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Abstract: Wireless-powered Mobile Edge Computing (MEC) has been proving to be an auspicious
paradigm to enhance the data processing competency of low-powered networks in light of the increas-
ing need for diagnostic information retrieval. Applications of dividing a given load into smaller units
and then executing each unit independently by different processors are a class of tasks that require a
pressing need of parallel and distributed processing. However, it is challenging to decide whether the
units will be offloaded to the edges of a cloud (MEC) or through a concept of Mobile Device Cloudlet
(MDC) where a User Equipage (UE) with finite resources prefer to offload its units to a foreign UE.
The network of the client UE and foreign UE is known as a cloudlet. Furthermore, the cost function
developed assigns equal weights to the factors to optimise the analysis of policies which in actual fact
is not persuasive. There is a need to improve energy efficiency of UEs and consider the latency dilema
in cloud computing due to distant communication between UEs and remote cloud centres. To address
these problems, our paper proposes an Offloading and Time Allocation Policy using MDC and MEC
(OTPMDC) that implements whether a task should be offloaded through MEC or MDC in conjunction
with the time allocation judgement for the UE to harvest energy and transmit information. To address
the gap of the second issue, our goal is to train an intelligent deep learning-based decision-making
algorithm that will choose an optimal set of applications based on the energy in the UE. We have
formulated a cost function by considering the above policies that will generate an extensive dataset
from which the algorithm will select the optimal sets and train a deep learning network. The obtained
simulation results depict that performance of UEs is improved.

Keywords: Mobile Edge Computing; Mobile Device Cloudlet; energy efficiency; wireless energy
transfer

0. Introduction
The domain of Mobile Edge Computing (MEC) has shown a continuous growth in in our daily

lives over the past few decades, leading to notable surge in the complexity and scale of embedded
system manufacturing. Therefore, the demand for computational resources by mobile users is increas-
ing significantly nowadays [1,2]. The amalgamation of MEC with wireless technology has gained
tremendous recognition as it is the most viable alternative for the complex applications that have
escalated with the advances in computational power over the decades [3]. Sensors and instruments
connected to the clouds through the gateway monitor and control things remotely through mobile
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phones. The hardware devices can not handle computationally intensive tasks, even in light compu-
tational applications, especially when millions of devices operate everywhere and anywhere [4]. The
alternative option to cloud edge appears to be a viable solution. To bridge the gap, cloud computing
was the solution offered that increased productivity, speed, and efficiency. The challenge of delays that
arose between the users equipage (UE) and the cloud server has raised a question about the feasibility
of such recommended alternatives.

The European Telecommunication Standard Institute (ETSI) has proposed a method of placing a
small edge server in close proximity to the end-user, referred to as MEC, in the form of a distributed
network to minimise latency that is making the recommended methodology delay-sensitive [5,6]. The
conventional mechanism of offloading has few issues that become a key factors in offloading decisions
for MEC. The execution of MEC is compromised by the limited battery duration, storage, memory,
and computational capacity of the UEs [7]. Other crucial factors that are overlooked, include energy
efficiency and outlying communication between UEs and remote cloud centres, which lead to latency
in on-demand computing.

Research is being conducted to establish a new discipline that combines MEC data execution with
wireless energy transfer, incorporating energy harvesting capability in user-equipage (UE) [8]. Through
the Hybrid Access Point (HAP) consisting of a power node and an information access node, the radio
frequency signal will deliver energy the Wireless Powered Mobile Edge Computing (WP-MEC) to
UE, eventually enhancing the computing capability and addressing issues related with challenges
[9]. The existing literature lacks a comprehensive approach to optimize time allocation between
energy harvesting and data transfer in the HAP. Moreover, there is a lack of solutions for reducing
the energy consumption and delay inherent in long-distance data transfers to remote cloud centers
[10,11]. This gap highlights the need for a deep learning methodology that not only manages energy
and data operations efficiently but also facilitates offloading tasks to nearby devices or cloudlets with
limited resources. Further research is essential to develop and improve these strategies, which promise
significant improvements in efficiency and resource management in cloud computing environments.

