

Article

Not peer-reviewed version

A Comprehensive Approach to Refining the Jumping Performance in Track and Field

Somanpreet Singh ³

Posted Date: 9 July 2025

doi: 10.20944/preprints202507.0816.v1

Keywords: plyometric jump training; force-velocity imbalance; recovery strategies; mental health in sports; nutritional interventions; young athletes

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

A Comprehensive Approach to Refining the Jumping Performance in Track and Field

Somanpreet Singh

Central University of Punjab, India; drsoman1212@gmail.com

Abstract

This paper explores a multifaceted approach to enhancing performance in jumping events, focusing on training methodologies, recovery strategies, and mental health support for athletes. Plyometric jump training (PJT), resistance training, and individualized force-velocity profiling are highlighted as key methods for improving jump height, strength, and power output. Recovery strategies, including short recovery periods, tapering, and multimodal techniques like compression garments and nutrition, are examined for their role in sustaining peak performance. The paper also underscores the critical interplay between mental health and athletic performance, emphasizing the integration of sports psychology and psychiatry to address stressors, enhance resilience, and support recovery. Nutritional strategies, particularly the timing and composition of macronutrient intake, are discussed for their impact on energy recovery and sleep quality. Special considerations for young athletes, such as growth, maturation, and sport-specific somatotypes, are also addressed. By integrating these elements, the paper provides a comprehensive framework for optimizing jumping performance while minimizing injury risks and promoting long-term athlete well-being.

Keywords: plyometric jump training; force-velocity imbalance; recovery strategies; mental health in sports; nutritional interventions; young athletes

Optimizing performance in jumping events involves a multifaceted approach that includes training, recovery, and competition strategies. Each of these components plays a crucial role in enhancing an athlete's ability to perform at their best. Training focuses on improving physical capabilities, recovery ensures athletes are ready for subsequent performances, and competition strategies help in maximizing performance during events. The following sections delve into these aspects, drawing insights from recent research. Plyometric Jump Training (PJT): PJT is a widely used method to enhance jumping performance by improving human physical capabilities such as strength and vertical jump height. Different types of PJT exercises, such as drop jumps and countermovement jumps, have been shown to significantly impact performance outcomes. However, there are gaps in the literature regarding the effects of PJT on other physical capabilities like aerobic capacity and flexibility, indicating a need for further research (Barrio et al., 2023). Individualized training based on force-velocity imbalance (FVimb) can optimize jump performance. By tailoring training to address specific deficits in force or velocity, athletes can achieve significant improvements in jump height and force output. This approach allows for more precise and effective training interventions (Jiménez-Reyes et al., 2019) (Jiménez-Reyes et al., 2017). Combining plyometric training with weight training has been identified as one of the most effective methods to improve vertical jump performance. This combination leverages the benefits of both training types, enhancing both maximal dynamic force and the speed of muscle contraction (Pérez-Gómez & Calbet, 2013).

Short Recovery Periods: In the context of concurrent training, short recovery periods (e.g., 1-minute) between resistance training sets do not negatively impact subsequent jump performance. This suggests that shorter recovery times can be a time-efficient strategy without compromising performance (Ritchie et al., 2020). Recovery Modalities: While specific recovery strategies like cryotherapy and compression garments have shown positive effects in endurance athletes, their consistent benefits for jump performance remain unclear. Nonetheless, these strategies may still offer

some advantages in terms of reducing fatigue and enhancing recovery (Li et al., 2024) (Li et al., 2023). Tapering: Implementing tapering strategies in conjunction with PJT can lead to significant improvements in jump performance. Tapering involves reducing training volume and intensity before a competition to allow for recovery and peak performance. The effectiveness of tapering varies with its duration and intensity, but it generally contributes to enhanced performance outcomes (Ramirez-Campillo et al., 2020). Performance Analysis: Analyzing competitive performance can help identify key constraints that influence jumping behaviors. Understanding these constraints allows for the design of more representative training environments that mimic competition conditions, thereby improving performance during actual events (Mccosker et al., 2019). While the strategies discussed provide a comprehensive approach to optimizing jumping performance, it is important to consider individual variability among athletes. Factors such as age, gender, and initial fitness levels can influence the effectiveness of training and recovery interventions. Additionally, the integration of psychological and biomechanical assessments could further enhance the personalization of these strategies, leading to even greater performance improvements. Training methods and techniques for jumping events are diverse and multifaceted, focusing on enhancing performance while minimizing injury risks. These methods include biomechanical analysis, plyometric training, resistance training, and individualized training programs. Each approach offers unique benefits and can be tailored to the specific needs of athletes.

Biomechanical variables such as joint angles and moments are crucial in improving jumping performance and reducing injury risks. Techniques like drop jump landing and countermovement jumps are commonly used to measure these variables (Baus et al., 2020). Simulation models are increasingly used to explore the limits of an athlete's performance without the risk of injury, providing insights into optimal training strategies (Baus et al., 2020). Plyometric jump training (PJT) is a widely recognized method for enhancing human physical capabilities, including jumping performance. It involves exercises that utilize the stretch-shortening cycle of the muscle-tendon complex (Barrio et al., 2023). Traditional, assisted, and resisted plyometric methods are effective in improving vertical jump performance. These methods have shown moderate to significant improvements in jump height compared to non-plyometric conditions (Makaruk et al., 2020). Specific types of PJT, such as vertical and horizontal jumps, have been studied extensively, with vertical jumps being the most analyzed for their impact on strength and performance (Barrio et al., 2023). Resistance training, particularly exercises like squat jumps, is effective in increasing leg muscle strength and vertical jump height. Studies have shown significant improvements in athletes' performance after weeks of targeted training (Alwan et al., 2024). Combining heavy-resistance training with plyometric exercises can lead to greater improvements in power output and jump performance compared to either method alone (Villarreal et al., 2011). Training programs based on force-velocity imbalance (FVimb) offer a personalized approach to enhancing jump performance. These programs adjust training content and duration to match the athlete's specific needs, leading to significant improvements in force output and jump height (Jiménez-Reyes et al., 2019). Individual adaptation kinetics are considered, allowing athletes to reach their optimal force-velocity profile, which is crucial for maximizing performance (Jiménez-Reyes et al., 2019). Jumping interval training (JIT) has been shown to improve both aerobic and anaerobic performance, as well as vertical jumping ability. This method is particularly effective for sports like aerobic gymnastics (Silva et al., 2024). Combined training methods, which integrate various forms of strength and plyometric exercises, have been found to enhance jump performance more effectively than single-method approaches (Villarreal et al., 2011).

