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Abstract: Remote sensing image change detection is a key application technology in remote sensing.
In recent years, the development of deep learning has brought new opportunities for remote sensing
image change detection. However, to achieve high change detection accuracy, large-scale, good-
quality labeled data is required to train the model, which is often difficult to obtain and costly. This
paper proposes a semi-supervised remote sensing image change detection network based on
consistent regularization for multi-scale feature fusion and reuse (SCMFM-CDNet), which can
enhance change detection performance with limited labeled data. Specifically, the SCMFM-CDNet
consists of two parts, the supervised stage multi-scale feature fusion and reuse network (MFM-
CDNet) and the consistency regularization method of semi-supervised learning. The MFM-CDNet
network uses channel attention mechanism and spatial attention mechanism to enhance the
expression ability of features, and gradually completes the extraction and detection of change
features through multi-scale feature fusion and reuse strategy. The consistency regularization
method of semi-supervised learning adopts the teacher model and student model for alternate
training, updating model parameters by minimizing the differences in their predictions, thus
achieving semi-supervised learning. This paper conducted extensive experiments on three public
datasets, LEVIR-CD, WHU-CD, and GoogleGZ-CD. Under the three labeling data ratios of 5%, 10%,
and 20%, the F1 scores of the SCMFM-CDNet network on the LEVIR-CD dataset were 88.62, 90.78,
and 90.63, respectively. On the WHU-CD dataset, the F1 scores were 88.40, 90.17, and 90.83,
respectively. On the GoogleGZ-CD dataset, the F1 scores were 81.44, 82.36, and 85.40, respectively.
The results indicate that the proposed network outperforms existing semi-supervised change
detection methods in terms of comprehensive performance. In addition, this paper also conducted
ablation experiments to evaluate the contribution of the global context module (GCM) and feature
fusion reuse module (FFM) in the MFM-CDNet network. The experimental results show that these
two modules are crucial for improving network performance.

Keywords: remote sensing; change detection; semi-supervised learning; multi-scale feature fusion
and multiplexing; consistent regularization

1. Introduction

Remote sensing image change detection is a key application of remote sensing technology, which
identifies changes in the surface or landscape by analyzing remote sensing images of the same

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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geographical area acquired at different time points. This technology can provide up-to-date
geographic information and is widely used in various fields such as urban planning [1,2],
environmental monitoring [3], agricultural monitoring [4,5], and natural disaster management [6,7].
In recent years, deep learning has been widely applied in various fields of remote sensing, such as
image fusion [8], semantic segmentation [9], and change detection.

Remote sensing image change detection methods are mainly divided into three categories:
supervised, unsupervised, and semi-supervised. Supervised methods rely on a large amount of
labeled data for training and can perform well when there is sufficient labeled data, accurately
identifying the areas of change in the images. However, the acquisition of labeled data is costly,
especially in high-resolution remote sensing images, where manual annotation is complex and time-
consuming. Unsupervised methods do not require labeled data and rely on differences in image
features to detect changes. Although they reduce the dependence on labeled data, due to the lack of
supervisory signals, the models struggle to capture complex change patterns and are prone to noise
interference, leading to lower detection accuracy, which is not sufficient to meet the needs of high-
precision applications. Semi-supervised methods combine the advantages of both, enhancing the
model’s detection capability by utilizing the potential information of unlabeled data when labeled
data is insufficient. It not only reduces the cost of labeling but also effectively addresses the issues of
unclear change edge detection and the omission of extremely small targets through strategies such
as regularization and multi-task learning. Especially in dealing with complex change detection tasks
in high-resolution remote sensing images, semi-supervised methods can improve the model’s
generalization ability, reduce the risk of overfitting, and significantly enhance detection accuracy.

Therefore, in order to fully exploit the limited labeled data and a large amount of unlabeled data,
to improve detection performance with minimal model runtime and inference time, and to further
address the issues of unclear detection of change edges and the omission of extremely small targets,
this paper proposes a Semi-supervised Remote Sensing Image Change Detection Network Based on
Consistent Regularization for Multi-scale feature Fusion and Multiplexing (SCMFM-CDNet). The
network mainly consists of two parts: the supervised stage change detection network (MFM-CDNet)
and the consistency regularization method used to achieve semi-supervised learning. The main
contributions of this paper are:

(1) This paper proposes a semi-supervised remote sensing image change detection network
SCMFM-CDNet, which includes the supervised MFM-CDNet and the semi-supervised consistency
regularization method. The supervised part enhances the recognition ability of the change areas
through the effective fusion and reuse of multi-scale features, especially in the detection of small
targets and edge details. At the same time, the semi-supervised part uses consistency regularization
to strengthen the feature learning of unlabeled data, improving the model’s detection performance
under limited labeled data and enhancing the model’s generalization ability.