Offloading policies in Mobile Device Cloud include local execution, Mobile Edge Computing
(MEC), and Mobile Device Cloud (MDC) execution as shown in Figure 1. These policies determine
how and where computational tasks are processed, either on the mobile device itself or through
offloading to nearby servers or device clouds [9]. This flexibility introduces significant complexity in
balancing computational load, energy consumption, and latency [12]. The primary challenges include
optimizing resources allocation to minimize energy consumption, managing latency introduced by
data transfer, and efficiently utilizing the available resources in MEC and MDC environments [13].
This complexity requires sophisticated algorithms to achieve optimal performance, which complicates
the implementation and management of offloading strategies. In addition, finding the optimal time
allocation for energy harvesting and data transfer adds another layer of difficulty, affecting the overall
efficiency and performance of the system [14].
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Figure 1. Wireless powered mobile edge computing architecture.

The methodology adopted in this work is to divide the mobile application into tasks and modules
that are offloaded to the nearby external user equipages (UEs). We propose an algorithm that would
generate a training dataset to train a deep neural network (DNN) that will simultaneously deduce
whether the so partitioned components will be executed locally or offloaded via MEC or MDC as well
as to allocate time to the UE for energy harvesting and information transfer. Our dataset simultaneously
takes into account offloading policies along with all possible time allocation policies.

To summarize the contribution to improving the mathematical models of previous MEC solutions,
the following key factors are presented.

1. Concept of MEC systems integrated with heterogeneous networks and joint time allocation for
energy efficient User-equipage (UE) performance. To the best of our knowledge, for the first time,
in this is combined the above two concepts of time allocation and offloading to MEC and MDC
simultaneously.

2. The proposed technique, named as Joint Time Allocation and Offloading Policies (JTAOP), is
compared with three benchmark cases—namely, total local computation, total offloading, and
Joint Time Allocation, to demonstrate further the performance in terms of minimum cost, delay,
and energy consumption.

3. In the proposed setup, a deep learning approach has been used to integrate the concepts of MEC
and MDC for both optimal offloading policy and optimal time fraction for harvesting energy and
proposing a deep learning-based algorithm which provides minimum cost, in terms of delay and
energy consumption, for computational offloading in MEC and MDC.
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The rest of the paper is organized as follows. Section 2 presents the related work and Section 1
discusses background and problem formulation. Section 3 provides the mathematical modeling and
analysis while Section 4 explains the proposed algorithm. Section 5 explains the results and discussion.
Finally, Section 6 concludes the paper and presents suggestions on the future work.

1. Background and Problem Formulation
The proliferation of Internet of Things (IoT) devices has necessitated advanced computational

strategies to cope with increasing data processing and energy management requirements. Mobile
Edge Computing (MEC) and Mobile Device Cloudlet (MDC) technologies have played pivotal role in
enhancing these capabilities. These technologies enable the offloading of computational tasks from IoT
devices to edge servers or nearby devices, thus reducing latency and optimizing energy consumption.

Despite these advancements, most current frameworks have primarily focused on MEC, and
overlooked the potential integration of MDC [9,11]. This oversight restricts the flexibility and appli-
cability of offloading strategies in diverse IoT environments where both MEC and MDC could be
beneficial. Typically, offloading decisions in existing models are limited to a three-bit representation.
This model is used to delineate different offloading actions based on whether tasks are executed locally
or offloaded to an edge server, assuming all tasks are divided into three components.

In the context of OTPMDC Offloading Policies and Time Allocation Policies, there are types
of offloading: namely, local, MEC, and MDC. Different combinations of these types constitute the
offloading policies.

Time allocation policies follows the same format as shown in Table 2. However, the authors
have only included content for MEC, using three bits for the offloading policy, considering the task is
divided into three components, n = 3 [9]. To address this limitation, we have extended the format of
offloading policies to 2n bits to include MDC as well. Therefore, the text in Table 1 is a combination of
the idea from the referenced paper and our own improvisation/contribution.

Table 1. Offloading policy for local execution, MEC remote execution, and MDC remote execution.

Bits b1 b2 b3 b4 b5 b6
0 1 1 0 0 1

The bits b1, b2, and b3 determine whether it is local or remote execution, while b4, b5, and b6

determine whether it is MEC or MDC. If one of the initial three bits bj ∀ j ∈ {1, 2, 3} is 0, it signifies
that local execution will take place, and bj+3 ∀ j ∈ {1, 2, 3} will become 0 by default. However, if one
of the first three bits bj is set to 1, it denotes remote execution. If the corresponding bj+3 bit is 0, it is
MEC; else it is MDC, if it is 1.