While these training methods are effective, it is important to consider the individual needs and conditions of athletes. Factors such as age, gender, and initial fitness levels can influence the effectiveness of different training techniques. Additionally, the integration of recovery and rest periods is crucial to prevent injuries and ensure the sustainability of training programs. Future research could explore the long-term effects of these training methods and their applicability across different sports and athlete demographics.

Effective Recovery Strategies for Peak Performance

Effective recovery strategies are crucial for athletes aiming to maintain peak performance, especially given the demanding schedules and physical toll of competitive sports. Recovery strategies can be broadly categorized into physiological, physical, and psychological methods, each contributing uniquely to an athlete's overall recovery process. The integration of these strategies, tailored to individual needs, can significantly enhance performance and reduce the risk of injury. Below are key aspects of effective recovery strategies based on the provided research papers. Personalized recovery strategies are essential for optimizing athletic performance. These strategies involve assessing an athlete's specific recovery needs and selecting appropriate techniques such as sleep, nutrition, hydration, stretching, massage, and active recovery (Shadibekovna, 2023). The importance of tailoring recovery strategies to individual athletes is emphasized, as it allows for adjustments based on personal responses and outcomes, ensuring peak performance and well-being (Shadibekovna, 2023).

Passive recovery techniques, such as compression garments, cold water immersion, and vibratory therapies, have shown effectiveness in minimizing the negative effects of training and competition, allowing athletes to return to peak performance more quickly (Cullen et al., 2021). However, some modalities like whole body cryotherapy and neuromuscular electrical stimulation lack convincing evidence, highlighting the need for careful selection of recovery methods (Cullen et al., 2021). A multidimensional approach to recovery, incorporating physiological, physical, and psychological methods, is particularly beneficial for young athletes. This includes proper nutrition and rest for muscle repair, stretching and massage for physical recovery, and relaxation exercises for mental resilience (Han, 2024). Such a comprehensive approach not only aids in recovery but also enhances overall athletic performance and prolongs athletic careers (Han, 2024). Multimodal recovery strategies, which combine various recovery methods such as nutrition, cold-water immersion, and sleep hygiene, have been studied in high-intensity sports like rugby. These strategies can influence performance metrics like peak force and reduce fatigue and soreness (Aben et al., 2023). However, the effectiveness of these strategies can vary, and balanced post-exercise meals may sometimes be equally effective, suggesting the need for context-specific recovery planning (Aben et al., 2023). Traditional recovery methods, such as foam rolling, compression garments, and hydrotherapy, have strong evidence supporting their efficacy. In contrast, newer devices like recovery boots and massage guns show mixed results, indicating that traditional methods should not be overlooked (Driller & Leabeater, 2023). Practitioners are advised to consider the hierarchy of scientific evidence when selecting recovery strategies, ensuring that athletes benefit from the most effective methods available (Driller & Leabeater, 2023). Sleep is a critical component of recovery, with both quantity and quality being vital for counteracting fatigue and preventing overtraining. Sleep hygiene strategies are recommended to optimize recovery and performance, especially during periods of high-intensity training (Nedelec, 2020).

While the focus on physical recovery is prevalent, the integration of psychological recovery strategies is equally important. Mental health professionals emphasize the role of psychological support in enhancing recovery outcomes, suggesting that a holistic approach that includes both mental and physical recovery can lead to superior results (Brooks et al., 2022). This perspective underscores the importance of considering all aspects of an athlete's well-being in recovery planning.

Pre-Competition Preparation: Setting the Stage for Success

Maximizing performance on event day involves a combination of strategic interventions that can be applied before, during, and after the competition. These tactics are designed to enhance both physical and mental aspects of performance, ensuring athletes are optimally prepared to meet the demands of their sport. The integration of preconditioning strategies, energy management, and psychological techniques can significantly impact an athlete's performance on the day of competition. Below are key strategies derived from the research papers provided. A well-structured warm-up is

crucial for preparing athletes physically and mentally. Techniques such as post-activation potentiation (PAP) can enhance muscle performance by temporarily increasing muscle force output following a high-intensity exercise (Priming Match-Day Performance: Strategies for Team Sports Players, 2022) (Kilduff et al., 2013). Ischemic Preconditioning: This involves brief periods of ischemia followed by reperfusion, which can enhance performance by improving muscle oxygenation and delaying fatigue (Priming Match-Day Performance: Strategies for Team Sports Players, 2022) (Kilduff et al., 2013). Hormonal Priming: Manipulating hormone levels through specific exercises or nutritional interventions can prepare the body for high-intensity performance (Priming Match-Day Performance: Strategies for Team Sports Players, 2022) (Kilduff et al., 2013). Competitor-Aware Strategies: In racing, particularly in hybrid vehicle competitions, optimizing energy usage while considering competitors' positions can reduce lap times. This involves using simulations and stochastic dynamic programming to predict and adapt to competitors' movements ("Competitors-Aware Stochastic Lap Strategy Optimisation for Race Hybrid Vehicles," 2023) (Paparusso et al., 2022) (Competitors-Aware Stochastic Lap Strategy Optimisation for Race Hybrid Vehicles, 2022). Genetic Algorithms: These are used to solve optimization problems related to energy management, ensuring that the vehicle's powertrain is used efficiently throughout the race ("Competitors-Aware Stochastic Lap Strategy Optimisation for Race Hybrid Vehicles," 2023) (Paparusso et al., 2022).

Nutritional Interventions

Carbohydrate and Creatine Supplementation: Ensuring adequate muscle glycogen stores and phosphocreatine levels can sustain high-intensity efforts and delay fatigue. Timing and type of carbohydrate intake are critical for optimizing performance (Burke, 2021). Hydration Strategies: Personalized fluid plans can prevent dehydration and maintain performance, although the best approach may vary depending on the sport and individual needs (Burke, 2021). Confidence and Self-Talk: High self-confidence and positive self-talk can enhance focus and performance under pressure. Techniques such as the "quiet eye" and motivational self-talk have been shown to improve outcomes in high-stress situations (Siegfried, 2024). Methods like biofeedback, meditation, and relaxation training can help athletes manage stress and maintain performance levels during competition (Siegfried, 2024). While these strategies provide a comprehensive approach to maximizing performance on event day, it is important to consider the individual needs and preferences of athletes. The effectiveness of these interventions can vary based on the sport, the athlete's psychological state, and the specific demands of the competition. Additionally, the integration of these strategies into existing routines should be carefully managed to avoid disruptions and ensure compatibility with the athlete's overall preparation plan.