(2) In the supervised part of SCMFM-CDNet, the GCM module and the FFM module have been
added. The GCM module enhances the detection capability for extremely small targets by integrating
features from different levels. The FFM module improves the localization accuracy of edge change
areas and reduces the problem of unclear detection of change edges by fusing, refining, and reusing
features from different levels.

(3) Conducted extensive experiments on the LEVIR-CD, WHU-CD, and GoogleGZ-CD datasets,
including three label ratios of 5%, 10%, and 20%, the proposed SCMFM-CDNet network has
demonstrated significant performance in both training and inference, proving the effectiveness and
advantages of the proposed method.

The structure of the rest of this paper is as follows. In Section 2, a review of the related literature
on existing change detection methods is presented. The proposed method is introduced in Section 3.
The experimental results and analysis are provided in Section 4. Finally, the conclusions are
summarized in Section 5.
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2. Related Work
2.1. Supervised Change Detection Methods

Supervised change detection methods rely on annotated training data, among which the
application of convolutional neural networks (CNN) and U-Net and other architectures has achieved
significant results. For example, the VGG network [10] proposed by Simonyan and Zisserman and
the ResNet [11] proposed by He et al. have performed well in image classification and have become
fundamental models in change detection.

The FCN model [12] proposed by Long et al. successfully achieved pixel-level semantic
segmentation by replacing fully connected layers with convolutional layers, providing strong
support for change detection. The U-Net structure, with its symmetric encoder-decoder design, can
effectively capture detailed information in images, making it widely popular in medical image
segmentation and remote sensing change detection [13].

The dynamic Siamese network [14] proposed by Guo et al. provides a new perspective for visual
object tracking and can be extended to change detection tasks. This method processes two images by
sharing weights, using similar feature extraction and similarity measurement to generate change
maps, significantly improving the accuracy of change detection.

In addition, the combination of feature selection and deep learning has also promoted the
progress of change detection. By introducing a multi-scale fusion mechanism into the Siamese
network, the multi-scale fusion Siamese network (MSF-Siamese) proposed by Li et al. effectively uses
the different scale features of images to enhance change detection performance [15]. On this basis, the
AMFNet proposed by Zhan et al. uses the attention mechanism to guide multi-scale feature fusion,
further improving the accuracy of change detection in remote sensing images [16].

To overcome the problem of data imbalance, improved loss functions are often used in
supervised methods, such as weighted cross-entropy loss and focal loss [17]. These methods adjust
the weights of different categories during the training process to improve the detection capability of
change areas. In addition, for the sparsely populated change areas of pixels, the multi-scale method
using spectral and texture features by Fonseca et al. has also become an effective solution, promoting
the accuracy and stability of change detection [18].

2.2. Unsupervised Change Detection Methods

Unsupervised change detection methods do not rely on annotated data. Autoencoders [19] and
Generative Adversarial Networks (GANs) [20,21] are among the most promising techniques
currently used in unsupervised change detection. Autoencoders perform change detection by
learning the latent features of images, while GANs, through the adversarial training of generators
and discriminators, can better capture the change information in images.

The application of autoencoders in unsupervised learning allows models to obtain deep feature
representations by learning to reconstruct the input images. The SNUNet-CD proposed by Fang et
al., which uses a densely connected Siamese network structure, can achieve change detection of high-
resolution remote sensing images in an unsupervised setting and has shown good performance [22].
In addjition, the fully convolutional Siamese network proposed by Daudet et al. is also suitable for
change detection tasks and has demonstrated its potential in remote sensing image analysis [23].

The advantage of unsupervised change detection is its low dependence on annotated data,
which enables effective change detection even in the absence of annotations. The downside is that
the detection accuracy is relatively low. Researchers are actively exploring the potential of
unsupervised learning, especially in the analysis of high-resolution remote sensing images.

