the suburban areas of Guangzhou, China, with an 

acquisition time span from 2006 to 2019. The image resolution is 0.55 meters, and the size varies from 

1006×1168 pixels to 4936×5224 pixels. It covers various types of changes, including water bodies, 

roads, farmland, bare land, forests, buildings, and ships, with buildings being the main changes. The 

image pairs are cropped into non-overlapping blocks of 256×256 pixels. 

The detailed number of samples in the training set, validation set, and test set of the three 

datasets is shown in Table 2. 

Table 2. Detailed Information of Datasets. 

Title 1 Training Set Samples Validation Set Samples Test Set Samples 

LEVIR-CD 7120 pairs 1024 pairs 2048 pairs 

WHU-CD 6096 pairs 1184 pairs 1910 pairs 

GoogleGZ-CD 804 pairs 330 pairs 330 pairs 

4.2. Experimental Setup 

The model in this paper was implemented on PyTorch and trained and tested on an NVIDIA 

RTX 4090. Regarding the specific parameter configuration of the model, this paper uses the AdamW 

optimizer to minimize the loss function with a weight decay coefficient of 0.0025 and a learning rate 

of 5e-4. Due to the limitations of GPU resources and through extensive experimental validation, this 

paper sets the batch size to 16 and the number of training epochs to 180 to ensure that the model can 

converge. In the semi-supervised experiment, the dataset is constructed through random sampling. 

Specifically, 5%, 10%, and 20% of the training data are randomly selected as labeled data, and the rest 

of the data is processed as unlabeled data. 

Experimental comparison methods selection: Currently advanced semi-supervised detection 

models include AdvNet, SemiCD, RCL, TCNet, UniMatch-DeepLabv3+, and supervised models 

include our MFM-CDNet model. 

To clearly investigate the performance of SCMFM-CDNet, this experiment uses three evaluation 

metrics: Precision (P), Recall (R), and F1 score. The formulas are shown as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 
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𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (9) 

𝐹1 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
. (10) 

In these metrics, TP stands for true positives, FP stands for false positives, and FN stands for 

false negatives. 

4.3. Experimental Results and Analysis 

In this paper, 5%, 10%, and 20% of the training data were randomly selected as labeled data, 

with the remaining data treated as unlabeled. Comparative experiments on the detection 

performance of different methods were conducted on the LEVIR-CD, WHU-CD, and GoogleGZ-CD 

datasets. 

The quantitative accuracy results of different methods at different annotation ratios on the 

LEVIR-CD dataset are shown in Table 3. 

Table 3. Quantitative Accuracy Results of Different Annotation Ratios on the LEVIR-CD Dataset. 

Method 

Labelled Ration 

5% 10% 20% 

P R F1 P R F1 P R F1 

MFM-CDNet 93.98 74.06 82.84 94.21 80.11 86.59 95.31 83.53 89.03 

AdvNet 89.19 74.99 81.48 90.98 80.41 85.37 91.34 82.37 86.62 

SemiCD 56.34 39.86 46.68 91.85 82.19 86.75 91.30 84.07 87.53 

RCL 82.26 77.87 80.01 85.79 81.86 83.78 86.60 85.87 85.14 

TCNet 91.95 77.91 84.35 91.80 86.57 89.11 92.21 87.80 89.95 

UniMatch-

DeepLabv3+ 

94.08 81.08 87.10 94.51 82.42 88.05 94.62 83.05 88.46 

SCMFM-CDNet 90.51 86.87 88.62 91.98 89.62 90.78 92.09 89.22 90.63 

The SCMFM-CDNet network proposed in this paper has shown significant superiority on the 

LEVIR-CD dataset. Among the three label ratios, the SCMFM-CDNet network ranks first in recall 

and F1 score, indicating the network’s superior comprehensive performance. Although the accuracy 

of SCMFM-CDNet is slightly lower than the UniMatch-DeepLabv3+ method, the recall rate R of the 

SCMFM-CDNet network under the three label ratios is much higher than that of UniMatch-

DeepLabv3+ and other methods. This means that the proportion of actual change areas that the 

network in this paper can detect is far higher than other methods, demonstrating the high 

performance of the SCMFM-CDNet network proposed in this paper. In general, the SCMFM-CDNet 

network has shown significant superiority in improving the accuracy and efficiency of change 

detection through its innovative semi-supervised strategy. 

The quantitative accuracy results of different methods at different annotation ratios on the 

WHU-CD dataset are shown in Table 4. 

Table 4. Quantitative Accuracy Results of Different Annotation Ratios on the WHU-CD Dataset. 

Method 

Labelled Ration 

5% 10% 20% 

P R F1 P R F1 P R F1 

MFM-CDNet 85.74 75.47 80.28 89.35 79.06 83.89 90.32 84.11 87.10 

AdvNet 78.76 64.80 71.10 79.97 76.06 77.96 78.40 86.44 82.22 

SemiCD 86.22 72.49 78.76 82.51 80.49 81.49 89.88 87.63 88.74 

RCL 74.63 68.73 85.36 78.24 77.15 77.69 80.52 86.95 83.61 

TCNet 87.05 83.73 85.36 90.33 82.03 85.98 94.56 83.91 88.92 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 October 2024 doi:10.20944/preprints202410.1886.v1

https://doi.org/10.20944/preprints202410.1886.v1


 11 

 

UniMatch-

DeepLabv3+ 

92.56 84.51 88.35 89.29 87.88 88.58 86.27 92.47 89.26 

SCMFM-CDNet 90.95 85.98 88.40 91.58 88.81 90.17 91.83 89.86 90.83 

The quantitative accuracy results of various methods on the WHU-CD dataset indicate that the 