Table 1 shows an example of an offloading policy. b1 = 0 denotes local execution, so b1+3 = b4

will also have a value of 0 automatically. This means that the first task component will be executed
locally. Both b2 and b3 equal to 1 will be indicating that these tasks performed remotely. b5 is the
corresponding bj+3 bit of b2. b5 has a value of 0 which represents MEC. Therefore, the second task
component will be executed on the edges of the server. b6 is the corresponding bj+3 bit of b3. While b6

has a value of 1, which represents MDC. Hence, the execution of the third component will be carried
out in a Mobile Device Cloudlet (MDC).

Similarly, the number of possible time allocation policies depends on time resolution, rs. For
example, if rs = 0.1 then there will be ( 1

rs
+ 1) possible time allocation policies, as shown in Table 2,

showing one of these policies will have a minimum cost.
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Table 2. All possible time allocation policies for rs = 0.1

Time Allocation Policy ρ0 (Harvesting Time %) ρ1 (Offloading %)
1 0 1
2 0.1 0.9
3 0.2 0.8
4 0.3 0.7
5 0.4 0.6
6 0.5 0.5
7 0.6 0.4
8 0.7 0.3
9 0.8 0.2

10 0.9 0.1
11 1 0

2. Related Work
Enhancement in the performance of UEs has been the interest of many researchers and numerous

studies are investigated in computational offloading, each study is featuring a distinctive approach
to offloading methodology. There is an additional effort on computational processing and the energy
reserves due to the need to calculate the computational cost of each additional unit [15]. Nevertheless,
the technique to use the intelligent approach to select optimal combination of units to decrease the
latency, total energy consumption, and the size of data transfer is adopted. An idea has been proposed
that allows fog nodes to collaborate on a larger task depending on the pre-determined fog parameters,
known as the cooperative edge offloading method [16]. Accordingly, their approach has been shown to
be successful as data is executed in a timely manner at the edge level. However, the energy utilisation
of fog nodes has not been considered. The researchers have proposed an improved algorithm in which
the limited battery capacity of the UE and reduced power consumption are considered but the work
does not consider the combined effect of power usage and time delay [17]. In another work, the authors
proposed an energy-efficient offloading strategy for mobile edge computing in 5G networks, focusing
on minimizing energy consumption through optimal task offloading and radio resource management
[18]. Table 3 illustrates various studies that have approached computational offloading, focusing on
aspects such as energy consumption, time delay, etc.

Table 3. Summary of related work considering crucial factors such computational offloading, highlighting
different approaches and considerations such as energy consumption, time delay, battery capacity, wireless energy
transfer, deep learning, and resource optimization.

Related Work Energy Consumption Time Delay Battery Capacity Wireless Energy Transfer Deep Learning Resource Optimisation
[6] Yes Yes Yes No No No

[18] Yes Yes No No No No
[19] Yes No No No No No
[20] Yes Yes No No No No
[21] Yes Yes No No Yes Yes
[22] Yes Yes No No No No
[23] No Yes No No Yes No
[24] Yes Yes No No No Yes

[25–27] No No No Yes No No
[28] Yes Yes Yes Yes Yes No

The Lyapunov optimization technique converts the offloading policies issue into a series of
deterministic algorithms that examine closely the trade-off between energy efficiency and time delay
[19]. Still, the research does not assume a deep learning approach. A wireless offloading policy
that determines optimally the offloading decision by adopting the approach of deep learning-based
online offloading, considers a binary offloading policy [20]. This scheme has proven to be a success in
improving computational delay. In [29], the authors have proposed an architecture called MEC system
in a heterogeneous network (MECH), which provides energy reduction and improvement in execution
time of UE. The application from UE is segregated into tasks, offloaded and activated in the MDC,
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keeping in view the factors such as routing cost and response time. However, they do not contemplate
the time allocation policies.

In another work, the authors developed a dynamic offloading framework for mobile users,
considering local overhead on mobile terminals and limited network communication and computation
resources [22]. The offloading decision problem is formulated as a multi-label classification problem,
and the Deep Supervised Learning (DSL) method is employed to minimize computation and offloading
overhead. However, their work did not consider to address the time allocation and energy harvesting.
Using Markov Decision Processes (MDP), the authors formulates cooperative deep learning model
inference and proposes a method to adjust sensing data sampling rates based on mobile device and
access point communication conditions [23]. They examined communication technologies and edge
computing architectures for deep learning model offloading without comparing different technologies,
however, it does not include a comparison of distinct methodologies. A mobile edge computing
architecture for computation offloading is introduced, presenting methods for (i) resource optimization,
(ii) deep learning model optimization, and 3) joint optimization of resources and deep learning models
to support deep learning-based services within MEC frameworks[24]. Emphasizing the challenges
of high computational demands for such services, the study explored how joint optimization can
effectively address dynamic network and device environments. However,their work lack to address
resource optimization through the allocation of time for offloading and the implementation of energy
harvesting techniques.