2.3. Semi-Supervised Change Detection Methods

In semi-supervised learning, feature fusion techniques are widely applied, and the combination
of multi-scale features can extract richer information, thereby enhancing the detection capability of
change areas in complex scenes. The Siamese network based on multi-scale attention proposed by Li
et al. demonstrated the potential of using different feature scales for change detection in a semi-
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supervised setting [24]. Wang et al. proposed a change detection method based on existing vector
polygons and the latest imagery, which introduces an attention mechanism to improve detection
accuracy [25].

Adversarial learning methods have also shown good results in semi-supervised change
detection. The AdvNet method proposed by Hung et al. utilizes a semi-supervised semantic
segmentation method based on adversarial networks, where the discriminator enhances the accuracy
of semantic segmentation by combining adversarial loss and standard cross-entropy loss, and is
appropriately modified for change detection tasks [26]. This method was first proposed in 2019. The
SemiCD method proposed by Wele and Patel adopts a generative adversarial network-based
framework, including a segmentation network and two discriminator networks, for change detection
in high-resolution remote sensing images [27].

Additionally, multi-task learning strategies have shown good results in semi-supervised change
detection. By training multiple related tasks simultaneously, the model can obtain stronger feature
representation capabilities. The dual-branch network proposed by Maa et al. effectively detects
changes in remote sensing images through a dual-branch structure, fully exploring the potential
information between labeled and unlabeled data [28]. The TCNet method proposed by Shu et al.
combines convolutional neural networks (CNN) and visual transformers for processing change
detection in high-resolution remote sensing images [29]. Wang et al. designed a change region-based
contrast loss function (RCL method) to enhance the model’s feature extraction capability for change
objects and uses the uncertainty of unlabeled data to select reliable pseudo-labels for model training
[30].

Recently, Yang et al. proposed the UniMatch-DeepLabv3+ method at CVPR 2023, which is a
deep learning model combining semi-supervised learning and semantic segmentation [31]. The core
innovation lies in unifying semi-supervised learning methods, significantly improving the
performance of semantic segmentation by combining labeled and unlabeled data. This method has
shown good flexibility and accuracy in practical applications, especially in data-scarce situations.

With in-depth research, semi-supervised methods show a promising application prospect in
remote sensing change detection. Combined with the latest deep learning technologies, these
methods can more effectively utilize limited annotated data and improve overall performance when
dealing with change detection tasks in high-resolution remote sensing images.

3. Methodology

The overall architecture of the SCMFM-CDNet model is shown in Figure 1. It mainly consists of
two parts: the supervised multi-scale feature fusion and reuse network MFM-CDNet, and the semi-
supervised learning consistency regularization method based on the teacher-student model for
updating parameters. The working principle of semi-supervised consistency regularization is to use
the teacher model to generate pseudo-labels for unlabeled data, and to add consistency loss and
regularization terms when training the student model. This ensures that the model’s predictions for
the data and its perturbed versions remain consistent, thereby forcing the model to learn more
generalized feature representations and iteratively updating model parameters after performance
improvement. Initially, MFM-CDNet is used for supervised learning on labeled data to generate
initial parameters. Then, for unlabeled data, the teacher-student model is used for iterative training
for semi-supervised learning. The main idea is to use the teacher model to produce pseudo-labels to
guide the student model to learn the features of unlabeled data, thus achieving the effect of semi-
supervised learning. The quality of pseudo-labels plays a key role in the performance of the final
model.
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Figure 1. Overall architecture of the SCMFM-CDNet model.

3.1. MFM-CDNet Structure

MEM-CDNet consists of an encoder and a decoder parts. The former uses the VGG-16 network
as the backbone, employing 5 VGG16_BN blocks, which correspond to the operations of VGG16_BN
at layers 0-5, 5-12, 12-22, 22-32, and 32-42. Features are extracted at different stages to achieve feature
fusion from coarse to fine. In the decoder part, the Feature Enhancement Module (FEM), Global
Context Module (GCM), and Feature Fusion and Reuse Module (FFM) are used in combination. The
overall structure of the MFM-CDNet model is shown in Figure 2.
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Figure 2. Overall architecture of the MFM-CDNet model.

(1) Feature Enhancement Module (FEM)
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The FEM primarily guides the attention by sequentially passing the feature maps through a
channel attention module and a spatial attention module, enabling the model to accurately locate
important areas in the image and significantly reduce computational complexity.