SCMFM-CDNet network proposed in this paper ranks first in recall and F1 score at label ratios of 5% 

and 10%. Additionally, at a 10% label ratio, the SCMFM-CDNet network’s accuracy also ranks first, 

demonstrating the network’s superior comprehensive performance. At a 20% label ratio, the SCMFM-

CDNet network’s recall rate is second, lower than the UniMatch-DeepLabv3+ method, but still better 

than other methods. The main reason for this is that the WHU-CD dataset has relatively fewer 

positive samples (changed areas) and more negative samples (unchanged areas), with the changed 

areas being more distinct and less complex. The high performance of UniMatch-DeepLabv3+ in 

semantic segmentation allows it to detect changed areas with high accuracy. However, on the more 

complex LEVIR-CD and GoogleGZ-CD datasets, the performance of our method is significantly 

higher than that of UniMatch-DeepLabv3+. Particularly on the complex GoogleGZ-CD dataset, it can 

be seen that UniMatch-DeepLabv3+ is inferior to the SCMFM-CDNet network proposed in this paper 

in terms of generalization ability. 

The quantitative accuracy results of different methods at different annotation ratios on the 

GoogleGZ-CD dataset are shown in Table 5. Compared to some other datasets, the GoogleGZ-CD 

dataset has a smaller scale. From a semi-supervised perspective, with only 5% labeled data, SCMFM-

CDNet achieved an F1 score of 81.44%, which is higher than other semi-supervised change detection 

methods. This demonstrates its strong performance under conditions of limited labeled data, aligning 

with the original intention of semi-supervised learning to train using a small set of labeled data. 

Table 5. Quantitative Accuracy Results of Different Annotation Ratios on the GoogleGZ-CD 

Dataset. 

Method 

Labelled Ration 

5% 10% 20% 

P R F1 P R F1 P R F1 

MFM-CDNet 80.03 77.61 78.80 84.59 73.09 78.42 89.25 75.11 81.57 

AdvNet 67.64 52.86 59.34 76.87 61.18 68.14 85.54 59.09 69.90 

SemiCD 70.33 52.99 60.44 75.45 62.09 68.12 88.25 60.45 71.75 

RCL 74.90 68.27 71.43 76.78 78.25 77.51 78.82 80.07 79.44 

TCNet 78.97 70.95 74.75 75.79 81.79 78.68 85.46 79.62 82.43 

UniMatch-

DeepLabv3+ 

61.68 45.60 52.50 81.79 52.47 63.93 79.19 59.55 67.97 

SCMFM-CDNet 81.86 81.02 81.44 81.02 83.75 82.36 82.64 88.36 85.40 

The qualitative evaluation results of different comparison methods at a labeling rate of 10% on 

various datasets are shown in Figure 5. To make the visualization more intuitive, we use white to 

express the TP (true positives), black to represent the TN (true negatives), red to illustrate the FP 

(false positives), and light blue to depict the FN (false negatives). Black indicates unchanged areas, 

while white indicates changed areas. Red represents areas where the model incorrectly identifies 

unchanged areas as changed, i.e., false alarms. Light blue represents areas where the model fails to 

detect actual changes, i.e., missed detections. By observing the visualization, the following 

conclusions can be drawn: Although all methods still have common difficulties in missed detections 

in some areas, compared with other semi-supervised methods, the SCMFM-CDNet network 

proposed in this paper has relatively fewer blue and red parts in the visualization, that is, there are 

fewer false alarms and missed detections, and the problems of unclear change edge detection and 

missed detections of extremely small targets have been significantly improved. 
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Figure 5. Qualitative evaluation results at a labeling rate of 10%. 

4.4. Ablation Experiments 

Ablation experiments mainly verify the effects of the Global Context Module (GCM) and the 

Feature Fusion and Reuse Module (FFM) in the MFM-CDNet network. This paper selects 5% and 10% 

label ratios in the GoogleGZ-CD dataset for validation. The quantitative accuracy results of ablation 

experiments at different annotation ratios on the GoogleGZ-CD dataset are shown in Table 6. 

Table 6. Quantitative Accuracy Results of Ablation Experiments at Different Annotation Ratios in the 

GoogleGZ-CD Dataset. 

Method 

Labelled Ration 

5% 10% 

P R F1 P R F1 

w/o GCM 70.28 75.31 72.71 74.22 76.04 75.12 

w/o FFM 80.35 80.03 80.19 79.45 81.35 80.39 

SCMFM-CDNet 81.86 81.02 81.44 81.02 83.75 82.36 

From the table, it can be seen that the performance is better when both the Global Context 

Module (GCM) and the Feature Fusion and Reuse Module (FFM) are present, as both modules play 

a key role in the feature extraction process. 

5. Conclusions 

To address the problems of relatively difficult acquisition of annotated dual-time-phase remote 

sensing images, unclear detection of change edges and missed detection of very small targets, we 

propose a semi-supervised remote sensing image change detection network based on multi-scale 

feature fusion and multiplexing with consistent regularisation, including multi-scale feature fusion 

and multiplexing with supervised phase, and an instructor-student model used to implementing a 

teacher-student model for semi-supervised learning. Extensive experiments and detailed ablation 

experiments were done on three public datasets with three different labelling ratios of 5%, 10% and 

20%, and the proposed network shown higher performance than other semi-supervised change 
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detection networks in both training and inference. In the future, in terms of the feature extraction in 

the supervised part of the MFM-CDNet and the upgrading strategy of the govern’s parameters in the 

unsupervised part of the MFM-CDNet, good progress must be possible. 
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