The characteristics of young athletes encompass a range of physiological, psychological, and developmental aspects that distinguish them from non-athletes and adults. These characteristics are influenced by factors such as growth, maturation, and the specific demands of their sports. Understanding these characteristics is crucial for optimizing training, preventing injuries, and supporting the overall development of young athletes. The following sections delve into the key characteristics of young athletes, drawing on insights from the provided research papers. Young athletes experience significant growth and maturation, which can affect their performance and injury risk. The adolescent growth spurt, for instance, is a critical period where rapid changes in height and muscle mass occur, potentially increasing susceptibility to injuries (Caine & Purcell, 2016) (Nikityuk et al., 2013). Body Composition: Young athletes typically have lower body fat percentages and higher muscle mass compared to non-athletes. This is evident in studies where young athletes demonstrated superior physical development parameters, such as increased muscle mass and reduced body fat, compared to their non-athletic peers (Рылова & Жолинский, 2020). Metabolic and Endocrine Changes: During adolescence, there are significant changes in metabolic and endocrine functions, including increased cholesterol levels and changes in glucose utilization. These changes are crucial for supporting the energy demands of training and competition (Nikityuk et al., 2013).

Psychological and Emotional Characteristics of Athletes

Emotional Intelligence and Personality: Emotional intelligence plays a significant role in the development of young athletes, influencing their adaptability, self-expression, and social behaviors. These traits are essential for coping with the pressures of competition and maintaining motivation (Сухробович, 2023). Psychosocial Development: Participation in sports can enhance self-esteem and social skills, contributing to the overall psychosocial development of young athletes. However, the pressures of competition can also lead to stress and anxiety, which need to be managed effectively (Bar-Or, 1996). Cardiovascular Considerations: Young athletes may experience cardiovascular remodeling, including the development of arterial hypertension and left ventricular hypertrophy, particularly in sports requiring high physical demands. Monitoring and managing these conditions are crucial for long-term health (Широкова et al., 2019). Somatotype and Sport-Specific Characteristics: Different sports demand specific body types and physical attributes. For instance, footballers tend to have a balanced mesomorph somatotype, while basketball players often exhibit an ectomorph body type. These differences underscore the need for sport-specific training and talent identification (Kastrati et al., 2022).

While the characteristics of young athletes are well-documented, it is important to consider the variability and individual differences within this population. Factors such as biological age, training history, and genetic predispositions can influence the development and performance of young athletes. Additionally, the lack of consistent age definitions and terminologies in research can complicate comparisons and interpretations of findings, highlighting the need for standardized approaches in studying young athletes (Rodrigues & Subagiyo, 2022).

Athletes require a well-structured nutritional strategy to optimize energy recovery, which is crucial for enhancing performance and preventing injuries. The primary macronutrients involved in energy recovery are carbohydrates, proteins, and fats, each playing a distinct role in the recovery process. Carbohydrates are essential for replenishing glycogen stores, proteins aid in muscle repair and growth, and fats provide a sustained energy source. These macronutrients, when consumed in appropriate amounts and at the right times, can significantly enhance an athlete's recovery and performance. Below is a detailed exploration of each macronutrient's role in energy recovery for athletes.

Carbohydrates are the primary energy source for athletes, especially during high-intensity and endurance activities. They are crucial for replenishing muscle glycogen stores, which are depleted during exercise (Ihsan et al., 2024) (Patton, 2019). Recommendations suggest consuming carbohydrates before, during, and after exercise to maintain energy levels and enhance recovery. The specific amount depends on the athlete's body weight and the intensity of the exercise (Patton, 2019) (Dhiman & Kapri, 2023). High-carbohydrate diets and the intake of carbohydrates during exercise can improve performance and support the immune system (Dhiman & Kapri, 2023). Whereas, Proteins are vital for muscle repair and growth, making them essential for recovery post-exercise. They help in rebuilding muscle fibers that are broken down during intense physical activity (Ihsan et al., 2024) (Kerksick & Kulovitz, 2013). Athletes are advised to consume protein-rich foods or supplements after exercise to facilitate muscle recovery. The total daily protein intake should be adjusted based on the athlete's training intensity and goals (Patton, 2019) (Kerksick & Kulovitz, 2013). Protein intake should be balanced with carbohydrates to optimize recovery and muscle glycogen replenishment (Rietjens, 2022). Also, Fats serve as a secondary energy source, particularly during prolonged, low-intensity exercise. They are essential for providing fatty acids and fat-soluble vitamins (Kerksick & Kulovitz, 2013) (Rietjens, 2022). While the role of fats in immediate recovery is less emphasized compared to carbohydrates and proteins, they are crucial for overall energy balance and long-term health (Patton, 2019) (Grozenski & Kiel, 2020). Athletes should focus on consuming healthy fats, such as those from fish, nuts, and seeds, to support their energy needs and recovery processes (Grozenski & Kiel, 2020).

The timing of nutrient intake is critical for maximizing recovery. Consuming carbohydrates and proteins shortly after exercise can significantly enhance glycogen replenishment and muscle repair

(Rietjens, 2022) (C & P, 2024). A balanced diet that includes a variety of foods from all macronutrient groups is essential for meeting the energy and recovery needs of athletes (Grozenski & Kiel, 2020) (Jihad, 2024). While the focus is often on macronutrients, micronutrients and hydration also play a significant role in recovery. Vitamins, minerals, and antioxidants can help reduce inflammation and support overall recovery, while proper hydration is crucial for maintaining performance and preventing dehydration (Ihsan et al., 2024) (Rietjens, 2022). Additionally, the role of fats in energy recovery, though debated, is recognized for its contribution to energy balance and long-term health. Therefore, a comprehensive approach that includes all macronutrients, along with attention to micronutrients and hydration, is essential for optimal recovery in athletes. Sleep recovery is a critical component of athletic performance and recovery, with nutrition playing a significant role in optimizing sleep quality and duration. Athletes often face sleep disturbances due to rigorous training schedules, travel, and competition stress, which can impact their recovery and performance. Nutritional interventions, particularly involving macronutrients like carbohydrates, proteins, and fats, have been explored to enhance sleep and recovery in athletes. This answer will delve into the relationship between basic nutrition and sleep recovery for athletes, highlighting key findings from the provided research papers.