The channel attention module can highlight the most important feature channels in the image,
enabling the model to obtain more refined and distinctive feature representations, and reducing the
computational load on unimportant features. The channel attention mechanism mainly addresses the
question of “‘what the network should focus on’ . The spatial attention module allows the network to
focus on key areas within the image, primarily addressing the question of ‘where the network should
concentrate” .

(2) Global Context Module (GCM)

The main function of the GCM is to integrate multi-scale contextual information of images to
enhance the expressive power of features. In this way, the model can not only capture local details
but also integrate features from different levels, which can improve the detection ability of extremely
small targets.

The GCM consists of four parts. The first part is a 2D convolutional unit, while the second to
fourth parts each contain four 2D convolutional units. Each 2D convolutional unit is composed of a
convolutional layer and a batch normalization layer, but they have different kernel sizes and dilation
factors. The outputs of these four units are horizontally concatenated, and then placed together with
the output of the feature map obtained directly through the 2D convolution operation into the ReLU
activation function, ultimately resulting in a feature-enhanced map that contains multi-scale
contextual information. The detailed architecture of the GCM module is shown in Figure 3.
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Figure 3. Architecture of the GCM module.

(3) Feature Fusion and Multiplexing Module (FFM)

The FFM primarily fuses, refines, and reuses features. Its main function is to integrate and
optimize feature information from different levels. Through a series of operations, it enhances the
model’s ability to recognize positive samples, improves the localization accuracy of edge change
areas, and reduces the occurrence of missed detections. This module mainly correlates the features
with the attention maps processed by the FFM, which primarily refines the decoding of features from
three stages to enhance the accuracy of change information. The detailed operation involves bilinear
upsampling of the input feature X1, multiplying the upsampled feature with another layer of features
X2, bilinearly upsampling the input feature X2 and multiplying the upsampled feature with another
layer of features X3, bilinearly upsampling the input feature X1 twice and multiplying the upsampled
feature with another layer of features X3, horizontally concatenating the results of the three
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operations, and then passing them through two 3x2D two-dimensional convolutional modules to
produce the final decoded value of FFM. This results in an aggregated and refined feature map with
higher spatial resolution and stronger feature expression capabilities. The detailed architecture of the
FFM is shown in Figure 4.
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Figure 4. Architecture of the FFM module.

3.2. Teacher-Student Module

In the semi-supervised learning task, for unlabeled data, this paper employs the mean teacher
method to learn features. The main idea is to switch between the roles of the student model and the
teacher model. When using the backbone network as the teacher model, it primarily generates
pseudo-labels for the student model. When using the backbone network as the student model, it
learns from the pseudo-labels generated by the teacher model. The parameters of the teacher model
are obtained by taking a weighted average of the parameters from previously iterated training of the
student model. The target labels for the unlabeled data come from the predictions of the teacher
model, i.e., the pseudo-labels. Since the pseudo-labels generated by the teacher model can serve as
prior information in later training, they guide the student model in learning the features of a large
amount of unlabeled data, thereby achieving the effect of semi-supervised learning.

The parameters of the teacher model are updated through EMA of the parameters from the
student model, with the policy as follows.

0 =ab{_; + (1 —a)b,, (1)
where, 6; represents the parameters of the teacher model at the current step, ;_; represents the
parameters of the teacher model at the previous step, 6; represents the parameters of the student

model, and a is a smoothing factor set to 0.9, which controls the smoothness of the changes in the
teacher model’s parameters.

3.3. Loss Function

Change detection tasks are considered a special type of binary classification problem. In this
paper, a binary cross-entropy loss function is used in conjunction with the Sigmoid function and
BCELoss. The supervised loss function is:

Lossgyp = {1y, ..., L), (2)
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Ly = —[yn - log(a(X,)) + (1 — ) - log(1 — (X)), )
- 1

“® = e @

a(X) is a Sigmoid function that maps x to the interval (0,1).
In the semi-supervised part, the input is the result of supervised training, and the semi-
supervised loss function is as follows:

LoSS¢on = —[j/} . log(a(Xn)) +(1—-3)- log(l — a(Xn))], (5)

N 1
Y T e () ©

Loss = LosSgp, + BLOSScop- (7)

p represents the difference in coefficients between the two loss functions, and in this case, § is
used with a value of 0.2, at which point the impact of this coefficient on model accuracy is minimal.

3.4. Training Process

The training process of the model is shown in Table 1.

Table 1. Pseudo Code for Model Training.