Similarly, the authors explored wirelessly transferring energy between personal devices and others,
envisioning a communal energy resource [25]. The key design considerations include compliance
with international magnetic field guidelines, incentivization, and addressing user behaviour and trust
in various collocated interactions. In another work, the researchers explored mobile social energy
networks to facilitate battery power sharing among devices [26]. They analysed the charging habits,
identifies inefficiencies, and examines social interactions for power-sharing opportunities. By pairing
devices as power-sharing buddies, They addressed the gap between battery capacity advancements
and rising energy demand, demonstrating potential savings without altering user behavior.

In another work, the authors proposed an IoT energy services ecosystem for smart cities, lever-
aging the service paradigm to enable wireless energy crowd-sourcing for IoT device recharging [27].
The ecosystem, designed for sustainable, ubiquitous, and cost-effective power access, includes three
components: environment context, service-oriented architecture, and enabling technologies. Their
sustainable approach fosters collaboration among IoT users, extending battery life and reducing carbon
footprints by minimizing fossil fuel reliance. An architecture called MEC system in a heterogeneous
network (MECH) is proposed, which provides energy reduction and improvement in execution time
of UE [28]. The application from UE is segregated into tasks, offloaded and activated in the MDC,
keeping in view the factors such as routing cost and response time. However, they do not contemplate
the time allocation policies.

3. Mathematical Modelling and Analysis
Overview

A single UE in a WP-MEC system is considered as shown in Figure 1, in which the MEC server is
connected with hybrid-access point (HAP) fitted with a double antenna, one for energy harvesting and
the other for data processing. Such technological developments are utilised for remote controlling and
monitoring in the emerging IoT style of internet-connectivity. We consider the tasks in the single UE in
the system to be executed on an MDC that is formed by a number of nearby foreign UEs. The proposed
model includes an HAP operating in time division duplex mode. We assume that the HAP has the
ability to transmit power through RF signals to the UEs and WET technology is fully incorporated in
MEC and MDC. The UEs follow the harvest-then-transmit protocol where the device first harvests
energy from the HAP and then offloads the task components to the HAP. In the proposed study, it is
assumed that the HAP is equipped with sufficient power energy and processing capacity.
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In the case of partial offloading, ρ ∈ {ρ0, ρ1} represents the time allocation policy. The parameters
ρ0 and ρ1 are parts in percentage of one time slot. While ρ0 is the percent portion of one time slot in
which a UE harvests energy. This means if ρ0 is calculated as 0.65 then it means 65% of one time slot
will be used for energy scavenging and in the rest of the 35% of the time slot, the UE will transmit the
data to the HAP. Therefore, ρ0 and ρ1 are continuous variables taking values from [0, 1]. A variable x
for the i-th component of a task, denoted as xi, is a binary variable, that is, xi ∈ {0, 1}, which is defined
to determine the offloading policy. In the case of the battery level being more than 75%, local execution
will occur as energy harvesting is not required, given the assumption that computational capability
is enough for task execution. In the other case of the battery level BUE being less than 75%, remote
execution will occur. If xi is 0, the MEC remote execution is taking place. If xi is 1, then MDC remote
execution will occur. All the notations used in this work are listed in Table 4.

Table 4. List of notation

Notation Description
BUE Battery of UE

li i-th unit of a task in current time resolution
ui+1 (i + 1)-th unit of a task in current time resolution

l1 Distance (length) between UE and HAP of MEC
l2 Distance (length) between UE and HAP of MDC
Eu Total energy utilisation by UE
Eli Energy utilised by UE for i-th unit
Esi Scavenged energy by UE for i-th unit

Eu-max Maximum energy utilised by UE
Eu-off Offloading energy utilisation in edge computing

Eli Energy utilisation in local computing
fli Frequency of UE for i-th unit

fCPU CPU frequency at MES
Hi Channel power gain of i-th units
Hdi Downlink channel gain of i-th units

HiMEC Channel power gain of i-th units of MEC
HiMDC Channel power gain of i-th units of MDC

Pdi Transfer power of i-th units of UE
Psi Transfer power of MEC
Pt Transfer power of HAP
Pci Transfer power of MDC
Re Processing rate
ridl Maximum data rate on the downlink channel of i-th units

riulMEC Maximum data rate on the uplink channel of i-th units of MEC
riulMDC Maximum data rate on the uplink channel of i-th units of MDC