Carbohydrates, especially those with a high glycemic index, have been shown to potentially improve sleep quality and duration. Consuming high glycemic index foods in the evening may facilitate sleep onset by increasing the availability of tryptophan, a precursor to serotonin and melatonin, which are critical for sleep regulation (Gratwicke et al., 2021) (Doherty et al., 2019). However, the evidence regarding carbohydrate ingestion and sleep improvement is inconclusive, suggesting that while some benefits exist, further research is needed to establish definitive guidelines (Gratwicke et al., 2021). Proteins, particularly those rich in tryptophan, can enhance sleep quality and quantity. Tryptophan is an amino acid that contributes to the production of serotonin and melatonin, which are essential for sleep regulation (Doherty et al., 2019) (Halson, 2008). Consuming protein before bedtime has been associated with improved sleep outcomes, potentially due to its role in muscle repair and recovery, which is crucial for athletes (Gratwicke et al., 2021). While the direct impact of fats on sleep is less studied, maintaining a balanced diet that includes healthy fats is important for overall health and can indirectly support better sleep by promoting satiety and stable energy levels (Halson, 2008). The role of fats in sleep recovery is more about maintaining a balanced diet rather than specific interventions targeting sleep improvement (Ihsan et al., 2024).

Additional Nutritional Interventions

Beyond macronutrients, certain foods and supplements like tart cherry juice, kiwifruit, and magnesium have been shown to improve sleep quality and duration. Tart cherry juice, for instance, is rich in melatonin and has been linked to increased sleep duration (Gratwicke et al., 2021) (Doherty et al., 2019). Herbal supplements and micronutrients such as valerian, melatonin, and magnesium are also noted for their potential to enhance sleep quality, although individual responses may vary (Halson, 2008) (Helvaci & Ayhan, 2019). While nutrition plays a pivotal role in sleep recovery for athletes, it is essential to consider other factors such as sleep hygiene, stress management, and individualized sleep strategies. Athletes often require tailored approaches to meet their unique sleep needs, which may include consistent sleep schedules, minimizing electronic device use before bed, and managing travel-related sleep disruptions (Pujalte & Benjamin, 2018) (Rygielski et al., 2024). Additionally, the interaction between sleep and mental health is significant, as poor sleep can exacerbate stress and anxiety, further impacting recovery and performance (Bird, 2013). Therefore, a holistic approach that integrates nutrition with other recovery strategies is crucial for optimizing sleep and athletic performance. The relationship between mental health and athletic performance is complex and multifaceted, involving both psychological and physiological dimensions. Mental health issues can significantly impact an athlete's performance, while the pressures of competitive sports can exacerbate mental health problems. This bidirectional relationship necessitates a

comprehensive approach to athlete care that integrates mental health support with performance enhancement strategies. The integration of sports psychology and psychiatry is crucial in addressing these challenges, as they provide a holistic framework for promoting mental well-being and optimizing performance.

Sports psychology focuses on prevention and promotion of mental health, employing techniques to enhance resilience and performance while considering the athlete's holistic development. This includes managing stressors and fostering self-understanding, which are crucial for maintaining well-being and performance. Sports psychiatry addresses the clinical aspects of mental health, diagnosing and treating disorders specific to athletes. It ensures that treatments do not conflict with doping regulations and are safe for athletes. The collaboration between sports psychology and psychiatry ensures comprehensive care, covering preventive measures, personal growth, and clinical interventions. Injuries can lead to psychological responses that prolong recovery and affect performance. Mental health disorders are associated with increased injury risk and poorer recovery outcomes, highlighting the need for integrated mental health support in injury management .Recovery strategies should include psychological support to manage stress and build mental resilience, which are essential for effective rehabilitation and performance restoration (Han, 2024) (Brooks et al., 2022). Mental health care is increasingly recognized as a critical component of athletic performance. It is proposed as a 'legal performance enhancement' that can improve and maintain performance by addressing mental health issues proactively. Sports psychiatrists play a vital role in performance restoration, maintenance, and enhancement, considering mental health throughout the continuum of care.

Challenges and Initiatives in Mental Health Support

The mental health of athletes is a critical concern, with various challenges and initiatives being identified to support their well-being. Athletes face unique stressors, including high performance expectations, public scrutiny, and lifestyle changes, which can lead to mental health issues such as anxiety, depression, and burnout. Addressing these challenges requires a multifaceted approach that includes understanding the specific mental health needs of athletes, reducing stigma, and implementing effective support systems. The following sections explore the challenges and initiatives in mental health support for athletes.

Challenges in Mental Health Support for Athletes Burnout and Overtraining: Athlete burnout is a significant challenge, often overlapping with depression and overtraining syndrome. The high physical and psychological demands of elite sports can exacerbate these issues, impacting athletes' mental health and performance. Transition into Elite Sport: Young athletes transitioning into elite-level sports face increased performance expectations and lifestyle changes, which can lead to mental ill-health. The lack of support during this transition phase is a notable gap in current mental health support systems. Stigma and Help-Seeking: Stigmatization of mental health issues in sports can hinder athletes from seeking help. This is compounded by a lack of familiarity and comfort among providers in managing mental health concerns specific to athletes. Cultural and Environmental Factors: The closed culture of athletics and the emphasis on physical strength can make it difficult to integrate mental health discussions and support into the sports environment.