Algorithm SCMFM-CDNet

Input:

Labelled image (X},X?), Unlabelled image (X3, X2),

Hyperparameters :1r, B, T, «

Initialise: MFM-CDNet model parameters 6, teacher model parameters 6,
Output:

Trained SCMFM-CDNet model with parameters 6

1: procedure Semi-Supervised Training 6, a

2:  foreach=1to T, do

3 Shuffle (X}, X7)

4 for batch Bin (X}, X?) do

5 Forward pass: Compute predictions P; using (X}, X?) and 6

6: Compute Lossg,, by (Eq.(2)-(3))
7

8

9

Backward pass: Update 6 using Lossg,, and Ir
end for
end for
10:  for each=T,, to Tdo
11: for batch Bin (X1, X2) do

12: Forward pass: Compute predictions P, using (X}, X{) and 6
13: Compute Lossc,, using P, and 6,

14: Backward pass: Update 6 using Lossc,, and Ir

15: end for

16: Update 6, by (Eq.(1))

17:  end for

18: end procedure
19: return 6
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4. Experiments

In this section, this paper will validate the effectiveness of the proposed method through
extensive experiments, which mainly include dataset introduction, experimental setup, comparison
methods, experimental results and analysis, and ablation experiments.

4.1. Dataset Introduction

This experiment utilizes three public datasets, which are LEVIR-CD, WHU-CD, and GoogleGZ-
CD.

The LEVIR-CD dataset is provided by Beihang University and is a large-scale Very High
Resolution (VHR) building change detection dataset. It consists of 637 pairs of high-resolution image
blocks, with a spatial resolution of 0.5 meters and an image size of 1024x1024 pixels. The dataset
focuses on building-related changes, including various types of structures such as villas, high-rise
apartments, small garages, and large warehouses.

The WHU-CD dataset is provided by Wuhan University and is a high-resolution remote sensing
image dataset for building change detection. The dataset includes a large image pair sized at
32507x15345 pixels with a spatial resolution of 0.2 meters. It reflects significant reconstruction
activities in the area following an earthquake, with change information primarily focused on
buildings. The images are typically cropped into non-overlapping blocks of 256x256 pixels.

The GoogleGZ-CD dataset is provided by Wuhan University and is a large-scale high-resolution
multispectral satellite image dataset specifically for change detection tasks. The dataset contains 20
pairs of seasonal high-resolution images covering the suburban areas of Guangzhou, China, with an
acquisition time span from 2006 to 2019. The image resolution is 0.55 meters, and the size varies from
1006x1168 pixels to 4936x5224 pixels. It covers various types of changes, including water bodies,
roads, farmland, bare land, forests, buildings, and ships, with buildings being the main changes. The
image pairs are cropped into non-overlapping blocks of 256x256 pixels.

The detailed number of samples in the training set, validation set, and test set of the three
datasets is shown in Table 2.

Table 2. Detailed Information of Datasets.

Title 1 Training Set Samples Validation Set Samples Test Set Samples
LEVIR-CD 7120 pairs 1024 pairs 2048 pairs
WHU-CD 6096 pairs 1184 pairs 1910 pairs

GoogleGZ-CD 804 pairs 330 pairs 330 pairs

4.2. Experimental Setup

The model in this paper was implemented on PyTorch and trained and tested on an NVIDIA
RTX 4090. Regarding the specific parameter configuration of the model, this paper uses the AdamW
optimizer to minimize the loss function with a weight decay coefficient of 0.0025 and a learning rate
of 5e-4. Due to the limitations of GPU resources and through extensive experimental validation, this
paper sets the batch size to 16 and the number of training epochs to 180 to ensure that the model can
converge. In the semi-supervised experiment, the dataset is constructed through random sampling.
Specifically, 5%, 10%, and 20% of the training data are randomly selected as labeled data, and the rest
of the data is processed as unlabeled data.

Experimental comparison methods selection: Currently advanced semi-supervised detection
models include AdvNet, SemiCD, RCL, TCNet, UniMatch-DeepLabv3+, and supervised models
include our MFM-CDNet model.

To clearly investigate the performance of SCMFM-CDNet, this experiment uses three evaluation
metrics: Precision (P), Recall (R), and F1 score. The formulas are shown as follows:

TP

P=rp+vFp

(8)


https://doi.org/10.20944/preprints202410.1886.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2024

10
TP
= 9
R TP + FN ©)
P xR
F,=2X 10
1 P+R (10)

In these metrics, TP stands for true positives, FP stands for false positives, and FN stands for
false negatives.