Tt Total time delay for complete task
Tiec Time delay of i-th units in remote computing
Tdi Downlink time delay

TeiMEC Execution time at MEC
TeiMDC Execution time at MDC

Tli Time delay of i-th units in local computation
Ti-max Maximum time delay of UE
ToiMEC Total time delay of i-th unit of MEC
ToiMDC Total time delay of i-th unit of MDC
TiuMEC Uplink time delay from UE to MEC
TiuMDC Uplink time delay from UE to MDC

3.1. Local Execution

When BUE is greater than 75%, local execution occurs. The time delay in the local execution model,
Tli, is obtained by equation (1) of the relation in [9].
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Tli =
li · L

fli
, (1)

Where li is the input data size of a component (measured in bytes) and L is measured in cy-
cles/byte (cpb). This L indicates the number of clock cycles a microprocessor will use per byte of data
processed in an algorithm. The parameter depends on the nature of the component and the complexity
of the algorithm and fli represents the frequency of UE. The energy consumption in this model is
calculated as equation (2).

Eli = ϵ · Tli · f 3
li, (2)

where ϵ is defined as the effective switching capacitance factor which depends on chip architecture.
ϵ fli represents the computing power of the UE.

3.2. Remote Execution

Alternatively, when BUE is less than 75%, remote execution will occur. The parameter xi will
determine whether the task will be offloaded to the server, MEC, or it will be offloaded Mobile device
cloudlet (MDC). For remote execution, when considering small scale fading channel power gain hd,
independent and identically distributed (i.i.d.) channel fading is assumed. The channel power gain

is Hi = hdg0

(
d0
d

)η
, where g0 is path loss and d0 is reference distance. d equals l1 in the case of MEC

and equals l2 in the case of MDC, where l1 is the distance between UE and HAP of MEC and l2 is the
distance between UE and HAP of MDC.

3.2.1. MEC Remote Execution

In the case that xi = 0 for the i-th component of a task, the executed data offloads the components
of the task to HAP for high processing power. For simplicity, it is assumed that MEC has strong
computing capabilities and HAP has a high transmission capacity. This renders the downloading
delay from HAP to UE negligible, implying ρ0 + ρ1 ≈ 1. Using the Shannon–Hartley theorem, the
data rates can be calculated as given in equation (3) and equation (4).

riulMEC = B log2

(
1 +

HiMECPdi
BN0

)
(3)

and

ridlMEC = B log2

(
1 +

HiMECPsi
BN0

)
(4)

Where N0 shows the noise spectral density for the uplink, and the available bandwidth is repre-
sented by B. In order to obtain the time delay in the remote execution model, we consider the uplink
time (time for data transmission), the downlink time (time for data reception), and the processing
time in MEC. The time delay in transferring data from UE to MEC is represented by TiuMEC, and is
calculated as in equation (5).

TiuMEC =
li

riulMEC
(5)

Similar to uplink, the downlink delay time, TdiMEC, is calculated as in equation (6).

TdiMEC =
ui+1

ridlMEC
(6)

The time for the processing of data in MEC is represented as TeiMEC and is calculated as given in
equation (7).
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TeiMEC =
li

fCPU
(7)

The total time delay, ToiMEC, for component i, is calculated as given in equation (8)

ToiMEC = ρ1(TiuMEC + TdiMEC + TeiMEC) (8)

It is worth mentioning that, as the frequency at MES is high, the time delay for the execution of
data at HAP can be neglected. Moreover, ui+1, which is the output data at MEC, is small as compared
to input data li, which renders the downlink time delay also negligible. Therefore, we can write as
given in equation (9).

ToiMEC ≈
1

(TiuMEC)
(9)

3.2.2. MDC Remote Execution

In the case that xi = 1 for the i-th component of a task, the executed information offloads the
units of a task to HAP for high computational capacity. Throughout we have assumed that MDC has
strong processing power and HAP has sturdy communication ability. The consequence of this makes
the downloading latency insignificant between HAP and UE, implying ρ0 + ρ1 ≈ 1. N0 is the noise
spectral density for the uplink and B is considered to be the available bandwidth. Implementing the
Shannon–Hartley theorem, the data rates can be calculated as given in equation (10) and equation (11)
respectively.

riulMDC = B log2

(
1 +

HiMDCPdi
BN0

)
(10)

and

ridlMDC = B log2

(
1 +

HiMDCPsi
BN0

)
(11)

To calculate the time delay in the remote execution model, we have considered the uplink time
(time for data transmission), the downlink time (time for data reception), and the processing time
in MDC. The time delay in transferring data from UE to MDC is represented by TiuMDC as given in
equation (12).