Initiatives to Support Mental Health in Athletes, Holistic and Developmental Frameworks: Implementing frameworks that consider individual, relational, sport-level, and sociocultural strategies can promote mental health and prevent mental ill-health. These include preparing athletes for career challenges, fostering supportive relationships, and creating psychologically safe sporting cultures. Sport-Specific Interventions: Mental health interventions tailored to the sport-specific context have shown effectiveness in improving mental health outcomes. These interventions often include knowledge acquisition, skills training, and group discussions, which can reduce stigma and stress among athletes. Online Platforms and Storytelling: Utilizing sport-specific online platforms to share mental health experiences can normalize these issues and encourage help-seeking. Storytelling by role models and team support can also promote openness and engagement with mental health

support. Integration with Physical Health Support: Embedding mental health support into athletes' routines at a level equivalent to physical health support is crucial. This approach can help normalize mental health issues and ensure athletes receive comprehensive care. While significant progress has been made in recognizing and addressing mental health issues in athletes, challenges remain. The perception of athletes as invulnerable can hinder the integration of mental health support into sports environments. Additionally, the risk of pathologizing normal emotional responses to sports-related stressors must be carefully managed to avoid unnecessary medicalization. By continuing to develop and implement targeted initiatives, the sports community can better support athletes' mental health and overall well-being. Athletes face unique pressures that can exacerbate mental health issues, such as public expectations and the demand for perfection. High-profile athletes have raised awareness of these challenges, leading to increased advocacy and resource development for mental health support. Initiatives like mental health screenings and support systems are being implemented to address the intertwined physical and mental health needs of athletes, aiming to reduce stigma and improve access to care. While the integration of mental health care in sports is gaining traction, challenges remain, such as overcoming stigma and ensuring adequate resources and support systems. The evolving landscape of sports psychology and psychiatry highlights the importance of a multidisciplinary approach to athlete care, emphasizing the need for ongoing research and collaboration to optimize mental health and performance outcomes.

The manuscript integrates findings from various studies to support relevant to recovery strategies, biomechanical analysis, and performance optimization in track and field, particularly for jumping events. Below is a paragraph summarizing the key details from each study, including title, authors, year, findings, and their relevance to the manuscript:

The study "Effect of selected massage and yogic exercise on the recovery pattern of blood lactate after an endurance workout" by MSG Kaur and SP Singh (2019) found that massage and yogic exercises enhance blood lactate recovery post-endurance workout, supporting the manuscript's exploration of passive recovery techniques like massage to reduce fatigue and improve performance. In 2024, R Kumar and S Singh's "A Comparative Investigation of Physical and Physiological Components of Team Game Athletes from Northeast and South India" identified physiological differences among athletes, reinforcing the manuscript's emphasis on personalized training and recovery strategies based on individual variability such as fitness levels and regional differences. RSSP Singh's 2015 study, "An Analysis among Physiological and Physical Fitness of Middle Distance and Long Distance Runners," compared physiological attributes of runners, offering insights into how such factors might influence jump-specific training, aligning with the manuscript's biomechanical and physiological considerations. The 2014 study by S Singh and L Kaur, "Effect of different time of day on the coordinative ability of inter-university level female football players," found that time of day impacts coordinative abilities, relevant to the manuscript's discussion on scheduling jump training for optimal performance. Similarly, SC Das and Somanpreet Singh's 2024 study, "chronotype and athletic performance in different time of day," showed that chronotype influences performance, further supporting the manuscript's focus on optimizing training timing. The 2023 study "fluid intake and fluctuation in total body water (tbw), intracellular water (icw), extracellular water (ecw), skeletal muscle mass (smm) and percentage body fat (pbf) of track..." by S Singh, S Kumar, N Kaur, S Choudhary, DS Sekhawat, B Singh, and J Kaur highlighted how fluid intake affects body composition in track athletes, directly supporting the manuscript's emphasis on personalized hydration strategies for jumpers. "One of the fascinating events in track and field: Hurdles" by Suraya Jabeen and Mohammad Muzamil Shah (2023) explored biomechanical aspects of hurdles, offering insights into joint angles and movement patterns applicable to jumping events, as discussed in the manuscript. DSP Singh's 2021 study, "reflective responses of tapering exercises module on the hemoglobin counts of track and field athletes," found that tapering influences hemoglobin counts, supporting the manuscript's discussion of tapering as a recovery strategy for peak jump performance. In 2021, DSSD N Kaur's "Perceptive Consequences of the Respiratory Parameters of Middle and Long Distance Runners in Track and Field Athletes" examined respiratory

parameters' impact on performance, relevant to the manuscript's focus on physiological conditioning for young athletes. The 2015 study by AK Kalkal and S Singh, "effect of slow stretch & hold, ballistic, and propioceptive neuromuscular facilitation method on hamstring flexibility," compared stretching methods, informing the manuscript's recovery protocols for jumpers to enhance flexibility and reduce injury risk. RS SomanPreet Singh's 2015 study, "menstruation cycle & aerobic capacity of female athletes an analysis," found that menstruation phases affect aerobic capacity, supporting the manuscript's consideration of gender-specific training adjustments for female jumpers. S Singh and P Kumar's 2013 study, "physiological differences between athletes of selected events in track and field—a comparative study," identified physiological differences among track and field athletes, aligning with the manuscript's focus on tailored training through force-velocity profiling. Lastly, SS and P Kumar's 2013 study, "Effect of different durations of active warming-up on sprinting performance," found that warm-up durations variably impact sprinting, relevant to the manuscript's discussion of pre-jump warm-up protocols like post-activation potentiation to enhance performance.

Conclusion

Optimizing jumping performance requires a holistic approach that integrates advanced training techniques, effective recovery strategies, and robust mental health support. Plyometric jump training, combined with resistance training and individualized force-velocity profiling, significantly enhances jump height and power output. Recovery strategies, including tapering, short recovery periods, and multimodal approaches, ensure athletes can sustain peak performance while minimizing fatigue and injury risks. Nutritional interventions, particularly those targeting carbohydrate and protein intake, alongside sleep hygiene, play a pivotal role in energy recovery and performance optimization. For young athletes, tailored training and recovery programs must account for growth, maturation, and sport-specific demands. Mental health support, through sports psychology and psychiatry, is essential for managing competitive stress and fostering resilience. By addressing these interconnected factors, coaches and athletes can develop personalized, evidence-based strategies to maximize performance and support long-term health and success in jumping events.