4.3. Experimental Results and Analysis

In this paper, 5%, 10%, and 20% of the training data were randomly selected as labeled data,
with the remaining data treated as unlabeled. Comparative experiments on the detection
performance of different methods were conducted on the LEVIR-CD, WHU-CD, and GoogleGZ-CD
datasets.

The quantitative accuracy results of different methods at different annotation ratios on the
LEVIR-CD dataset are shown in Table 3.

Table 3. Quantitative Accuracy Results of Different Annotation Ratios on the LEVIR-CD Dataset.

Labelled Ration
Method 5% 10% 20%
P R F1 P R F1 P R F1

MFM-CDNet 9398 7406 8284 9421 80.11 8659 95.31 8353 89.03
AdvNet 89.19 7499 8148 9098 80.41 8537 9134 8237 86.62
SemiCD 56.34  39.86 46.68 91.85 8219 86.75 9130 84.07 8753
RCL 8226 7787 80.01 8579 81.86 8378 86.60 8587 85.14
TCNet 9195 7791 8435 9180 86.57 89.11 9221 8780 89.95
UniMatch- 94.08 81.08 8710 9451 8242 88.05 94.62 83.05 88.46

DeepLabv3+
SCMFM-CDNet 90.51 86.87 88.62 9198 89.62 90.78 92.09 89.22 90.63

The SCMFM-CDNet network proposed in this paper has shown significant superiority on the
LEVIR-CD dataset. Among the three label ratios, the SCMFM-CDNet network ranks first in recall
and F1 score, indicating the network’s superior comprehensive performance. Although the accuracy
of SCMFM-CDNet is slightly lower than the UniMatch-DeepLabv3+ method, the recall rate R of the
SCMFM-CDNet network under the three label ratios is much higher than that of UniMatch-
DeepLabv3+ and other methods. This means that the proportion of actual change areas that the
network in this paper can detect is far higher than other methods, demonstrating the high
performance of the SCMFM-CDNet network proposed in this paper. In general, the SCMFM-CDNet
network has shown significant superiority in improving the accuracy and efficiency of change
detection through its innovative semi-supervised strategy.

The quantitative accuracy results of different methods at different annotation ratios on the
WHU-CD dataset are shown in Table 4.

Table 4. Quantitative Accuracy Results of Different Annotation Ratios on the WHU-CD Dataset.

Labelled Ration
Method 5% 10% 20%
P R F1 P R F1 P R F1
MFM-CDNet 85.74 7547 80.28 89.35 79.06 83.89 90.32 84.11 87.10
AdvNet 7876 6480 71.10 7997 76.06 7796 7840 86.44 8222
SemiCD 86.22 7249 7876 8251 8049 8149 89.88 87.63 88.74
RCL 7463 6873 8536 7824 7715 77.69 8052 8695 83.61

TCNet 87.05 8373 8536 9033 8203 8598 9456 8391 88.92
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UniMatch- 9256 8451 8835 89.29 87.88 8858 86.27 9247  89.26
DeepLabv3+
SCMFM-CDNet 9095 8598 8840 91.58 88.81 90.17 91.83 89.86 90.83

The quantitative accuracy results of various methods on the WHU-CD dataset indicate that the
SCMFM-CDNet network proposed in this paper ranks first in recall and F1 score at label ratios of 5%
and 10%. Additionally, at a 10% label ratio, the SCMFM-CDNet network’s accuracy also ranks first,
demonstrating the network’s superior comprehensive performance. At a 20% label ratio, the SCMFM-
CDNet network’s recall rate is second, lower than the UniMatch-DeepLabv3+ method, but still better
than other methods. The main reason for this is that the WHU-CD dataset has relatively fewer
positive samples (changed areas) and more negative samples (unchanged areas), with the changed
areas being more distinct and less complex. The high performance of UniMatch-DeepLabv3+ in
semantic segmentation allows it to detect changed areas with high accuracy. However, on the more
complex LEVIR-CD and GoogleGZ-CD datasets, the performance of our method is significantly
higher than that of UniMatch-DeepLabv3+. Particularly on the complex GoogleGZ-CD dataset, it can
be seen that UniMatch-DeepLabv3+ is inferior to the SCMFM-CDNet network proposed in this paper
in terms of generalization ability.