TiuMDC =
li

riulMDC
(12)

Similar to uplink, the downlink delay in duration, TdiMDC, is calculated as given in equation (13).

TdiMDC =
ui+1

ridlMDC
(13)

The duration for the processing of data in MDC is represented as TeiMDC, and is calculated as
given in equation (14).

TeiMDC =
li

fCPU
(14)

The total time delay, ToiMDC, for component i, is calculated as given in equation (15).

ToiMEC = ρ1(TiuMDC + TdiMDC + TeiMDC) (15)

It is worth mentioning that, as the frequency at MES is high, the time delay for the execution of
data at HAP can be neglected. Moreover, ui+1, which is the output data at MDC, is small as compared
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to input data, li, which renders the downlink time delay also negligible. Therefore, we can write given
in equation (16).

ToiMDC ≈
1

(TiuMDC)
(16)

3.3. Total Whole Task Execution

The total time delay, Tt, can thus be calculated given in equation (17).

Tt = Tli + ToiMEC + ToiMDC (17)

The energy consumption of the UE for input data, li, in this model, denoted as Eu-off, is calculated
as given in equation (18)

Eu-off = (ToiMEC + ToiMDC)Pdi (18)

Thus, the energy scavenged by the UE, Esi, is defined as given in equation (19).

Esi = ρ0Pt(ToiMEC + ToiMDC)Hdi (19)

The energy consumed by the UE for li is the sum of consumed energies in the local and remote
models, and is given asgiven in equation (20).

Eu = Eu-off + Eli (20)

For a meaningful comparison of our proposed technique with the benchmark techniques, we
model the cost function, γ for optimal time allocation and offloading policy, that considers energy
consumption and time delay simultaneously, as given in equation (21).

γ = αEu + βTt, (21)

where
α =

ω1

Emax
, (22)

and
β =

2
Tmax

(23)

where

w1 = w2 = 0.5 (24)

Emax and Tmax show the maximum energy consumed and time delay for the whole task, respec-
tively, which are taken as constants for all components of a task. The parameters w1 and w2 represent
the weight variants that are also optimized depending on the battery capacity of the UE.

4. Optimizing Offloading and Time Allocation with Deep Learning
Algorithm 1 is designed and named as Offloading and Time Allocation Policy using MDC and

MEC (OTPMDC). The algorithm basically processes the generation of input and output datasets for
neural network training. Deep learning out of all the available artificial intelligence options, is chosen
for its features of its high performance in terms of accuracy and its capability to handle complex
computations in OTPMDC due to a large number of input neurons.
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Algorithm 1: Offloading and Time Allocation Policies MDC and MEC

Input: c ∈ [c1, c2, . . . , cn], f ∈ [ fmin, fmax], MECd ∈ [MECdmin , MECdmax ],
MDCd ∈ [MDCdmin , MDCdmax ], p ∈ [pmin, pmax], bc ∈ [bcmin , bcmax ]

Output: cost← arg min{_total cost_=_local cost_+_MEC remote cost_+_MDC remote cost_}
1 for iterations = 1:1000 do
2 if bc > 75 then
3 for b = 1 : 2n do
4 local time delay;
5 local energy consumption;

6 local cost = arg min{_time delay_+_energy consumption_};

7 index = min{ _local cost_};
8 else
9 for k = 0 : rs : 1 do

10 while cj completes execution do
11 if x == 0 then
12 for b = 1 : 2n do
13 for 1:n do
14 MEC remote time delay;
15 MEC remote energy consumption;

16 MEC remote cost = arg min{_time delay_+_energy consumption_};

17 index = min{MEC remote cost};
18 else
19 if x == 1
20 for b = 1 : 2n do
21 for 1:n do
22 MDC remote time delay;
23 MDC remote energy consumption;

24 MDC remote cost = arg min{_time delay_+_energy consumption_};

25 index = min{_MDC remote cost_};

26 total cost = local cost + MEC remote cost + MDC remote cost;

27 [index cost]= min{total cost};
28 total time = time (index);
29 total energy = energy (index);