References

- Aben, H. G. J., Hills, S. P., Higgins, D., Cooke, C., Davis, D., Jones, B., & Russell, M. (2023). The Efficacy of a Multimodal Recovery Strategy Implemented After a High-Intensity Rugby League Training Session. *Journal of Strength and Conditioning Research*. https://doi.org/10.1519/JSC.00000000000004450
- 2. Alwan, D. Z., Megawati, M., & Bhakti, Y. H. (2024). *Meningkatkan Kualitas Vertical Jump dengan Latihan Squad Jump*. https://doi.org/10.70294/jimu.v2i04.473
- 3. Bar-Or, O. (1996). The child and adolescent athlete.
- 4. Barrio, E. D., Thapa, R. K., Villanueva-Flores, F., Garcia-Atutxa, I., Santibañez-Gutierrez, A., Fernández-Landa, J., & Ramirez-Campillo, R. (2023). Plyometric Jump Training Exercise Optimization for Maximizing Human Performance: A Systematic Scoping Review and Identification of Gaps in the Existing Literature. *Sports*. https://doi.org/10.3390/sports11080150
- Baus, J., Harry, J. R., & Yang, J. (2020). Jump and Landing Biomechanical Variables and Methods: A
 Literature Review. Critical Reviews in Biomedical Engineering.
 https://doi.org/10.1615/CRITREVBIOMEDENG.2020034795
- 6. Bird, S. (2013). Sleep, Recovery, and Athletic Performance: A Brief Review and Recommendations. *Strength and Conditioning Journal*. https://doi.org/10.1519/SSC.0B013E3182A62E2F
- 7. Brooks, T. J., Bradstreet, T. C., & Partridge, J. A. (2022). Current concepts and practical applications for recovery, growth, and peak performance following significant athletic injury. *Frontiers in Psychology*. https://doi.org/10.3389/fpsyg.2022.929487
- Burke, L. M. (2021). Nutritional approaches to counter performance constraints in high level sports competition. *Experimental Physiology*. https://doi.org/10.1113/EP088188

- 9. C, Dr. A. P., & P, Mr. Manjanna. B. (2024). The Role of Fueling Nutrition in Athletic Performance. *International Journal For Multidisciplinary Research*. https://doi.org/10.36948/ijfmr.2024.v06i02.14570
- 10. Caine, D., & Purcell, L. (2016). The Exceptionality of the Young Athlete. https://doi.org/10.1007/978-3-319-18141-7_1
- 11. Claussen, M., Burger, J. W., Menon, R., Nishida, M., Koh Boon Yau, E., Nahman, C. J., Whitehead, J.,
- 12. Competitors-Aware Stochastic Lap Strategy Optimisation for Race Hybrid Vehicles. (2023). *IEEE Transactions on Vehicular Technology*. https://doi.org/10.1109/tvt.2022.3215171
- 13. Competitors-Aware Stochastic Lap Strategy Optimisation for Race Hybrid Vehicles. (2022). https://doi.org/10.48550/arxiv.2203.00084
- 15. Delfin, D., Gray, H., & Wilkerson, A. H. (2022). Mental Health Interventions for Elite-Level Athletes in a Sport-Specific Context: A Systematic Review. *American Journal of Health Education*. https://doi.org/10.1080/19325037.2022.2105764
- 16. Dhiman, C., & Kapri, B. C. (2023). Optimizing Athletic Performance and Post- Exercise Recovery: The Significance of Carbohydrates and Nutrition. *Montenegrin Journal of Sports Science and Medicine*. https://doi.org/10.26773/mjssm.230907
- 17. Doherty, R., Madigan, S. M., Warrington, G. D., & Ellis, J. (2019). Sleep and Nutrition Interactions: Implications for Athletes. *Nutrients*. https://doi.org/10.3390/NU11040822
- 18. Driller, M., & Leabeater, A. J. (2023). Fundamentals or Icing on Top of the Cake? A Narrative Review of Recovery Strategies and Devices for Athletes. *Sports*. https://doi.org/10.3390/sports11110213
- 19. Edwards, C., Baron, D., & Glick, I. (2024). The Underestimated Role of the Sports Psychiatrist in Athletic Performance Restoration, Maintenance, and Enhancement in Sports. https://doi.org/10.1111/sms.14697
- 20. Gratwicke, M., Miles, K. H., Pyne, D. B., Pumpa, K. L., & Clark, B. (2021). Nutritional Interventions to Improve Sleep in Team-Sport Athletes: A Narrative Review. *Nutrients*. https://doi.org/10.3390/NU13051586
- 22. Halson, S. L. (2008). Nutrition, sleep and recovery. European Journal of Sport Science. https://doi.org/10.1080/17461390801954794
- 23. Han, Z. (2024). From Physiology to Psychology: A Multidimensional Analysis of Recovery Strategies for Young Athletes. *Theoretical and Natural Science*. https://doi.org/10.54254/2753-8818/2024.18075
- 24. Heaney, C. (2021). *Understanding Mental Health and Wellbeing in Sport*. https://doi.org/10.4324/9781003153450-15
- Helvaci, G., & Ayhan, N. Y. (2019). Sporcularda Uyku Kalitesi ve Beslenme Yaklaşımları. https://doi.org/10.33459/CBUBESBD.545034
- 26. Ihsan, F., Kozina, Zh. L., Sukendro, S., Nasrulloh, A., Hidayat, R. A., & Perdana, S. (2024). Nutritional Strategies for Rapid Recovery in Sport: A Literature Review. *Retos: Nuevas Tendencias En Educación Física, Deportes y Recreación*. https://doi.org/10.47197/retos.v57.105622
- 27. Introduction to the Section. (2023). https://doi.org/10.4324/9781003099345-17
- 28. Jeanguyot, E., Salcinovic, B., Johnson, A., Dyk, N. van, & Whiteley, R. (2023). Eccentric hamstring strength in young athletes is best documented when normalised to body mass: A cross-sectional study with normative data of 590 athletes from different age categories. *Biology of Sport*. https://doi.org/10.5114/biolsport.2023.125585
- 29. Jihad, H. M. (2024).Nutrition for Football Players: Fueling Performance on the Field. https://doi.org/10.31150/ajshr.v5i9.2907
- 30. Jiménez-Reyes, P., Samozino, P., & Morin, J.-B. (2019). Optimized training for jumping performance using the force-velocity imbalance: Individual adaptation kinetics. *PLOS ONE*. https://doi.org/10.1371/JOURNAL.PONE.0216681