The quantitative accuracy results of different methods at different annotation ratios on the
GoogleGZ-CD dataset are shown in Table 5. Compared to some other datasets, the GoogleGZ-CD
dataset has a smaller scale. From a semi-supervised perspective, with only 5% labeled data, SCMFM-
CDNet achieved an F1 score of 81.44%, which is higher than other semi-supervised change detection
methods. This demonstrates its strong performance under conditions of limited labeled data, aligning
with the original intention of semi-supervised learning to train using a small set of labeled data.

Table 5. Quantitative Accuracy Results of Different Annotation Ratios on the GoogleGZ-CD

Dataset.
Labelled Ration
Method 50/0 100/0 200/0
P R F1 P R F1 P R F1
MFM-CDNet 80.03 77.61 78.80 84.59 73.09 7842 89.25 75.11 81.57
AdvNet 67.64 52.86 59.34 76.87 61.18 68.14 85.54 59.09 69.90
SemiCD 70.33 52.99 6044 7545 62.09 68.12 88.25 60.45 71.75
RCL 74.90 68.27 71.43 76.78 7825 7751 78.82 80.07 79.44
TCNet 78.97 70.95 74.75 75.79 81.79 78.68 85.46 79.62 82.43
UniMatch- 61.68 45.60 5250 81.79 5247 6393 79.19 59.55 67.97
DeepLabv3+

SCMFM-CDNet 81.86 81.02 8144 81.02 83.75 8236 82.64 8836 85.40

The qualitative evaluation results of different comparison methods at a labeling rate of 10% on
various datasets are shown in Figure 5. To make the visualization more intuitive, we use white to
express the TP (true positives), black to represent the TN (true negatives), red to illustrate the FP
(false positives), and light blue to depict the FN (false negatives). Black indicates unchanged areas,
while white indicates changed areas. Red represents areas where the model incorrectly identifies
unchanged areas as changed, i.e., false alarms. Light blue represents areas where the model fails to
detect actual changes, i.e, missed detections. By observing the visualization, the following
conclusions can be drawn: Although all methods still have common difficulties in missed detections
in some areas, compared with other semi-supervised methods, the SCMFM-CDNet network
proposed in this paper has relatively fewer blue and red parts in the visualization, that is, there are
fewer false alarms and missed detections, and the problems of unclear change edge detection and
missed detections of extremely small targets have been significantly improved.
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Figure 5. Qualitative evaluation results at a labeling rate of 10%.

4.4. Ablation Experiments

Ablation experiments mainly verify the effects of the Global Context Module (GCM) and the
Feature Fusion and Reuse Module (FFM) in the MFM-CDNet network. This paper selects 5% and 10%
label ratios in the GoogleGZ-CD dataset for validation. The quantitative accuracy results of ablation
experiments at different annotation ratios on the GoogleGZ-CD dataset are shown in Table 6.

Table 6. Quantitative Accuracy Results of Ablation Experiments at Different Annotation Ratios in the
GoogleGZ-CD Dataset.

Labelled Ration
Method 5% 10%
P R F1 P R F1
w/o GCM 70.28 75.31 72.71 74.22 76.04 75.12
w/o FFM 80.35 80.03 80.19 79.45 81.35 80.39
SCMFM-CDNet 81.86 81.02 81.44 81.02 83.75 82.36

From the table, it can be seen that the performance is better when both the Global Context
Module (GCM) and the Feature Fusion and Reuse Module (FFM) are present, as both modules play
a key role in the feature extraction process.

5. Conclusions

To address the problems of relatively difficult acquisition of annotated dual-time-phase remote
sensing images, unclear detection of change edges and missed detection of very small targets, we
propose a semi-supervised remote sensing image change detection network based on multi-scale
feature fusion and multiplexing with consistent regularisation, including multi-scale feature fusion
and multiplexing with supervised phase, and an instructor-student model used to implementing a
teacher-student model for semi-supervised learning. Extensive experiments and detailed ablation
experiments were done on three public datasets with three different labelling ratios of 5%, 10% and
20%, and the proposed network shown higher performance than other semi-supervised change
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detection networks in both training and inference. In the future, in terms of the feature extraction in
the supervised part of the MFM-CDNet and the upgrading strategy of the govern’s parameters in the
unsupervised part of the MFM-CDNet, good progress must be possible.
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