30 cost = min{b = 1 : 2n};
31 Save corresponding input data← [c, f , p, MECd, MDCd, bc];
32 Save corresponding label [b∗, ρ0, ρ1];
33 Repeat for different task sizes;
34 Train DNN← train(input data, labels);
35 Test Training DNN;

For each unit, u, six parameters are considered in this algorithm. Size of each unit, frequency of
the user equipage (UE) for execution, transmit power of UE, distance between UE and MEC, distance
between UE and MDC, and battery capacity are generated randomly and stored in an array as input.
The column size of the input array is 6n where n is the number of units and 6 is the number of
parameters. If the battery level of the UE is higher than 75%, it is assumed that the UE has the required
computational power. Local computing takes place, and hence cost is calculated for local computing
only as per the mathematical model. On the other hand, if the battery level does not fulfill the check
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conditions, remote computing takes place. If the random variable x has the value of ’0’, MEC cost is
calculated and if x has the value of ’1’, MDC cost is calculated as per the mathematical model.

If the divided unit is locally executed, only the mathematical formulas for local computing are
considered and calculated. However, if the unit is to be executed by remote computing, the time
resolution is also taken into account in the mathematical calculations for both MEC and MDC and
hence, the equations for remote computing are used for every possible time allocation policy. Cost is
also calculated at every step and at the end, the indices of the minimum cost are saved to trace back
the elements of the output array of offloading policies and time allocation policies.

The inputs and outputs are fed to the deep learning neural network with training, validation
and testing data as 70%, 15% and 15% respectively. The outcome of the training of the deep neural
network is with high accuracy whereas the output dataset our proposed approach when compared
with previously used methods shows better efficiency and performance.

The format of the data that is feed as an input to our algorithm is as listed Table 5, considering
that the task is divided into n = 3 components. This makes the input column size to the algorithm as
5n + 1. As a result 1000 random values under each column have been generated so rows = 1000. The
algorithm calculates the minimum cost for the random input values and adds another column, named
as Minimum Cost, which makes the column size 5n + 2.

The algorithm also outputs offloading policies and time allocation policies as shown in Table 6.
Considering n = 3, the column size of offloading policies is 2n = 6, as given in Table 1.

Table 5. Input Format
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Table 6. Algorithm Output Format
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The number of time allocation policies depends on the value of rs. For example, if rs = 0.1, then
there will be

(
1
rs
+ 1

)
= 11 possible time allocation policies. In the coding phase, 11 policies are

represented in a one-hot encoding format as listed in Table 7 . Only the variable , p0, is included as
an output, from which p1 is automatically calculated. For instance, in the 7th policy shown in Table 2,
where p0 = 0.6 and p1 = 0.4, the output is encoded such that the 7th column has a value of ’1’, with
all other columns set to ’0’.

Table 7. One-hot Encoding Example

0 0 0 0 0 0 1 0 0 0 0
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Regarding the Deep Neural Network (DNN) model, the input to the model consists of 5n + 2
parameters, including all relevant parameters, battery capacity, and minimum cost. The output of the
model is 2n +

(
1
rs
+ 1

)
, which includes the offloading and time allocation policies.

We set n = 3 and rs = 0.0001, resulting in 17 input neurons and 8 output neurons, as shown
in Figure 2. The network architecture comprises two hidden layers with 128 neurons each. The
activation functions utilized are the default functions provided by MATLAB’s Neural Network Pattern
Recognition Tool (nprtool), specifically tansig for the hidden layers and softmax for the output layer
accordingly.

Figure 2. Proposed DNN architecture.

5. Results and Discussion
The simulations results for the optimal time allocation and offloading policies. Each task is

divided into three components. The task size is considered as a uniform distribution in [0.1, 1] gigabit.
The value of CPU cycles to process one bit of data is taken as 737.5 cycles per bit. The frequency of the
UE is considered as a uniform distribution in [0.1, 1] GHz (see Table 8 for simulation parameters). For
simulation purposes only and to check the effect of the mobility in the training dataset, the distance
between HAP and the UE for MEC is taken as a uniform distribution in the 100-300m range and the
distance between HAP and UE for MDC is taken as a uniform distribution in the 100-300m rangem.
However, the training dataset can be generated for any suitable range of distances between HAP
and the UEs. The effective switching capacitance is taken as 10−25. Efficiency η of UE is taken as
0.8. g0 is taken as −30 dB, θ = 2, and d0 = 1. The available bandwidth is taken as 0.5 MHz. The
noise spectral density N0 is −100 dBm/Hz. The weighing constants are taken as 0.5. The offloading
transmission power of the UE is taken as a uniform distribution in the 1-15W range. Battery level is
taken in the range 0-100 %. Within the 0-100 % range, a display of 0 % signifies the presence of built-in
reserves, allowing devices to retain minimal power for critical operations such as data preservation
and shutdown notifications, which remain concealed from user visibility.