- 31. Jiménez-Reyes, P., Samozino, P., Brughelli, M., & Morin, J.-B. (2017). Effectiveness of an Individualized Training Based on Force-Velocity Profiling during Jumping. *Frontiers in Physiology*. https://doi.org/10.3389/FPHYS.2016.00677
- 32. KALKAL, A. K., & SINGH, S. (2015). EFFECT OF SLOW STRETCH & HOLD, BALLISTIC, AND PROPIOCEPTIVE NEUROMUSCULAR FACILITATION METHODON HAMSTRING FLEXIBILITY. *International Journal of Behavioral Social and Movement Sciences*, 4(1), 16-25.
- 33. Kastrati, A., Gashi, N., Georgiev, G., & Gontarev, S. (2022). Somatotype Characteristics of Elite Young Athletes from the Republic of Kosovo. *Sport Mont Journal*. https://doi.org/10.26773/smj.221008
- 34. Kaur, B., Singh, S. P., & Kaur, R. (2001). Structural Profile and Fat Patterning between Two Endogamous Groups of Punjabi Females. *The Anthropologist*, 3(4), 247-250.
- 35. Kaur, M. G., & Singh, S. P. (2019). Effect of selected massage and yogic exercise on the recovery pattern of blood lactate after an endurance workout. *International Journal of Physiology, Nutrition and Physical Education*, 4(1), 2047-2049.
- 36. Kerksick, C. M., & Kulovitz, M. G. (2013). *Requirements of Energy, Carbohydrates, Proteins and Fats for Athletes.* https://doi.org/10.1016/B978-0-12-396454-0.00036-9
- 37. Kilduff, L. P., Finn, C. V., Baker, J. S., Cook, C. J., & West, D. J. (2013). Preconditioning Strategies to Enhance Physical Performance on the Day of Competition. *International Journal of Sports Physiology and Performance*. https://doi.org/10.1123/IJSPP.8.6.677
- 38. Kumar, P., Rathore, A., Narwaria, D., & Singh, S. (2012). A Comparative Study of Job Satisfaction between Teachers at Different Set-ups. *International Journal of Behavioral Social and Movement Sciences*, 1(4), 110-115.
- 39. Kumar, R., & Singh, S. (2024). A Comparative Investigation of Physical and Physiological Components of Team Game Athletes from Northeast and South India. *Indian Journal of YOGA Exercise & Sport Science and Physical Education*, 55-60.
- 40. Li, S., Kempe, M., Brink, M. S., & Lemmink, K. (2023). *Effectiveness of Recovery Strategies after Training and Competition in Endurance Athletes an Umbrella Review*. https://doi.org/10.21203/rs.3.rs-3167354/v1
- 41. Li, S., Kempe, M., Brink, M., & Lemmink, K. (2024). Effectiveness of Recovery Strategies After Training and Competition in Endurance Athletes: An Umbrella Review. https://doi.org/10.1186/s40798-024-00724-6
- 42. Lundqvist, C., Schary, D. P., Jacobsson, J., Korhonen, L., & Timpka, T. (2024). Aligning categories of mental health conditions with intervention types in high-performance sports: a narrative cornerstone review and classification framework. *Journal of Science and Medicine in Sport*. https://doi.org/10.1016/j.jsams.2024.05.001
- 43. Mack, A., Baron, D., & Reinert, J. (2023). The role of mental health care in reaching optimal performance in sports. *Sports Psychiatry*. https://doi.org/10.1024/2674-0052/a000050
- 44. Makaruk, H., Starzak, M., Suchecki, B., Czaplicki, M., & Stojiljković, N. (2020). The Effects of Assisted and Resisted Plyometric Training Programs on Vertical Jump Performance in Adults: A Systematic Review and Meta-Analysis. *Journal of Sports Science and Medicine*.
- 45. Mccosker, C., Renshaw, I., Greenwood, D., Davids, K., & Gosden, E. (2019). How performance analysis of elite long jumping can inform representative training design through identification of key constraints on competitive behaviours. *European Journal of Sport Science*. https://doi.org/10.1080/17461391.2018.1564797
- 46. McLeod, T. C. V., & Singe, S. M. (2023). A Needed Focus on Mental Health Research. *Journal of Athletic Training*. https://doi.org/10.4085/1062-6050-0435.23
- 47. Miller, T. M., Coates, J., Plateau, C. R., & Barker, J. B. (2023). Exploring the barriers and facilitators to mental health help-seeking behaviours in British elite track and field athletes. *Journal of Applied Sport Psychology*. https://doi.org/10.1080/10413200.2023.2197962
- 48. Nedelec, M. (2020). [Recovery strategies in elite sport : focus on both quantity and quality of sleep]. *Revue Médicale de Liège*.
- 49. Nikityuk, D. B., Korostelyova, M. M., & Volkova, L. Yu. (2013). [Anatomic, physiological and metabolic characteristics of young athletes]. *Voprosy Pitaniya*.
- 50. Paparusso, L., Riani, M., Ruggeri, F., & Braghin, F. (2022). Competitors-Aware Stochastic Lap Strategy Optimisation for Race Hybrid Vehicles. *IEEE Transactions on Vehicular Technology*. https://doi.org/10.1109/TVT.2022.3215171