Figure 5 describes energy consumption by the UE using four different methods. Our proposed
method, OTPMDC, shows the best results in terms of minimum energy consumption.

Table 8. Simulation Parameters

Parameters Values
c [0.1, 1] Gigabit
fCPU 737.5 cycles/bit
fui [0.1, 1] GHz
l1 [100, 300] m
l2 [2, 50] m
ϵ 10−25

η 0.8
g0 −30 dB
θ 2
d0 1
B 0.5 MHz
N0 −100 dBm/Hz
Pdi [1, 15] W
bc [0, 100] %
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The validation of the dataset is determined by the proposed mathematical model because three
datasets, namely, 1) the training dataset, 2) validation dataset, and 3) test dataset are generated. In each
dataset, the input data contains the size of each unit, frequency of the user equipment for execution,
transmit power of the UE, distance between UE and HAP for MEC, distance between UE and HAP for
MDC, level of the battery of UE, and the minimum cost calculated by the mathematical model.

Figure 3 shows how the system executes local execution, MEC remote execution and MDC remote
execution simultaneously with minimum cost. In the graph, we compare four methodologies that are
JTAOP, total local execution, total offloading, and OTPMDC. Figure 4 depicts time delay using four
techniques for comparison. Despite the fact that the total local execution approach produces the most
desirable outcomes, this technique gives inadequate consideration to computational power, memory,
storage, or battery life, resulting in energy inefficiency. Similarly, although JTAOP has less time delay
than OTPMDC, it is also energy inefficient as shown in Figure 5. However, in our proposed technique,
OTPMDC, we have taken into account factors like battery life and storage and also overall cost is best
in our methodology as it is most energy efficient.

Figure 3. Normalised Cost vs. Task Size.

Figure 4. Time Delay for Execution vs. Task Size.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 January 2025 doi:10.20944/preprints202501.0885.v1

https://doi.org/10.20944/preprints202501.0885.v1


15 of 18

Figure 5. Energy Consumption by UE vs. Task Size.

Figure 6 shows the four techniques being examined in this work in order to determine the optimal
strategy, this time in terms of execution rate with OTPMDC has the best execution rate among all
methodologies.

Figure 6. Execution Rate vs. Task Size.

Initially, as the training dataset size increases from 1000 to 3000 samples, there is a notable from
52% to 63% improvement in accuracy. This significant increase indicates that the model has benefited
greatly from the additional data during the early stages of training. As the dataset size continues to
grow from 3000 to 6000 samples, the accuracy further improves but at a slower rate, reaching 69%. This
step reflects a point of diminishing returns, where each additional data sample contributes relatively
less proportionate to the overall accuracy improvement. Between 6000 and 8000 samples, the accuracy
continues to increase slightly, reaching 72%. This shows that the model is still gaining from additional
data stacks, although the gains are becoming narrowly marginal.

Finally, from 8000 to 10000 samples, the accuracy peaks to 72% and then slightly decreases bowing
down to 70%. This slight drop suggests that beyond a certain point, adding more data items does not
necessarily lead to proportionate better performance and might even cause the training to converge.
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Figure 7. Accuracy vs. Training dataset size.

6. Conclusion
This paper has investigated the inclusion of crucial factors in a WP-MEC system such as the energy

level of the battery of the UE. The proposed work is based a scalable algorithm in terms of resolution of
time fraction and the number of components of a given task, and solved the issues related to the partial
offloading scheme by considering a deep learning approach. Minimization of cost and energy con-
sumption of the UE are studied by considering a UE and a double antenna-featured HAP both in MEC
and MDC with the help of the trained DNN. The trade-off between energy consumption and time delay
is also studied to find the optimal policy that gives the minimum cost, energy consumption and time
delay, simultaneously. For future work, the paper has suggested a plan to consider user mobility along
with health and emergency scenarios. Wearable devices such as blood glucose monitors, blood pressure
monitors, and ECG sensors are crucial for real-time health monitoring and management, particularly in
urgent situations. These devices are vital due to their roles in intensive data processing and sustained
battery usage, making them indispensable in healthcare conditions demanding critical managing.
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