- 51. Pardeep, K., Dharmendra, N., Somanpreet, S., & Arun, S. (2012). Comparison Of Achievement Motivation Among Sports Persons Of Different Socio-economic Status.
- 52. Patton, K. (2019). Fueling and Recovery. *Sports Medicine and Arthroscopy Review*. https://doi.org/10.1097/JSA.000000000000213
- 53. Pérez-Gómez, J., & Calbet, J. A. L. (2013). Training methods to improve vertical jump performance. *Journal of Sports Medicine and Physical Fitness*.
- 54. Pilkington, V., Rice, S. M., Olive, L., Walton, C. C., & Purcell, R. (2024). Athlete Mental Health and Wellbeing During the Transition into Elite Sport: Strategies to Prepare the System. https://doi.org/10.1186/s40798-024-00690-z
- 55. Priming match-day performance: strategies for team sports players. (2022). https://doi.org/10.4324/9781003044734-12
- 56. Pujalte, G. G. A., & Benjamin, H. J. (2018). Sleep and the Athlete. *Current Sports Medicine Reports*. https://doi.org/10.1249/JSR.000000000000468
- 57. Putukian, M., & Putukian, M. (2020). *The Psychological Response to Injury and Illness*. https://doi.org/10.1007/978-3-030-44754-0_8
- 58. Rahul, S. K., Yadav, R. K., Rajpurohit, G. S., Singh, P., Singh, S., Verma, V., ... & Mittal, A. (2023). Legal Labyrinths: Examining the Complexity of Drug Abuse Cases Pendency in Punjab, India.
- 59. Ramirez-Campillo, R., Pereira, L. A., Andrade, D. C., Andrade, D. C., Méndez-Rebolledo, G., Fuente, C. D. la, Castro-Sepulveda, M., García-Pinillos, F., Freitas, T. T., Freitas, T. T., & Loturco, I. (2020). Tapering strategies applied to plyometric jump training: a systematic review with meta-analysis of randomized-controlled trials. *Journal of Sports Medicine and Physical Fitness*. https://doi.org/10.23736/S0022-4707.20.11128-9
- 60. Rao, A. L., & Hong, E. S. (2016). In the mood for change: shifting the paradigm of mental health care in athletes—an AMSSM thematic issue. *British Journal of Sports Medicine*. https://doi.org/10.1136/BJSPORTS-2015-095924
- 61. Rietjens, G. (2022). Nutrition and Athletic Performance. https://doi.org/10.3390/books978-3-0365-4836-4
- 62. Ritchie, D., Keogh, J. W. L., Reaburn, P., Bartlett, J. D., & Bartlett, J. D. (2020). Utilising one minute and four minute recovery when employing the resistance training contrast method does not negatively affect subsequent jump performance in the presence of concurrent training. *PeerJ.* https://doi.org/10.7717/PEERJ.10031
- 63. Rodrigues, A., & Subagiyo, D. T. (2022). Apples to Oranges: Inconsistencies in Defining and Classifying Youth Sport Populations. *Clinical Journal of Sport Medicine*. https://doi.org/10.1097/jsm.0000000000001038
- 64. Rogers, D., Tanaka, M. J., Cosgarea, A. J., Ginsburg, R., & Dreher, G. (2023). How Mental Health Affects Injury Risk and Outcomes in Athletes. *Sports Health: A Multidisciplinary Approach*. https://doi.org/10.1177/19417381231179678
- 65. Rothlin, P., Håkansson, A., & Claussen, M. (2023). Sports psychology and sports psychiatry together for athletes' mental health. *Sports Psychiatry*. https://doi.org/10.1024/2674-0052/a000062
- 66. Rygielski, A., Melnyk, B., Latour, E., Latour, M., Judek, R., Kowalczyk, Z., Stanek, A., & Płudowska, K. (2024). The Impact of Sleep on Athletes Performance and Injury Risk. *Quality in Sport*. https://doi.org/10.12775/qs.2024.19.54333
- 67. Shadibekovna, S. I. (2023). Developing Personalized Recovery Strategies for Athletes: Methods and Approaches. *American Journal of Sports Science*. https://doi.org/10.11648/j.ajss.20231102.13
- 68. Siegfried, T. (2024). Lessons from sports psychology research. *Knowable Magazine* https://doi.org/10.1146/knowable-020524-1
- 69. Silva, R. M., Xu, Q., Wang, K., & Zhao, Z. (2024). Jumping Interval Training: An Effective Training Method for Enhancing Anaerobic, Aerobic, and Jumping Performances in Aerobic Gymnastics. *Journal of Sports Science and Medicine*. https://doi.org/10.52082/jssm.2024.410
- 70. Singh, R., & Singh, S. P. (2014). An Analysis among Physiological and Physical Fitness of Middle Distance and Long Distance Runners. *International Journal of Advanced Computer Research*, 4(4), 979.
- 71. Singh, S. P., & Singh, R. (2015). Menstruation Cycle & Aerobic Capacity of Female Athletes an Analysis. *International Journal of Physical Education Sports Management and Yogic Sciences*, 5(1), 20-24.

- 72. Singh, S. P., & Singh, S. Body Mass Index Among The Females Accommodated At Homes And Girls Hostel Of Sri Guru Granth Sahib World University Fatehgarh Sahib—An Analysis.
- 73. Singh, S., & Kaur, L. Effect of different time of day on the coordinative ability of inter-university level female football players. *Int. J. Phy. Edu. Spo*, 2(1), 16-19.
- 74. Singh, S., & Kumar, P. (2013). PHYSIOLOGICAL DIFFERENCES BETWEEN ATHLETES OF SELECTED EVENTS IN TRACK AND FIELD–A COMPARATIVE STUDY. *International Journal of Behavioral Social and Movement Sciences*, 2(1), 235-241.
- 75. Singh, S., & Kumar, R. (2025). Counterfeiting in India's Sports Industry: Navigating Trademark Challenges and Legal Strategies.
- 76. Singh, S., & Muqarram, M. Application and Procedure of Repeated Measures ANOVA in Statistics with SPSS
- 77. Singh, S., Kumar, S., Kaur, N., Choudhary, S., Sekhawat, D. S., Singh, B., & Kaur, J. FLUID INTAKE AND FLUCTUATION IN TOTAL BODY WATER (TBW), INTRACELLULAR WATER (ICW), EXTRACELLULAR WATER (ECW), SKELETAL MUSCLE MASS (SMM) AND PERCENTAGE BODY FAT (PBF) OF TRACK AND FIELD ATHLETES.
- 78. Singh, S., Singh, S., & Dhadwal, M. K. FAT PROPORTION AMONG UNIVERSITY STUDENTS AND A FAT BURNING TRAINING PROGRAM: AN INFLUENTIAL ANALYSIS.
- 79. Villarreal, E. S.-S. de, Izquierdo, M., & González-Badillo, J. J. (2011). Enhancing Jump Performance After Combined vs. Maximal Power, Heavy-Resistance, and Plyometric Training Alone. *Journal of Strength and Conditioning Research*. https://doi.org/10.1519/JSC.0B013E3182163085
- 80. Yadav, R. K., & Singh, S. (2020). PHYSICAL EDUCATION AND SPORTS IN NAAC AND NEP-2020. International journal of Multidisciplinary educational research, ISSN-2277-7881, 9.
- 81. Yadav, R. K., & Singh, S. SPORTS MARKETING AND GLAMOUR IN SPORTS IS DEVELOPING IN THE SHADOW OF PHYSICAL EDUCATION.
- 82. Yadav, R. K., & Singh, S. THE CORRELATION BETWEEN TIME MANAGEMENT AND STUDENT LEARNING OUTCOMES IN PHYSICAL EDUCATION.
- 83. Рылова, Н. В., & Жолинский, А. В. (2020). Морфо-функциональные особенности юных спортсменов. https://doi.org/10.17238/ISSN2223-2524.2020.2.19
- 84. Сухробович, Н. Ф. (2023). Understanding Emotional Intelligence and Personality to Athletes' Performances: a Systematic Literature. *Lecture Notes in Bioengineering*. https://doi.org/10.1007/978-981-99-2162-1 25

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.